
Department of Physics and Astronomy

University of Heidelberg

Master Thesis in Physics
submitted by

Sebastian Pres

born in Fritzlar

2014





BKT - phase transition in a strongly
interacting 2d Bose gas

This Master Thesis has been carried out by Sebastian Pres at the
Physikalisches Institut Heidelberg

under the supervision of
Prof. Selim Jochim





Abstract

In this thesis we probe the transition from a normal to a quasi-condensate phase in a two
dimensional gas of ultracold bosonic dimers in the regime of strong interactions.
We prepare a quantum degenerate sample of deeply bound molecules consisting of two 6Li
fermions in the two lowest hyperfine sublevels by performing evaporative cooling in a 3d op-
tical dipole trap and subsequently transferring the cloud into a standing wave optical dipole
trap. The standing wave trap creates a stack of highly anisotropic potentials with a tight
vertical confinement. By tomographic radio-frequency spectroscopy we resolve the population
in the individual layers of the standing wave trap. By precise control of the Fermi energy and
the temperature we freeze out the vertical degree of freedom and prepare a quasi-2d system
in a single standing wave trap.
By investigating the density distribution after short time-of-flight we observe density fluctu-
ations in the quasi-condensate part which we relate to an in-situ phase fluctuation. This is
a significant indication for an initial quasi long range order in the sample predicted for the
BKT phase. After long time-of-flight we directly obtain the in-situ radial momentum distri-
bution by using a matter wave focusing technique. Due to the clear bimodal profile of the
momentum distribution we successfully isolated the normal and the quasi-condensate part.
This allows us to determine the critical temperature of the phase transition by extracting the
quasi-condensate fraction at different temperatures.

Zusammenfassung

In dieser Arbeit untersuchen wir den Phasenübergang zwischen einer normalen Phase und
einer quasi-kondensierten Phase in einem zwei-dimensionalen Gas bestehend aus ultrakalten,
stark wechselwirkenden, bosonischen Dimeren.
Durch evaporatives Kühlen in einer 3d optischen Dipolfalle preparieren wir hierbei ein quan-
tenentartetes System von tief gebundenen Molekülen, die aus zwei 6Li Fermionen in den
untersten zwei Hyperfineunterzuständen bestehen. Dieses System transferieren wir direkt in
eine weitere vertikale Anordnung mehrerer optischer Dipolfallen, welche durch eine stehen-
den Welle erzeugt werden. Die besonders anisotropen optischen Potentiale erlauben es die
Moleküle in vertikaler Richtung besonders stark einzuschränken. Die Besetzungsverteilung in
den einzelnen optischen Potentialen können wir durch eine tomographische Radio-Frequenz-
Spektroskopie bestimmen. Das Ausfrieren des vertikalen Freiheitsgrades gelingt uns durch
eine präzise Einstellung der Fermi Energie und der Temperatur und erlaubt uns ein quasi-zwei
dimensionales System in einem einzigen optischen Dipolpotential zu generieren.
Bei der Messung der Dichteverteilung nach kurzer Expansion der Wolke beobachten wir
Dichtefluktuationen im quasi-kondensierten Teil, welche wir auf in-situ Phasenfluktuationen
zurückführen. Dieses ist ein starker Hinweis für eine ursprüngliche quasi-langreichweitige
Ordnung in dem System, die für die BKT-Phase vorausgesagt wird. Nach langer Expansion
der Wolke gelingt es uns die in-situ Impulsverteilung der Moleküle zu bestimmen, indem wir
eine Materiewellen Fokussiertechnik anwenden. Durch das eindeutig bimodale Profil der Im-
pulsverteilung, können wir erfolgreich den quasi-kondensierten Anteil vom normalen Anteil
isolieren. Dies erlaubt uns eine Bestimmung der kritischen Temperatur des Phasenübergangs,
indem wir den quasi-kondensierten Anteil bei unterschiedlichen Temperaturen messen.
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1. Introduction

The physical properties of a many-body-system are strongly influenced by its ordering.
During a phase transition the ordering of the many-body system is changed qualita-
tively which can be observed in typical phase transitions in our three dimensional world
like freezing of water or ferromagnetism. All these phase transitions can be character-
ized by a spontaneously breaking of some continuous symmetry of the Hamiltonian.
Frozen water for instance can be characterized by a spontaneously broken translational
symmetry due to crystallization.
The phase transition from a thermal phase to a Bose-Einstein condensate is indicated
by the emergence of a true long range order in the system. Reducing the dimensions
of the many-body-system from 3d to 2d affects the nature of the phase transition. The
Mermin-Wagner theorem states that continuous symmetries cannot be spontaneously
broken in two or one dimensional systems at finite temperature. As a consequence true
long range order does not exist except for zero temperature [Mer66].
Thus, the observed phase transitions in two dimensional systems like for instance the
appearance of superfluidity in thin 4He films [Bis78], has to be related to a different
class of phase transitions. The most famous example of a continuous but not symme-
try breaking phase transition is the Berezinksii-Kosterlitz Thouless (BKT) transition
[Ber71, Kos73], which only exists in 2d and is also believed to be relevant in high-Tc

superconductivity [Squ11].
The BKT phase is characterized by a topological order of the system due to pairing of
vortices with opposite circulations, which leads to a quasi long range order. Since quasi
long range order can be established in two dimensions for sufficiently low temperatures,
this enables the possibility of a superfluid phase transition.
A convenient system to study the BKT-transition are quantum gases of ultracold atoms
since they are completely decoupled from the environment, allow to control the internal
and external states of the trapped particles and provide a convenient accessibility by
imaging techniques. By confining ultracold quantum gases to highly anisotropic opti-
cal dipole potentials [Gri00], the dimensionality of the trapped system can be reduced.
This enables the investigation of the length scale of the order in two or one dimensional
systems and opens the possibility to study the underlying concept of superfluidity in
reduced dimensions.
Ultracold quantum gases have been available since the first realization of a BEC in 1995
[And95, Dav95] and the first preparation of a degenerate Fermi gas in 1999 [DeM99].
Due to the existence of Feshbach resonances [Ino98, Chi10], the interactions in the
sample can be tuned and thus a highly correlated many-body-system can be realized.
Besides that, the tuneability of interactions during the evaporative cooling allows the
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formation of bosonic dimers formed by two strongly repulsive interacting fermionic
atoms.
In 3d these Feshbach molecules can perform a phase transition into a molecular BEC
which was shown in [Joc03, Gre03, Zwi03]. By changing the repulsive interaction of
the condensed molecules to the regime of attractive interactions a superfluid consisting
of Cooper pairs can be formed as described by BCS theory. The repulsive interacting
regime (BEC side) and the weakly attractive interacting Fermi gas regime (BCS side)
are continuously connected by a strongly interacting regime known as the BEC-BCS
crossover. The first observation of a phase transition from a normal to a superfluid
phase of fermionic pairs on the BCS side was achieved by [Gre03, Zwi03] and could be
extended to the BEC-BCS crossover in [Zwi05].
Since in two dimensional systems Bose-Einstein condensation is strongly suppressed,
we study in this thesis the emergence of the BKT transition in the bosonic regime.
The first experimental observation of the BKT transition in ultracold quantum gases
was achieved by probing the coherence of a 2d bosonic system of 87Rb by [Had06] using
matter wave heterodyning and the validation of the superfluid character of a 2d Bose
gas was obtained by a stirring experiment in [Des12].
Probing of a strongly interacting quasi-2d Fermi gas was achieved by different experi-
mental methods. The interaction energy and the confinement induced resonance were
measured by radio frequency spectroscopy [Frö11b]. Further investigations have been
obtained concerning the pairing properties during the phase transition by momentum
resolved photo-emission spectroscopy [Fel11]. However, so far all quasi-2d Fermi gas
experiments could observe neither the superfluid behavior nor the BKT phase.
In this thesis we investigate the nature of this phase transition for a quasi-2d two
component Fermi gas in the strongly interacting bosonic regime.

Outline

This master thesis is structured as follows: In the second chapter we introduce the ba-
sic theoretical background of ultracold fermionic and bosonic quantum gases in three
dimensions. Therefore we briefly discuss their collective behavior in a harmonic trap
and the concept of tuning the interactions via Feshbach resonances. Further we give an
overview over the basic properties of our species 6Li and close this chapter summarizing
the different regimes of the 3d BEC-BCS crossover.
The third chapter presents a brief theoretical introduction to quantum gases in two
dimensions. We focus on the differences of the quantum statistics and the scattering
properties compared to the three dimensional case and close this chapter with a de-
scription of the mechanisms and characteristics of the Berezinskii-Kosterlitz-Thouless
(BKT) transition.
Chapter 4 describes the different components of our experimental setup to prepare a
quasi-2d strongly interacting Fermi gas and gives a short introduction to the theoretical
description of optical dipole trapping. Further we discuss the preparation of the quasi-
2d sample and will describe the techniques and achievements to validate the 2d-ness of
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1. Introduction

the system in Chapter 5.
In Chapter 6 we present our obtained measurement results of a quasi-2d Fermi gas
in the bosonic strongly interacting regime. We investigated the density distribution
of a sample after short time-of-flight and developed a matter wave focusing technique
to image the in-situ momentum distribution of the quasi-2d system. From both mea-
surements we achieved significant evidence of the occurrence of a phase transition and
strong indications that this phase transition is described by the BKT theory.
We close this thesis by a summary of the most important results and give a short
outlook on the future projects we hope to achieve.
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2. Theory of ultracold quantum gases

in 3d

This chapter provides a brief introduction to the theoretical background of ultracold
quantum gases in three dimensions. In Section 2.1 we explain the different quantum
statistics of bosonic and fermionic particles. Since the information we extract from
our measurements are mainly based on the density distribution of ultracold atomic
samples, we will examine in Section 2.2 the density distribution in a harmonic trap for
a non-interacting gas and study the effect of temperature and interaction. Furthermore,
Section 2.3 introduces the concept of ultracold scattering which can be described by
a single effective parameter, the s-wave scattering length. In addition the concept of
tuning the interaction via a magnetic Feshbach resonance and its implications for the
special case of 6Li will be discussed. Finally, in Section 2.4 we focus on interacting
fermions and the BEC-BCS crossover respectively.

2.1. Quantum Statistics of Fermions and Bosons

The fundamental difference between fermions and bosons becomes first visible by en-
tering the quantum regime. This transition takes place at the point where the distin-
guishability of particles is not longer guaranteed. Due to the wave-particle duality one
can associate a wavelength to each particle λdB = h/p [Bro23] ,where h is Planck’s
constant and p the particle momentum. Since we investigate particles in a gas at a
given temperature T we obtain the thermal de Broglie wavelength

λth =
h√

2πmkBT
, (2.1)

with m equal to the mass of the particle and kB corresponds to the Boltzmann con-
stant. If λth, which can be related to the width of the wave function, gets comparable
to the inter-particle spacing d ∼ n−1/3 at a fixed density n, the wave function between
different particles start to overlap and they become indistinguishable. The transition
can be either reached by decreasing the temperature or increasing the density of the
system and as we will see later, we will focus on cooling the quantum gas down to the
mK - nK regime.
One consequence of indistinguishabilty is, that the probability density, i.e. the mod-
ulus square of the many-particle wave function |Ψ(x1, . . . , xN)|2 has to be invariant
under particle exchange, where N is the number of indistinguishable particles and the
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2.1. Quantum Statistics of Fermions and Bosons

xi represent each spatial coordinate and the discrete quantum numbers. This leads to
two possibilities for the many-particle wave function. It has to transform either sym-
metrically or anti-symmetrically under particle exchange. The spin-statistics-theorem
connects the symmetry of the wave function to the spin of the particle and so bosons
(integer spin) are defined as having a symmetric wave function and fermions (half in-
teger spin) are defined as having an anti-symmetric wave function.
One crucial effect for fermions is that, due to the anti-symmetry of the wave function,
two particles cannot occupy the same single-particle quantum state, since Ψ(xi, xi) =
−Ψ(xi, xi) has only a solution for a vanishing wave function. This is know as Pauli’s
exclusion principle [Pau25]. In contrast, bosons are allowed to occupy the same single-
particle state, which leads to a completely different formation of the many-particle
ground state in a harmonic trap as seen in Figure 2.1.
For a non-interacting system at T = 0 the bosonic many-particle ground state is the
single-particle ground state of the harmonic oscillator and the particles form a Bose-
Einstein-Condensate (BEC), which is a special quantum state, since all particles can
be described by just one macroscopic wave function. Moreover, even for Tc > T > 0
the probability of finding a particle in the single-particle ground state is significantly
enhanced compared with the probability of finding a particle in one of the excited
single-particle states.
On the other hand, fermions will form a so-called Fermi sea which describes the
fermionic many-particle ground state at T = 0, due to Pauli’s exclusion principle
each fermion has to occupy a different single-particle state up to a characteristic en-
ergy called Fermi energy EF . As we will see later in this thesis we are dealing with
about 104 − 105 particles in our experiments. This leads to a statistical description of
our system and opens the door to thermodynamic quantities. We will use the grand
canonical ensemble to describe our ultracold system, where the macroscopic variables
are given by the temperature T , the chemical potential µ, which corresponds to the
energy necessary to add a particle to the system and the volume V .
A detailed derivation of the grand canonical partition function ZG for non-interacting
fermions and bosons can be found in [Pet02] and the result is given by

Zbosonic =
∏

i

1

1 − e−β(Ei−µ)
and Zfermionic =

∏

i

(

1 + e−β(Ei−µ)
)

, (2.2)

with β = 1/(kBT ). The relation of the total atom number N to the grand canonical
potential Ω(T, V, µ) = −kBT lnZG can be written as

N =
∑

i

〈ni〉 = −
(

∂Ω

∂µ

)

T,V

. (2.3)

This leads to the well known Bose-Einstein and Fermi-Dirac distributions, which de-
scribe the mean occupation number of a non-interacting system of particles in the i-th
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2. Theory of ultracold quantum gases in 3d

Bose - Einstein
Statistic

Fermi - Dirac
Statistic

Boltzmann
Statistic

T >> TC , TF

EF

T = 0T < TC , TFT < TC , TF

nλth
3 << 1

nλth
3 ≥ 1 nλth

3 >> 1

Figure 2.1.: Illustration of the occupation difference of fermions and bosons
in the corresponding temperature regimes. For T = 0 bosons occupy
the single-particle ground state macroscopically whereas fermions due to
Pauli’s principle fill up the potential up to the Fermi energy EF which
leads to the Fermi pressure and to incompressibility of a fermionic quantum
gas. Furthermore is the phase space density D3D = nλ3

th for each regime
depicted. The picture is adapted from [Dyk10].

quantum state and are given by1

nbosonic (ǫ) = 〈ni〉bosonic =
1

eβ(Ei−µ) − 1
(2.4)

nfermionic (ǫ) = 〈ni〉fermionic =
1

eβ(Ei−µ) + 1
. (2.5)

Based on this equations we can now proceed to calculate the density distribution of
the atomic gas.

2.2. Density distribution in a harmonic trap

During the experiments discussed in this work we will trap the atoms in optical poten-
tials which can be well approximated to be harmonic as long as the atoms populate only
the low energy levels of the potential. Hence, we can define our 3D trapping potential

1ǫ = Ei just for simplicity.
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2.2. Density distribution in a harmonic trap

as

V (x, y, z) =
∑

i=x,y,z

(

1

2
mω2

i i
2
)

, (2.6)

where m is the atomic mass and ωi is the trapping frequency along the corresponding
axis.
The density of states in a d-dimensional trap is defined by the confining potential and
can be written in the general form [Dyk10]

g (ǫ) =
ǫd−1

(d− 1)!
∏d

i=1 ~ωi

, (2.7)

which leads for the three dimensional harmonic oscillator to

g (ǫ) =
ǫ2

2 (~ω̄)3 , (2.8)

with ω̄ = (ωxωyωz)1/3. The total number of atoms is given by the summation over all
energy states

N =
∑

ǫ

n (ǫ) g (ǫ) . (2.9)

To calculate N we assume further that kBT ≫ ~ωi so that the sum over the discrete
energy states can be written as an integral. A more elaborate calculation by explicit
integration over the phase space can be found in [Wen13].

2.2.1. Non-interacting degenerate Fermi gas

The calculation follows the one in [Dyk10]. The Fermi energy EF of a system of N
identical, non-interacting trapped fermions is given by the chemical potential µ at
T = 0. At this point Equation 2.5 becomes a step function which is one for E < EF

and zero else. Performing the integration of Equation 2.9 up to EF leads to

EF = ~ω̄ (6N)1/3 = kBTF , (2.10)

where TF is the Fermi temperature. To calculate the density distribution at T = 0 we
use the local density approximation (LDA) EF (r) = EF − V (r) which assumes, that
the sample can be approximated by a uniform gas at any location r. Now we can define
a local Fermi wave vector kF (r) via

EF (r) =
~

2kF (r)2

2m
. (2.11)
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2. Theory of ultracold quantum gases in 3d

The local density is now given as the number of atoms that fill up the momentum
sphere with radius ~kF (r)

nF (r) =
4

3
π (~kF (r))3 1

(2π~)2 , (2.12)

and finally we end up with

nF (r, T = 0) =
1

6π2

(

2m

~2
(EF − V (r))

)3/2

. (2.13)

The maximum cloud size ri,F , called the Fermi radius, is given at V (ri,F ) = EF with
i = x, y, z which leads for a harmonic potential to

ri,F =

√

2kBTF

mω2
i

and ri,F =

√

~

mω̄i

(48N)1/6 ω̄

ωi

. (2.14)

Hence the density distribution for T = 0 becomes

nF (r, T = 0) =
8N

π2xFyF zF



1 −
∑

i=x,y,z

i2

r2
i,F





3/2

. (2.15)

2.2.2. Non-interacting degenerate Fermi gas at non-zero

temperature

The problem of finding the density distribution for a non-interacting Fermi gas at T > 0
is, that the chemical potential µ cannot be expressed explicitly. Nevertheless, one can
express the density in terms of the polylogarithmic function Liν (z) defined in [Wei09]
and by fulfilling the normalization condition in Equation 2.9 one can find an implicit
definition of µ in terms of T/TF . In [Wen13] this equation has been solved numerically
and compared to a Gaussian fit. For T/TF & 0.5 the Gaussian fit gives still reasonable
results whereas for T/TF ≪ 0.5 the density distribution peak is more flattened. Than
the Gaussian distribution and the wings are steeper. So the Gaussian fit is not longer
sufficient and one has to use the numerical Fermi fit.

2.2.3. Non-interacting degenerate Bose gas

Since for bosons the mean occupation distribution is given by Equation 2.4 and the
3D density of states is well known, we can calculate the mean atom number using
Equation 2.9. The mean occupation distribution cannot be negative for each i which
implies Ei − µ > 0 and by setting the ground state energy E0 = 0 we can follow
that µ ≤ 0. We already know, that for T = 0 the ground state is macroscopically
populated, a phenomenon called Bose-Einstein condensation, so it makes sense to treat
the ground state separately in the sum. By transforming the sum to an integral we
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2.2. Density distribution in a harmonic trap

obtain the following equation for the number of particles [Pet02]

N −Nc =

(

kBT

~ω̄

)3

Li3

(

exp
{

µ

kBT

})

, (2.16)

where N corresponds to the total number of particles and Nc describes the particles
condensed in the ground state. The transition temperature Tc can be calculated by
setting µ and Nc to zero which results in

kBTc = ~ω̄

(

N

Li3(1)

)1/3

≈ 0.94 ~ω̄ N1/3, (2.17)

where Li3(1) ≈ 1.202 was used. With Equation 2.16 and the fact that µ = 0 below Tc

one gains the fraction of condensed particles at a given temperature T as

Nc

N
= 1 −

(

T

Tc

)3

. (2.18)

The density distribution of the condensed part can then be approximated by the ground
state wave function of a three dimensional harmonic oscillator [Dyk10]

ψ0(r) =
(

mω̄

π~

)

exp



−m

2~

∑

i=x,y,z

ωii
2



 . (2.19)

From here we can see that the density n(r) = N |ψ(r)|2 will increase with N whereas
the condensate size is fixed by the harmonic oscillator length

lho =

√

~

mω̄
(2.20)

For T > Tc the width of the density distribution can be obtained from classical gas
statistics [Pet02]

ri,thermal =

√

2kBT

mω2
i

. (2.21)

Since ri,thermal ≫ lho the BEC will be visible as a narrow peak in the spatial and
momentum distribution if T < Tc. In contrast to fermionic quantum gases, where the
formation of the Fermi sea is continuous, the behavior of a bosonic gas is changed
abruptly when reaching quantum degeneracy.

2.2.4. Interacting Bose gas

A detailed theoretical description of an interacting bosonic gas can be found e.g. in
[Dal99]. Thus, we will just discuss the most important steps to derive the density
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2. Theory of ultracold quantum gases in 3d

profile of interacting bosons in a harmonic trap.
Starting from the well known stationary Gross-Pitaevskii equation [Gro61, Pit61]

µψ(r, t) =

(

− ~
2

2m
∇2 + Vtrap(r) +Ng|ψ(r)|2

)

ψ(r, t), (2.22)

one can calculate the density distribution given by n(r, t) = N |ψ(r, t)|2. Since N ≫ 1
and by assuming just repulsive interactions g > 0, we can neglect the kinetic energy
term and the stationary Gross-Pitaevskii equation becomes a simple algebraic equation.
This approximation is known as the Thomas-Fermi limit and we obtain the following
inverted parabola equation for the density in a 3D harmonic potential

n(r) =
µ−mω̄2r2

g
, (2.23)

which maximum value is µ/g at r = 0 and which vanishes for r ≥ rT F = (2µ/mω̄2)1/2

where rT F is the so-called Thomas-Fermi radius. From the normalization condition in
Equation 2.9 one finds

µ(N) =
~ω̄

2

(

15Na

lho

)2/5

. (2.24)

Since µ is now a function of N , rT F depends on N as well and we can follow

ri,T F (N) = lho
ω̄

ωi

(

15Na

lho

)1/5

(2.25)

where i = x, y, z. Comparing this result to the non-interacting case for a cylindrically-
symmetric harmonic trap

V (z, r) =
1

2
m(ω2

zz
2 + ω2

⊥r
2), (2.26)

one finds the limitation of the density profile in axial direction by mω2
zz

2
max = 2µ

and radially mω2
⊥r

2
max = 2µ. Thus, the aspect ration of the condensate is given by

zmax/rmax = ω⊥/ωz, whereas in the non-interacting case this ratio is equal to the ratio
of the corresponding harmonic oscillator lengths in each axis which are just ∼ √

ωz,⊥.
So one can deduce, that the interaction results in a magnification of the aspect ratio
of the condensate.

2.3. Ultracold Interactions

The purpose of this section is to give a brief introduction to the necessary concepts to
describe the interactions in a dilute atomic gas. Typical densities of ultracold atomic
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2.3. Ultracold Interactions

systems are on the order of n = (1012−1015)cm−3 since at lower densities elastic collision
rates are to small to cool efficiently and at higher densities atomic losses increase due
to the dominance of three body loss processes [Ket99]. In general the length scale on
which interactions between neutral atoms take place is given by the short-ranged van-
der-Waals potential, which scales as r−6 and has a finite range known as the van-der-
Waals radius rvdW . As pointed out in Section 2.1, to reach quantum degeneracy one has
to fulfill nλ3

dB & 1 which is typically achieved at temperatures between 100nK − 50µK.
Thus, as λdB is on the order of 1µm and the range of interaction r0 is given by the van-
der-Waals radius rvdW,Li ∼ 0.2nm [Bon64], the inequality λdB, n

−1/3 ≫ rvdW holds and
the particles only interact via two-body collisions which are well described by a single
parameter the s-wave scattering length a. Here n−1/3 corresponds to the interparticle
spacing. In Section 2.3.3 we will show, that this single parameter a can be tuned by a
magnetic offset field and thus allows us to tune the interaction between the particles
over a wide range.

2.3.1. Ultracold scattering in 3d

The derivation of the s-wave scattering length has been discussed in many textbooks
on quantum mechanics and quantum collisions e.g. [Sak94, Bra03]. The next section
will thus summarize the most important steps and results of the derivation.
In quantum mechanics elastic two-body scattering can be described by the time-
independent Schrödinger equation

[

− ~
2

2m
∇2 + V (r)

]

ψ(r) = Eψ(r), (2.27)

with the relative coordinates r = r1 − r2 and the reduced mass of the particles m =
m1m2

m1+m2

. V (r) is the two-particle interaction potential which is assumed to be spherically
symmetric and decreasing with 1/ri, i > 1. In the long-distance limit r → ∞ the wave
function ψ(r) satisfies the free-particle Schrödinger equation and can be written as a
sum of an incoming plane wave eikz and an outgoing spherical wave eikr

r
with momentum

k along the z-axis as follows

ψk(r) ∝ eikz + f(k, θ)
eikr

r
. (2.28)

f(k, θ) corresponds to the scattering amplitude and is due to symmetry reasons inde-
pendent of ϕ. Since the relative distance |r| given by n−1/3 in the experiment is much
larger than rvdW the large distance limit reflects the condition in ultracold gases quite
well. The differential and total cross-section are related to the scattering amplitude by
the following equations

dσ

dΩ
= |f(k, θ)|2 and σtot =

∫

Ω
|f(k, θ)|2 dΩ, where 0 ≤ θ < π. (2.29)

12



2. Theory of ultracold quantum gases in 3d

All the relevant information is contained in the scattering amplitude which can be
calculated by expanding the ingoing and outgoing parts of the wave function into the
spherical-wave basis with angular momenta l

ψ(r) =
∞
∑

l=0

m=l
∑

m=−l

Y m
l (θ, ϕ)

χk,l,m(r)

r
. (2.30)

Due to the spherical symmetry of the system m turns out to be equal to zero and
the spherical harmonics can be written in terms of Legendre polynomials Y 0

l (θ, ϕ) →
Pl(cos(θ)) which are just dependent on θ. Inserting this expansion into the Schrödinger
equation leads to an effective one-dimensional Schrödinger equation for each radial wave
function χk,l,m(r)

[

d2

dr2
− 2m

~2

(

V (r) +
~

2l(l + 1)

2mredr2

)

+ k2

]

χk,l(r) = 0. (2.31)

The term depending on the angular momentum l in Equation 2.31 can be related to the
centrifugal barrier, which inhibits scattering for l > 0 in the regime of small scattering
energies k → 0. Thus, a particle with a relative energy less than the barrier height does
not feel the short distance details of the interacting potential since it is just reflected
by the centrifugal barrier. As the centrifugal barrier for 6Li is on the order of 7mK
[Fuc09], collisions in the temperature regime T ≪ 7mK only occur due to isotropic
s-wave scattering (l = 0).
By investigating the asymptotic behavior of the ingoing and outgoing wave in the large
distance limit one can deduce, that the only effect of an elastic collisions on the wave
function is a phase δl in each spherical wave. Hence, the scattering amplitude can be
written in terms of these phase shifts [Sak94]. For low momenta (k → 0) only the
phase δ0 contributes, which can be well seen in a classical example. Let us assume
a particle with momentum p and impact parameter α is interacting with a potential
with interaction range r0. The angular momentum can be written as |r × p| = pα
with a partial wave number l = pα/~. If the closest distance α is smaller than r0 the
interaction has a significant effect on the particle trajectory. From this we can follow

α ≪ r0 → l ≪ lmax =
pr0

~
=

2πr0

λdB

, (2.32)

and we see that it exists an upper bound for the number of partial waves that has to
be taken into account in the partial wave expansion. Since λdB ≫ r0, lmax → 0 in
Equation 2.32 and we can write the scattering amplitude as

f(k → 0) =
1

2ik

(

e2iδ0 − 1
)

. (2.33)
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2.3. Ultracold Interactions

The total cross-section is then obtained by integrating the differential cross-section over
the full solid angle

σtot(k) =
∑

l

σl(k) =
4π

k2

∞
∑

l=0

(2l + 1) sin2(δl(k)), with δl(k) ∝ k2l+1, (2.34)

which simplifies since l = 0 to

σtot(k) =
4π

k2
sin2(δ0(k)) → 4πa2 for k → 0. (2.35)

The universal parameter describing the scattering at low temperatures is the scattering
length a which is defined by

a = − lim
k→0

tan δ0(k)

k
. (2.36)

This can be related to the maximum distance the free particle solution of the Schrödinger
equation is affected by the interaction potential. For alkali atoms a is on the order of
10 to 100a0 where a0 corresponds to the Bohr radius. Hence, we can write the s-wave
scattering amplitude in terms of the scattering length a [Zwi06]

f(k) = − 1

a−1 + ik
, (2.37)

and the total cross-section for distinguishable particles in the low temperature regime
takes the form

σdist =
4πa2

1 + k2a2
. (2.38)

Here we have already approximated the interaction potential by a point-like contact
potential V (r) ∼ aδ(r). In the limit of weak interaction ka ≪ 1 the total cross-section
becomes energy independent

σdist = 4πa2. (2.39)

In the regime where ka ≫ 1, known as the regime of resonantly enhanced interactions
or unitarity limit, where a diverges, the total cross-section is only energy dependent

σdist =
4π

k2
. (2.40)

Since we are in the ultracold temperature regime the particles become indistinguishable
which means that one cannot discern between the two scattering processes seen in
Figure 2.2. Thus, to determine the scattering amplitude both possibilities have to be
taken into account. This leads to the following modification of the differential cross-
section

dσindist

dΩ
= |f(k, θ) ± f(k, π − θ)|2. (2.41)
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2. Theory of ultracold quantum gases in 3d
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Figure 2.2.: Scattering events for indistinguishable particles. Since both pro-
cesses cannot be distinguished, one has to take both into account in the
total scattering amplitude. This leads to a modification of the cross section.
The picture is adapted from [Dal98]

Here the plus sign (symmetric wave function) labels the bosonic case and the minus
sign (anti-symmetric wave function) corresponds to fermionic particles. The difference
between both scattering cases are just the different angles in the amplitude and since
s-wave scattering is isotropic we end up with an enhancement in the bosonic total
cross-section whereas the total cross-section for identical fermions vanishes.

