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• How many particles make a fluid?

• Do phase transitions in the initial 

system manifest in the expansion?

• Is the hydrodynamic behaviour 

linked to the formation of pairs?

Measurement scheme

• Prepare interacting particles in the 

harmonic oscillator ground state

→ elliptical potential

• Switch off initial trap

• Interacting expansion 

• Single atom and spin resolved 

imaging 

→ momentum or position 

measurement at different times

• Single atom in elliptic trap 

→ inverts already the aspect ratio

• Discriminate between pure quantum 

and interaction effects 

• Tunable interactions through Feshbach resonance

• Measurement of 

• In-situ momentum 

• Real space with interacting expansion

Signatures of hydrodynamics

• Inversion of the aspect ratio

• Collective excitations
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• Emergence of  an 

interaction dependent 

collective branch from the 

confinement dominated 

excitation spectrum

Fermi energy

• System of 80 + 80 atoms

• Downshift of the collective 

mode frequency below 

the hydrodynamic 

expectation of √2𝜔
• Sudden jump from the 

collective into the 

collisionless branch

BEC BCS

Fermi energy

Comparison to the many-body limit

• Altmeyer et al. (2007) Phys. Rev. 

A 76, 033610

• Resonance frequencies and 

damping in our system with 160 

atoms 
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• Exciting and de-exciting a collective mode

• Probing the unitary evolution
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Atom loss spectroscopy

• Atoms are lost on resonance

• Fermionic particles interacting via contact interactions
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• Particles confined in external harmonic potential

• Tunable aspect ratio from 1D (𝜔𝑧 ≪ 𝜔𝑟) to 2D (𝜔𝑧 ≫ 𝜔𝑟)

Trap geometry

Characterization of imaging

• Random walk of atoms due to photon recoil

o Limit to ~ 300 photons / atom

o Around 20 photons / atom on EMCCD

• No cooling scheme required

• Works in free space
Single Atom Sensitivity

• Detection fidelity ≥ 97%

• Resolution ~10 μm

Experiment platforms

Microtrap (1D)

Microtrap and standing-wave trap (2D)

In 2D harmonic trap closed shells with 2, 6, 12, … atoms

Low-entropy mesoscopic samples 

Observing elliptic flow1

Mesoscopic Fermi system1
Deterministic Preparation in 1D and 2D2

Free-space fluorescence imaging3

Building a fluid atom by atom2 Tuning interactions3

Emergence of Collective excitations1

Coherence of the quadrupole mode3

Towards the many-body limit2

Rotation of a single atom1

Energy Scales

• Attractive interactions characterized by binding energy EB

• EB competes with shell-structure Eho and Fermi energy EF

Emergence of the quadrupole mode 

Low-entropy mesoscopic samples 

Next: Rotation of

many interacting atoms2

Momentum 

distribution

2D harmonic oscillator states 

L=1 state | ۧ𝟏𝟏Ground state | ۧ𝟎𝟎Rabi oscillations between | ۧ00 and | ۧ11

• Preparation of a single atom in the ground state 

• Excitation into L=1 state via rotation 

• Drive Rabi oscillations between (0,0) and (1,1)

→ coupling to higher states is suppressed due to

anharmonicity

• 𝜋 −pulse → Measure the momentum space distribution


