

Emergence of Hydrodynamics in Few Particle Systems

C. Heintze, S. Brandstetter, P. Lunt, K. Subramanian,

M. Holten and S. Jochim

Physikalisches Institut, Universität Heidelberg

Mesoscopic Fermi Gas

Fermionic Quantum Gases

• Fermionic particles interacting via contact interactions

$$H = -\sum_{i} \frac{\hbar^2}{2m} + \sum_{i < j} g_0 \delta^2 (r_i - r_j) + V_{ext}$$

• Here: Particles confined in external harmonic potential in **D=2**.

Energy Scales

 $E_F = (n+1)\hbar\omega$

 $E_{ho} = 1 \hbar \omega$

Attractive interactions characterized

Few body

Deterministic Preparation

Superposition of "pancake" trap and optical tweezer

Imaging

Free-space fluorescence imaging

• Random walk of atoms due to photon recoil Limit to ~ 300 photons / atom

- by binding energy E_B
- E_{B} competes with shell-structure E_{ho} and Fermi energy E_{F}

Few to Many

- How many particles are needed to observe collective effects like hydrodynamics?
- What are the few-body precursors of the phase transitions?
- Deterministic preparation of ground states with a given atomnumber via spilling procedure

- Tunable aspect ratio from 1D ($\omega_z \ll \omega_r$) to 2D ($\omega_z \gg \omega_r$)
- In 2D harmonic trap closed shells with 2, 6, 12, ... atoms

F.Serwane et al. Science 15, 6027 (2011) Bayha et al. Nature **587**, 583-587 (2020

- Around 20 photons / atom on EMCCD
- No cooling scheme required
- Works in free space

Single Atom Sensitivity

- Detection fidelity $\geq 97\%$
- Resolution 4.0 μm Bergschneider, Klinkhammer et al. PRA 97 (2018), 063613

Pairing correlations

Fermionic Quantum Gases

- Quantum state can be characterized by correlations functions
- Natural choice for two component Fermi gas is the opposite spin density-density correlator:

$\mathcal{C}^{(2)}(\boldsymbol{p}_{\uparrow},\boldsymbol{p}_{\downarrow}) = \langle n_{\uparrow}(\boldsymbol{p}_{\uparrow})n_{\downarrow}(\boldsymbol{p}_{\downarrow})\rangle - \langle n_{\uparrow}(\boldsymbol{p}_{\uparrow})\rangle\langle n_{\downarrow}(\boldsymbol{p}_{\downarrow})\rangle$

• Cooper Pairing: Find strong correlations between spin up and and down particles located at the **Fermi surface**

 $E_B = 0 \dots 10 \hbar \omega$

Hydrodynamics

Emergence of Hydrodynamics

- How many particles make a fluid?
- Do phase transitions in the initial system manifest in the expansion?
- Is the hydrodynamic behaviour linked to the formation of pairs?

 $\psi(x,t=0)$ —

254 µs

9 *ms* —

Why do we need a Matterwave Microscope?

- System size ~ $1\mu m$
- Pair size $\Delta \sim 500$ nm
- Imaging resolution ~ 4 μm
- Optical resolution ~ 1 μm

Measurement

- Prepare interacting particles in the harmonic oscillator ground state, finite ellipticity
- Switch off initial trap
- Interacting expansion
- Single atom and spin resolved imaging
 - ➤ momentum or position measurement of the particles at different times

Box potentials

Digital Micromirror Device

 1920 x 1080 mirrors, 10.8 μm each ~ 2 cm x 1.3 cm \rightarrow 150 μm x 150 μm , demagnification $\sim x 83$

• Optical resolution ~ 1 μ m, dynamical range ~ 50

• Pattern rate 16 kHz ~ 0.17 μm / s – 1 μm / s

Resolution of particles with the same spin ~ 10 μm

Setup

- Additional optical trap (1W, attractive)
- Deviation from harmonic curvature • causes aberrations
- Large beam width (40 µm) reduces the problem

Murthy et al. Arxiv Preprint (2019). arXiv:2104.10089 Murthy et al. Phys. Rev. A 90 (2014), 043611 Weitenberg et al. Nature **599**, 571-575 (2021)

Magnify test target (2 non-interacting

• Check field of view:

Characterization

• Magnification (30 - 65)

particles in harmonic trap)

Tune trap frequency/size

- Create tightly bound pairs in a shallow trap
- Does the pairsize depend on the

(stirring, moving barriers)

Dynamic excitations

Box potentials and finite reservoirs

 Measure transport phenomena and correlations

Bulk properties in flat box potentials

Binary and grey scaled potentials

 \rightarrow Flatten harmonic confining beams

 \rightarrow Imprint repulsive potential barriers

Enss et al. Phys. Rev. Lett. 123 (2019), 205301 Amato et al. Phys. Rev. A 102 (2020), 022207