σbosonic = 8πa2 and σfermionic = 0. (2.42)

Thus, identical fermions do not interact at low temperatures and can be well described
as an ideal Fermi gas.

2.3.2. Mean field interaction energy

As mentioned before due to the fact that the details of the interaction potential are
not resolved for low temperature scattering, the effective interaction potential can be
well approximated by a point-like contact potential [CCT11]

Vint(r) =
2π~2a

m
δ(r). (2.43)

With this pseudo-potential (m = m/2 for identical particles) it is possible to calculate
the mean-field interaction energy in the weakly interacting regime ka ≪ 1. This has
been done in [Joc04] and the mean-field interaction energy of a many-body system of
N particles due to a single test particle placed at r in a volume V at a density n = N/V

15
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is given by

Eint = lim
V →0

1

V

N
∑

i=1

∫

gδ(r − ri)dr = gn with g =
4π~2

m
a. (2.44)

Since the mean-field interaction energy depends linearly on the scattering length a, the
sign of a also determines the sign of the interaction energy. So for a > 0 the interaction
energy will be positive and increase the total energy of the system. Hence the single
particle will sense a repulsion by the mean-field whereas if a < 0 the contribution of the
mean-field interaction energy will be negative and the single particle will be attracted
by the mean-field. But this does not mean that the microscopic interparticle interaction
for a > 0 is repulsive. The microscopic scattering is still described by van-der-Waals
interaction which is attractive and independent of the sign of the scattering length a.
So the mean-field interaction energy argumentation just holds on a macroscopic scale.

2.3.3. Controlling interactions via Feshbach resonances

Tuning the interactions via Feshbach Resonances has already been investigated both in
experimental [Ino98, Chi10] and theoretical publications [Fes58, Moe95, Pet02, Pit03].
We will therefore only give a qualitative overview of this effect.

In Figure 2.3 (a) two effective interaction potentials of a s-wave scattering process
between two particles are depicted (black and red curve). The difference between both
interaction potentials stems from the electronic spin configuration (e.g singlet or triplet)
of the participating particles which results in the different continuum energy. A single
scattering channel is given by a complete set of quantum numbers describing the in-
ternal state of the two participating particles. Since the experiments presented in this
thesis are based on ultracold 6Li atoms this different spin configuration corresponds in
our case to different hyperfine states in 6Li (for details see Section 2.3.4). The energy of
the scattering particles corresponds to the incident energy in Figure 2.3 (a) and is set
to the continuum energy of the open channel since the kinetic energy can be neglected
for ultracold scattering. The interaction potentials are labeled as closed (red) and open
channel (black) respectively its accessibility by the incident energy in the long distance
limit. In quantum mechanics one can show that the scattering length depends on the
distance between a bound state and the continuum [Lan81]. For example, if we consider
just scattering in the open channel, the scattering length is fixed and depends on the
distance between the last bound state of the open channel to the continuum.
Since the two interaction potentials depend on the hyperfine states of our participating
particles, their magnetic momenta differ and thus the difference in their continuum en-
ergy is given by ∆E = ∆µB. This means, that one can tune a bound state of the closed
channel with a homogeneous magnetic offset field close to the continuum of the open
channel and even above if the difference between the magnetic moments is nonzero.
As mentioned before, the scattering length is very sensitive to the distance between
bound state and continuum. If the tuned bound state is closely above or below the

16



2. Theory of ultracold quantum gases in 3d
E

n
er

g
y

 E

0
incident

energy 

scattering/open 

channel 

closed channel 

interatomic distance r

ΔE= Δµ x B

(a) (b) 

0

magnetic field B

0

magnetic field B

sc
at

te
ri

n
g

 l
en

g
th

 a

B0

B0

E
n

er
g

y
 E

continuum

bound state

(c) 

abg
Δ

Figure 2.3.: Two-channel model of a Feshbach resonance. In (a) the interaction
potentials are depicted where the open channel is energetically accessible
for the incoming particles in contrast to the closed channel. The tuning
of the coupling between one bound state of the closed channel with a
continuum of the open channel leads to the divergence of the scattering
length a shown in (b). In (c) the avoided crossing of the new eigenstates of
the system (red) is illustrated and the crossover from a free particle state
in the continuum to a bound molecular state by adiabatically tuning of the
magnetic field B and vice versa can be seen. The picture is adapted from
[Wen08].

continuum the scattering length is resonantly enhanced and diverges to large negative
or large positive values at the resonance position B0 as seen in Figure 2.3 (b). Thus,
to tune the scattering length over a wide range with accessible magnetic fields one has
to use atomic species with a bound state close to the continuum.
Such a resonant enhancement of the scattering length a due to a coupling of two scat-
tering channels is called a Feshbach resonance. The dependence of a on the magnetic
field can be calculated as [Bar05]

a(B) = abg

(

1 − ∆

B −B0

)

(1 + α(B −B0)) , (2.45)

where abg corresponds to the background scattering length of the open channel, B0

describes the resonance position and ∆ is the width of the resonance which depends
on the coupling g and the difference of magnetic moments ∆µ of the channels. The
second term corresponds to a leading-order correction parametrized by α. Due to the
coupling between the closed channel and the open channel the energy of the particles
get dressed and the new eigenstates of the system are formed by a superposition of
the bound state of the closed channel and the continuum state of the open channel.
These new eigenstates (red) are shown in Figure 2.3 (c) where the dashed black lines
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2.3. Ultracold Interactions

are the bound state of the closed channel and the continuum state of the open channel
respectively. The superposition leads to an avoided crossing of the new eigenstates
at resonance which offers the opportunity to go adiabatically from a high vibrational
molecular bound state (left) to a free particle continuum state just by tuning the
magnetic offset field slowly across the resonance and vice versa.
As we pointed out earlier, ultracold gases are a very dilute system so the interparticle
distance is much larger than the range of interaction r0. Feshbach resonances allow
us now to tune the interparticle interaction to values on the order of the interparticle
spacing which means that the system becomes a highly correlated many-body state
[Lom11]. Since r0 remains smaller than the interparticle spacing the interactions can
still be described as point-like.

2.3.4. Basic properties of Lithium

Since we are using 6Li in our experiments, we want to give in this section a short
summary of the spectral and collisional properties of 6Li based on [Chi10, Geh03].

Spectral properties

Lithium has only one valence electron and thus it is an alkali atom with spin S = 1/2.
The fermionic isotope 6Li we operate with has a nuclear spin I = 1. In low mag-
netic fields the total angular momentum is given by the Russell-Saunders coupling as
J = L + S and J couples due to the non-zero nuclear momentum I as F = J + I to
the total angular momentum of the system, which is a good quantum number for low
magnetic fields. This leads to a large hyperfine splitting into F = 1/2 and F = 3/2 of
the ground state 22S1/2 which can be seen in Figure 2.4 where the level scheme of the
three lowest fine structure levels (left) and the corresponding hyperfine levels (right)
are depicted.
For cooling and trapping we use the electronic D2 transition between the ground state

22S1/2 and the excited state 22P3/2 which is characterized by a transition wavelength
of 670.977 nm and a natural linewidth Γ = 5.87 MHz. The difference between the
D2 transition and the D1 transition, which is likewise in the visible range of the elec-
tromagnetic spectrum and has the same linewidth Γ, is that the excited 22P3/2 state
due to the hyperfine splitting of 4.4 MHz can not be resolved and the excited electron
can decay back into both hyperfine states of the ground state 22S1/2. Thus, to create
a closed cycle between the ground state and the excited state one needs to drive two
transitions separated by 228.2 MHz which we call cooler and repumper transition.

So far we discussed the level scheme in the absence of any magnetic field where
the degeneracy of the hyperfine states is given by the magnetic quantum number
mF = −F, ..., F of the total angular momentum. Since we will later just use hyperfine
states of the ground state, we will now focus on the effect of a non-zero magnetic field
on the degeneracy of the ground state 22S1/2. As seen in Figure 2.5 the degeneracy is
abolished for a nonzero magnetic field. Due to the exceptional small hyperfine constant
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Figure 2.4.: Level scheme of 6Li. The D2 transition is used for cooling and trapping
of the atoms. Due to the hyperfine splitting of the ground state we need
to drive a cooler and repumper transition to achieve a closed cycle. The
picture is adapted from [Boh12]

of 6Li the angular momentum J (here S because L = 0) and the nuclear spin I decouple
for magnetic fields larger than B = 30G and F is not a good quantum number anymore.
Thus, we have to characterize the states by a new set of quantum numbers given by
|S = 1/2, I = 1,mS,mI〉. This leads to two types of states: |mS = −1/2,mI = 0,±1〉
labeled by |1〉 − |3〉 which minimize their internal energy at high magnetic fields and
are therefore called high-field seeking states and states with |mS = +1/2,mI = 0,±1〉
labeled as |4〉−|6〉 corresponding to low-field seeking states because they minimize their
internal energy at low magnetic fields. Typical fields in the experiment are on the order
of B > 100G and therefore we operate deeply in the decoupled regime. The almost
parallel tuning of the energy states with same mS for high magnetic fields results from
the fact that the coupling of the electron spin to the magnetic field is much larger than
the coupling of the nuclear spin.

Collisional properties

Since identical fermions do not interact with each other as discussed in Section 2.3.1
we always need two different hyperfine states to have interaction in the system. In our
experiments we use binary mixtures of the high-field seeking states |1〉−|3〉 because the
low-field seeking states |4〉− |6〉 are not stable due to decay via spin-changing collisions
into the high-field seeking states and the released energy will lead to atom loss. The
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Figure 2.5.: Magnetic field dependency of the ground state energy splitting of
6Li. For magnetic fields larger than B = 30G we are in the Paschen-Back
regime, S and I decouple and become good quantum numbers, which leads
to the displayed splitting.

states |1〉 − |3〉 are stable on the timescales of our experiment and since the separation
between the single states is on the order of ∼ 80 MHz we can apply radio frequency
pulses to drive transitions between them. It is also possible to drive transitions to the
low-field seeking states using microwave pulses in the GHz range.
As discussed in Section 2.3.3, the interaction of each combination of the high-field seek-
ing states can be related to a corresponding scattering length a12, a13 and a23. In Figure
2.6 the different Feshbach resonances are shown and in Table 2.1 the position B0, width
∆ and background scattering length abg for each scattering channel are given. These
values have been determined in our group using very precise radio-frequency dissoci-
ation spectroscopy of weakly bound 6Li2 molecules and a coupled channel calculation
which optimized the exact potential shape and allowed us to determine the pole posi-
tion with an accuracy better than 7 × 10−4 of the resonance widths[Zür13].
If one compares the actual characteristics of the scattering length to the schematic pic-
ture given in Figure 2.3 (b), one might recognize a certain asymmetry. As mentioned
in Section 2.3.3 the effective interaction potential depends on the relative orientation of
the electronic spins of the participating particles. They can be orientated either in a sin-
glet (↑↓) or triplet (↑↑) meaning S2 = 1,MS = 0 for singlets and S2 = 1,MS = ±1, 0
for triplets. Since mS is not a good quantum number in the low field regime, the
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Scattering channel B0 [Gauss] ∆ [Gauss] abg [a0]
|1〉|2〉 832.2 262.3 −1582
|1〉|3〉 689.7 166.6 −1770
|2〉|3〉 809.8 200.2 −1642

Table 2.1.: Characteristic values of the s-wave Feshbach resonances for the
three lowest hyperfine states. A more detailed description can be found
in [Zür13].

background scattering length will be a linear combination of the singlet background
scattering length as and the triplet background scattering length atr which differ quite
significantly in their value e.g. for the |1〉 − |2〉 mixture one obtains as ≈ 39a0 and
atr ≈ −2240a0 [Lom11]. However, the value of the superimposed background scatter-
ing length remains small. Since the value of the scattering length can be related to
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Figure 2.6.: Feshbach resonances for the three lowest hyperfine states of 6Li.
All three mixtures of the high-field seeking hyperfine states have a par-
ticular broad and overlapping Feshbach resonance, which allows a precise
control of the interactions. Plot was adapted from [Zür12]

the distance between a bound state of the closed channel and the continuum of the
open channel, it follows that this distance has to be really small in case of the triplet
scattering length. In fact the virtual bound state sits so close above the continuum of
the triplet potential that a change less than 10−3 of the potential depth would already
lead to a sign change in atr [Joc04].
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The magnetic moment depends on the electronic spin and thus allows us to tune the
energy of the triplet channel (MS = −1/2+(−1/2) = −1) with 2µBohr ∼ h×3 MHz/G
while the singlet state stays unchanged (MS = 0). By increasing the magnetic field
B one tunes on the one hand the contribution of the singlet and triplet background
scattering length and on the other hand the distance between the triplet continuum and
the highest vibrational singlet bound state (ν = 38). This leads to the zero crossing of
the scattering length on the left side of the resonances depicted in Figure 2.6.
Thus the Feshbach resonances are obtained by tuning the continuum of the triplet
interaction potential resonantly with the highest vibrational level of the singlet chan-
nel from below. When S and I decouple and thus become good quantum numbers,
the scattering becomes triplet dominated which leads to a large negative background
scattering length ∼ −2000a0 on the right side and therefore to a range of −1000a0 to
−2000a0 which cannot be accessed. Furthermore, a second very narrow resonance can
be localized at 543 G which we so far do not incorporate in our experiments.

2.4. Interacting Fermions

In this section we focus on the different interaction regimes which can be accessed in a
two component Fermi gas due to the possibility of tuning the interparticle interactions
over a wide range via a Feshbach resonance as introduced in the section before. Since a
spin polarized Fermi gas can be well described by a non-interacting Fermi gas due to the
absence of s-wave collisions, we consider here a balanced spin mixture of the lowest two
hyperfine states of 6Li labeled by |1〉 and |2〉. The strength of interaction is quantified by
the dimensionless interaction parameter 1/kFa which relates the interparticle spacing
∼ 1/kF to the scattering length a. By tuning the scattering length we are able to
access three different interaction regimes depicted in Figure 2.7. 1/kFa → +∞ which
corresponds to the BEC regime and formation of molecules occurs and 1/kFa → −∞
the so-called BCS regime where in spite of the absence of a molecular bound state
correlation in momentum space takes place and so-called Cooper pairs can be formed.
These two limiting cases are continuously connected by the Unitary regime which is
called the BEC-BCS crossover. The Unitary regime is characterized by the divergence
of the scattering length and hence 1/kFa → 0.

2.4.1. Formation of Feshbach molecules in the BEC regime

Tuning the interaction close to the Feshbach resonance on the repulsive side with a > 0
leads to the formation of weakly bound molecules by three-body recombination where
the excess momentum is carried away by the third particle. One can associate a uni-
versal binding energy EB = ~

2/ma2 for a ≫ r0 to this molecular bound state [Pet04b].
When the temperature of the ultracold gas is smaller than EB two fermions with differ-
ent spin can occupy this bound state and create a composite bosonic molecule as seen
in Figure 2.8. The size of the weakly bound molecules is on the order of the scattering
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Figure 2.7.: Pairing in the different interaction regimes. In the BEC regime pair-
ing occurs via deeply bound molecules which are smaller than the interpar-
ticle spacing. In contrast, on the BCS side of the resonance Cooper-pairs
are formed by two fermions with opposite momentum on the Fermi sphere
so they exhibit an extend larger than the interparticle spacing. Since the
two regimes are continuously connected by the region of unitarity the size
of the strongly correlated pairs in the crossover regime is on the order of
the interparticle spacing. Picture is taken from [Ket08]

.

length a and since the bound molecular state is still in a high vibrational energy state,
the molecules can undergo further three-body inelastic collisions with the ultracold
background gas which would transfer them into deep molecular bound states on the
order of the range of interaction r0 ≪ a [CCT11]. During this relaxation process a lot
of binding energy is released, which results in a loss of atoms in the trap if the gained
kinetic energy is larger than the trapping potential depths.
Due to the Pauli principle it turns out that Feshbach molecules formed from two
fermionic atoms in two different spin states are less sensitive to these inelastic pro-
cesses than those formed by bosonic atoms. Since in a two-component Fermi gas a
three-body collision process involves necessarily two atoms in the same spin state the
inelastic collision rate is suppressed. The dependency of the loss coefficient α of the
inelastic collision rates for atom-molecule scattering and molecule-molecule scattering
on the scattering length has been calculated in [Pet04b]

αdd ∝ a−2.55 and αad ∝ a−3.33, (2.46)

and the collisions have been described in terms of the atomic scattering length a with
[Pet05]

add = 0.6a and aad = 1.2a. (2.47)

Thus, the inelastic collision rate decreases for increasing a which leads to long lifetimes
of the Feshbach molecules close to the Feshbach resonance. Hence one can further
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Figure 2.8.: Formation of 6Li2 molecules at 690G. Evaporative cooling was per-
formed at 1200G, then the magnetic field was ramped down quickly to
690G for optimum production rates. Taken from [Joc04]

condense them into a molecular BEC (mBEC) by decreasing the temperature [Joc03,
Gre03, Zwi03].
Furthermore, the trap depth is increased by a factor two for molecules because of the
two times larger polarizability which suppresses the loss of molecules in contrast to the
loss of atoms [Joc04]. Since we are dealing with bosonic molecules, one can apply the
theory of interacting bosons in the limit 1/kFa → +∞ as discussed in Section 2.2.4.
Thus, e.g. the 3D density distribution in the Thomas-Fermi limit is given by [Dyk10]

n(r, T = 0) =
15N

16π2rxryrz

[

1 −
(

x

rx

)

−
(

y

ry

)

−
(

z

rz

)

]

, (2.48)

ri = ri,T F = lho
ω̄

ωi

(

15Ndad

lho

)1/5

, (2.49)

where one had to substitute the number of dimers Nd = Na/2 with mass md = 2ma

and the molecular scattering length ad = 0.6a.

2.4.2. Cooper pairing in the BCS regime

For 1/kFa → −∞ we reach the weakly attractive interaction regime. Since the molec-
ular bound state only exists for a > 0, a pairing process for a < 0 seems unphysical
at first sight. Indeed, the pairing mechanism is completely different. Since in the BEC
limit pairing is only a two-body phenomenon, Cooper pairs are called many-body pairs
because the filled Fermi sea up to the Fermi surface is necessary for the formation pro-
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2. Theory of ultracold quantum gases in 3d

cess. Thus, pairing is therefore not generated by the attraction to the other particle but
is rather connected to the collective interaction with all particles around the Fermi sur-
face. In 1957 Bardeen, Cooper and Schrieffer [Bar57] showed that the ground state of
a balanced, non-interacting two-component Fermi gas at zero temperature with energy
E0 = N · 3

5
EF is unstable against attractive interactions and that pairing in momentum

space reduces the energy of the system in the following way [CCT11]

EBCS = E0 − 1

2
ρ(EF )∆2

0. (2.50)

Here, EBCS describes the energy of the attractively interacting BCS state, ρ(EF ) cor-
responds to the density of states at the Fermi level and the ∆0 is related to an energy
gap in the excitation spectrum at the Fermi surface. Thus, the formation of so-called
Cooper pairs, which consist of two particles of opposite momentum and spin, mini-
mizes the energy of the system. The zero temperature pairing gap can be related to
the energy which is required to break a pair [Dyk10] and depends exponentially on the
absolute value of the scattering length a [Gio08]

∆0 ∼
(

2

e

)7/3

EF exp

(

− π

2kF |a|

)

. (2.51)

Moreover, this pairing gap leads to superfluid behavior and one can calculate a critical
temperature TC for which the Cooper pairs become superfluid in a finite temperature
system [Gio08]

kBTC =
eγ

π
∆0 ≈ 0.28EF exp

(

− π

2kF |a|

)

, (2.52)

where eγ ∼ 1.78. In Figure 2.9 a) this behavior is depicted and further one can see
that the critical temperature to create Cooper pairs T ∗ and the superfluid transition
temperature TC coincide in the limit of weakly attractive interaction meaning that the
Cooper pairs only exist in the superfluid phase. The range between T ∗ and TC for
a < 0 is called the pseudogap regime. Moreover, the transition temperature TC is very
low compared to the transition temperature at the BEC side making the transition
from a weakly interacting Fermi gas to the superfluid phase rather hard to realize.

2.4.3. The Unitary regime

The two limiting cases introduced before are connected around the Feshbach resonance
by the unitary regime where 1/kFa → 0 because the scattering length a diverges. From
Section 2.3.1 we know that the total cross section σ = 4π/k2 becomes then independent
of a, leaving the interparticle spacing ∼ 1/kF or ∼ n1/3 as the only relevant length
scale in the system. That is the reason why this regime is called universal because all
thermodynamic quantities only depend on the natural energy scale EF . In Figure 2.9
(a) a schematic view of the whole BEC-BCS crossover is depicted. The BEC limit is
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2.4. Interacting Fermions

Figure 2.9.: BEC-BCS Crossover. In (a) a schematic phase diagram of the crossover
region is shown. The dashed line corresponds to the pair creation temper-
ature T ∗ and the solid line represents the behavior of the superfluid tran-
sition temperature TC . (b) depicts the experimental data which validated
the stability of a Fermi gas and the existence of the superfluid phase during
the crossover. Both pictures are taken from [Zwi05]

shown on the left side and below a critical pairing temperature T ∗ (dashed line) weakly
bound molecules can be formed which then can condense into a mBEC (become a
superfluid) for T < TC (solid line). By reaching the unitary regime we see that T ∗ and
TC decrease but still leave a gap in between which vanishes for 1/kFa → −∞.
Experimentally the stability of a two-component Fermi gas while crossing the resonance
has been observed by the group of Wolfgang Ketterle at MIT [Zwi05]. This was a
remarkable observation since one expected the same result as for a BEC which becomes
highly unstable for an abrupt change from repulsive to attractive interaction [Don01].
In a fermionic system the many-body physics combined with the Fermi pressure turns
out to stabilize the gas during the change of interaction [CCT11]. Figure 2.9 (b)
shows the observation of quantized vortices in a rotated Fermi gas along the strongly
interacting regime (1/kF |a| ≪ 1) of the BEC-BCS crossover which are an indicator of
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2. Theory of ultracold quantum gases in 3d

superfluidity. They demonstrated the existence of these vortices for several magnetic
fields around the unitary limit and thus argued, that the Fermi gas stays superfluid
along the whole BEC-BCS crossover.
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3. Quantum degenerate gases in a

quasi-2d confinement

As pointed out in the introduction, systems with reduced dimensionality exhibit new
and interesting physics and allow further a deeper understanding of phenomenons like
high-temperature superconductivity or superfluidity. Ultracold gases allow to study the
physics of such lower-dimensional systems by confining a cloud of atoms in a strongly
anisotropic trapping potential.
In this chapter we introduce in Section 3.1 the relevant energy scales and the two-
body bound state of a quasi-2d system. Further we briefly discuss the changes in the
quantum statistics and the scattering properties due to the reduced dimensionality in
Section 3.2 and Section 3.3 respectively. In the last part of the chapter we motivate the
mechanisms and characteristics of the Berezinskii-Kosterlitz-Thouless (BKT) transition
predicted for two dimensional systems.

3.1. Characterization of a quasi-2d confinement

In our experiment the realization of a quasi-two dimensional quantum gas is achieved by
confining the atomic cloud to an optical three dimensional harmonic potential, where
the confinement in the axial direction is much stronger than in the radial directions.
Due to the high trap anisotropy we achieve a population in just two dimensions at
sufficiently low temperatures of the quantum gas where thermally excited particles can
not occupy the third dimension. Hence we satisfy the conditions characterizing a two
dimensional quantum system

kBT, µ,EF ≪ ~ωz, (3.1)

where µ is the chemical potential and EF corresponds to the Fermi energy. The
transversal degree of freedom is thus frozen out and the atoms occupy the lowest
transverse harmonic oscillator state and can only populate the levels of the radial
confinement ~ωr. The different energy scales in the harmonic potential are schemati-
cally shown in Figure 3.1.

As we will discuss later in more detail, the reduced dimensionality affects the scat-
tering properties of the system. This leads for a two dimensional Fermi gas to the
existence of a confinement induced two-body bound state EB,2D for every magnetic
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3.1. Characterization of a quasi-2d confinement

ℏωz
ℏωr EF kBT

Figure 3.1.: Sketch of the two dimensional harmonic confinement. The radial
harmonic oscillator levels defined by ~ωr are populated whereas the gas
just occupies the ground state of the axial confinement because EF (or µ)
is much smaller than ~ωz. This degree of freedom is thus frozen out and
the system becomes quasi-two dimensional. The picture is adapted from
[Frö11a].

field, which can be related to a 2d scattering length a2D by the universal equation

EB,2D =
~

2

ma2
2D

, (3.2)

where m is the mass of the particles. The 2d scattering length a2D and thus the binding
energy depend on the trap geometry and can be connected to the three dimensional
scattering length a via the transcendental equation [Blo08, Pet01]

lz
a

=
∫ ∞

0

du√
4πu3



1 − exp(−EB,2Du/~ωz)
√

1
2u

(1 − exp(−2u))



 , (3.3)

where lz =
√

~/mωz is the harmonic oscillator length characterizing the tight con-
finement in z-direction. In Figure 3.2 both the binding energy for a two-dimensional
molecular state at ωz = 2π × 5.879 kHz and the three dimensional molecular state as
a function of the magnetic field are depicted. For weak attractive interaction and thus
negative scattering length a and |a| < lz, the molecular binding energy can be well
approximated by [Blo08]

EB,2D = 0.905(~ωz/π) exp(−
√

2πlz/|a|), (3.4)

which is shown in Figure 3.2 as well. Close to the 3d Feshbach resonance for diverg-
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Figure 3.2.: Molecular bound state in two and three dimensions as a function
of the magnetic field. The blue curve represents the three dimensional
binding energy of a |1〉 − |2〉 6Li dimer, which is 0 at the 3d Feshbach
resonance (gray dashed vertical line). The two dimensional confinement
induced binding energy (orange curve) stays non-zero even across the reso-
nance. The green dashed plot describes the two dimensional binding energy
approximated by Equation 3.4. It is valid for |a| < lz, so from the black
dotted line up to higher magnetic fields. In addition the small deviations
from EB,2D are shown up to the Feshbach resonance. At the Feshbach reso-
nance EB is given by a universal constant EB = 0.244~ωz. The calculation
has been done assuming ωz = 2π × 5.879 kHz.

ing a, Equation 3.4 no longer holds and it can be replaced by the universal constant
EB(a = ∞) = 0.244~ωz [Blo08]. For a repulsive three dimensional scattering length
a > 0 the two dimensional molecular state EB,2D approaches the three dimensional one
EB,3D. Then the size of the molecule given by a2D = ~/

√
mEB becomes smaller than

the characteristic length of the confinement lz and so the binding energy is not longer
affected by the confinement.
As seen in Figure 3.2, EB,2D is larger than ~ωz for magnetic fields up to 800G (hori-
zontal black dashed line), which means that the deeply bound molecules in this regime
can be described as a quasi two dimensional Bose gas. The fermionic constituents do
not become relevant until EB,2D ∼ EF , which has to be smaller than ~ωz in a quasi
two dimensional system.
For two dimensional Bose gases it has been shown [Mer66, Had11, Hoh67, Bog60] that
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3.2. Quantum Statistics in two dimensions

for any finite temperature T > 0 thermal fluctuations destroy the true long range order
(LRO) in the system. Since familiar phase transitions in three dimensional systems
like freezing of water or Bose-Einstein condensation can be related to the emergence of
true long-range order below some non-zero critical temperature, these phase transitions
do not exist in two dimensional systems. The order of a system is characterized by a
spatially uniform order parameter like the macroscopic wave function Ψ =

√
n exp(iθ)

in the case of a BEC. Besides that, the existence of true LRO can be connected to a
spontaneous breaking of a continuous symmetry of the Hamiltonian, e.g. in the case
of freezing water translational symmetry is spontaneously broken and in the case of
Bose-Einstein condensation an arbitrary phase θ of Ψ is spontaneously chosen at the
transition point.
The most general formulation is given by the Mermin-Wagner theorem which states
that in all one- or two dimensional systems with short ranged interactions and a contin-
uous symmetry in the Hamiltonian the symmetry is always restored by low energy, long
wavelength thermal fluctuations called Goldstone modes. We will see in Section 3.4.2
that in case of an interacting Bose gas the Goldstone modes correspond to phonons
[Mer66]. Nevertheless, this does not mean that any kind of phase transition is forbid-
den in low dimensional systems. So far we have discussed symmetry breaking phase
transitions, but phase transitions which are characterized by the emergence of a topo-
logical order are still possible.
For low temperatures exists a phase transition to a superfluid ’quasi condensate’ phase
which is described by the Berezinskii-Kosterlitz-Thouless theory (BKT) [Ber71, Kos73]
and is characterized by a topological order. In BKT theory, below a critical temperature
TBKT this topological order results from pairing of vortices with opposite circulations,
whereas for temperatures above TBKT proliferation of free vortices is expected. In
[Had06] a BKT-type crossover has been observed in a bosonic system confined to a
quasi two dimensional geometry and in [Cho13] the pairing of vortices was detected.

3.2. Quantum Statistics in two dimensions

The absence of Bose-Einstein condensation in homogeneous two dimensional systems
can be seen in more detail from a quantum statistical argumentation. Thus, we will
briefly compare the quantum statistics of an ideal bosonic system in two and three
dimensions and then calculate several quantities for the trapped non-interacting 2d
Bose and Fermi gas, which will become important in the experimental part of this
thesis. We follow here the argumentation from [Had11].

3.2.1. Absence of Bose-Einstein condensation in ideal 2d systems

From Einstein’s argumentation one obtains that condensation is related to a saturation
of the excited single particle states at some non-zero temperature. In the following
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3. Quantum degenerate gases in a quasi-2d confinement

calculation we assume an ideal, spinless two dimensional Bose gas.
The density of states is then given by g2D = mL2/(2π~2) with L → ∞ describing the
size of the system. The crucial difference between the density of states of a free 2d
system and the corresponding density of states in 3d is, that in 2d the density of states
is independent of the energy ǫ because g(ǫ) ∼ ǫd/2−1 holds, where d labels the dimension
of the system. In absence of condensation and using Equation 2.9 the total number of
particles can be derived as

N2D =
mL2

2π~2

∫ ∞

0

dǫ

exp(β(ǫ− µ)) − 1
. (3.5)

Here we defined β = 1/(kBT ) and the chemical potential µ ≤ 0.
The two dimensional phase-space density D2D is defined as D2D = nλ2

thermal where
n = N2D/L

2 corresponds to the two dimensional number density1. Hence, due to the
energy independence of the density of states g2D, we obtain the following relation for
D2D

2 in terms of the fugacity Z = eβµ

D2D =
∫ ∞

0

dx

Z−1 exp(x) − 1
= − ln(1 − Z). (3.6)

In 3d the density of states is given by g3D(ǫ) = V m3/2
√
ǫ/(

√
2π2

~
3) and thus the

phase-space density can be written as

D3D = n3Dλ
3 =

β√
2π2

∫ ∞

0

√
xdx

Z−1 exp(x) − 1
= βLi3/2(Z), (3.7)

where Li3/2(z) is the polylogarithmic function. Since µ ≤ 0, D3D has no solution for
Z when the phase-space density is larger than n3Dλ

3 ≈ 2.612 which means that for
T < Tc and µ = 0, the phase-space density of excited single particles saturates at
∼ 2.612.
On the other hand, D2D always has a solution for Z given by

eβµ = 1 − exp(−nλ2). (3.8)

Hence, for any non-infinite phase-space density it exists a negative value µ which allows
normalization of the thermal distribution of excited single particles to the total number
of particles N . Thus, BEC does not occur in the ideal infinite uniform Bose gas [Had11].

The interesting fact that BEC does not occur in an ideal infinite 2d systems can be
further seen by characterizing the long range order of the system. A measure of long
range order can be achieved by the first-order correlation function g1(r) which is shown
in Figure 3.3 for both the three dimensional case a) and the two dimensional case3 b).

1In further calculations we relabel λthermal as λ just for simplicity.
2Here we substituted x = βǫ.
3The functional form of the depicted curves is given by equations for a weakly interacting bosonic
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3.2. Quantum Statistics in two dimensions

g1(r) is defined independently of the dimensionality of the system by

g1(r) =
〈

Ψ̂†(r)Ψ̂(0)
〉

, (3.9)

where Ψ̂(r) corresponds to the field operator annihilating a single particle at position r.
True long range order (LRO), necessary for Bose-Einstein condensation, is achieved if
the first-order correlation function converges to a finite value for r → ∞, whereas if true
long range order is destroyed in the system, g1(r) always tends to zero for increasing
r. As seen in Figure 3.3 b) the first order correlation function in two dimensions at a
temperature T equal or smaller than the transition temperature TBKT decays slowly,
which enables only a quasi long range order dependent on the length scale of the system.
To introduce this really important phenomenon in 2d systems we start investigating
the first-order correlation function in a non-interacting system.
In the case of an ideal two dimensional uniform Bose gas, g1(r) is given by the Fourier
transform of the momentum space distribution function nk = 1

exp(β(ǫk−µ))−1)
with ǫk =

(~k)2/(2m)

g1(r) =
1

(2π)2

∫ ∞

0

exp(ikr)

exp(β(ǫk − µ)) − 1
d2k, (3.10)

which shows a different behavior for a degenerate and non-degenerate gas.
For a non-degenerate gas Z ≈ nλ2 ≪ 1 (see Equation 3.8) and with |µ| ≫ kBT the
momentum distribution is given by

nk ≈ Z exp(−βǫk) ≈ nλ2 exp

(

−(kλ)2

4π

)

≪ 1 for all k. (3.11)

Thus, all momentum states are weakly occupied and g1(r) becomes Gaussian with short
range correlation decaying on a length scale l = λ/

√
π

g1(r) ≈ n exp

(

−πr2

λ2

)

. (3.12)

In a degenerate gas (nλ2 > 1) we obtain Z ≈ 1 and the mean occupation for large
momenta βǫk ≫ 1 is decreased given by [Had11]

nk ≈ exp(−βǫk) = exp

(

−(kλ)2

4π

)

, (3.13)

which is smaller than 1 for k2 ≫ 4π/λ2 whereas the mean occupation for low momentum
states βǫk ≪ 1 since Z ≈ 1 can be written as

nk ≈ kBT

ǫk + |µ| =
4π

λ2

1

k2 + k2
c

, (3.14)

system obtained from L. Mathey by private communications.
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g1(r) in 3d

1

0 r

T < Tc

T >> Tc

g1(r) in 2d

1

0 r

T < Tc

T >> Tc

a)

b)

T = TBKT

T >> TBKT

r

1

T < TBKT

Figure 3.3.: Normalized first order correlation function of a homogeneous
Bose gas. In the 3d case depicted in a) the coherence length l is infi-
nite reflecting the true long range order in the system for T < Tc (dashed
line). g1(r) approaches a constant value for r → ∞ which corresponds by
the definition of Penrose-Onsager [Pen56] to the condensate density. In a
non-degenerate system (solid line), thus at T ≫ Tc the coherence length l
is given by λ/

√
π so that no true LRO is established. The difference in the

2d system b) is, that here even for T << TBKT g1(r) does not converge to
a constant value for r → ∞ and hence no true long range order can be es-
tablished. Due to the slow but continuous decay of g1(r) only a quasi-long
range order dependent on the size of the system can be arranged.
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3.2. Quantum Statistics in two dimensions

which is larger than 1 for k2 ≪ 4π/λ2 and kc =
√

2m|µ|/~. Thus, the first order
correlation function g1(r) becomes bimodal for an ideal degenerate gas. The Lorentzian
form of Equation 3.14 leads to the following decay of g1(r)

g1(r) ≈ exp
(

−r

l

)

where l = 1/kc ≈ λ√
4π

exp(nλ2/2), (3.15)

for r ≫ λ whereas for distances r ∼ λ the correlations are still Gaussian like in Equa-
tion 3.12. From this we can conclude that the first order correlation function of an
ideal Bose gas changes from a short range correlated Gaussian in the non-degenerate
case to an exponential decay in the degenerate regime even without a phase transition.
We further see, that if nλ2 increases, the correlation length l ∝ exp(nλ2/2) will grow
exponentially. This is important, since in finite size systems for any large fixed system
size L the correlation length l can be larger than L for a low enough non-zero temper-
ature meaning that quasi long range order will be established in the whole system.

3.2.2. Harmonically trapped non-interacting bosonic quantum

gases

Since we already introduced Bose gases in a harmonic 3d confinement in Section 2.2,
we just summarize in this section the most important quantities for the description of
a 2d quantum degenerate Bose gas at T = 0.
From Equation 2.7 we obtain the density of states for a harmonically trapped system
in d = 2 dimensions

g(ǫ) =
ǫ

(~ωr)2
, (3.16)

where ωr =
√
ωxωy corresponds to the radial trap frequency. By substituting the

density of states in the normalization condition given by Equation 2.9, setting µ = 0
and using the following definite integral4

∫ ∞

0

x

exp(x) − 1
dx =

π2

6
, (3.17)

we obtain for the total atom number N

N −Nc =
π2

6

(

kBT

~ωr

)2

, (3.18)

where Nc describes the number of particles which are condensed in the single-particle
ground state. As mentioned in the previous section, due to the harmonic potential
the system becomes finite and a macroscopic occupation of the ground state for N >

4Here we substituted again x = βǫ.
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N (id)
c = π2

6

(

kBT
~ωr

)2
takes place. Here N (id)

c corresponds to the critical atom number for
a fixed temperature T . The same argumentation holds for a fixed atom number N in
the trap and decreasing the temperature T < Tc. Here the critical temperature Tc in
two dimension can be obtained by [Dyk10]

Tc =
√

6N
~ωr

πkB

, (3.19)

and thus the condensate fraction can be written similar to the 3d case as

Nc

N
= 1 −

(

T

Tc

)2

. (3.20)

Nevertheless, condensation in 2d differs from the condensation in 3d and it is in general
a more complicated process.

3.2.3. Harmonically trapped interacting bosonic quantum gases

To see when either the BKT phase transition or the BEC transition occurs in an
interacting Bose gas, we will use here first a mean-field approach to motivate the
curves depicted in Figure 3.4. Since the mean-field approach is only valid in the low
density regime we present further numerical results from a more accurate Monte Carlo
analysis.
As shown in [Pit03, Pet02], repulsive interactions can be introduced in a mean-field
Hartree-Fock approach by adding 2gn(r) to the external potential V(r). Using the local
density approximation (LDA) we can write the local chemical potential as

µ(r) = µ− (V (r) + 2gn(r)). (3.21)

Since we know the form of the global density n = −λ−2 ln(1 − exp(βµ)) from Equation
3.8, we obtain the local density n(r) by substituting µ(r). The total atom number N
can be calculated by integrating over the local density n(r)

N =
∫

n(r)d2r = −λ−2
∫

ln(1 − Z exp(−βV (r) − g̃D(r)/π))2πrdr, (3.22)

where we used the fugacity Z = eβµ and the phase space density D(r) = n(r)λ2.
Choosing the harmonic trapping potential V (r) = 1

2
mω2r2 and substituting R = r/rT

with r2
T = kBT/mω

2 leads to

N

N
(id)
c

=
6

π2

∫ +∞

0
D(R)RdR, (3.23)
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which was related to the critical atom number for a BEC in an ideal gas N (id)
c from

Equation 3.19 at a fixed temperature T . The phase space density D(R) is the solution
of

D(R) = − ln(1 − Z exp(−R2/2 − g̃D(R)/π)), (3.24)

which depends only on the interaction strength g̃ and the fugacity Z. Since the phase
transition will occur first at the point of highest density in the trap, we will focus now
on the phase-space density at R = 0. Figure 3.4 a) shows the mean-field prediction
for the phase space density D(0) in the center of the trapping potential for various
interaction strength g̃ as a function of total atom number N/N (id)

c . As can be seen in
Figure 3.4, D(0) increases monotonically for larger N and further increases slower for
larger repulsive interaction. We assume that the BKT transition will occur when the

a) b)

Figure 3.4.: Phase space density D(0) in the center of a harmonic trap. Here
D(0) is depicted as a function of the total atom number N normalized by
the critical atom number N (id)

c for a BEC transition in an ideal gas. Further
the interaction strength g̃ was tuned and is given for each curve. The black
squares label the points of the BKT transition, thus where D(0) = DBKT .
In a) the results of a mean-field Hartree-Fock approach are shown and the
curves in b) result from a numerical Monte Carlo analysis. The plots are
taken from [Had11].

phase space density exceeds the critical value DBKT at the trap center predicted for a
uniform system to be

DBKT = (nλ2)BKT = ln(C/g̃), (3.25)

with C = 380±3 [Pro01]. In Figure 3.4 the point where D(0) is equal to DBKT is label
by the black squares. The definition of the critical phase space density DBKT allows
further to estimate the number of atoms which has to be placed in the trap to reach
the BKT regime. It can be approximated by [Hol08]

NBKT

N
(id)
c

= 1 +
3g̃

π3
D2

BKT , (3.26)
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3. Quantum degenerate gases in a quasi-2d confinement

which shows, that for a fixed trap and fixed temperature one needs to place a larger
atom number in the trap the reach the BKT regime than the regime of ideal gas Bose-
Einstein condensation.
As mentioned in the beginning of this section, the mean-field description is only valid
in the low density regime where density fluctuations are still dominant. As we will
show in Section 3.4.1 these fluctuations will be suppressed in the degenerate regime.
Thus, a more accurate description of D(0) is given by the numerical results from a
classical field Monte Carlo analysis [Pro02] shown in Figure 3.4 b). This analysis has
been shown to be valid even in the regime of relatively large interactions [Hol10]. The
obtained curves are qualitatively similar to the results of the mean-field description,
but lead to a reduction of the critical atom number NBKT/N

(id)
c as seen on the x-axis.

This raises the question if the ideal BEC transition or the BKT-driven condensation
comes first when increasing the phase space density at fixed interaction strength g̃. Due
to the inhomogeneous density profile this question is hard to answer. It depends on the
critical phase space density for an ideal BEC transition DBEC , which can in principle
be lower than DBKT for some particular interaction g̃. In this case the ideal gas BEC
transition would come first and BKT transition would not occur at all. However, DBEC

is not universal and depends on the parameters of the trapping potential. Please notice
the fact, that Figure 3.4 could be interpreted in the way that at N/N (id)

c = 1 the phase
transition into a BEC occurs and thus the necessary phase space density for the BKT-
transition would never be reached in this regime. This is misconstrued since due to the
repulsive interaction the phase space density in the center of a harmonic trap for an
interacting system is lower as the phase space density of an ideal gas. This leads to the
fact, that the critical atom number N (int)

c for an interacting system is in general higher
than N (id)

c .

3.2.4. Harmonically trapped non-interacting fermionic quantum

gases

In this section the most important parameter for a quasi-2d non-interacting Fermi gas
are summarized and the critical atom number to conform EF < ~ωz is estimated.
Using the two dimensional density of states given in Equation 3.16 and performing the
integration as in Section 2.2.1 leads to the following relation of the Fermi energy

EF,2D =
√

2N~ωr. (3.27)

Substituting EF = kBTF in terms of the Fermi radius given by ri,F =
√

(2kBTF )/(mω2
i ),

we obtain

ri,F,2D = (8N)1/4

√

~

mωr

ωr

ωi

. (3.28)

Since fermions obey the Pauli principle, the critical atom number to fulfill the 2d-ness
condition EF < ~ωz for a non-interacting Fermi gas can be calculated by counting
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3.3. Scattering in 2d

the number of microstates in a harmonic oscillator up to the energy level of the first
transverse excited state. The quantized energy spectrum of the lowest 2d harmonic
oscillator state is defined by

Egs =
(

nx +
1

2

)

~ωx +
(

ny +
1

2

)

~ωy +
1

2
~ωz, (3.29)

where nz = 0. Since our optical potential providing the two dimensional confinement
is planed with an aspect ration of 1 : 1 : 300 we can assume ωx = ωy = ωr and the
ground state can be written as

Egs = (nr + 1) ~ωr +
1

2
~ωz, (3.30)

with nx +ny = nr. Analogous we can evaluate the energy of the first transverse excited
state Eex with nr = 0 and nz = 1. With the assumption Eex > Egs we can write further

~ωr +
3

2
~ωz > (nr + 1) ~ωr +

1

2
~ωz, (3.31)

which simplifies to
ωz > ωrnr. (3.32)

Introducing the trap aspect ratio λ = ωz/ωr leads to the equation

λ > nr. (3.33)

Based on this equation and including degeneracies we can count the microstates in the
radial direction and thus obtain the critical number of atoms N2D by [Dyk11]

N2D =
λ−1
∑

nr=0

(nr + 1) =

(

λ2 + λ

2

)

(3.34)

Hence, for our characteristic trap parameters (trap depth = 2.5V see Figure 4.11)
ωz = 2π× 5972Hz and ωr = 2π× 18.7Hz, the maximum atom number we can load into
our optical potential and fulfill the 2d-ness condition is about N2D = 51200 per spin
state.

3.3. Scattering in 2d

In this section we briefly discuss the influence of the reduced dimensionality on the
scattering properties of our system and then focus on how the interactions differ from
a three dimensional system.
Similar to scattering in three dimensions one can describe the scattering between two
identical bosons with relative wave vector k starting from a slightly modified ansatz
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3. Quantum degenerate gases in a quasi-2d confinement

for the wave function [Adh86]

ψk(r) ∝ eikr −
√

i

8π
f(k)

eikr

√
kr
. (3.35)

For the scattering amplitude of a pure 2d system at low energies one further obtains

f(k) =
4π

ln(1/(ka2D)2) + iπ
, (3.36)

where the 2d scattering length a2D is introduced. In contrast to the tree dimensional
scattering amplitude (see Equation 2.37) the scattering amplitude in 2d exhibits always
a logarithmic energy dependence.
The range of interaction is characterized by r0 = rvdW,Li ∼ 0.2nm and is much smaller

than the length scale of the axial confinement given by lz =
√

~/mωz which is either
about 375nm for molecules or about 530nm for unbound atoms in our experiments.
Hence, the relative motion of the particles is not influenced by the axial confinement
and the scattering process can still be described by a modified 3d scattering amplitude.
This modification has been calculated in [Pet01] and in the low energy limit E ≪ ~ωz

the scattering amplitude of this so called quasi-2d system is given by

f(k) =
4π√

2π lz
a

+ ln( α
π(klz)2 ) + iπ

, (3.37)

with α ≈ 0.915 [Pet01] or α = 0.905 [Vog13]. Based on that, one can conclude that
the maximum of the scattering amplitude is not reached when a diverges as it is the
case in three dimensions. The real part of the denominator has to become zero, which
depends on the energy of the system k and the ratio between lz and a. Thus the
resonance position gets shifted with respect to the 3d Feshbach resonance, which is
called a confinement-induced resonance.
In the regime of weak attractive interactions where in addition |a| < lz, the form of the
pure 2d scattering amplitude from Equation 3.36 can be recovered. For this purpose we
rewrite the 2d scattering length defined by the universal equation a2D =

√

~2/mEB,2D

in terms of the approximated binding energy from Equation 3.4

a2D = lz
√

0.905 exp

(

−
√

π/2
lz
a

)

, (3.38)

which grows exponentially for a → −∞ and obtain further

f(k) =
4π

ln(EB,2D/E) + iπ
=

4π

ln(1/(ka2D)2) + iπ
, (3.39)
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3.3. Scattering in 2d

where we used E = ~
2k2/m. Thus, the strong interaction regime which was given in

the three dimensional case by 1/k|a| ≪ 1 is now rather at | ln(ka2D)| < 1. The regime
of weak interaction is then characterized by ln(ka2D) → +∞ for the BCS regime and
ln(ka2D) → −∞ in the BEC case [Vog13].
The coupling strength of a two dimensional Fermi gas in the weakly interacting regime
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Figure 3.5.: Coupling strengths for both weakly repulsive and weakly attrac-
tive interactions. The 2d interaction parameter (black) ln(kFa2D) is
shown defining the weakly and strongly (gray) interacting regimes. Fur-
ther both the coupling strength in the weakly attractive interacting regime
(green) and the coupling strength in the weakly/strongly repulsive interact-
ing regime (solid/dashed blue line) are depicted. Since the energy depen-
dence (kF ≈ ~ωz) of the interaction parameter shifts the strongly interact-
ing regime to the repulsive side, we decreased the validity regime of the cou-
pling constant of weak repulsive interaction g̃ = m

~2 g2D for ln(kFa2D) ≪ −1
to g̃ < 1 (see Equation 3.41). The dashed continuation stops at the point
were a ∼ lz.

is further given by [Frö12, Blo75, Vog13]

g2D =
−2π~2

m ln(kFa2D)
, (3.40)
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3. Quantum degenerate gases in a quasi-2d confinement

where we replace the general wave vector k by the Fermi wave vector kF . This coupling
describes the attractive interaction in the mean-field regime discussed in Section 2.3.2
and it is depicted in green in Figure 3.5 for the valid regime |a| < lz. Since the interac-
tion depends on the energy, we approximated kF ≈ ~ωz motivated by the measurement
results from Section 5.5.
In the repulsive weakly interacting regime ln(kFa2D) ≪ −1 the logarithmic and imagi-
nary term in Equation 3.37 can be neglected as long as the first term in the denominator
of the scattering amplitude

√
2πlz/a stays larger than 1. Thus, we obtain similar to

the 3d case a energy independent scattering amplitude

f(k) ≈
√

8π
a

lz
= g̃. (3.41)

Assuming a contact potential comparable to three dimensions, the 2d interaction energy
is

Eint =
~

2g̃

2m

∫

n2(r)d2r, (3.42)

and the characteristic length scale corresponding to the interaction energy, the so-called
healing length ξ = 1/

√
g̃n can be obtained.

In Figure 3.6 the magnetic field dependence of the dimensionless coupling constant
g̃ is plotted for the bosonic regime as discussed in Figure 3.2. The curve in Figure

3.6 was calculated using the harmonic oscillator length lz =
√

~/(2mωz) for diatomic
molecules at a trap frequency ωz = 2π × 5.879 kHz. Further, the molecular scattering
length add = 0.6a [Pet05] was taken into account. This coupling constant which can
be written as g̃ = g2Dm/~

2 determines the strength of repulsive interaction in two
dimensions. Thus, weakly repulsive interacting systems are defined by g̃ ≪ 1 whereas
if g̃ is on the order of 2π the system is strongly repulsive interacting.
The strongly interacting regime is qualitatively defined by equating the kinetic energy
of N non-interacting particles, which are equally distributed over the lowest N single
particle states, with the mean field interacting energy of N particles. From this, one
obtains the value g̃ = 2π for the regime of a strongly correlated many-body ground
state [Had11]. Further holds this value only in the low energy limit kF ∝ EF < ~ωz.
We enter this strong coupling regime in the low energy limit at about 800G (see Figure
3.6) where lz ∼ add and g̃ ∼ 5.0. This is already close to the 3d Feshbach resonance
thus the fermionic nature of our weakly bound molecules start to become relevant.
As seen in Figure 3.5 the regime of strong interactions gets shifted towards the repulsive
side if kF ≈ ~ωz and decreases the validity of the coupling constant g̃ depicted in blue.
Since we perform most of our experiments at 692G, we obtain g̃ ≈ 0.6 which is not
small compared to 1 and hence we are not really in the weakly interacting regime any-
more. In the vicinity of a Feshbach resonance a increases and can become on the order
of lz (blue dashed continuation in Figure 3.5). Now the logarithmic term in Equation
3.37 dominates and the coupling strength becomes more complicated.

43



3.4. Mechanisms and characteristics of the Berezinskii-Kosterlitz-Thouless transition
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Figure 3.6.: Dimensionless coupling constant for a weakly repulsive interact-
ing quasi-2d system in the low energy limit. The blue curve shows
the increase of g̃ with increasing magnetic field in the bosonic regime
EB > ~ωz. g̃ was calculated using the 6Li2 mass in the harmonic oscil-
lator length and the 3d dimer-dimer scattering length add for the |1〉 − |2〉
mixture.

3.4. Mechanisms and characteristics of the

Berezinskii-Kosterlitz-Thouless transition

After introducing the different quantum statistics and scattering properties of a quasi-
2d system, we want to describe in this section the mechanisms and characteristics of
the BKT transition predicted for a quasi-2d system in more detail.
We will see, that the BKT phase transition only depends on the phase fluctuations of
the order parameter Ψ =

√
n exp(iθ). The suppression of the phase fluctuations in the

BKT phase leads to the algebraic decay of the already introduced first order correlation
function g1(r) and thus to a quasi-long rang order in the system. Thus, we start by
motivating the suppression of the density fluctuations for a BEC at T = 0.
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3. Quantum degenerate gases in a quasi-2d confinement

3.4.1. Suppression of density fluctuations for repulsive interaction

As discussed in the previous sections, Bose-Einstein-Condensation can occur in finite
two dimensional systems for very low temperatures. Thus, at T = 0 we can describe a
weakly interacting 2d Bose gas by a constant macroscopic wave function given by

ψ =
√
neiθ, (3.43)

here n and θ are classical fields which for any finite temperature will thermally fluctuate.
The interaction energy of this repulsively interacting system (g2D > 0) can be written
as

Eint =
g2D

2

∫

n2(r)d2r =
g2D

2L2
〈n2(r)〉, (3.44)

where we used g2D = g̃~2/m as the interaction strength. Since the density fluctuations
(δn)2 for a fixed average density n = 〈n(r)〉 are defined as

(δn)2 = 〈n2(r)〉 − n2, (3.45)

it becomes clear that in order to minimize Eint the density fluctuations (δn)2 in
〈n2(r)〉 = (δn)2 + n2 should be minimal. As motivated in [Had11], the density fluc-
tuations are strongly suppressed if the density of states D2D ≫ 2π/g̃. Numerical
calculations [Pro01] have shown that a significant suppression is already reached for
D2D ≫ 1.

3.4.2. The Bogoliubov spectrum

To motivate the fact that long wavelength phonons are the origin of the quasi long
range order, we start with a brief summary of a Bogoliubov analysis near T = 0 for

a weakly interacting Bose gas which can be described by ψ(r, t) =
√

n(r, t)eiθ(r,t). We
introduced here the local density n(r, t) and the local phase θ(r, t) motivated in the
beginning of the section. In the subsequent calculation we follow the more detailed
argumentation of [Had11].
From Bogoliubov theory we can determine the Hamiltonian

H = nL2
∑

k

[

~
2k2

2m
|ck|2 +

(

~
2k2

2m
+ 2gn

)

|dk|2
]

, (3.46)

where L corresponds to the linear size of the system, g to the 2d coupling constant and
n to the global density. ck and dk are time-dependent Fourier coefficients related to
the phase fluctuation and density fluctuation respectively. From the Hamiltonian the
following set of coupled equations of motion for k 6= 0 can be derived

ċk = −
(

~k2

2m
+

2gn

~

)

dk, (3.47)
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3.4. Mechanisms and characteristics of the Berezinskii-Kosterlitz-Thouless transition

ḋk =
~k2

2m
ck, (3.48)

From k = 0 the time evolution of the global phase of the gas can be obtained since
ċ0 = −gn/~. For each k in the summation, the Hamiltonian exhibits a harmonic-
oscillator like form and the eigenfrequencies are given by

ωk =

√

√

√

√

~k2

2m

(

~k2

2m
+

2gn

~

)

. (3.49)

This is known as the Bogoliubov excitation spectrum. By expanding the square root
in the dispersion relation for large k, one finds

ωk ≈ ~k2

2m

(

1 +
2mgn

~2k2

)

=
~k2

2m
+
gn

~
, (3.50)

which corresponds to free particle eigenmodes. In contrast one can neglect 4th order
terms for small k and thus the eigenmodes can be related to long-wavelength phonons

since wk = ck with c =
√

gn/m. The crossover between both regimes is at k ∼ 1/ξ =√
g̃n.

To give a qualitative argument why the phonons imply only phase fluctuations one can
use the virial theorem 〈mω2x2〉 = 〈p2/m〉 since it holds for the harmonic oscillator in
thermal equilibrium and |ck|2, |dk|2 correspond to conjugated, dimensionless variables.
Hence, from the Hamiltonian in Equation 3.46 we can obtain the following relation

〈|dk|2〉
〈|ck|2〉 =

~
2k2/2m

~2k2/2m+ 2gn
. (3.51)

For k → 0 one can follow, that 〈|dk|2〉 ≪ 〈|ck|2〉. This means that density fluctuations
are suppressed for long-wavelength phonons (k = 2π/λ) whereas the free particle eigen-
mode (large k) involves both phase and density fluctuation. Moreover, the suppression
of density fluctuations occurs on a length scale r > ξ and depends on the interaction
parameter g as mentioned in the section before [Had11].

3.4.3. Algebraic decay of the correlation function

In Section 3.2.1 we introduced the first-order correlation function g1(r) = 〈ψ∗(r)ψ(0)〉
as a measure for long range order. For distances r > ξ, λ the density fluctuations
are suppressed as seen from the previous section and the Hamiltonian from Equation
3.46 is reduced to the phase fluctuation part. From the classical equipartition theorem
we know that each variable which is quadratic in the Hamiltonian adds kBT/2 to the
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3. Quantum degenerate gases in a quasi-2d confinement

energy, thus the contribution of the phononic part can be approximated by

nsL
2~

2k2

2m
〈|ck|2〉 =

kBT

2
, (3.52)

ns is here related to the uniform superfluid density which is slightly smaller than n.
Substituting n by ns for large r is a heuristic way to include the short distance physics
[Had11]. To calculate the first-order correlation function we use again ψ(r) =

√
nse

iθ(r)

as an ansatz for the wave function without density fluctuations. Thus, we can write
g1(r) as

g1(r) = ns

〈

ei(θ(r)−θ(0))
〉

. (3.53)

By expanding the phase in Fourier series θ(r, t) =
∑

k ck(t)eikr the phase difference can
be expressed in terms of the Fourier coefficients ck(t) which we already introduced in
the Hamiltonian

θ(r) − θ(0) =
∑

k

c′
k
(cos(kr) − 1) − c′′

k
sin(kr). (3.54)

Here ck = c′
k

+ ic′′
k

and from Equation 3.52 we obtain

〈|c′
k
|2〉 = 〈|c′′

k
|2〉 =

π

nsλ2L2k2
. (3.55)

We assumed that c′
k

and c′′
k

are fluctuating independently, thus 〈c′
k
c′′

k
〉 = 0 and further

a correlation between the modes k and -k exists because θ is real which implies c′
k

= c′
-k

and c′′
k

= −c′′
-k

. Using the fact, that for independent Gaussian variables the expectation
value can be rewritten like 〈eix〉 = e− 1

2
〈x2〉 and transforming the discrete sum into

L2/(4π2)
∫

d2k leads to the form

g1(r) = ns exp

(

− 1

2πnsλ2

∫ 1 − cos(kr)

k2
d2k

)

. (3.56)

Since we restrict our evaluation to the phonon part, the upper bound of the integral is
given by k = 1/ξ and the main contribution is related to modes with k > 1/r [Had11].
By calculating the integral

∫ 1 − cos(kr)

k2
d2k = 2π ln

(

r

ξ

)

, (3.57)

we obtain the final result for the first-order correlation function

g1(r) = ns

(

ξ

r

)1/nsλ2

, (3.58)
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which delivers insight into the algebraic decaying correlation for large distances r. The
fact that g1(r) → 0 for r → ∞ and thus the absence of true long range order, is a
consequence of the Mermin-Wagner theorem. The slow decay of correlations permits a
system with a so called ’quasi-long-rang order’ and a superfluid state with suppressed
density fluctuations can be called a superfluid ’quasi-condensate’, since the phase is not
constant for each r [Pet04a].
Thus, in the last two sections we identified the long-wavelength phonons as one origin
of the quasi-long range order in a quasi-2d system. In the next section we will focus
on the algebraic exponent and will give reasons why it is never larger than 1/4 in the
superfluid state. Further we will introduce the concept of vortices which will allow us
to define a critical transition point where the phase transition from the normal phase
into the BKT phase occurs.

3.4.4. BKT transition in a two dimensional Bose gas

So far we have seen, that on both sides of the transition no true long range order can
be established because of the exponential decay of g1(r) in the normal state motivated
in Section 3.2.1 and the algebraic decay of g1(r) in the superfluid state due to long-
wavelength phonons. But just from a phononic point of view, it is not possible to find
a critical transition point, because the phonons will influence the long range order at
any non-zero temperature since the exponent grows smoothly with temperature.
A microscopic theory of the superfluid transition in 2d was developed by Berezinskii
[Ber71], Kosterlitz and Thouless [Kos73] (see [Min87] for review) and since the tran-
sition occurs in a quantum degenerate regime in which, as seen before, the density
fluctuations are significantly suppressed the transition can just be driven by phase fluc-
tuations. Therefore, one of the key aspects of the BKT theory is the appearance of a
second source of phase fluctuations, so-called vortices.
Vortices are singularities in the superfluid density around which the phase θ changes by
a multiple of 2π. Since we are in the ultracold regime, we can assume just vortices with
phase windings of ±2π as energetically stable, where the sign corresponds to the sense
of rotation around the vortex. To each single vortex one can assign a velocity field
v = ~∇θ/m which varies as ~/mr because the phase only depends on the azimuthal
angle ϕ. The size of the vortex is determined by the healing length ξ which is consistent
with the assumption that density fluctuations are suppressed on a length scale r ≫ ξ.
In this vortex picture the microscopic mechanism of the superfluid to normal phase
transition can be explained as seen in Figure 3.7.
For T < TBKT the vortices form pairs with opposite circulations, which can be com-
pared to dipole like structures. These pairs do not create any effective circulation along
closed contours larger than the size of each pair which would be on the order of ξ for
tightly bound pairs. Hence, they will influence the phase θ and the corresponding ve-
locity field just at distances r < ξ. The behavior of g1(r) is therefore unaffected at large
distances r > ξ. For T > TBKT the size of the vortex pairs grows, until separation and
proliferation of single free vortices takes place. They form a disordered gas of phase
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3. Quantum degenerate gases in a quasi-2d confinement

Figure 3.7.: Transition between superfluid (left) and normal phase (right)
as explained in BKT theory. As temperature increases, the size and
density of the vortex pairs with opposite circulations (left) grows. When
the distance between several pairs becomes comparable to their size, they
start to overlap leading to unbound pairs and proliferation of free vortices.
Above TBKT (right) only free vortices are left destroying the quasi long
range order and the superfluid density vanishes. The picture was taken
from [Had11].

defects and scramble the phase at every length scale, destroying the quasi long range
order in the system.
Increasing the temperature further, leads to a regime where the suppression of density
fluctuation is no longer valid and the concept of individual vortices is no longer the
dominant effect in the system. In the introduction to this section we already mentioned,
that the superfluid phase transition is related to some kind of topological order in the
system. Since the vortex pairs are topologically annihilated for large enough contours
one can refer to the system as topologically ordered for T < TBKT . For T > TBKT the
free vortices affect the phase θ at arbitrary large distances because an arbitrary large
closed contour around free vortices will in general not contain equal number of vortices
with opposite circulations. Hence, one can call a superfluid quasi-condensate in the
absence of free vortices topologically identical to a BEC with true long range order,
whereas a system containing free vortices is on every length scale topologically different
from a BEC [Had11]. TBKT is here a well determined transition point at which the
superfluid density ns exhibits a universal jump which will be discussed now.

Since the full theoretical derivation of the universal jump in the superfluid density
is rather complicated involving renormalization group arguments, we want to give here
a simple physical picture how vortices drive the BKT transition [Had11]. The existence
of the universal jump in the superfluid density was described theoretically by Nelson
and Kosterlitz in [Nel77] and first experimental certification was achieved by Bishop
and Reppy [Bis78] in an experiment with liquid 4He films.
Let us consider a superfluid with finite density ns and assume a circular geometry with
the system size R → ∞. A good estimation for the energy E of a single vortex sitting
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at the origin affecting only the superfluid density is given by

E =
∫ R

ξ

1

2
ns

(

~

mr

)2

d2r =
~

2π

m
ns ln

(

R

ξ

)

. (3.59)

The density in the normal phase n has disordered phases and is therefore not affected by
the presence of a single vortex. Further, we can approximate the entropy S associated
with a single vortex core, which is given by the number of possible positions to find a
vortex with radius ξ in a circle with radius R

S = kB ln

(

R2π

ξ2π

)

= 2kB ln

(

R

ξ

)

. (3.60)

Neglecting edge effects, the free energy F = E − TS can be written down as

βF =
1

2
(nsλ

2 − 4) ln

(

R

ξ

)

. (3.61)

From this equation we can conclude, that the free energy changes sign if nsλ
2 = 4, which

defines the transition temperature TBKT . If nsλ
2 > 4 the free energy is positive and the

superfluid is stable, meaning that no free vortices are created, whereas for nsλ
2 < 4 the

free energy F is negative and proliferation of free vortices occurs. The first free vortices
lead to a reduction of the superfluid density which makes the appearance of further free
vortices even more favorable. Because of this avalanche effect, ns is instantaneously
decreased to 0 leading to the universal jump in the superfluid density from ns = 0
for T > TBKT to ns = 4/λ2 for T < TBKT . This differs from the 3d case where the
superfluid density grows smoothly.
Nevertheless, nsλ

2 = 4, which surprisingly is independent of the interactions g̃, is not
sufficient to determine TBKT for a given system. Taking the short distance physics into
account one can calculate the critical phase-space density as mentioned before for weak
interactions g̃ ≪ 1 [Fis88, Pro01, Pro02]

DBKT = (nλ2)BKT = ln(C/g̃), (3.62)

with C = 380 ± 3 determined by Monte Carlo simulations [Pro01]. At the transition
point the density of the normal phase n is larger than the superfluid density ns. Thus
nλ2 > nsλ

2 = 4 holds and DBKT has to be larger than 4 which leads to an interaction
strength of g̃ < 7.
After this brief theoretical overview over the properties of a quasi-2d quantum system
and the introduction of the BKT transition, we will describe our experimental setup in
the next chapter.
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In this chapter we give an overview over our experimental setup and the techniques
we are using to form and investigate a quantum degenerate system. Section 4.1 will
introduce you to the vacuum system and the experimental chamber. The different
techniques of trapping and cooling of a cloud of 6Li atoms down to the quantum
degenerate regime are described in the Sections 4.2 and 4.3. In Section 4.4 we present
our setup to create highly anisotropic dipole traps and we will close this chapter in
Section 4.5 by introducing our imaging technique.

4.1. Vacuum setup, oven and experiment chamber

All our experiments have to be conducted in ultra high vacuum (UHV) in order to avoid
loss of atoms by collisions with the thermal background gas. In Figure 4.1 the vacuum
setup is schematically shown and the different parts of the experiment are visible.
The pressure in the octagonal experiment chamber of Pexp ≤ 10−11mbar is provided
by a titanium sublimation pump (VARIAN) and to pump non-reactive gases like He
or Ar an additional ion-pump (VARIAN StarCell 75) is connected to the experiment.
To achieve best performance inside the experiment chamber, the experiment chamber
itself is coated with a ’Non Evaporative Getter coating’ (NEG), which consists of a
TiZrV alloy. Similar to the Titanium sublimation pumps it acts as a getter surface
and avoids outgassing from the octagon walls. The vacuum does not limit the lifetime
of our prepared atoms since we measured the lifetime of atoms trapped in a highly
anisotropic dipole trap to be about 50s [Nei13]. Due to the fact that the time scale of
one experiment cycle is about ∼ 12s, we are limited by neither beam power fluctuation
nor losses via background gas collisions. One experiment cycle can be briefly subdi-
vided into: 4s loading of the magneto-optical trap (MOT), 5s transfer to the optical
dipole trap (ODT) with evaporation and 3s transfer to the pancake trap with imaging.
We had to increase the MOT loading time to 4s due to the decreased power in our TA
(tapered amplifier) laser system (Toptica Photonics) providing the trapping light for
the MOT.
The preparation of 6Li atoms takes place in the oven chamber which is pumped by

a second titanium sublimation pump (VARIAN) and a smaller ion-pump (VARIAN
StarCell 40) down to Poven ≈ 3 · 10−11mbar. The oven chamber is connected to the ex-
periment chamber via the Zeeman slower which acts as a differential pumping stage to
suppress any negative effect due to the higher pressure in the oven chamber and will be
discussed later in more details. The oven in the oven chamber operates at Toven = 350°C
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Figure 4.1.: The vacuum setup. The 6Li atoms are produced by heating Lithium
up to T = 350°C in an oven placed at (1). In the Zeeman slower (2) the
atoms get decelerated down to the capture velocity of the MOT which is
formed in the experiment chamber (3) by six slightly red-detuned laser
beams (red arrows). The trapped atoms are then further transferred into
optical dipole trap potentials to perform e.g. evaporative cooling. Optical
access is achieved by six viewports on the side of the spherical octagon and
two viewports from below and above. The ion pumps (5) are connected to
the experiment via the two towers (4) which provide the gettering surface
for the titanium sublimation pumps. The picture is adapted from [Wen13]

which leads to evaporation of 6Li atoms since the melting point is around T ≈ 180°C.
The atom beam can be blocked by a mechanical shutter (black flag in Figure 4.1) which
can be rotated into the beam path.
The heart of the vacuum setup is the experiment chamber. To prevent any unwanted
magnetization it is made of non-magnetic steel and formed like a spherical octagon
which allows us to optically access the atoms through six viewports in the horizontal
plane and two viewports from below and above. In Figure 4.1 the red arrows corre-
spond to the resonant laser beams of the magneto-optical trap (MOT). The beam for
further trapping in an optical dipole trap enters the experimental chamber from the
front viewport and is reflected back under a small angle.
Besides that, we are able to image the atomic cloud from the front viewport, both
side viewports and from above as can be seen in Figure 4.5. The theoretical maximal
achievable resolution is given by the Rayleigh criterium and the numerical aperture
of the viewports. For the side viewports NAhor = 0.15 and the resolution is given
by dmin,hor = 0.61λ/NA = 2.78µm for λ = 671nm [Nei13]. Since the vertical view-
ports are closer to the atomic cloud in the center of the chamber they have a larger
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numerical aperture of NAvert = 0.88 which leads to a higher theoretical resolution of
dmin,vert = 465nm. To access the higher resolution from above, a new objective with a
numerical aperture of NA = 0.6 was designed in our group [Ser11, Ber13] and build up
in a bachelor thesis [Kri13]. By testing the new objective a resolution of dmin = 0.68µm
was achieved for λ = 671nm and dmin = 1.08µm for λ = 1064nm respectively.
The two large red rings on the experiment chamber (see Figure 4.1) correspond to
the MOT coils which are in anti-Helmholtz configuration and form a quadrupole field
which is necessary for magneto-optical trapping as will be discussed later. They are
powered by a Delta Elektronika (SM 45 − 70D) power supply which provides a current
up to 70A. Each of the coils consists of four stacked coils with 25 windings each and is
glued to a water cooled copper heat sink. The current direction of both coils, thus the
magnetic field configuration, can be changed, which allows us to use the MOT coils as
a compensation for gravity in the experiment.
As pointed out earlier the interactions between the atoms can be tuned by a homoge-
neous magnetic offset field. We apply this field by the so-called Feshbach coils depicted
as the smaller green rings in Figure 4.1. They are placed close to the atoms in nearly
Helmholtz configuration, so that we need just 30 windings at a current of 200A to
produce fields of the order of 1400G. This accelerates the switching progress compared
to the MOT coils because the inductivity is reduced. Due to the high current they are
glued to water cooled copper heat sinks as well (brown).
The advantage of the nearly Helmholtz configuration is that one creates a small mag-
netic field saddle which leads for high field seeking states to a weak magnetic anti-
confinement in vertical direction whereas in horizontal direction an additional magnetic
confinement is been established which supports the optical trapping of the optical dipole
trap (ODT) along the ODT beam axis where the optical confinement is the weakest.
The asymmetry of the magnetic field due to the current connectors (brown arm) is
compensated by small blocks of ferromagnetic steel which are placed directly on the
heat sink. We measure the current through the coils by a Danfysik Ultrastab 866
current transducer and for magnetic field stabilization we use a PID-feedback loop to
regulate the voltage of the Delta Electronika (SM 30 − 200) power supply which will
be discussed later. A more detailed discussion of the vacuum chamber the oven and
the MOT coils producing the magnetic fields can be found in [Rie10].
In the next sections the mechanisms of optical trapping and cooling of a sample of 6Li
atoms in the experiment chamber will be discussed.

4.2. Trapping and Doppler cooling of a cloud of 6Li

atoms

As mentioned above, the heated atoms leave the oven with a thermal longitudinal

velocity of v̄ =
√

8kBToven

πm6Li

≈ 1500m/s. In order to trap these beam of atoms in a

magneto-optical trap (MOT) we have to decrease the mean velocity of the atoms down
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4.2. Trapping and Doppler cooling of a cloud of 6Li atoms

to the capture velocity of our MOT which is in the range of vcap ≈ 50m/s.

Zeeman slower

This is achieved by the Zeeman slower where a red detuned laser beam which is directed
towards the atomic beam leads to a deceleration of the atoms by photon recoil. The
detuning is necessary since the laser photons and atoms are counter-propagating which
results in a Doppler shift in the resonance frequency. This kind of laser cooling can be
understood by approximating the atom as a two-level system [Met99]. If a laser photon
is absorbed by the atom, the atom gains the photon momentum which is pointed against
the direction of the initial momentum of the atom. Due to spontaneous emission after
some characteristic lifetime τ the absorbed photon is re-emitted leading to a photon
recoil which has no preferred direction. Thus, this recoil is averaged out over many
events and the remaining effective recoil is the directed recoil from the absorption
process leading to a deceleration of the atom. The force acting on the atom due to the
scattering of photons is called the spontaneous light force and a detailed description
can be found in many textbooks like [Met99]

〈Fspont〉 = ~kΓsc, (4.1)

here k corresponds to the momentum of the absorbed photon and Γsc represents the
scattering rate of photons which is given by

Γsc =
s0γ
2

1 + s0 +
(

2δ
γ

)2 , (4.2)

where γ is the linewidth of the excited state, δ describes the detuning of the laser
frequency and s0 = I/Isat corresponds to the intensity saturation. Thus, to maximize
the spontaneous light force one needs both, enough intensity to saturate the transition
s0 > 1 and has to stay close to resonance so minimizing the detuning δ → 0. As
mentioned above, the Doppler shift δDoppler leads to a red-detuned laser light δ0. Further
the velocity dependence of the Doppler shift results in the fact, that the deceleration by
the spontaneous light force moves the atoms out of resonance. This can be compensated
by a spatially varying magnetic field, which shifts the levels due to the Zeeman shift
such, that they are in resonance at each position x. Summing up all effects one has to
satisfy the following resonance condition

δ = δ0 + δDoppler(v) + δZeeman(x) = δ0 + kv − µBB(x)

~
. (4.3)

Since δ has to be minimized δ → 0 the spatial dependence of the magnetic field B can
be calculated

B(z) = B0

√

1 − z

z0

, (4.4)
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with the slower length z0 = mv2
0/~kγ where v0 corresponds to the maximum slowable

velocity and the magnetic field at the beginning of the slower B0 = ~kv0/µB. To
minimize the additional fields of the Zeeman slower in the experiment chamber we use
a decreasing field configuration. Hence, we have to be close to resonance with the laser
light which can lead to unwanted excitations during trapping in the MOT. Nevertheless,
this allows us to use the magnetic field of the MOT coils as the last part of the slower
field which makes the Zeeman slower more compact and allows us to capture the atoms
directly at the end of the slower where their expansion perpendicular to the slower axis
is smaller. More detailed information according to the Zeeman slower can be found in
[Sim10].

Magneto-optical trapping

Since the MOT was already discussed in many textbooks e.g. [Met99] we will focus
here on the basic principles of magneto-optical trapping. More information on the per-
formance of the MOT we use in our experiment can be found in [Rie10].
Using again the spontaneous light force Fspont enables us to now trap the already slowed
down atoms in the experiment chamber. By adding pairs of counterpropagating slightly
red detuned laser beams in each spatial direction (as seen in Figure 4.2), one achieves
a velocity dependent cooling which is called optical molasses. For an atom with zero
velocity the spontaneous force from each beam is the same, which leads to a zero effec-
tive force. If the atom is moving in one direction it gets due to the Doppler shift closer
to the resonance with the corresponding beam pointing against its moving direction,
resulting in a stronger spontaneous force in this direction. Hence, the atom is slowed
down in this direction and the cloud of atoms can be cooled down to a characteristic
limiting temperature, the so-called Doppler temperature TD = ~γ/2kB = 137.6µK for
the D2 line of 6Li [Met99]. So far we achieved a confinement in velocity space but not
a confinement in real space meaning that the atoms can still leave the overlap of the
beams and are lost. Hence the optical molasses acts more like a viscous medium and
we need a position dependent force to achieve spatial confinement.
This position dependent force is provided by a linear magnetic-field gradient applied

by the two coils (blue) which can be seen in Figure 4.2 a). The anti-Helmholtz con-
figuration of the coils leads to a quadrupole field which causes a position dependent
linear Zeeman splitting of the different mJ states as depicted in Figure 4.2 b). Since
the quantization axis is defined by the magnetic field BMOT which changes sign at
z = 0 the mJ = −1 state always tunes to lower energies for both negative and positive
z. If we shine in polarized light from both sides (σ− because we want to drive the
|mJ = 0〉 → |mJ = −1〉 transition), both beams are resonant with atoms sitting at the
center of the trap (z = 0) leading to a zero effective force. If we now red-detune the
beams by δ0, the transition will be on resonance at the points characterized by the cap-
ture radius ±Rc. Now, the left beam will drive the transition at z = −Rc and pushes
the atoms to the trap center. At +Rc the beam would be again energetically resonant
but due to the change of the quantization axis at z = 0 the atoms at z = +Rc see this
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X

a) b)

Figure 4.2.: Setup and schematic principle of a MOT. a) shows the experiment
chamber. The red arrows describe the six slightly red detuned beams used
for the optical molasses and in blue the MOT coils in anti Helmholtz con-
figuration (white arrows) are depicted. In Figure b) the linear splitting of
the magnetic sublevels mJ caused by the magnetic field gradient is shown.
Since the counterpropagating σ−-polarized beams are detuned by δ0 the
transitions at z = ±Rc can be driven by the corresponding beam. This
leads to an effective force directed towards the trap center. The pictures
are adapted from [Wen13, Rie10]

beam with a σ+ polarization. Thus, a beam coming from the left side cannot interact
with atoms on the right side and vice versa. The resulting force of all six beams (two
counterpropagating in each direction) will therefore lead to a restoring force towards
the center of the trap. With this technique we are able to trap a cloud of atoms with a
loading rate of about 3 ·108 atoms/s and cool them down to a typical final temperature
of about 300µK which is quite close to the limiting temperature of TD = 137.6µK.
This is still not enough to reach quantum degeneracy and therefore we load the atoms
into an optical dipole trap where we can further cool our sample by evaporative cooling.

4.3. The Optical Dipole Trap

Far-detuned optical dipole traps (ODT) are a perfect tool to trap and further cool a
cloud of atoms down to quantum degeneracy because in this conservative potential the
influence of spontaneously emitted photons is dramatically reduced. Moreover, this
trapping mechanism does not depend on any magnetic fields which allows us to use
them to control the interaction of the sample. The trapping mechanism is based on the
electric dipole interaction between the strong electric field of the laser beam and the
induced dipole moment of the neutral atoms. Since neutral atoms have no permanent
dipole moment, this trapping mechanism is very weak and requires a pre-cooled sample
which is in our experiment achieved by the MOT.
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4.3.1. Theory of optical dipole trapping

To evaluate the main characteristics of optical dipole traps we follow the argumentation
in [Gri00]. Here, a classical oscillator model is applied, which is a good approximation
for neutral atoms with a strong dipole allowed transition. Since 6Li is an alkali atom
with a single valence electron, it should be well described by this model as long as we
are far detuned from resonance where saturation effects can be neglected. The electric
field E(r, t) of the radiation and the induced dipole moment p(r, t) which oscillates at
a driving frequency ω can be written in the complex form

E(r, t) = êE0(r) exp(−iωt) + c.c., p(r, t) = êp0(r) exp(−iωt) + c.c., (4.5)

here ê corresponds to the unit polarization vector. The amplitudes E0 and p0 are
connected by

p0 = α(ω)E0, (4.6)

via the complex dynamic polarizability α which depends in general on the driving
frequency ω. Now, the interaction potential Udip of the dipole moment p induced by
the field E can be evaluated

Udip = −1

2
〈pE〉 = − Re(α)|E0(r)|2 = − 1

2ǫ0c
Re(α)I(r). (4.7)

Here, the rapid oscillating terms ∝ exp(±2iωt) vanish due to the time average labeled
by 〈〉 and the spatial dependent laser intensity I(r) = 2ǫ0c|E0(r)|2 is introduced. Since
the dipole moment is induced rather than permanent, a factor 1/2 has to be taken into
account. The direct relation to the real part of the polarizability is responsible for the
dispersive properties of the interaction, since it describes the in-phase component of
the dipole oscillation. The resulting conservative dipole force is given by the gradient
of the interaction potential

Fdip(r) = −∇Udip =
1

2ǫ0c
Re(α)∇I(r). (4.8)

It is directly proportional to the intensity gradient of the radiation field.
Besides the dipole force with its dispersive character the atom can absorb a certain
power Pabs which can be interpreted in a quantum mechanical picture as scattering
of photons with energy ~ω by absorption and spontaneous re-emission leading to the
spontaneous force Fspont discussed before. The scattering rate Γsc can be written in the
classical oscillator model as

Γsc =
Pabs

~ω
=

〈ṗE〉
~ω

=
1

~ǫ0c
Im(α)I(r). (4.9)

This reveals the absorptive character of the spontaneous force since Γsc is related to the
imaginary part of the polarizability which describes the out of phase component of the
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oscillation. The crucial point is, that this photon scattering process leads to heating in
the atomic cloud which limits us in both temperature and lifetime since for very low
traps this can cause atom loss.
An explicit expression of the polarizability α can be calculated in a Lorentz model of a
classical oscillator. In this simple picture the valence electron is bound elastically to the
atomic core able to oscillate with an eigenfrequency ω0 modeling the optical transition
frequency. Allowing the electron to emit radiation leads to a equation of motion of a
damped, driven oscillator

ẍ+ Γωẋ+ ω2
0x = −eE(t)

me

, (4.10)

where e and me describe the charge and mass of the electron and Γω is a classical
damping rate which is given by [Jac75]

Γω =
e2ω2

6πǫ0mec3
. (4.11)

Integrating the equation of motion and using that the dipole moment can be written
as p = ex leads to the following explicit equation for the polarizability

α(ω) = 6πǫ0c
3

Γ
ω2

0

ω2
0 − ω2 − i

(

ω3

ω2

0

)

Γ
, (4.12)

where Γ ≡ Γω0
= (ω0/ω)2Γω describes the on-resonance damping rate which corre-

sponds in a semi-classical approach like the two-level-system to the spontaneous decay
rate of the excited state and thus has to be related to the dipole matrix element between
ground and excited state

Γ2level =
ω3

0

3πǫ0~c3
|〈e|µ|g〉|2. (4.13)

As mentioned in the beginning for atoms with a strong dipole-allowed transition Γ is
still a good approximation of the spontaneous decay rate. With expression 4.12 we can
write down an explicit equation for Udip and Γsc using Equation 4.7 and 4.9.

Udip(r) =
3πc2

2ω3
0

(

Γ

∆
+

Γ

∆ + 2ω0

)

I(r), (4.14)

Γsc(r) =
3πc2

2~ω3
0

(

ω

ω0

)3
(

Γ

∆
+

Γ

∆ + 2ω0

)2

I(r), (4.15)

with the detuning labeled by ∆ = ω − ω0 and a linear dependence on the applied
intensity I(r). Since the driving frequency ω is mostly tuned close to resonance so that
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|∆| ≪ ω0 holds, the second term in the equations can be neglected leading to the well
known scaling laws Udip ∝ Γ/∆ and Γsc ∝ (Γ/∆)2 which can be summarized in

Γsc =
Γ

~∆
Udip (4.16)

This approximation is the so-called rotating-wave approximation in which the resonance
at ω = −ω0 can be neglected. It becomes clear from the scaling laws that it is possible
to have low heating rates and a sufficiently large trapping potential by using a far-
detuned laser beam at high power. For light alkali atoms like 6Li this detuning has to
be even larger due to their large recoil temperature Trec = ~

2k2/2mkB because in a 3D
harmonic trap the following linear heating rate can be given [Gri00]

Ṫ =
1

3
TrecΓ̄sc, (4.17)

where Γ̄sc corresponds to the mean photon scattering rate.
Further, depends the sign of Udip only on the sign of the detuning ∆, which leads to

Figure 4.3.: Schematic view of a red and blue detuned optical dipole trap
(ODT). Since the atoms (black dots) are always minimizing their energy
in the potential they are attracted to the maximum of intensity for a red
detuned ODT a) whereas they are repelled from the maximum of intensity
for a blue detuned ODT b). The corresponding dipole trap potential is
shown as the colored area with a maximum trap depth U0. Due to the fact
that the kinetic energy kBT of the trapped atoms is much smaller than
the trap depth the dipole trap potential can be well approximated in the
center by a harmonic oscillator. The picture is adapted from [Gri00]

two possible trap configurations seen in Figure 4.3. If ∆ < 0 which corresponds to a
red-detuned laser beam, Udip is negative and the atoms are trapped in the intensity
maximum of the radiation field. Whereas for blue-detuned light, ∆ > 0, the dipole
potential is positive and the energy is minimized in the intensity minimum. Hence,
with both configurations trapping of atoms is possible. Nevertheless, trapping atoms
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with a red-detuned laser beam with a Gaussian intensity distribution is much simpler
than using a blue-detuned laser with a ’donut’ like intensity potential. This is the
reason why we use a focused Gaussian beam at λ = 1064nm which is far red-detuned
from our dipole transition in 6Li at ∼ 671nm. Due to the large detuning we need a
power of about 200W to achieve a sufficient trap depth. By shining in the laser in
y-direction we obtain the following intensity profile of the beam as seen in Figure 4.4
a)

I(x, y, z) =
2P

πwx(y)wx(y)
exp

(

−2
x2

w2
x(y)

− 2
z2

w2
z(y)

)

, (4.18)

where the following characteristic parameters are used

wi(y) = w0,i

√

1 + (y/yR, i)2, (4.19)

which describes the beam radius at 1/e2 of the beam intensity in i = x, z-direction.
w0,i corresponds to the minimal beam waist in the beam focus and the Rayleigh length
yR,i = πw2

0,i/λ is the distance from the focus where the corresponding beam waist w0,i

has increased by a factor of
√

2. As seen from the definition of the Rayleigh length, it
will always be larger than the beam waist, which leads to a weaker confinement in the
propagation direction. As seen in Figure 4.4 b) the confinement along the propagation
axis can be improved by crossing two perpendicular polarized beams under an angle
2φ because the axial confinement is now limited by the length of intersection given by
l ≈ 2wz/ sin(φ) < yR,i. We achieve this in our setup by back reflecting the dipole trap
beam under a small angle of ∼ 6°, which increases the trap depth in the focus by a
factor of two.
In order to stay trapped in the optical potential the kinetic energy kBT of the atoms
has to be much smaller than the trap depth U0 which requires pre-cooling in the MOT
as already mentioned. As shown in Figure 4.3 the atomic cloud only occupies a small
volume deep in the trap which allows us to approximate the potential as a harmonic
oscillator with well defined energy levels separated by ~ωi

Udip(x, y, z) ≈ −U0



1 − 2

(

x

w0,x

)2

− 2

(

z

w0,z

)2

−
(

y

yR

)2


 , (4.20)

where the trap depth U0 ∼ I0 = 2P/(πw0,xw0,z) and the characteristic trap frequencies
can be obtained by

ωx,z =

√

√

√

√

4U0

mw2
0,x,z

and ωy =

√

2U0

my2
R

. (4.21)

They scale with the beam power as ωi ∝
√
P and in the case of a crossed back-reflected

beam yR has to be replace by l and the trap depth increases by U0 ∼ 2 × I0. This
approximation is only valid as long as the atoms just probe the energy levels deep in
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Figure 4.4.: Different beam configurations of red detuned optical dipole traps.
In a) the ODT is formed by a single Gaussian beam and the trap volume
is defined by the beam waists (here: w0,x,z = wx,z) and the Rayleigh length
yR. By crossing two Gaussian beams with perpendicular polarization the
confinement in y-direction l < yR can be improved dependent on the cross-
ing angle 2φ. In c) both beams with wave vectors k1 and k2 have the same
polarization, which leads to an interference pattern in z-direction. The
picture is adapted from [Boh12]

the dipole trap potential.
In Figure 4.4 c) both beams have identical polarizations which results in interference
of the two beams. We use such a beam configuration in our pancake trap to create
optical potentials with a really tight confinement in one direction as explained later in
more details. The total intensity of the interfering beams is given by

Itot ≈ |E1(r) + E2(r)|2 with Ei(r) = E0,i exp(ikir) + c.c. (4.22)

If both beams have the same intensity and cross each other with k1 and k2 under an
angle of 2φ the intensity can be written as [Nei13]

Itot ≈ I0| exp(ik(cosφy−sinφz)+exp(ik(cosφy+sinφz)|2 = 4I0 cos2

(

2πz

λ sinφ

)

, (4.23)

here k = 2π/λ is the wave vector and I0 the intensity of each beam. Due to the
linearity between the intensity and the trap depth, we achieve a periodic trap structure
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in z-direction with a spacing between neighboring trap sites given by

d =
λ

2 sinφ
. (4.24)

The interfering beams increase the trap depth U0 by a factor 4 which leads to a factor
2 higher heating rate compared to non-interfering beams.

4.3.2. ODT setup and transfer from the MOT

In Figure 4.5 an overview over the optical setup of our experiment is presented. The red
beam path corresponds to the optical dipole trap and the setup is described in detail
in [Boh12]. Hence, we will focus on the main characteristics of the setup. To produce
the high output power of about 200W, we use a diode pumped single-mode, linearly
polarized Ytterbium fiber laser (IPG Photonics). The two crossed acousto-optical mod-
ulators (AOM) allow a fast and precise power modulation and the cylindrical telescope
(cyl) leads to an elliptical beam profile. By crossing the incoming beam with the back-
reflected beam under an angle 2φ = 12° we create a surfboard shaped ODT with a
beam ellipticity of 1 : 6.
Since we can approximate our dipole potential quite well by a harmonic oscillator this

allows us to characterize our potential by one parameter, the trap frequency ωi = 2πνi

where i = x, y, z. To measure these trap frequencies we prepare a two-component non-
interacting Fermi gas in the ODT at the zero-crossing of the 3d scattering length a at
527G. To minimize the interaction further one can remove the atoms in spin state |1〉
by a resonant light pulse provided by the imaging light to create an one-component
Fermi gas of atoms in state |2〉. Now we suddenly increase the potential depth U0/2
by twice its value to U0. This compresses the cloud and excites a so-called breathing
mode. A breathing mode describes a collective motion of the trapped atoms and hence
can be monitored in a change of the width of the cloud. Therefore, we release the atoms
from the trap after different wait times and image them after a certain time-of-flight
(TOF) of about 2ms. Dependent on the wait time we will image a different oscillation
state of the breathing mode which is amplified by the time-of-flight expansion of the
cloud. We image the atoms by absorption imaging which will be discussed in Section
4.5. With this imaging method we can monitor the width of the cloud on every axis
dependent on the wait time and thus monitor an oscillation like the one seen in Figure
4.6 a). By fitting this oscillation for each trap depth U0 with a damped sine function
due to the left over interaction and the inhomogeneous magnetic field gradients, we
can determine the oscillation frequency which is twice the trap frequency because of
the breathing mode character of the oscillation. We further fit the data in Figure 4.6
b) with a fit function ∝

√
const. · U0 motivated by the theoretical principles of dipole

traps introduced in the section before. The fit describes the data with an error of about
10% which is sufficient for our applications and we found the following equation for the
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Figure 4.5.: Optical setup around the experimental chamber. The beam paths
of the retro-reflected MOT beams are parallel to the beam paths of the
imaging beams (blue). In red the ODT beam path is depicted and the
green beam path provides the light for the pancake trap. Further are the
lattice beams depicted in yellow. The sketch is taken from [Nei13].

63



4.3. The Optical Dipole Trap

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

500

1000

1500

2000

2500 verticalTtrapTfrequency νz
fitTtoTtheTdata

tr
a

p
Tf
re

q
u

e
n

c
y
T[
H

z
]

TrapTdepthT[V]

a- b-

0.0 0.2 0.4 0.6 0.8 1.0

90

100

110

120

130

140

150 verticalTwidthTofTatomsTatTtrapTdepthT=T2V

fitTtoTtheTdata

y
-s

ig
m

a
T[
µ

m
]

TimeT[ms]

Figure 4.6.: Vertical trap frequencies of the ODT. In a) the excited collective
motion of the atoms inside the trap is depicted at a trap depth U0 = 2V
and fitted by a damped sine to obtain the oscillation frequency. In b) the
result for different trap depth is shown and fitted by a square root law.

vertical trap frequency

νz = 1166
Hz√
V

√

U0. (4.25)

The trap frequencies in the horizontal axis have been determined in an analogous
manner given as

νx =

√

√

√

√

(

255
Hz√
V

)2

· U0 + (5Hz)2 and νy =

√

√

√

√

(

24
Hz√
V

)2

· U0 + (5Hz)2. (4.26)

Thereby results the additional factor of νmag = 5Hz from the influence of the magnetic
field saddle of the Feshbach coils at 527G. This leads to a weak anti-confinement in
the vertical axis and a weak confinement in the horizontal plane. Due to the fact that
the optical confinement in vertical direction is much stronger than the magnetic anti-
confinement, it can be neglected as done for the trap frequency in Figure 4.6 b). These
trap frequencies have been obtained using an old photodiode box to measure the beam
power. Hence they have to be rescaled to the power measured by the new photodiode
box by νnew = 1/

√
1.15 · νold. In Figure 4.7 the dependence of the horizontal magnetic

trap frequency νmag on the magnetic offset field is depicted. The deviation between the
depicted νmag and the results from the square root fits of the horizontal trap frequencies
in the ODT is due to the fact that the latter measurement only includes the influence of
the magnetic offset field during the breathing mode in the optical confinement whereas
the release from the ODT allows a more precise measurement of νmag since the optical
confinement is much less.
The description of the transfer from the MOT into the ODT can be found in [Nei13]

and is here briefly summarized. By switching on the ODT to a power of 200W thermal
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Figure 4.7.: Horizontal magnetic trap frequencies of the Feshbach field. The
trap frequency was measured by suddenly lowering the trap depth of a
single beam optical dipole trap and monitoring the breathing mode along
the axis of weak optical confinement νy ≪ νmag as discussed in the text.
The data was fitted by a square-root law and the following magnetic field
dependence was obtained νmag = 0.39 Hz√

G
·
√
B.

lensing occurs, which results in a shift of the beams dependent on the power. Nev-
ertheless, since the focus of the thermalized ODT is precisely aligned to the saddle
point of the magnetic offset field provided by the Feshbach coils, its position is fixed.
This position can be adjusted quite well by releasing the atoms from the ODT, so that
they expand along the magnetic offset field trajectories. To obtain a highly efficient
transfer of the atoms we have to overlay the MOT with the focus of the ODT as good
as possible. But the zero crossing of the MOT gradient and even the zero crossing of
the Feshbach gradient are not aligned with the ODT focus. Since the zero crossing of
the Feshbach gradient is located closer to the ODT focus position we load the atoms
first into a MOT which is composed of the Feshbach quadrupole field, the so called
’Feshbach MOT’. The Feshbach MOT can be moved during the transfer vertically by
decreasing the current of the lower coil via a parallel circuit. For movement along the
horizontal axis we use the last coil of the Zemann slower and an additional coil mounted
on the front viewport to move along the axis defined by the entering dipole trap beams.
By optimizing this movement we can efficiently transfer the atoms from the MOT into
our ODT. To improve the overlap of the Feshbach MOT and the ODT focus further
we change the detuning of the MOT laser beams which leads to a slight compression of
the trapped cloud. After finalized transfer we lower the ODT power to 40W to achieve
a stable trap position. This allows us to trap a cloud of around 106 atoms in the ODT
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4.4. Setup of the two dimensional Pancake-Trap

which now can be further cooled evaporatively.

4.3.3. Evaporative cooling

To reach quantum degeneracy we perform evaporative cooling in the ODT which is
perfectly suited for that due to the low heating rate. The energy of the pre-cooled
atomic cloud can be described by a Maxwell-Boltzmann velocity distribution and the
temperature of the gas can be obtained from its mean velocity. By removing the
hottest atoms from the cloud and giving the remaining atoms time to re-thermalize
by elastic collisions, the mean velocity decreases to an equilibrium value defined by
the trap depth U0. Because of the decrease in temperature the phase space density
increases, thus repeating this progress allows to cool the gas of atoms down to the
quantum degenerated regime.
We perform evaporative cooling by decreasing the laser power of our ODT over (2−3)s
and thus lowering the trap depth. In doing so, we monitor the laser power with the help
of two photodiodes (each calibrated to a certain power regime) collecting a fraction of
beam power transmitted through a mirror. During the evaporation process we switch
from the high power photodiode with low gain to a low power photodiode which has
a unity gain factor and exhibits a improved dynamic range. After further evaporation
we switch in the photodiode box of the low power photodiode to a special operational
amplifier with a gain factor of 300. This increases the dynamic range of the input
channel of the experimental control and enables us to efficiently cool further. The
power is stabilized by controlling the diffraction efficiency of two AOMs by regulation
of the rf-power via a PID-feedback loop. The AOMs are rotated by 90° with respect
to each other. To achieve efficient thermalization and due to the collision properties of
ultracold fermions, we apply a radio-frequency-pulse of about 600 ms at the beginning
of the evaporation procedure to achieve a 50 : 50 mixture between the states |1〉 and
|2〉. Further, for fast thermalization we perform the evaporation at magnetic fields
with large positive scattering length a. To form a mBEC one uses typically magnetic
fields of BmBEC ≈ 796 G because at this fields the produced Feshbach molecules are
still stable. For a production of a Fermi gas of atoms in the spin state |1〉 and |2〉
the evaporation takes place at lower magnetic fields BF G ≈ 300 G where a is negative
[Nei13].

4.4. Setup of the two dimensional Pancake-Trap

Because we want to investigate the physics of an ultracold degenerate gas in two dimen-
sions we need a large level spacing in one dimension of our harmonic dipole potential.
In the remaining two dimensions the trap frequency has to be rather small in order
to allocate a large number of energy levels which can be populated and thus confine
as much atoms as possible in these dimensions. Hence, we have to create a dipole
potential with a large aspect ratio between the vertical and horizontal axis.
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4. Experimental setup and techniques

We use a beam configuration as shown in Figure 4.4 c) and optimize the aspect ratio by
maximizing the angle of intersection to φ ∼ 7° which is limited by the aperture of the
viewports. Due to the interference of the two beams, this leads to a stack of flat dipole
potentials with a vertical spacing between each so-called pancakes of about d = 4.4µm.
This spacing is enough to successfully suppress tunneling between adjacent pancakes in
the trap depth regime we operate. In order to make the pancakes as round as possible
we have to use again elliptical shaped beams with an aspect ratio of 1 : 8. A trap
depth of U0 ≈ 6.8µK is obtained at a power of 2W in each of the two pancake beams.
By transferring our evaporatively cooled quantum gas from the surfboard shaped ODT
into one single pancake potential we enter a system in which we can fulfill the 2d-ness
condition given in the beginning of Section 3. Further details on the design criteria of
the pancake trap can be found in [Boh12].

Stability validation

In order to load reproducibly into one single pancake, the trap has to be designed
in a way that long time drifts are much smaller than half the spacing d between the
pancakes. Thus, to ensure a high passive stability of the interference fringes all required
optical elements are mounted into a heavy aluminum casing to damp any mechanical
oscillations. The elliptical shaped beam with λ = 1064nm enters the casting under an
angle of 45° as seen in Figure 4.8 and passes a 50 : 50 non-polarizing beam splitter.
A λ/2-plate can be inserted in the lens mount in the upper beam path to rotate

Figure 4.8.: Aluminum casing for the pancake trap setup. The incoming beam
is divided by a 50 : 50 non-polarizing beam splitter and reflected into the
experiment chamber. Since both beams have the same polarization they
interfere in the crossing point and create a stack of flat optical potentials
in vertical direction called pancakes. The picture is taken from [Wen13]

the polarization to switch off the interference. The pancake trap then reduces to a
normal crossed dipole trap which simplifies the alignment. The two dielectric mirrors
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4.4. Setup of the two dimensional Pancake-Trap

reflect both beams into the experiment chamber where they cross under an angle of
2 · φ = 14°. Both beams are focused by a f = 900mm lens before the casing as seen
in Figure 4.5. The stability of the pancake position was determined by a tomographic
radio-frequency spectroscopy method which will be discussed in detail in Section 5.3.
From this measurements [Nei13] we could validate the good short term stability of
the interference pattern forming the pancakes since the phase change was ∆φ ≤ π/12,
which is enough that we can reproducible load a particular pancake. The long term
stability was investigated as well by repeating the tomography measurement about a
week later. By comparing the data, a long term stability of ∆φ ≤ π/8 was detected.
This means that in a completely thermalized experiment the position of the pancakes
changes by less than 500nm over ten days. Since this is less than an eighth of our
pancake spacing the position is stable on the time scales of our experiment.

Optical setup

In order to create samples that are as cold as possible, we have to minimize any source of
heating in the system which could be caused for example by intensity fluctuations of the
trapping laser beams. Hence, we need a low-noise laser system for the trapping beams.
We will discuss here the most important parts and changes of the setup and briefly
summarize the results of the noise characterization. Detailed information concerning
the optical setup and the characterization of the noise of the laser system can be found
in [Nei13].
The light for the pancake trap is provided by a ∼ 40W NUFERN fiber amplifier
(Sub−1174 − 22) which amplifies the seed light of a continuous-wave single-frequency
solid state laser (INNOLIGHT Mephisto-S 500 NE) emitting at λ = 1064nm. The
maximum output power is 500mW but for sufficient seeding we just need about 70mW.
The noise of the Mephisto is actively reduced by a so-called ’noise eater’ leading to a
measured relative intensity noise (RIN) below −135dB/Hz. Further, it has a very
narrow linewidth of less than 1kHz. Nevertheless, because of the amplification of
the Nufern the RIN is significantly increased as well, but will not limit the intended
experiments as described in [Nei13]. At high stabilized laser power of about 25W the
RIN first increases from about −115 dB/Hz to −105 dB/Hz and then decreases to the
Mephisto RIN for frequencies larger than 200kHz.
In Figure 4.9 the optical setup is shown. The light enters through the Nufern fiber
under a particular angle which is compensated by the proximate collimator and the
beam diameter is increased to about 4.4mm (Gaussian diameter) to reduce the effect of
thermal lensing. The following optical isolator (Thorlabs IO−10−1064 VHP) prevents
back reflection into the fiber and with the low-order λ/2-waveplate the losses in the
isolator can be minimized leading to a transmission of about 92%. Clipping is avoided
since the aperture diameter is about 9mm. The polarization is rotated to the horizontal
axis by an additional low-order λ/2-waveplate behind the optical isolator. The following
combinations of low-order λ/2-waveplates and polarized beam splitter (PBS) are used
to clean the polarization and adjust the power in the corresponding arms. As seen in
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Figure 4.9 the light of the NUFERN is furthermore used for two lattice beams which
are implemented in the experimental setup as well (yellow beam path in Figure 4.5).
In principle, the setup of each arm is quite similar so we will focus on the design of
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Figure 4.9.: Nufern breadboard. This figure shows the optical setup providing the
light for both the pancake trap and two lattice beams which are imple-
mented in the setup as well. The sketch is adapted from [Nei13].

the pancake trap arm and point out the differences. In order to match the size of the
AOM crystal and the fiber facet of the high-power fibers (OZ Optics) which connects
the Nufern breadboard with the experiment chamber setup we reduced the beam size
by a factor of 3 in the pancake trap beam. This is achieved by a telescope with anti-
reflection (AR) coated spherical lenses with f = 300mm and f = −75mm in the lattice
beams and f = 300mm and f = −100mm in the pancake trap beam. As can be
seen from the different telescope configurations, the beam size of the lattice beams is
reduced by a factor of 4. This is due to the fact that we have not yet checked, if the
incoupling of these beams in the fiber facet is sufficient. If it is not, we probably have to
modify these telescopes as well and optimize the divergence angle like in the procedure
described below. The f = 300mm lens can be tilted in both axes to compensate the
astigmatism which occurs due to thermal lensing at high power. The telescope in the
pancake trap beam was modified because the coupling efficiency was below 60%. We
took a closer look at the beam profile and the divergence angle of the beam and used an
additional fiber to send light provided by the Mephisto from the side of the experiment
chamber to the Nufern setup to measure the facet of the high power fiber. In doing
so we matched the beam profile and the divergence angle of the ingoing and outgoing
beam which leads to the modification of the telescope. In Figure 4.10 the beam profile
of the corresponding beams at different steps is depicted. With this modification we
again achieved a coupling efficiency of ∼ 85% which is necessary because we will couple
later up to 8W into the fiber.
The diffraction efficiency of the AOM can be controlled precisely by adjusting the rf-
frequency power and since we use the first diffraction order it allows us to switch and
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4.4. Setup of the two dimensional Pancake-Trap

a) b) c)

Figure 4.10.: Beamprofile during optimization of pancake trap arm. In a) the
beam profile of the outgoing beam (from Mephisto) in front of the high-
power fiber incoupler is shown with a Gaussian diameter of ∼ 1258µm. b)
corresponds to the Nufern beam measured at the same position with a f =
−75mm lens in the telescope and a Gaussian diameter of ∼ 1132µm. c)
shows the same beam with a f = −100mm lens and optimized collimation
leading to a Gaussian diameter of ∼ 1238µm

fine-tune the beam power in each arm. The zeroth order is thereby dumped on a
beam dump. Further, we insert a mechanical shutter in each beam path which can be
externally controlled by the ADWIN experimental control. This allows to block the
beam without shutting down the AOM. Thus, the AOM stays in its thermal equilibrium
state the whole time which improves the stability of the beam. To stabilize the intensity
we measure a fraction of the light with a photodiode on the experimental chamber side
of the high-power fiber (see Figure 4.5) and regulate the diffraction efficiency with a
digital PID-feedback loop via the experimental control.
Since the three beams cross each other in the experiment chamber, one has to avoid
frequency beating in a critical range up to 100kHz which would result in heating of the
atoms and therefore losses. To prevent this the frequency of each beam arm is slightly
shifted by the AOMs as depicted in Figure 4.9. Furthermore, the polarization of the
lattice 1 beam is rotated by 90°.
The photodiodes in Figure 4.5 and Figure 4.9 labeled as interlock PD belong to our
interlock system which automatically shuts down the beam power by switching off the
diffraction of the AOMs if the coupling efficiency drops below 60%. That is necessary
because the high-power fiber facets can be damaged if too much power is dumped in
them. The power is measured before and after the fibers by the photodiodes and the
efficiency is calculated by an Arduino micro-controller board connected to the AOM
driver box.
A detailed description of the pancake trap beams (green beam path in Figure 4.5) on
the side of the experiment chamber can be found in [Nei13].
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Trap frequencies of the Pancake-trap

As already described in Section 4.3 our dipole potential can be well approximated by
a harmonic oscillator characterized by the trap frequency ωi = 2πνi where i = x, y, z.
To measure these trap frequencies we transfer a mBEC from the ODT to the pancake
potential to populate as less pancake potentials as possible. Since we want to avoid
any effect of interaction in the breathing mode, we ramp up the magnetic field to
about 1400G where we prepare a two-component Fermi gas. By removing the atoms
in spin state |1〉 via a resonant light pulse provided by the imaging light we create a
non-interacting one-component Fermi gas of atoms in state |2〉. Now we ramp back to
795G and excite and monitor the breathing mode as described in Section 4.3.2. By
fitting the damped oscillation we determine the oscillation frequency which is twice the
trap frequency because of the breathing mode character of the oscillation. In Figure
4.11 the resulting trap frequencies for each direction as a function of trap depth U0 are
depicted. The vertical trap frequency νz ∼kHz is much larger than the horizontal trap
frequencies νx and νy which verifies the large aspect ratio of the pancakes. The fits

a) b)

Figure 4.11.: Trap frequencies νi for different trap depth U0 in the pancakes.
Each frequency was determined by monitoring the oscillation of a breath-
ing mode excited by a sudden compression of a non-interacting Fermi
gas.

are obtained by a square-root law of the form νi =
√

const.2 · PLaser + ν2
mag(B). νmag

results from the influence of the magnetic field saddle of the Feshbach coils mentioned
in Section 4.3.2. Due to the fact that the optical confinement in vertical direction is
much stronger than the magnetic anti-confinement, it can be neglected as done for the
ODT trap frequency in Figure 4.6 b) and for the vertical trap frequency in Figure 4.11
b). In the horizontal plane a magnetic trap frequency of νmag = 8.36Hz was measured
at a field of 795G and its dependence on the magnetic offset field has been shown in
Figure 4.7. From the square root fit we obtained the following relation between the
trap frequencies and the trap depth U0 ∝ PLaser

νx =

√

119
Hz2

V
· U0 + (8.36Hz)2 and νy =

√

104
Hz2

V
· U0 + (8.36Hz)2
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νz = 3777
Hz√
V

√

U0.

Furthermore a calculation of the aspect ratio shows that our pancakes are almost round
since νx/νy ≈ 1.1 (at a trap depth of 2.5). Including the vertical frequency we obtain
νx : νy : νz ≈ 1.1 : 1 : 327 which is in very good agreement with the planed aspect
ratio of 1 : 1 : 300 calculated from the projected waists whorizontal = 600µm and
wvertical = 2µm.

4.5. Imaging of an atomic cloud

In the end of each experiment cycle we image our cloud of atoms either in-situ, thus
trapped in an optical dipole potential, or after releasing them for a certain time-of-flight.
Since the atoms cannot emit any photons in these states, we apply an absorption imag-
ing technique to measure the density distribution of our prepared degenerate quantum
gas. From the density distribution one can extract all the relevant physical quantities
like number of atoms, temperature or the quantum statistic of the gas.

4.5.1. Absorption Imaging

The basic principle of this imaging technique is to shine in a resonant laser beam and
monitor the transmitted light on a CCD camera. Due to the fact that the atoms
will scatter the light they will appear as a dark, shadow-like spot in the image Iabs. To
obtain the optical density ρOD we take a second image displaying only the imaging light
without the atoms Iref and a dark image without both Ibg. Due to the imaging process
we already integrate the optical density in the imaging direction (here: z-direction)
which leads to

ρOD(x, y) = − lnT (x, y) = − ln

(

Iabs(x, y) − Ibg(x, y)

Iref (x, y) − Ibg(x, y)

)

, (4.27)

here T (x, y) corresponds to the relative transmission. By subtracting the Ibg from each
image the images are cleaned from the dark signal of the camera, whereas the division
of the cleaned images eliminates any static inhomogeneities in the imaging beam like
interference fringes. In the low intensity limit I ≪ Isat the scattering cross-section
between the imaging photons and the atoms becomes independent of the intensity and
is given in the case of circular-polarized imaging light propagating along the magnetic
field axis by σ0 = 3λ2/2π. For a different polarization or propagation direction σ0 has to
be modified by a numerical factor from the corresponding Clebsch-Gordon coefficient.
Based on that, the transmitted intensity follows from the Lambert-Beer law with the
three dimensional cloud density n(x, y, z)

I(x, y) = I0(x, y)
∫

exp(−σ0n(x, y, z))dz. (4.28)
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With the definition T (x, y) = I(x, y)/I0(x, y) and using Equation 4.27 we can connect
the two dimensional cloud density with the optical density

n(x, y) =
∫

n(x, y, z)dz =
ρOD(x, y)

σ0

, (4.29)

which is directly related to the atom number per pixel via

Npix(x, y) =
Apix

M2σ0

ρOD(x, y). (4.30)

The known camera properties M2 and Apix correspond to the magnification and the
area of one pixel. In the high intensity case I ≫ Isat the scattering cross section becomes
intensity dependent and the relation for the number of atoms has to be modified

Npix(x, y, ) = − A

σ0M2

I0

I
(1 − T (x, y)). (4.31)

By fitting the density distribution of the atoms obtained from the absorption image,
we can deduce quantities like the atom number or temperature. Nevertheless, this
measurement destroys our ultracold gas in each cycle due to absorption of imaging
photons which heat up the cloud. A more detailed discussion about imaging techniques
and extracting physical quantities from the density distribution can be found in [Ket99,
Ott10].

4.5.2. Up-down imaging

We can image our atoms from three directions as seen in Figure 4.5 which has been
described in detail in [Nei13]. Hence, we will focus here only on the changes in the
imaging setup. A new camera (AVT Stingray F145 B) was implemented in the up-
down imaging which has a smaller read out noise, a better quantum efficiency and a
pixel size of 6.45µm ×6.45µm. The imaging beam is coupled out from the old up-down
imaging beam path by a 2” mirror and focused on the camera by a Melles Griot Doublet
LAI15/083 lens with f = 190mm which leads to an effective magnification of M = 1.98.
We use here doublet lenses because they achieve a very low wavefront distortion of the
imaging beam. The resolution of the imaging system can be estimated by the numerical
aperture NA ≈ 0.14 of the f = 80mm Doublet lens collecting the light from the
experimental chamber. This leads to a resolution of dmin = 0.61 · λ/NA = 2.9µm. To
further improve the resolution of the up-down imaging a new objective with a numerical
aperture NA ≈ 0.6 will be implemented in the setup in the near future as mentioned
earlier (see [Kri13]).
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4.5. Imaging of an atomic cloud

4.5.3. Laser diode modulation to improve the atom number

determination

Determining the atom number from absorption imaging relies on two main factors.
First the light of the imaging pulse has to be resonant with the atomic transition which
demands a precise control of the frequency. This is achieved by actively stabilizing a
tunable external diode laser (Toptica DL 100) by Doppler-free saturation spectroscopy.
Both the cooling and imaging lasers are beat-locked to a spectroscopy laser and a
linewidth of the locked lasers less than 1MHz was obtained. Since we use for cooling
and imaging the D2-transition in 6Li with a natural linewidth of Γ = 5.87MHz, the
obtained linewidth is sufficient. The duration of the imaging pulse τ was optimized to
about 8µs to minimize the shot noise level.

Due to the large photon recoil vrec = ~kphoton/m6Li = 0.085m/s, even at this short
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Figure 4.12.: Voltage amplitude of the diode current modulation. One can see
a clear optimum around a modulation amplitude Vpp/2 = 1.5. Due to
the compensation of the Doppler shift we could increase the number of
imaged atoms by a factor of 1.3

pulse duration the atoms are moved and get Doppler shifted with respect to the imaging
light. Thus, we see less atoms because of a reduced absorption probability and further
the shape of the density distribution might be changed due to increase of the dispersion
in the atomic could. We estimated this effect by imaging the cloud with a pulse duration
of τ ≈ 1µs and measuring the absorption distribution by slightly detune our imaging
laser and recording the change in atom number. By repeating this measurement with
a pulse duration of τ = 8µs we determined a drift of the maximum of the distribution
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of about 2.5MHz which is on the order of Γ/2 = 2.9MHz. Since the effect of dispersion
is maximized at a detuning of Γ/2 with respect to the resonance frequency, we decided
to compensate this detuning due to the Doppler shift. By modulating the current of
the imaging laser diode with a 8µs long linear ramp provided by a 20MHz arbitrary
waveform generator (Agilent 33220A) the frequency of the imaging light can be directly
shifted. Thus, we calibrated the applied voltage to achieve a 5 MHz shift corresponding
to a voltage offset of 1V by comparing the frequency shift between the imaging laser
and the spectroscopy laser. Now we scanned the current modulation amplitude Vpp/2
and monitored the imaged atom number of a mBEC at 730G trapped in the dipole trap
at a pulse duration of τ = 8µs. The result is seen in Figure 4.12 and a clear maximum
is visible around Vpp/2 = 1.5V leading to a gain in the detected atom number of about
1.3.
As pointed out in the section before, the determination of the atom number depends on
the intensity of the imaging light. From [Geh03] we know, that the saturation intensity
for the D2-transition in 6Li is given by Isat = 25.4W/m2. To estimate our imaging
intensity we extracted the counts of one pixel with maximum signal from our raw data.
Since the quantum efficiency of the camera (AVT Stingray F145B) is η = 0.45 and the
gain factor is g = 0.29 the ratio I/Isat can be estimated by

I

Isat

=
countspix

ηg

hc

λτ

1

Apix/M2
, (4.32)

which leads with countsmax,pix = 330 to I/Isat ≈ 1/3. Thus, the intensity of our
imaging light is on the same order as Isat and we are not in one of the limiting regimes.
This leads to an error in the atom number determination. A more detailed description
and evaluation of the relative error can be found in [Ott10]. By lowering the imaging
intensity with an −11dB attenuator to I/Isat ≈ 1/30 we measured an increase in atom
number in the dipole trap by a relative factor of 1.7 on average. Nevertheless, we went
back to the old intensity to get a better signal to noise ratio and hence underestimate
our atom number by a factor of 1.7. In the following measurements we will therefore
correct the atom number by these factors.
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quasi-2d gas

After the discussion of the characterization of our experimental setup in the previous
chapter, we now want to focus on the preparation of a quasi two dimensional system.
Therefore, we start in the first two sections by describing the transfer of our degenerate
sample from the ODT into the pancake trap. In the next Section 5.3 we describe
our radio frequency (rf) tomography method to verify that we are able to load into a
single pancake potential. Here we will focus on several applications which improved
this method. In the last two sections of this chapter we will validate, that we are able
to prepare and control a quasi two dimensional system of ultracold atoms.

5.1. Transfer from ODT into several layers of the

Pancake traps

By evaporative cooling of our atomic cloud in the ODT we are able to enter the quan-
tum degenerate regime. Dependent on the interaction in the system controlled by the
scattering length we end up either with a BEC consisting of |12〉-molecules or a degen-
erate Fermi gas with atoms in a ballanced |1〉−|2〉 spin mixture. To control the number
of particles which will be transferred, we can either apply an additional magnetic field
gradient to decrease the depth of the effective trapping potential in one direction or
carefully lower the depth of the optical potential further. In the first method which we
call ’spilling’ the particles are spilled from the trap due to the magnetic force acting
on them. The second method continues evaporative cooling by decreasing the inten-
sity of the optical dipole trap beams which might become inefficient at some point
when the density becomes to low and no re-thermalization can be achieved at sufficient
timescales. We lower our optical trap depth down to U0 ≈ 30nK so that the magnetic
trapping potential of the Feshbach coils has to be taken into account even in the ver-
tical direction. Hence, we still trap the particles in horizontal direction by the very
harmonic magnetic field, whereas the atoms can leave the trap in vertical direction,
because of the anti-confining saddle point of the Feshbach field, controlled by the weak
optical confinement. With both methods a degenerate gas of about 104 particles can
be produced but the latter method leads to a cooler sample in the pancake trap. To
transfer the particles we perform an adiabatic compression of the cloud which squeezes
the particles in all directions by increasing the intensity of the ODT beams. At the
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5.1. Transfer from ODT into several layers of the Pancake traps

same time, we slowly ramp up the power in the pancake trap beams. To achieve a
well thermalized sample in the pancakes we allow elastic collisions and wait additional
(100 − 200)ms before decreasing the power in the ODT beams. Figure 5.1 depicts a
mBEC at a magnetic field of 795G before (upper row) and after the transfer (lower row).
In the vertical imaging direction the difference between the surfboard shaped ODT and
the almost round pancake potential can be seen. In the images taken along the hor-
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Figure 5.1.: A mBEC before and after transferred into a stack of pancake
traps. In the first row a cloud of condensed molecules is imaged from two
directions in the ODT. The second row shows a similar sample transferred
into a stack of ∼ 5 pancake trap potentials. Since the cameras in the
two imaging directions have a different magnification and imaging angle
the width in x-direction is slightly different. The picture is adapted from
[Nei13].

izontal axis the anisotropy of the tighter axis x and z of the ODT is depicted which
emphasizes the surfboard character of our optical dipole trap. The vertical extension
(z-axis) was estimated from a Gaussian fit to be around 20µm which is significantly
larger than the expected vertical width of a single pancake potential which is around
4µm. Hence, if we were transferring directly using these trap configurations we would
transfer particles in about 5 neighboring pancake potentials. The depth of focus can
be calculated by zDOF = 4λ/NA2 ≈ 93µm with the nominal aperture of NA ≈ 0.15
given by the size of the vacuum window for this imaging direction. By comparing this
value with the extension of the almost round pancakes along this directions of about
(200 − 300)µm one sees, that the achievable resolution of d = 2.7µm will be decreased
because of blurring and that a single pancake can not be optically resolved. Since
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zDOF ∝ 1/NA2 one could increase the depth of focus to reduce the effect of blurring
by decreasing the NA to 0.10 − 0.12. This would result in a slightly worse effective
resolution d = 0.61λ/NA of (3.41−4.1)µm which is on the edge to resolve the particles
in the individual pancake potentials. Nevertheless, we succeeded in loading into the
pancake trap potential and the lifetime of the transferred sample was measured to be
about 50s which is considerably larger than the time the gas is kept in the pancake
potentials ∼ 2s [Nei13].

5.2. Loading a sample in a single Pancake trap

In order to prepare a quantum degenerate gas in just a single pancake trap potential
we tried to decrease the vertical expansion of the cloud in the ODT before the transfer.
Therefore, we realigned the foci of the ODT so that they are exactly at the position
where the beams intersect which leads to an increased confinement in vertical direction.
Since few Hertz pressure fluctuations in the airflow might lead to vibrations of the
optical elements, we decreased the fan speed of the flow box controlling the temperature
of the air at the optical table to reduce shot-to-shot fluctuations of the ODT beam
position.
To lower the vertical spreading further we implemented a technique which we call
’painting’. Thereby, we modulate the rf-frequency of the x-AOM (see Figure 4.5) of the
optical dipole trap with a sine function. This results in a fast modulation of the optical
dipole trap position in the horizontal plane and since the frequency of ∼ 50MHz is larger
than the trap frequency of the ODT in x-direction (axis of intermediate confinement)
the atoms cannot follow the modulation and hence see an effective time independent
dipole potential. Due to the modulation, the effective waist in x-direction is increased
and we achieve a larger aspect ratio leading to a change of the density of states in
x-direction. Hence, the population of the cloud will be preferentially spread in the x-
direction which leads to a decrease of the occupation in the other directions especially
in vertical direction. That results in a squeezing of the cloud in vertical direction and
a broadening in x-direction.
As can be seen in Figure 5.2, it is easier to transfer a molecular BEC into a single
pancake potential instead of a degenerate Fermi gas. Due to the fermionic quantum
statistics, the degenerate Fermi gas obeys the Pauli principle which leads to a pressure
that keeps fermions separated. The pressure in the degenerate Fermi gas is always
non-zero even at zero temperature which brings about a larger spatial expansion than
a non- or weakly interacting Bose gas where all particles are condensed in the single
particle ground state. Hence, the mBEC with its smaller vertical extension can be
transferred into a single pancake potential much more easily.
Furthermore, as we want to perform measurements in the BEC-BCS crossover we
have to transfer a mBEC into a single pancake potential. Investigating the crossover
regime with a degenerate Fermi gas is almost impossible since we normally create our
degenerate Fermi gas on the left hand side of the Feshbach resonance around 500G as
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seen in Figure 2.6. The larger negative scattering length compared to the right hand
side of the resonance leads to a more efficient evaporative cooling. If we now ramp
the magnetic field over the zero-crossing of the scattering length to reach the crossover
regime, we immediately create deeply bound molecules by three-body recombination
processes. Since the scattering length a is still small in this regime three-body collision
processes with the background gas are not yet suppressed as close to the Feshbach
resonance. Hence, as the molecules can be transferred into deep vibrational energy
states, they release a lot of binding energy which leads to a high loss of particles. In
case of a mBEC which is already formed close to the Feshbach resonance, the three-
body-collision processes are significantly suppressed as seen in Equation 2.46 leading
to less losses by investigating the crossover regime.
To shift the position of the atoms trapped in the ODT in vertical direction we apply a
magnetic field gradient and thus a force ∼ µ∇B slightly pulling or pushing the atoms
with magnetic moment µ. To determine the position of the atoms we perform a radio-
frequency spectroscopy as described in the following section. Thus by adjusting the
strength of the gradient we can precisely tune the position of the cloud with respect
to the pancake potentials and load it into a single pancake. This enables us further to
control the partition of transferred particles in one or two pancake potentials as can be
seen in [Wen13].

5.3. Measuring the density distribution in the pancake

trap

In order to investigate how the transferred particles are distributed within our pan-
cake trap potentials, a measurement technique was developed to probe the spatial
distribution of the atoms in each pancake trap using tomographic radio-frequency (rf)
spectroscopy. The principle is shown in Figure 5.2 for both a degenerate Fermi gas
(DFG) and a molecular BEC (mBEC) depending on the homogeneous magnetic offset
field of the Feshbach coils. The addressing of each pancake is achieved by applying a
magnetic-field gradient ∂B

∂z
provided by the MOT coils in the vertical direction due to

the spin projection along the magnetic offset field in z-direction. Due to this magnetic
field gradient, the energy shift between the non-degenerate hyperfine states (see Figure
2.5) becomes position dependent in z-direction. Since the hyperfine states are split by
∼ 80 MHz, and tune with the magnetic offset field, the transition can be driven by
rf-pulses. As long as the position dependent resonance frequencies of the atoms in each
pancake trap are separated by more than the effective resolution of the rf-pulse the
pancakes can be addressed individually.
We prepare our system in spin state |2〉 and transfer the atoms into spin state |3〉
at a certain rf-frequency. By imaging the atoms in state |3〉 we are able to deter-
mine the atom number for each rf-frequency, corresponding to the atoms at a certain
spatial position in z-direction. Thus, we repeat this measurement while scanning the
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rf-frequency and monitor the atom number. This measurement technique has already

DFG

mBEC

B(z)

z
B(z)

z

rf - pulse

magnetic field
gradient

optical dipole
trap

Stack of 
pancake traps

Nuclear spin flip
 at fixed rf - freqency  

transferred atoms

z ~ frequency

transferred atoms

z ~ frequency

record atomnumber
vs rf - frequency

repeat at different 
rf - frequency

Figure 5.2.: Principle of rf-tomography for both a degenerate Fermi gas
(DFG) and a molecular BEC. The basic steps of the measurement
technique mentioned in the text are shown. The amount of loaded pan-
cake potentials depends on the quantum statistics of the prepared quantum
system. Due to the Pauli pressure the DFG is more expanded and thus
loading into a single pancake is easier by transferring a mBEC. The picture
is adapted from [Wen13].

been described in detail in [Nei13] and we will summarize the important steps, starting
with a short introduction to rf-spectroscopy.

5.3.1. Basic principles of radio-frequency spectroscopy

As described in Section 2.3.4, the three lowest hyperfine states of 6Li in the Paschen-
Back regime differ in their orientation of the nuclear spin. Hence, driving a transition
between two of these states requires flipping the nuclear spin, which can be achieved
via a magnetic dipole transition by applying an oscillatory magnetic field. Since this
transition is a forbidden electric dipole transition its lifetime is far longer than the
timescale of our experiment.

B(t) = B0 cos(ωRF t) (5.1)

This field couples to the magnetic moment of the atoms and the transition rate Γif for
this effective two-level system can be obtained from Fermi’s golden rule [Chi05]

Γif =
2π

~
|〈f |V̂RF |i〉|2, (5.2)

where V̂RF = ~Ω̂/2 corresponds to the interaction operator which strength is given by
the Rabi frequency Ω. The initial and final states can be written as a product wave
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function of the external and internal state where the internal state is described by the
hyperfine or spin wave function |χ〉 and the external state is described by the spatial
wave function |ϕ〉. Since typical energies of rf-transitions are in the MHz range the
momentum transfer to the atoms is negligible and the spatial wave function is not
effected. This leads to

Ωif ∝ 〈f |V̂RF |i〉 = 〈χf |V̂RF |χi〉〈ϕf |ϕi〉. (5.3)

Thus the strength of the transition from |2〉 to |3〉 depends not only on the coupling of
the rf-field to the spin but also on the overlap of the spatial wave functions.
We create the oscillatory magnetic field by an impedance matched rf-antenna which is
mounted inside the experimental chamber. If the oscillation frequency is on resonance
with the rf-transition frequency, we induce Rabi oscillations between the states |2〉 and
|3〉 with full contrast. The probability of finding the atom in state |3〉 after applying a
resonant rf-pulse of length t is given by [Bra03]

P|3〉 = |b(t)|2 = sin2

(

Ωt

2

)

. (5.4)

Here we see, that in an ideal, coherently driven system we can completely transfer the
atom to state |3〉 after a pulse duration of t = 2π/Ω which corresponds to a π-pulse.
As mentioned above the Rabi frequency is related to the amplitude of the oscillating
field and can thus set by the applied rf-power PRF ∝ B2

0 .

5.3.2. RF-Tomography

Since we have successfully prepared an ultracold degenerate Fermi gas of atoms in a
spin mixture of |1〉, |2〉 or a molecular BEC |12〉 as seen in Figure 5.2, we remove atoms
in state |1〉 by a resonant light pulse of about 10µs provided by our imaging light.
Otherwise, this spin component would lead to interaction effects while performing the
rf-tomography, which would cause three-body-losses and a shift of the resonance fre-
quency [Zür13]. Since in the case of a transferred molecular BEC the atoms are bound
into diatomic molecules, we ramp the magnetic offset field to a magnetic field region
of about 1000G where the atoms are no longer bound into confinement induced dimers
due to collisional dissociation and apply the light pulse. From our measurements we
see that this procedure in fact heats the remaining atoms, but that they do not leave
the pancake potentials [Wen13]. Our system now consists of a single-component Fermi
gas and we sweep back to typical fields of either 527G or 795G.
In a next step we apply the magnetic field gradient in z-direction provided by the MOT
coils. Since the minimum of the MOT potential and the minimum of the pancake po-
tential are not superimposed, the resonance frequency gets shifted due to the offset
field of the MOT coils.
We apply gradients up to 72G/cm provided by a Delta Elektronika power supply (SM
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45 − 70D) where the creating current is stabilized using a PID feedback loop with
parameters especially optimized to control a constant current. For that matter the
current in the MOT coils is measured by a LEM current transducer (LEM LAH 50-
P/SP3). Due to the feedback loop we are able to compensate the effect of temperature
on the resistance of the coils. A overheating interlock is obtained by an Arduino micro-
controller checking the resistance of the coils during the measurement.
The gradient can be estimated from the measured current to compensate gravity since
µ∂B

∂z
= m6Lig with a levitation current of 0.069V and an offset value of 0.0156V. Thus,

the gradient at 6V corresponding to 60A is given by 72G/cm = 7.2mG/µm. The split-
ting of the |2〉−|3〉 transition depends on the magnetic offset field and can be calculated
to be 6.3Hz/mG at 795G [Bre31]. This leads to a spacing of the individual pancakes
in frequency space of about 6.3Hz/mG · 7.2mG/µm · 4.4µm ∼ 200Hz which is on the
order of the resolution of the rf-spectroscopy method.
Nevertheless, the large gradient leads to a force acting on the atoms which has to be
compensated by a large depth of the optical pancake potentials. Due to the limited
available optical power, this sets a limit on the gradient strength and thus the available
spacing of the rf-resonance frequencies. Besides that, the large magnetic field gradient
leads to a dephasing of the atoms during the rf-pulse. Since the atoms in a coherent
superposition of spin state |2〉 and |3〉 acquire a different phase they become distin-
guishable and thus can collide. These collisions lead to a decoherence of the rf-dressed
state during the rf-pulse which results in the fact, that we are not able to apply the
rf-pulse coherently. Thus, the maximum number of atoms we can transfer to state |3〉
is limited to 50% of the initial number of atoms in state |2〉. Within a 20ms pulse,
which corresponds to a Fourier limited width of 50Hz we are able to transfer 50% of
the atoms, which leads to a lower bound of the Rabi frequency of Ω ≥ 25Hz.
To find the resonance frequencies of the atoms in the individual pancake potentials, we
start with a Rabi-frequency of several 100Hz and thus driving atoms from several pan-
cake potentials. By scanning the rf-frequency over an interval of several kHz and imag-
ing atoms in-situ along the horizontal MOT axis in state |3〉 the distribution of atoms in
the pancakes convoluted with the power broadened rf-pulse is determined. Hence, the
structure of the sample in the individual pancake traps cannot be resolved yet, but the
resonant rf-frequency in the 80MHz range is now known up to an uncertainty of several
100KHz. Decreasing the scanned frequency interval to ∼ (800 − 1000)Hz and minimiz-
ing the power-broadening with simultaneously transferring efficiently allows to resolve
separated peaks in the distribution which can be related to the density distributions
in the individual pancakes. Thereby, the determined distribution of atoms in state |3〉
in each image is fitted by a Gaussian distribution and the z-position and atom num-
ber is inferred. From the precise determination of the center position by the Gaussian
fit we achieve an additional improvement of the effective resolution as seen in Figure 5.3.

The effective resolution of this measurement technique depends decisively on the sta-
bility of the magnetic offset field, since a drift of 1mG results in a rf-frequency change
of 6Hz. Thus, we will now focus on the achieved improvements of the stability of the
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Figure 5.3.: Gaussian fit to the imaged atom distribution in state |3〉. Here an
average of ∼ 50 single shots of the obtained density profile integrated over
the horizontal axis is shown and fitted by a Gaussian function to obtain the
position in vertical direction. As can be seen on the inlay which depicts the
raw data as monitored on the CCD camera, the pancakes are not optically
resolved. The picture is adapted from [Nei13].

magnetic field and further present measurement results for both a degenerate Fermi
gas and a mBEC.

5.3.3. Realizing a high magnetic field stability

So far we have described the procedure which enables us to measure the density distri-
bution in the pancake potentials. To validate a transfer into a single pancake potential
we had to optimize the resolution and the stability of the rf-tomography. To success-
fully address the atoms in the individual pancakes long-term fluctuations of both the
magnetic offset field and the gradient have to be minimized. Since the current of the
gradient coils is stabilized to 10−3 precision and the field of the gradient only contribute
with ≈ 0.5G to the offset field, its stability of < 0.5mG is sufficient.
The long-term stability of the total magnetic offset field was measured to be only within
40mG at 800G. This corresponds to an rf-frequency stability of 6.3Hz/mG · 40mG =
252Hz for the |2〉 − |3〉 transition at 795G and thus had to be improved. The experi-
ment is controlled via digital and analog channels of an ADwin Pro II real-time control
system. Using analog-digital converters (ADC) and digital-analog converters (DAC)
an analog input signal can be processed in a digital PID-feedback loop and sent to the
analog output channels. The sampling rate of the converters is about 100kHz which
results in a 10µs updated analog channel, whereas the bandwidth of the digital chan-
nels is on the order of 1MHz leading to 1µs.
The resolution of the DAC output signal was increased by a factor of 6 in the following
steps: We increased the dynamic range of the voltage control input of the Feshbach
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power supply (Delta Elektronika SM 30−200) by a factor of 2 by using the full range of
the input from 0V to 10V. Besides that, the output signal of our DAC which regulates
the Feshbach current is divided by a factor 3 via a TTL controlled voltage divider.
The PID feedback loop then automatically increases the ADC input signal by the same
factor. In summary after applying these configurations, changing one bit of the 16bit
DAC with a dynamic range from −10V to 10V corresponds to a change in magnetic
field of 30mG1. This precision seems at the first glance to be insufficient to control the
offset field up to a precision of 1mG. Yet, the update rate of the DAC of about 10µs
is much faster than the response of the large inductance coils whose time constant is
about τ ≈ 1ms. Thus, by changing the DAC between two neighboring bits with its
update rate, one can achieve an even larger precision. This effect is similar to pulse
width modulation, where a fast change of two discrete voltages is low pass filtered for
creating voltage values in between.
Further we improved the resolution of the ADC input signal as can be seen in Figure
5.4. The current in the Feshbach coils is measured using a current transducer (Dan-
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Danfysik7Ultrastab7T44

-:-533

Rinput7=7y33k
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Figure 5.4.: Schematic implementation of the new ODA-Box. On the left side
the current of the Feshbach coils is determined by a current transducer
and translated into a voltage Uin. Further signal processing is applied in
the ODA-box to obtain a higher signal resolution as described in the text.
On the right side the signal is passed to the experimental control via a
analog-digital converter input channel.

fysik Ultrastab 886) which generates a secondary current proportional to the primary

1Resolution of DAC is given by 20V/216 = 0.3mV/bit divided by 3 and since we measured that 2.64V
correspond to 795G leads to 0.1mV·795G

2.64V = 30mG.
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current running through the coils but reduced by a factor of 1500. This secondary
current is then measured using two precision resistors of Rtotal = 60Ω. At 800G where
we typically perform experiments the primary current of about 100A is thus converted
to a measurement voltage2 of 4V. Directly converting this signal with the 16bit ADC
of our experimental control system ranging from −10V to +10V would result in a
resolution of 60mG/bit. In a setup where we emulated a measurement voltage (9V
monobloc battery) which we recorded both with the ADC and a precise 6.5 Digit Dig-
ital Multimeter (Agilent), we could determine a peak to peak drift of the measured
ratio corresponding to 40mG. As this resolution would translate to a frequency drift
of 250Hz in a tomography measurement we would not be able to resolve the atoms in
neighboring pancake traps separated by about 200Hz in their resonant frequency.
As we want to achieve a magnetic field stabilization of about 5mG, we have to increase
the resolution by a factor 10. Therefore we subtract from the input control voltage Uin

by means of an instrumentation amplifier (INA 129P,U) a voltage offset Uref , which we
can set according to the magnetic field. The RMS noise of the offset voltage Uref which
is generated by a precision voltage reference and set by a DAC, was measured to be
∼ 1.2 · 10−6 within 13h. The difference signal is then amplified by a factor 20 and send
to the ADC resulting in a factor of 20 increased resolution. The signal converting is im-
plemented in a so-called ’offset and differential amplifier’ box (ODA-box) produced by
the electronic workshop of the institute and only used when we perform a tomography
measurement. The noise of the high precision circuit of the box was measured which
results in a long term RMS noise of 1.9 · 10−6 within half a day. To assure that the
noise of the input voltage is not the dominant noise source, we compared it with the
noise of the current transducer. Since temperature drifts and drifts due to aging of the
device are negligible3, we focused on the short term current RMS noise which is around
2.4µA for currents in the range from DC to 10kHz. Due to the large inductance of the
coils4 an RMS current noise of 2.4µA below 100Hz translates into an RMS frequency
noise5 in the rf-transition of about 180Hz at an offset field of 795G which could be a
significant contribution of limiting the resolution of our tomography measurement.
The ODA-box was implemented in the experimental setup and tested. We monitored
the magnetic field stability at an offset field of 800G by measuring the measurement
voltage Umeas with the 6.5 Digit Digital Multimeter for 2 days as seen in Figure 5.5 a).
The data were binned in a histogram and fitted by a Gaussian distribution. The deter-
mined mean voltage is 3.639919V with a standard deviation of σ ≈ 15µV. This leads to
a long term RMS resolution of the magnetic field of 800G · 15µV/3.639919V = 3.3mG.
At the same time we performed an rf-spectroscopy using the |2〉 − |3〉 transition. Here
we segmented the rf-data which was taken over 2 days into 6 data sets of 8 hours each
and determined the resonance frequency for each data set by a Lorentzian fit. In Figure

2We use two Vishay 120Ω high precision resistors (S102C) rated up to 0.9W in parallel which mini-
mizes the heat input to each resistor to 0.13W at a primary current of 100A.

3< 2 · 10−6 per ◦C and < 1 · 10−6 per month
4Coil time constant τ ≈ 1ms corresponding to 1kHz.
56.3Hz/mG · 800G·2.4µA

67mmA = 180Hz
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Figure 5.5.: Test of the magnetic field stability with new ODA-box. In a)
the input voltage is monitored at 800G with a precise 6.5 Digit Digital
Multimeter over 2 days. The inset shows the measured data binned in a
histogram and fitted by a Gaussian function. From the fitted width the
RMS resolution was obtained see text. The second strongly suppressed
peak could be a measurement artifact. In b) the change of the |2〉 − |3〉
transition frequency vs time is depicted. From the linear drift we could
calculate the long-term magnetic field stability of 0.8mG/8h.

5.5 b) these frequencies are shown and linear fitted. From the slope of the linear drift,
we determined a magnetic field stability of 5mG over 2days. Within the duration of a
typical rf-tomography measurement of 8h, we thus achieved a stability of about 0.8mG,
which is sufficiently low to resolve the atoms in the individual pancake potentials.
During the stabilization measurement we further investigated, that the magnetic field
shifts with temperature of the Feshbach coils ∼ 2mG/K = 10Hz/K at 795G. This
means that the cooling water of the coils need to be stabilized to ±0.5K over 8h. More-
over, a shift after switching on the experiment was determined of about 100Hz−200Hz
corresponding to 15mG − 30mG, but so far we could not find any correlation to the
measured current. The thermalization of the high precision resistors which have a ther-
mal drift of 2ppm/K could significantly contribute to this, because we apply a power of
∼ 0.13W to each of the resistors for about 6s. This could be validated by characterizing
the heating of each when the experiment is switched on. Other reasons might be some
external parameter like expansion of the coils while heating up.
However, in total we achieve a long-term stability of the magnetic offset field of 1mG
after the experimental setup has reached a thermal steady state about one hour after
switching it on.
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5.3.4. Measurement results

In order to check if all the achieved improvements lead to a better resolution of the
density distribution in the pancake trap potentials and to verify, that we are able to
transfer particles in only one single pancake we performed the introduced rf-tomography
measurement. Figure 5.6 shows the resulting density distributions convoluted with the
width of the rf-pulse and the magnetic field uncertainty. In Figure 5.6 a) we transferred
a degenerate Fermi gas (DFG) into the pancake trap whereas we achieved to load a
molecular BEC (mBEC) into a single pancake potential in Figure 5.6 b). We obtained
the atom number at each rf-frequency by fitting a Gaussian distribution to the density
distribution of the particles transferred to the state |3〉 in each integrated raw data
image. Then we average over the whole stack of ∼ 50 images.
In both cases the distribution was fitted with a sum of three Gaussian distributions

a) b)

Figure 5.6.: Density distribution of a transferred degenerate Fermi gas and
a molecular BEC. The fit values and errors are obtained by fixing a
zero-background and the center frequency. In a) we see, that we transfer
the degenerate Fermi gas into three pancake potentials due to the Pauli
pressure. b) depicts the successful transfer of a molecular BEC into a single
pancake potential.

separated by the spacing of the pancakes ∆ν

N|3〉(ν) = bg+A1,3 · exp

(

−(ν − (νcenter ± ∆ν))2

2σ2

)

+A2 · exp

(

−(ν − νcenter)2

2σ2

)

. (5.5)

Further we can estimate the start parameter of the width of each peak σ by the width
of the rf-pulse used in the measurement and an overall background bg is allowed. Due
to the fact, that the integral of each Gaussian distribution is related to the atom
number, we can obtain the ratio between adjacent pancakes directly from the ratio of
the amplitudes A1, A2 and A3. In Table 5.1 the obtained fit results are summarized.
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From Figure 5.6 a) it becomes clear, that we load the degenerate Fermi gas into three

parameter degenerate Fermi gas molecular BEC
A1 974 ± 35 168 ± 40
A2 2260 ± 57 3716 ± 213
A3 1267 ± 42 176 ± 50
σ 134 ± 3 Hz 46 ± 2 Hz

νcenter 84.67733 MHz 81.96002 MHz
∆ν 546 ± 5 Hz 230 ± 10 Hz
bg 0 0

Table 5.1.: Results obtained by fitting a sum of three Gaussian distributions
to the data. The difference in the fixed center frequencies results from
the fact that we performed the two measurements either at 527G or 795G.
Besides that, we set the background bg to zero in both fits.

pancakes which is due to the larger expansion of the cloud because of the Pauli pressure.
We load ∼ 50% of the transferred atoms into the center pancake whereas the remaining
atoms are almost symmetrically distributed about the two adjacent pancake potentials.
The left pancake contains about 43% of the center pancake and the right one about
56%. The envelope Gaussian distribution which is more pronounced in Figure 5.6 a) is
due to the distribution of the cloud in the trapping potential of the ODT. In case of the
molecular BEC in Figure 5.6 b) we managed to transfer most of the atoms ∼ 95% into
a single pancake potential. The depicted relative atom number of transferred atoms
is underestimated in the rf-tomography because the strong gradient which we apply
during the measurement procedure spills atom from the pancake traps. The fraction of
atoms spilled from each potential is larger for the center pancake since it contains more
atoms. Thus, without the application of the gradient we should be able to load even
more atoms into each pancake potential and especially into the center pancake. We
determined a total loss of atoms of about 25% at a magnetic field of 795G by imaging
atoms in spin state |2〉 before and after applying the gradient. In the end of this chapter
we will show a different method to obtain the atom number in a single pancake which
agrees more with the predictions from Section 3.2.4.
The frequency spacing of the pancake potentials of the Fermi gas could be determined
from the fit to be about ∆νDF G = (546 ± 5)Hz which is about 14% off if we compare
it with the expected value. Since we perform the rf-tomography in case of a Fermi gas
at 527G this leads due to the Breit-Rabi formula [Bre31] to a different splitting of the
|2〉 − |3〉 transition of ∼ 15Hz/mG and hence to a spacing of 7.2mG/µm · 15Hz/mG ·
4.4µm = 475Hz in frequency. The determined spacing in frequency for the mBEC is
∆νmBEC = (230 ± 10)Hz which disagrees as well with the calculated value of 200Hz at
795G by 13%.
This deviation might be due to some systematic error of the expected value. Since
the splitting of the rf-transition is precisely calculated from the Breit-Rabi formula,
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5.4. Cooling in a single pancake

we will focus on the error of the gradient or the pancake spacing. The gradient was
estimated by the compensation of gravity which might be off by a factor of 5% due
to a drift in the offset value of the levitation current. The spacing was calculated
from the angle between the intersecting beams which should be quite stable due to the
aluminum casing but might be off by 10% since it was never precisely measured. If we
assume those as the dominant errors in the system the overall deviation of 13% can be
explained.
All in all, we could verify by the rf-tomography that we are able to load a molecular
BEC into one single pancake potential.

5.4. Cooling in a single pancake

Both the temperature and the number of atoms define if we prepare a quasi two dimen-
sional quantum system. We thus optimized the transfer procedure for being as cold
as possible after the transfer into a single pancake trap. Moreover, we implemented a
technique to precisely control the final number of particles in the trap. In Section 5.1
we already introduced the spilling technique and the procedure of evaporative cooling.
These methods allow us to adjust the number of particles in the ODT which are then
transferred to the pancake trap. As we will see in this section by further optimizing
these techniques we could lower the temperature in the pancake trap.
Figure 5.7 sums up the progress and shows the individual contributions of the different
steps. To observe the change in temperature during the several steps we measured
the expansion of the trapped cloud in-situ in both directions by imaging a mBEC in a
single pancake from above. From an increase of the width of the cloud obtained by a
fit of a Gaussian distribution we infer, that we have a higher temperature in the sample
and vice versa. In doing so, we compare the Gaussian width at equal trap depth thus
at the same atom number. The atom number was controlled either by the depth of
the optical dipole trap labeled as ’gradient off’ (gravity is still compensated) or by the
spilling technique ’gradient up’ in vertical direction by overcompensating gravity. As
seen from the connected lines the temperature of the atoms in the pancake trap de-
pends slightly on the number of transferred particles. For a magnetic field of 690G and
with spilling the atoms, a change of about 0.3µm per 1000 atoms could be determined
(black solid line, triangles). We will focus in the following discussion on a transferred
number of particles around 30000 − 39000 per spin state6. Further, we performed the
measurement for two magnetic offset fields 690G (black) and 730G (green). The differ-
ence between the lines of about (2 − 3)µm is mostly because of the decreased density
due to the larger molecules.
To give a rough estimate for the achieved temperature we can use the equipartition

theorem to approximate the contribution to the mean energy by 1
2
mdimerω

2
xσ

2
x ≈ 1

2
kBT ,

where ωx describes the trap frequency in the pancake trap which is about 2π · 19.2Hz.

6Atom number is corrected by factors 1.3 and 1.7 due to the absorption imaging see Section 4.5.3
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Figure 5.7.: Effect of quadratic evaporation ramps and spilling in ODT on the
cloud temperature in the pancake trap. The decrease in tempera-
ture was here inferred from a smaller Gaussian width σx of the cloud in
horizontal direction. ’Gradient off’ corresponds to the case where gravity
is compensated by the MOT gradient whereas ’gradient up/down’ labels
either a overcompensation or a gradient smaller than gravity.

As mentioned in Section 4.3.3 the atoms are cooled in the ODT by evaporative cool-
ing. So far we decreased the power of the ODT beams linearly and, as seen in Figure
5.7, we can clearly see that the spilling technique (green, black triangles) leads to a
∼ 25% colder sample. To improve the evaporative cooling in the ODT we change the
gain factor of the low power photodiode by switching to an operational amplifier with
an increased gain factor of 300. This reduces the beam noise and makes the evap-
oration in this low power regime even more stable. Further we replaced the linear
ramps by quadratic ramps with the same relative slope in the beginning and end of
the ramp. The orange 730G and blue 690G data shows a further decrease in temper-
ature of ∼ 27%/44% for no spilling at 730G/690G, ∼ 17% for spilling at 730G and
∼ 21% for spilling at 690G in the ODT. In the measurement ’gradient down’ labeled
by the diamonds we decreased the gradient so far, that it does not even compensate
gravity anymore. Thus, the atoms can leave the trap due to the gravitational gradient.
This leads to a ∼ 7% decrease of the cloud temperature in the pancake trap. Hence,
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5.4. Cooling in a single pancake

the implementation of the quadratic ramps was quite efficient, whereas the decrease in
temperature due to the spilling technique is only on the order of 9%. To summarize
we can estimate for the non-spilled data a temperature of 115nK at σx = 74µm and a
final temperature of 73nK at σx = 59µm.
To achieve further cooling during the transfer of the cloud, we lower the adiabatic com-
pression in the end of the evaporation to obtain a better phase space overlap between
the ODT and the single pancake potential. In doing so, we always verified loading into
one single pancake which could be achieved up to a compression depth of 2.1µK for
a small number of transferred particles of about 25000 per spin state. The tempera-
ture decrease obtained due to lowering the adiabatic compression depth from 3.6µK to
2.1µK was about 6%. However, a decreased compression depth limits us automatically
in the number of transferred atoms and thus we had to develop another technique which
is similarly effective in cooling and sets no limitation on the atom number in a single
pancake.
We had the idea to first transfer more particles into the single pancake trap by restoring
the compression depth to 3.6µK and increasing the final trap depth of the evaporation
process to 0.03µK. After transfer we remove the hottest particles by applying the
spilling technique directly in the pancake potential. This allows us to control the par-
ticle number directly in a single pancake and perform optimal cooling of the sample
in one step. In Figure 5.8 the procedure with optimized ramp times and trap levels

Amplitude

Time

0.8 G/cm 0.8 G/cm

36 G/cm

100 ms 100 ms

60 ms

PPC-trap

GradientMOT
80 ms 80 ms

445 nK 

250 nK 

445 nK 

2D regime3D regime

Figure 5.8.: Schematic description of the spilling process in the pancake trap.
We increase the MOT gradient (green) from gravitation compensation up
to 36G/cm while we decrease at the same time the power of the pancake
trap beams (red) to the desired trap depth. Here we lower the optical
potential down to 250nK which leads to about 50000 atoms in a single
pancake trap after increasing the power to the original value of 445nK.
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5. Preparation of a degenerate quasi-2d gas

is schematically depicted. With these settings we are now able to load about 100000
atoms per spin state at a trap depth of 295nK into a single pancake potential. By per-
forming the spilling method down to a number of particles of about 43000, we obtain
a decrease in temperature from 75nK down to 63nK. Thus we can now tune the atom
number by slightly decreasing and increasing the depth of the pancake potential at a
fixed gradient of about 36G/cm, and check at which number of particles we fulfill the
2d-ness condition as described in the next section.

5.5. Entering the quasi-2d regime

As introduced in the beginning of Chapter 3 the quasi-2d regime can be defined by
the condition kBT, µ,EF ≪ ~ωz. We obtained a large spacing between the individual
energy levels ~ωz by an extremely tight confinement in the vertical direction and in
addition implemented several methods to efficiently cool the trapped sample. We are
thus able to freeze out the vertical degree of freedom meaning that due to thermal
excitations on the order of kBT the trapped particles cannot populate excited energy
levels in the z-direction. Thus, only the lowest radial trap levels are still populated
because T is larger than zero. By loading more and more particles in the trap, higher
excited radial energy levels become stronger occupied and hence, at a certain critical
atom number even the first excited trap level in vertical direction will be populated. As
shown in Section 3.2.4 the fermionic character of the cloud allows us to find a maximum
atom number before populating the first excited vertical trap level just by counting the
number of available radial states. We calculated the number to be about 51200 particles
per spin state for our pancake trap potential. This number limits the quasi-2d regime
under ideal conditions at T = 0 and gives therefore only an upper limit.
However, inspired by the work of [Dyk10] we investigated how the expansion of a
weakly interacting Fermi gas changes when the system becomes quasi-2d. Therefore
we transfer a mBEC into a single pancake potential and ramp the magnetic offset field
up to 1400G where the unbound atoms now form a degenerate Fermi gas. Due to the
transfer into a single pancake potential we have to prepare the Fermi gas on the right
side of the 3d Feshbach resonance as mentioned earlier in Section 5.2. Since interactions
will influence the expansion of the cloud, we ramp to such high magnetic fields to be
as weakly interacting as possible.
Further we apply the spilling technique described in the last chapter to tune the number
of atoms and image the width of the cloud from the side by absorption imaging of one
spin state after a 3ms time-of-flight. In doing so, we are able to extract the Gaussian
width of the cloud as a measure of the expansion in vertical direction. By decreasing the
trap depth from 294nK to 223nK we can change the atom number between 100000 and
9700 and thus tune the level of the Fermi energy EF . Hence, we investigate the crossover
between populating as well energy levels above the first excited vertical energy level and
only occupying radial trap levels below the first vertical excited level. Since we probe
here an ensemble of particles, the vertical expansion of each particle only occupying
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5.5. Entering the quasi-2d regime

the radial trap levels below the first vertical excited level can be described by the
single-particle ground state wave function of the quantum harmonic oscillator (QHO)
in vertical direction. Thus, in this regime the vertical cloud width is expected to stay
constant in a purely ballistic expansion since the ensemble expands with the momentum
given by the curvature of the single-particle wave functions. This measurement allows
us to determine precisely the number of atoms we are allowed to load into a single
pancake trap to be in the quasi-2d regime. We verified loading into a single pancake
by performing an rf-tomography right after the measurement.

In Figure 5.9 the measured data is depicted and a clear kink in the cloud width
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Figure 5.9.: Transition between the quasi-2d regime and the 3d regime. By
tuning the atom number and monitoring the vertical cloud extension one
can determine the atom number where the first excited vertical trap level
becomes populated. The gray dashed line marks the estimated critical
atom number N from Section 3.2.4. The regime of almost constant cloud
width corresponds to the quasi-2d regime and the blue dashed line is the
calculated width of the density distribution of the vertical harmonic oscil-
lator single particle ground state.

around 60000 trapped particles7 is visible, referring to the regime of EF ≤ ~ωz. The

7atom number corrected by factor 1.7 due to imaging
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5. Preparation of a degenerate quasi-2d gas

gray dashed line corresponds to the calculated atom number of 51200. Thus, we are
able to observe the transition from the 3d regime to the quasi-2d regime by decreasing
the number of trapped atoms. We further see, that by loading up to about 55000 atoms
into a single pancake trap we are able to prepare a quasi-2d system.
For larger atom number, if the threshold of populating higher levels is crossed, the
vertical momentum of the expanding particle ensemble is defined by both the single-
particle ground state wave function and the wave function of the first excited state. This
leads to the linear increase of the cloud width, since more and more atoms populate
radial levels above the first excited vertical level and hence exhibit larger momenta
due to the steeper curvature of the first excited vertical single-particle wave function.
Thus by increasing the atom number, the ratio of atoms with larger vertical momentum
grows which is measured as the increase of the cloud width.
We see further that the error of the atom number detection grows when we leave less
and less atoms in the trap. This can be explained by the signal to noise ratio which
gets worse for less atoms affecting the Gaussian fit. Nevertheless, for decreasing atom
number the Gaussian width of the cloud in vertical direction tends to an almost constant
value. We estimated the expected cloud width σz in the 2d regime by calculating the
width of the density distribution of the single particle ground state in a quantum
harmonic oscillator after a ballistic expansion of t = 3ms. The time evolution of the
QHO-ground state wave function is thereby given by a free dispersion of a Gaussian
wave packet whose width evolves in time according to

σz =

√

~

2mLi

(

1

ωz

+ ωzt2
)

. (5.6)

A more detailed derivation of this equation and connection to the Gaussian width σz is
given in the Appendix A.1. This leads to an expected Gaussian width of σz = 42.2µm
which is represented by the blue dashed line in the plot and confirms that we are only
populating the vertical ground state in this regime.
In this chapter we presented the realization of a quantum degenerate system in a quasi-
2d environment under controlled conditions. The next chapter contains a summary of
the first measurement results concerning the interesting physical properties of this
sample.
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quantum degenerate sample

In this chapter we will present the first measurement results we obtained for a repul-
sively interacting quasi-2d quantum gas. Therefore we transferred a molecular BEC
into a single pancake potential and decreased the Fermi energy to enter the quasi-2d
regime. Since we perform in this thesis mainly time-of-flight measurements we want to
give a short introduction to this common measurement technique in Section 6.1. Then
we investigate the density distribution of the expanding cloud after short time-of-flight
as described in Section 6.2 and Section 6.3. In Section 6.4 we focus first on the mat-
ter wave focusing technique we use to image the in-situ momentum distribution after
a long time-of-flight of the sample. We close the chapter by discussing the obtained
measurement results.

6.1. Time-of-flight measurements

In the following measurements we investigate the density distribution of a repulsively
interacting quantum gas after releasing the sample from the highly anisotropic, pancake
shaped, optical dipole trap and let it expand in space for a certain time-of-flight. Then
we image the sample from above by absorption imaging as described in Section 4.5.
Since we prepare a repulsive interacting sample the interactions in the cloud lead to a
hydrodynamic expansion. We minimize these interactions by suddenly switching off the
optical potential. Thus the particles expand instantaneously and the transformation
of the interaction energy into the kinetic energy is faster achieved which minimizes the
effect of interactions during the release. Furthermore is the interaction energy at 692G
where we perform the measurements presented in this thesis relatively small compared
to other fields of repulsive interactions, as can be seen in Figure 2.6. Hence, we achieve
an almost ballistic expansion and a single particle of the cloud at position x0 and ve-
locity v0 will be placed at the position x(t) = v0t+ x0 after a time-of-flight of t.
We can define two different regimes: one regime of short time-of-flight where the initial
position of the particles in the cloud x0 and the remaining interactions still influence
the density distribution after tof.
In the regime of long time-of-flight where v0t >> x0 the distribution after tof is domi-
nated by the initial momentum distribution and the expansion of the gas is almost pure
ballistic. Further the saddle point of the magnetic field provided by the Feshbach coils
will affect the expansion of the cloud. Since v0t >> x0 the particle position x(t) will
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reflect the in-situ velocity of the particle v0 and hence its momentum p = mv0. Approx-
imating ∆x0 as the in-situ cloud extension of ∆x = 150µm and ∆vthermal = 0.009m/s
as the initial thermal velocity at a temperature T ≈ 60nK leads to a time-of-flight (tof)
of t > 17ms to enter this regime. Since we can normally achieve a maximal tof of about
t = (8 − 10)ms1 in the experiment we are on the edge of this regime. As we will see in
Section 6.4 due to the influence of the magnetic field saddle we can directly map the
in-situ velocity distribution onto the imaged density distribution in this regime after a
shorter time-of-flight.

6.2. Observation of density fluctuations

We imaged the trapped molecular Bose gas from above at a magnetic offset field of
692G after short time-of-flight. In this field region the 2d molecular binding energy
given by EB,2D is much larger than the Fermi energy EF ≪ ~ωz as depicted in Figure
3.2. Thus the transferred particles are deeply bound into molecules. Figure 6.1 a)
shows an in-situ image of the cloud of molecules in a single pancake potential. By
releasing the atoms from the trap and imaging them after a time-of-flight of 4ms from
above we observe fluctuations in the density distribution of the cloud as seen in Figure
6.1 b). To confirm the random nature of the density fluctuations we average 35 images
and the density fluctuations vanish in the resulting image which is depicted in Figure
6.1 c).
Besides that, we investigated a fragmentation into a thermal and a ’quasi’-condensed
part. We call the second part ’quasi’-condensed, because it is significantly different
from the thermal part and due to the 2d-ness of the system it can not be a real con-
densate since we are not cold enough to establish true long range order. To quantify
this separation we fitted the density distribution after integrating it along one direc-
tion, with a 1d bimodal function consisting of a thermal Gaussian part (red dashed
line) and a Thomas-Fermi parabola (blue) describing the ’quasi’-condensed part. To
improve the fits for the individual shots, we used the result from a 1d bimodal fit of the
averaged data as start parameters. As can be seen in Figure 6.1 d) the Thomas-Fermi
approximation (blue) describes the data rather good and a significant deviation from
the thermal part fitted by the red Gaussian distribution can be observed. In a next data
processing step, we isolated the density fluctuations from the mean density distribution
by fitting the single raw data image in Figure 6.1 b) with a 2d bimodal distribution. We
subtracted the obtained fit function from each single image which results in the image
seen in Figure 6.1 e). Moreover, we extracted the Thomas-Fermi radius from the 2d
bimodal fit, which can be related here to the extension of the ’quasi’-condensed part.
The size of the Thomas-Fermi radius is about 20 pixel which corresponds to 65µm with
our imaging setup and plotted as the black dashed circle in both the single raw data
image b) and image e) depicting the isolated density fluctuations.

1By releasing the atoms slowly a larger tof can be achieved, but interaction effects are increased as
well.
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From that we can observe that the density fluctuations only appear in the ’quasi’-
condensed part. Due to the two facts that the density fluctuations can only be ob-
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Figure 6.1.: Density fluctuations in the ’quasi’-condensed part of the cloud.
In a) we present an in-situ image of a transferred mBEC in the ’quasi’-
2d regime the x- and y-axis are given in pixel (1pix = 3.258µm) and the
color corresponds to the optical density. After a certain time-of-flight (tof)
we observe density fluctuations in a ’quasi’-condensed part which was de-
termined by a 1d bimodal fit to the data as seen in d). c) shows the
randomness of the density fluctuations since they vanish when averaged
over many images. We isolated the density fluctuations as depicted in e)
by subtracting a 2d bimodal fit from the image seen in b). The black
dashed circle limits the ’quasi’-condensed part since its radius corresponds
to the Thomas-Fermi radius extracted from the 2d bimodal fit.

served in a ’quasi’-condensed part and that they need a certain time-of-flight to emerge
in the cloud we attribute them to an self-interference phenomenon. Since interference
is strongly connected to a fixed phase relation between two or more interfering objects
and since we only see random interference pattern, we think, that a from shot to shot
varying local phase coherence θ(r) in the in-situ density distribution has to exist. Due
to the interference of patches of constant phase the maxima and minima in the density
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distribution are then formed.
Since in quantum mechanics, the velocity field at non-zero density is given by v =
~

m
∇θ(r) these local phases θ(r) introduce a velocity to the particles in the density dis-

tribution. After really short time-of-flight the repulsive interaction is still dominant in
the cloud acting against the velocity from the phase gradient and the density distribu-
tion is not perturbed as seen in the in-situ image in Figure 6.1 a). When the interaction
decreases during longer time-of-flight the introduced velocity influences the motion of
the molecules more and more leading to fluctuations in the imaged density.
The condensate density of a true BEC is characterized by a true long range order in
3d and might be realized in a finite 2d system at very low temperatures as discussed
in Chapter 3. However, such a condensed system would be described by only one
global phase θ, thus a true long range phase coherence, and hence one would observe
no interference after time-of-flight. Further would the velocity field v be zero since θ is
independent of r. On the other hand, in a purely thermal gas the length scale of local
phase coherence is exponentially suppressed which results in a strong decoherence in
the sample.
Nevertheless, in two dimensional repulsively interacting systems the phase transition
to a superfluid is described by the Berezinskii-Kosterlitz-Thouless (BKT) theory which
is characterized by an emergence of a topological order due to pairing of vortices with
opposite circulation. This topological order leads to an algebraic decay of the order
parameter ψ in space which corresponds here to the macroscopic wave function of a
Bose gas. Since the density fluctuations are suppressed on a length scale r > ξ, λ the re-
maining freedom in the order parameter is the phase which decays algebraically leading
to a local phase coherence. The coherence length depends on the phase space density
as seen in Equation 3.58, thus mainly on the temperature of the sample. For decreasing
temperature T below TBKT the patches of local phase coherence become larger whereas
they vanish for T > TBKT since the proliferation of free vortices as a source of phase
fluctuations destroys the local phase coherence. Due to that, we interpret the density
fluctuations shown in Figure 6.1 as an indication that we entered the BKT-phase.

6.3. Analysis of density fluctuations

We introduced in Section 3.2.1 the first-order correlation function g1(r) = 〈ψ∗(r)ψ(0)〉
as a measure for long range order in a quantum system thus the phase coherence. Since
the first-order correlation function g1(r) can be connected to the two-point density cor-
relation function g2(r1, r2) [CCT11], we analyzed the fluctuations by a density-density
correlation function to get access to the first-order correlation function.
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6.3.1. Density-density correlation function

The definition of the density-density correlation function we use in our analysis can be
found in [Wen13]

G(δr) =
1

#δr

∑

r

δn(r) · δn(r + δr)

n̄(r) · n̄(r + δr)
. (6.1)

The summation is done for a fixed δr over all positions r inside the quasi-condensed
part where the corresponding position r + δr is inside the quasi-condensate as well. In
order to motivate and explain Equation 6.1, Figure 6.2 depicts a simplified sketch of
the different parts of G(δr) applied to a 1d density distribution. Figure 6.2 a) shows
the fluctuations on the density distribution (red) and the average density2 n̄(r) (blue).
In Figure 6.2 b) the average density is subtracted from the total density to obtain the
density fluctuation δn(r) = n(r) − n̄(r). To further weight the fluctuations δn(r) with
the average density n̄(r), we divide δn(r) at each point by the average density n̄(r)
at this point which can be seen in Figure 6.2 c). Now to calculate the density-density

a) b) c)

δn(r)

δn(r+δr)

δn(r)
n(r)

δn(r+δr)
n(r+δr)

Figure 6.2.: Sketch of the density-density correlation function. In a) the 1d
mean density n̄(r) is schematically depicted in blue while the density fluc-
tuations are shown in red. By subtracting n̄(r) the fluctuations become
isolated as seen in b). By weighting the fluctuations δr with the corre-
sponding mean density n̄(r) at each point one obtains a sort of normalized
fluctuation c) which will contribute in equal parts to the correlation func-
tion.

correlations G(δr) for a fixed distance δr, we multiply the weighted fluctuations at
positions r and r + δr. Since we have a non-homogeneous system and only want to
have the correlation of the quasi-condensate part, we perform the summation over all
positions r inside the quasi-condensate part where the correlated position r + δr is
inside the quasi-condensate part as well3. Hence to have a normalized G(δr) one has to
divide by the number of terms #δr in the summation and thus one obtains for larger δr
less statistics. By applying this procedure to the single absorption images we achieve

2We determine the average density distribution by fitting the 2d image with a 2d bimodal distribution.
3We use a radius rcorr = 8pix and thus 0 < δr ≤ 2rcorr.
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for each image an axial symmetric two dimensional image4 representing G(δr). We
average these images over the whole stack of absorption images to increase the signal
of the correlation function. In addition we radially average the resulting G(δr) to get
a better access to the contrast.
Furthermore, the group of L. Mathey in Hamburg is currently investigating the two-
point correlation function of two-dimensional bosonic systems from a theoretically point
of view. They calculated the g2(r1, r2; t)5 numerically for both the quasi-condensed
phase T < TBKT and the high temperature phase T > TBKT in real space and deter-
mined an analytical solution for both regimes in momentum space [Sin13]. In Figure

Figure 6.3.: Theoretical prediction of the radial averaged g2(r; t) for T < TBKT.
Here a homogeneous, weakly interacting bosonic 6Li dimer system was
assumed after a purely ballistic expansion of t = 4ms. The parameter τ
is proportional to the temperature and a describes a cutoff parameter for
finite systems given by a = λ2/2πξ, where λ is the thermal de Broglie
wavelength and ξ is the healing length related to the interaction. The plot
is obtained from L. Mathey by private communications.

6.3 their prediction for the radial average of the g2(r, t) in the quasi-condensed phase
for two different temperatures labeled by the parameter τ is depicted. Here, they
performed the calculation for a bosonic system of 6Li-dimers after a time-of-flight of
t = 4ms. The parameter τ is closely related to the critical exponent of the algebraic
decaying first order correlation function g1(r) and runs from 0 to 1 as the temperature
is increased from 0 to TBKT . They found out, that for increasing τ , g2(r, t) increases

4The two diagonal adjacent quadrants contain the same information.
5For homogeneous system g2(r1, r2; t) is given by g2(r; t) = 〈n̂(r,t)n̂(0,t)〉

n2

2d

− δ(r)
n2d

where the first term

describes the density-density correlation and the second term corresponds to the shot-noise that
originates from the quantum nature of the bosonic operators.
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6. Measurements in a quasi-2d quantum degenerate sample

for small distances (here x < 10µm). Further they observed an oscillatory behavior
which depends on the critical exponent τ . This oscillatory behavior vanishes in their
calculations for a sample at T > TBKT .

We observed an indication of this oscillatory behavior6 in our experiment as seen

Figure 6.4.: Radially averaged G(δr) for a mBEC after 4ms tof at 692G. The
upper plot depicts the obtained data for a non-heated sample at about
60nK (blue) and the data of a heated sample (red) at about 120nK. The
increased G(δr) of a heated sample at small distances δr can be seen. In the
lower plot we rescaled the data to better visualize the enhanced oscillatory
behavior of the non-heated data.

in Figure 6.4. The blue data represents the radial average of the G(δr) correlation
function for the transferred molecular BEC at 692G after 4ms time-of-flight presented
in the previous section. Furthermore, we observed a significantly increased correlation
function for small distances δr < 4pix · 3.258µm/pix ≈ 13µm which is larger than the
theoretical prediction. The red data corresponds to an identically prepared system but
here we heated the cloud by shaking the optical pancake potential for a certain time.
Therefore we modulate the diffraction efficiency of the AOM with a sine function. The
amount of heating is then set by the length of modulation (here about 600ms) and the

6The oscillation occurs in our measurement around 0 whereas the theoretical calculation oscillates
around 1 due to the slightly different definition of the numerator in the correlation function.
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6.4. Imaging the momentum distribution

amplitude of the sine. In the presented data we heated the cloud from about (60±10)nK
up to (120 ± 10)nK and observe a decrease in the oscillation. Further the increase of
the G(δr) for small distances of the heated sample is in qualitative agreement with
the theoretical predictions. From theory we know that the oscillatory behavior of the
density-density correlation is an indicator for the BKT phase and closely related to the
critical exponent τ .
Unfortunately, we observed a strong correlation between the measured oscillation in the
G(δr) and the detuning of our imaging laser as depicted in Figure 6.5. Here we imaged
the quasi two dimensional bosonic system at the same magnetic field and time-of-flight
as above. Also, we performed this measurement before implementing the current mod-
ulation of the imaging laser discussed in Section 4.5.3. For the orange data we detuned
the imaging light to the effective resonance of the particles. This means, that we de-
tuned the imaging light with a pulse duration of 8µs to the point where we detect the
maximum number of atoms. We could observe oscillations with a similar amplitude
as for the non-heated data in Figure 6.4. By detuning our imaging laser with respect
to the effective resonance by ∆ = ±Γ, where Γ corresponds to the 5.87MHz natural
linewidth of the D2-transition in 6Li, we observed an enhanced amplitude and a phase
shift of the oscillation as seen in the blue and red data in Figure 6.5.
Due to the correlation between the oscillation of the density-density correlation func-

tion and the detuning of the imaging laser, it is rather complicated to quantitatively
interpret the oscillatory behavior or to extract the critical exponent τ . Furthermore,
as seen in Figure 6.4, we obtain a very low signal from this measurement approach,
although we have good statistics due to radially averaging the data. Comparing the
data to the theoretical predictions of the group of L. Mathey is problematic as well,
because they assume in their calculations a weakly interacting homogeneous sample
and a purely ballistic expansion. Therefore we choose a correlation radius rcorr of 8pix
to be mainly in the center of the quasi-coherent part where the density is relatively
homogeneous. Nevertheless our g̃ is about 0.6 at 692G and thus we are in a regime of
intermediate interactions which makes our expansion not purely ballistic. Because of
all these difficulties, we investigated a different and more elegant method to quantify
the quasi-long-range order in our bosonic quasi-2d quantum gas.

6.4. Imaging the momentum distribution

Another possibility to get access to the first order correlation function g1(r) can be
obtained via the momentum distribution of the cloud. As shown in Equation 3.10,
g1(r) for an ideal gas can be connected to the Fourier transformed of the momentum
distribution nk = n(k).
In the beginning of this chapter we already motivated the possibility to map the ini-
tial momentum distribution on the imaged density distribution for a long time-of-flight
measurement. We estimated this long tof-regime to be at around tof > 17ms which
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6. Measurements in a quasi-2d quantum degenerate sample

Figure 6.5.: Correlation between the G(δr) oscillation and the detuning of the
imaging light. By detuning our imaging laser by ∆ = ±Γ with respect
to the effective resonance, we observed an increase in the amplitude and
an additional phase shift of the oscillations.

is not accessible in a free space time-of-flight due to the enhanced expansion in the
vertical direction.
However, we developed a technique to map the in-situ momentum distribution on the
density distribution of our expanding particles which we call matter wave focusing tech-
nique.
During the process of development we were inspired by the optical diffraction experi-
ment of a plane wave which is diffracted by an arbitrary aperture. In the far-field limit
the obtained intensity distribution corresponds to the squared absolute value of the
Fourier transformation of the aperture. This mapping is similar to what we want to
achieve and so we looked how the problem of accessing the far-field plane is solved in
optics.
To reduce the distance between the aperture and the plane of the far-field image, one
adds a thin lens after the aperture. As we know from Fourier optics a lens can be
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6.4. Imaging the momentum distribution

described by a phase factor ∼ exp(iπr2) due to the curvature of the lens. Hence, an
incoming plane wave ψ(z, t) = A0 exp(ikzz) adds up an additional phase φlens ∼ iπr2

when passing through the lens. This modifies its wave front to be parabolic and the
wave converges towards a point in the focal plane of the lens at distance f . The inten-
sity distribution in the back focal plane of the lens is then given by the square of the
absolute value of the Fourier transform of the wave in the input plane plus an additional
phase factor, which vanishes if the distance between aperture and lens matches with f
as well. Thus, the far-field image can be imaged after a distance of 2f [Sal91].

6.4.1. Matter wave focusing technique

The imprinting of the ’phase factor’ is realized by the harmonic magnetic confinement
Vmag(r) = 1

2
mω2

r,magr
2 in radial direction due to the saddle point of the Feshbach field

which affects the particle expansion predominantly after long time-of-flight. We assume
the cloud expansion as ballistic in this direction since most of the interaction energy
will be already released in the vertical direction. Thus, we can treat the motion of each
expanding particle independently.
In this single particle picture each released molecule will perform a harmonic oscillation
in the magnetic potential dependent on its initial momentum p(t = 0) which can be
described by r(t) = A sin(ωr,magt) and ṙ(t) = Aωr,mag cos(ωr,magt) respectively. With
an oscillation period of T = 2π/ωr,mag one can easily see, that if t = T/4 one obtains
r(T/4) = A = p(0)/mωr,mag.

In Figure 6.6 the propagation of two molecules in the phase-space of the harmonic
oscillator is depicted. The particles will evolve in time on the depicted circle dependent
on its initial position r(0) and momentum p(0). From the equation of motion we al-
ready know the oscillation period of about T = 2π/ωr,mag. Thus, a particle at r(0) = 0
and finite momentum p(0) will be mapped after an evolution time of t = T/4 in the
phase-space to r(T/4) = p(0) and p(T/4) = 0. The orange trajectory corresponds to a
particle with finite initial position r(0) and finite initial momentum p(0) as most of the
particles in the cloud. As can be seen this particle will evolve up to the second quad-
rant of the coordinate system leading to the fact that at t = T/4 its initial momentum
p(0) is projected on r(T/4). Since we investigate an ensemble of expanding particles
in the cloud with different momenta p(0) and different r(0) we will project at t = T/4
the whole in-situ momentum distribution n(p, 0) on the density distribution n(r, T/4).
As can be seen further in the blue trajectory of Figure 6.6 particles with low initial
momentum will be detected at lower radii in the density distribution whereas particles
with larger momentum will be detected at larger radii.
The error of the projection technique is larger for particles with larger initial position
r(0) as can be estimated from the steeper curvature of the trajectory. The spread of
the initial position ∆r(0) is given by the radial confinement of our pancake potential
of about 200µm.
Since our horizontal magnetic trap frequency at 692G is about νr,mag = 10Hz, we obtain
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r

p
mωr, mag

p(0)p'(0)

r(T/4)

r'(T/4)

Figure 6.6.: Phase space of the harmonic oscillator. Here the trajectory of a
single molecule with r(0) 6= 0 and large initial momentum p(0) (orange)
evolving in the harmonic magnetic confinement provided by the saddle
point in radial direction is depicted. The blue circle corresponds to the
trajectory of a molecule with low initial momentum p′(0). At t = T/4 the
initial momentum distribution of an ensemble of expanding molecules is
projected on the density distribution and hence can be imaged.

T/4 = 25ms. Thus, after an expansion time of tof ≈ 25ms in the magnetic confinement
we are able to image the in-situ momentum distribution of the horizontal plane.
An additional problem occurs due to the expansion of the cloud in the vertical direction.
Since this is the direction of the tightest optical confinement and the axis of magnetic
anti-confinement, the cloud expansion is much faster than in the radial direction. This
leads to the fact that in the absorption image, although we are integrating the signal
along the z-axis, after a time-of-flight of about (8 − 10)ms the atoms are out of the
depth of focus. To solve this problem we apply the same technique as in radial direction
and stop the vertical expansion by switching on the ODT at a trap depth of ∼ 350nK
for about 1.2ms shortly after releasing the molecules from the pancake trap. This leads
to a slight modification of the radial trap frequency of the effective potential because
νweak

ODT , νinterm.
ODT,painted and νr,mag are on the same order, which results in νeff = 16Hz. Since

the ODT pulse duration is only about 1.2ms, thus 0.08 ·T/4, the effective time-of-flight
is given by tof = 1.2ms + 0.92 · 25ms = 24.2ms at a magnetic field of 692G.
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6.4. Imaging the momentum distribution

6.4.2. Momentum distribution of a quasi-2d quantum system

By applying the matter wave focusing technique to a quasi 2d molecular Bose gas at
692G we successfully imaged the in-situ momentum distribution of the molecules in
radial direction as seen in Figure 6.7 a). Here a single image after a time-of-flight of
23ms is shown. The scale of the image is the same as the imaged density distribution in
Figure 6.1 for a tof of 4ms. The density distribution is much more dense compared with
the density distribution in Figure 6.1 which leads to a higher optical depth (color scale)
reflecting the enhanced occupation of low momentum states. Thus similar to the short
tof density distribution we observe evidences of a quasi-condensed part. Figure 6.7 c)
shows the mean momentum distribution of 20 single images which have been all shifted
to the same center. In order to quantitatively analyze the momentum distribution we
perform a radial average of the raw data images. Figure 6.7 e) presents the resulting
distribution of the averaged data in a semi-logarithmic representation. The significant
increase of the distribution for low r2 and thus low momenta is due to the enhanced
population of these states. For r2 > 1000µm2 the distribution evolves linearly up to
r2 ∼ 7000µm2. We related this linear range to the thermal or non-condensed part and
fitted it with a Maxwell-Boltzmann distribution

n(r) = A0 · exp

(

−mdimerω
2
magr

2

2kBT

)

, (6.2)

with the free fit parameter: amplitude A0 and temperature T . In doing so, we obtain
the temperature of the thermal part from the wing of the momentum distribution.
Assuming that both parts of the cloud are in thermal equilibrium we achieve a good
estimate of the temperature of the prepared sample. During the fit procedure we op-
timized the lower (r2

lb = 1600µm2) and upper bound (r2
ub = 9400µm2) of the fit range

in a way that the linear part of the momentum distribution is described best. By fit-
ting each single image and average the obtained temperature over the whole stack we
determined a cloud temperature of T = (68 ± 5)nK. In Figure 6.7 e) the averaged fit
to the averaged data is presented (red line).

Further we heated the sample by the same procedure as described in Section 6.3.1.
By radial averaging the obtained images and fitting the linear part of the radial aver-
aged momentum distribution as described above, we determined the temperature of the
sample for each heating step. Thus we are able to image the momentum distribution
by the matter wave focusing technique at different temperatures T . We observed a
significant decrease in the occupation of low momentum states and even a vanishing
quasi-condensate part for T > (127 ± 9)nK.
Figure 6.7 b) shows a single image of the measured momentum distribution at T =
(134 ± 9)nK. The depicted image is dominated by the shot noise of the imaging and
the momentum distribution can only be descried by averaging over several images as
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Figure 6.7.: In-situ momentum distribution imaged by the matter wave focus-
ing technique. In the first row the single in-situ momentum distributions
of the non-heated a) and heated b) sample are presented. The scale is in
pixel and the color represents the optical density. In c) and d) the mean
images over the whole data stack is shown. In c) the enhanced occupation
of low momentum states is clearly visible whereas in the heated sample
d) the whole momentum distribution is visible due to the absence of the
enhanced population of low momenta. In e) and f) we perform radial
averages of the 2d images and plotted the momentum distribution in a
semi-logarithmic representation. The linear wing of the distribution was
fitted by a Maxwell-Boltzmann distribution to determine the temperature.
In e) the deviation from the Maxwell-Boltzmann fit for low momenta can
be seen whereas in f) almost the whole data is linear.
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6.4. Imaging the momentum distribution

shown in Figure 6.7 d). Due to the absence of an enhanced occupation of low momen-
tum states the thermal momentum distribution becomes visible in the averaged raw
data images. By comparing both the radial averaged data in Figure 6.7 e) and f) we
observe on the one hand, that the low momentum occupation for the heated sample
has vanished and on the other hand that the whole momentum distribution can be well
described by a Maxwell-Boltzmann distribution. The less steep slope of the fit function
reflects the increased temperature of the sample due to the heating process.
The temperature fits to the radially averaged data in the semi-logarithmic represen-
tation for each heating step can be found in the Appendix A.2. Figure 6.8 depicts
the averaged temperatures determined for different heating steps from the Maxwell-
Boltzmann fit to each single momentum distribution. We observed an almost linear
increase in temperature which shows the effectiveness of the applied heating technique.
Thus we can prepare the molecules in the quasi-2d regime at a temperature of (68±5)nK
and are able to heat the cloud up to a temperature of about 130nK and beyond depen-
dent on the heating.
In order to determine the critical temperature Tc at which the quasi-condensate part

Figure 6.8.: Temperature increase of the heated sample. We heat the sample by
modulating the trap depth of the single pancake trap by a sine function
whose amplitude is given on the x-axis. The temperature obtained from
a Maxwell-Boltzmann fit to the wing of the imaged in-situ momentum
distribution was averaged over the whole data stack for each heating step.
The almost linear increase was fitted by: T(AHeat) = 528.76nK/V · AHeat +
64.93nK.

vanishes, we extract for each temperature the quasi-condensate fraction Nc/N from the
momentum distribution. To calculate the atom number of the quasi-condensate Nc we
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6. Measurements in a quasi-2d quantum degenerate sample

subtracted the Maxwell-Boltzmann fit from the radial averaged momentum distribu-
tion of each single image. Then we numerically integrated the resultant distribution
along r up to a cutoff estimated by the lower bound of the Maxwell-Boltzmann fit. The
atom number of the thermal part was similarly obtained by numerically integrating the
Maxwell-Boltzmann fit. Due to the radial averaging the quasi-condensate fraction is
then given by

Nc

N
=

∑lb
i=1 Ni,cr

2
i

∑

i Ni,thr2
i +

∑lb
i=1 Ni,cr2

i

. (6.3)

We further average the quasi-condensate fractions for each temperature T and assume
that the systematical error due to the individual temperature fit is smaller than the
statistical error. The result is presented in Figure 6.9 and a significant decrease of the
quasi-condensate fraction for higher temperatures is visible.
From the BKT-theory we expect a jump in the superfluid density by crossing the
critical temperature TBKT from ns = 4/λ2 to zero due to the proliferation of free
vortices. We observed a continuous decrease of Nc/N down to a finite value of about
Nc/N = 0.009 ± 0.008 at a critical temperature of Tc = (127 ± 9)nK from Figure 6.8.
The deviation from zero of about 0.007 can be explained by the small systematic error
of the temperature fit as seen in the whole data set depicted in the Appendix A.2. This
could be improved by fitting first the averaged radial averaged momentum distribution
to obtain start parameter for the fit to the single image data.
To relate this temperature to the Fermi temperature of the trapped sample at 692G
we assume that the superfluid will be formed first at the point of highest density thus
in the center of the trap. The Fermi energy in the trap center is proportional to the
in-situ peak density EF,local(T ) ∝ n0(T ) in two dimensions 7. Thus, the Fermi energy
at 692G can be written as EF,692(T ) = c ·n0,692(T ). The proportionality constant c can
be determined from the 2d-3d-transition measurement described in Section 5.5.
Since we always transfer about 50000 particles in the single pancake potential we are
in the regime EF ≈ ~ωz at 1400G. Due to the fact that we measured the in-situ peak
density only up to a field of 900G we will assume in this calculation that EF,900 ≈
EF,1400 ≈ ~ωz. Thus we can write the proportionality constant as c = ~ωz

n0,900

which leads
to the following equation for the local Fermi energy at 692G

EF,692(T ) = ~ωz
n0,692(T )

n0,900

. (6.4)

We obtained the corresponding temperature dependent in-situ peak densities n0,692(T )
depicted in green in Figure 6.10 from the single shot in-situ density distribution at
different temperatures T . With ωz = 2π ·5972Hz the local Fermi temperature for 692G

7From LDA we know EF (r) = EF − V (r) with EF (r) = (~k(r))2

2m
. The 2d density follows from the 2d

analogue of the Fermi sphere, the Fermi circle n(r) = π(~k(r))2

(2π~)2 . Substituting EF (r) and k(r) leads

to n(r) = 2m
4π~2 (EF − V (r)) and since V (r) = 0 in the trap center we obtain EF ∝ n0, TF ∝ n0.
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6.4. Imaging the momentum distribution

Figure 6.9.: Quasi-condensate fraction of the heated sample. We determined the
quasi-condensate fraction Nc/N from each radially averaged momentum
distribution at different temperatures as described in the text. The larger
error for smaller heating is due to the enhanced shot-to-shot fluctuations of
the low momentum occupation due to the radial averaging. The horizontal
dashed line (gray) labels the offset of the distribution which can be related
to the systematical error of the temperature fit. The vertical dashed line
(black) marks the position we used to determine Tc.

can be calculated due to

TF (T ) = ωz
~

kB

n0,692(T )

0.11
, (6.5)

for each cloud temperature T . The obtained values of T/TF are plotted in blue in
Figure 6.10 as well and one can see a clear linear increase in the dimensionless quantity.
Since we only obtained in-situ densities up to a temperature of about 117nK we linear
interpolated T/TF to the regime of our critical temperature Tc. In doing so, we obtained
the following linear fit function

T

TF

= −0.18455 + 0.00389nK−1 · T. (6.6)

which allows us now to compare the critical temperature Tc = (127 ± 9)nK relative to
the local Fermi temperature. This leads to

Tc

TF

=
(127 ± 9)nK

438nK
= 0.29 (3) (1) (stat.)1 (sys.)2. (6.7)
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Figure 6.10.: Temperature dependence of the in-situ peak density and calcu-
lated T/TF for different temperatures of the cloud. Green depicts
the measured total in-situ peak density n0,692 as a function of temper-
ature. The errors corresponds to a reading error of about 1.5%. From
this densities we determined the dimensionless parameter T/TF where we
estimated the error from the statistical error of the absolute temperature
T . The data was further linear interpolated to the regime of our critical
temperature Tc.

To compare our Tc/TF
8 to the theoretically predicted values, we have to calculate first

in which regime of interactions we probe the system. Therefore we calculate the inter-

action parameter ln(kFa2D) at Tc with kF =
√

2kBTF m
~2 . This leads in case of the dimer

mass to kF,dimer = 4.7µm−1 and for an atomic system to kF,atomic = 3.3µm−1 at 692G.
Since the 2d scattering length a2D = 7.73 · 10−2µm corresponds to an atomic system
we will use kF,atomic in the following calculation and obtain ln(kFa2D) ≈ −1.37 ± 0.039.

1Statistical error was estimated from the 8% statistical error of Tc and 8% error of c due to the
shot-to-shot fluctuation of the in-situ densities.

2Systematical error was estimated from the 5% error of the Fermi energy EF ∼
√

N due to the 10%
uncertainty of the atom number in the regime EF ≈ ~ωz and the assumption EF,900 ≈ EF,1400.
Further we took into account a reading error of about 1.5%.

8Since we are in the bosonic regime TF is used here as a label for the density n to make T/TF a
dimensionless quantity.

9Error was estimated by the systematical error of TF .
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Hence, we are close to the strongly interacting regime | ln(kFa2D)| < 1.
From a theoretical analysis of the weakly interacting Bose gas in 2d in the regime
ln(kFa2D) < 0 a critical temperature of the BKT-transition of Tc/TF ≤ 0.12 was deter-
mined using Monte Carlo data [Pet03]. The determined value of Tc/TF = 0.29 deviates
from the theoretical calculations due to the strong density dependence of TF . Since the
crossover between the weakly interacting regime and the strongly interacting regime in
2d is a field of current research in both theoretical and experimental physics, the exact
BKT-transition temperature remains still an open question [Bau13].
We further rescaled the plot of the quasi-condensate fraction due to the linear connec-
tion to T/TF . Thus, we obtained the dependence of the quasi-condensate fraction on
the dimensionless quantity T/TF which is plotted in Figure 6.11.

To summarize, we presented in this chapter the first measurements investigating a

Figure 6.11.: Quasi-condensate fraction Nc/N as a function of T/TF. Due to
the fact that TF is a function of density n we rescaled the data from Figure
6.9.

strongly interacting quasi-2d Bose gas. We observed a separation of a normal and a
quasi-condensed part in the density distribution and an enhanced occupation of low
momentum states in the momentum distribution. Further we successfully probed a
phase transition in the quasi-2d system. Due to the measured density fluctuations
leading to a quasi long range order in the quasi-condensed part and the determined
critical temperature Tc/TF from the in-situ momentum distribution, we achieved sig-
nificant evidences, that this phase transition corresponds in fact to the BKT-transition
predicted in two dimensional quantum systems.

114



7. Conclusion and Outlook

Conclusion

In this thesis we successfully studied the phase transition from a normal gas phase
to a condensed phase in a strongly interacting Bose gas in a quasi-2d environment.
We obtained strong indications for the occurrence of a topological phase transition as
predicted by the Berezinskii-Kosterlitz-Thouless (BKT) theory. For this we have suc-
ceeded in preparing and controlling the interaction strength of a two component Fermi
gas in the 2d analogue of the 3d BEC-BCS crossover regime.
This was realized by using an already implemented standing wave optical dipole trap to
produce a stack of highly anisotropic pancake shaped potentials. We prepared a BEC
of Feshbach molecules in a crossed beam 3d optical dipole trap by evaporative cooling
and transferred the molecular BEC directly from the 3d trap into the standing wave
potentials. To probe the density distribution of the transferred particles in the several
pancake potentials we applied a tomographic rf-spectroscopy technique. In the course
of this thesis the resolution of this technique was further improved by implementing a
larger magnetic field gradient of 72G/cm. In addition we obtained a long term stability
of the magnetic offset field of 1mG, which enabled us to resolve the density distribu-
tion of the particles trapped in each pancake potential. Due to this achievements we
realized to load a molecular BEC into only a single layer of the standing wave optical
dipole trap.
Because of the high anisotropy of the trapping potential, with a large spacing of the
energy levels along the vertical axis, we are able to ’freeze out’ one motional degree of
freedom. Therefore we set the Fermi energy of the sample EF ≪ ~ωz by choosing a
sufficiently small particle number and reduce the temperature kBT ≪ ~ωz. We opti-
mized the cooling of the sample in the 3d trap by implementing quadratic evaporation
ramps and minimized the intensity noise of the trapping beams. Furthermore we man-
aged to precisely control the particle number in the 2d trap by spilling the particles
out of the trap using a magnetic field gradient. By probing the Gaussian width of a
weakly interacting Fermi gas in the direction of tight confinement after time-of-flight,
we successfully determined the critical Fermi energy to enter the 2d regime.
We further noticed that during the absorption imaging process the imaged particles
get Doppler shifted due to the recoil of a multiple of absorbed and randomly scattered
photons. This leads to an underestimation of our detected atom number by a factor
of 1.3. We compensated this shift by modulating directly the current of the imaging
laser diode with a linear ramp to shift the frequency of the imaging laser during the
absorption imaging pulse by approximately one linewidth. Since our imaging beam
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intensity is on the order of the saturation intensity of the transition, we underestimate
the number of particles when using the analysis for I << Isat. We estimated experi-
mentally a correction factor of 1.7 to correctly determine the particle number.
Investigating the quasi-2d sample in the bosonic limit of strong interactions by a time-
of-flight measurement, we observed a clear bimodal density distribution with random
density fluctuations in the quasi-condensed part. This was the first indication of ob-
serving a phase transition in a quasi-2d regime. We quantified the fluctuations by a
density-density correlation function and related them to the existence of a quasi long
range order in the quasi-condensate. To investigate the phase transition systematically
we heated the trapped molecules and observed a decrease of the oscillatory behavior
in the correlation function. Yet, a quantitative study of this behavior could not be
obtained since the measured density-density correlation functions were correlated with
the detuning of our imaging laser.
Another indication of quasi-long range order and a topological phase transition is the
algebraic decay of the first order correlation function, which becomes accessible via
the in-situ momentum distribution of the sample. We developed a method to map the
in-situ momentum distribution of the quasi-2d sample onto the density distribution
by using a matter wave focusing technique and observed a significant occupation of
low momentum states which is a clear signature of degeneration in the cloud. From a
Boltzmann fit to the high momentum wings of the momentum distribution we deter-
mined the temperature of the sample. Furthermore, we observed a significant decrease
of the low momentum occupation of the quasi-condensed molecules while heating the
sample. This disappearance of the quasi-condensate part is a strong indication of a
phase transition in the system. We accomplished to estimate the critical temperature
of the phase transition at 692G to be about Tc/TF = 0.29 (3) (1) (stat.) (sys.) which
deviates from the theoretical prediction. Since the difference between a transition to a
BKT-phase and the transition to a BEC-phase is subtle, it is hard to clearly identify
the regime we probe. However, the observation of density fluctuations in the quasi-
condensate part is a strong indication that we have actually observed a BKT phase
transition in a strongly interacting Bose gas.

Outlook

To clarify the nature of the phase transition quantitatively we want to characterize the
decay of the momentum distribution at low momenta. From the critical exponent of
this decay, the exponent of the algebraic decaying first order correlation function could
be obtained. In the near future we plan to extend our investigations to the 2d analogue
of the BEC-BCS crossover region. Using a rapid ramp technique to minimize the effect
of strong interactions during the release of the atoms and optimizing the matter wave
focusing technique to image the in-situ momentum distribution will allow to study
the BKT phase transition in the BEC-BCS crossover. This will provide an important
insight into the pairing mechanism of fermions in both the weakly interacting regime
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7. Conclusion and Outlook

ln(kFa2D) → ±∞ and the strongly interacting regime | ln(kFa2D)| ≪ 1. A quantitative
measurement of the critical temperature Tc/TF for different magnetic offset fields will
further allow to measure the phase diagram of a two component Fermi gas in 2d, which
is so far only partially described by theory [Pet03, Bau13].
Moreover we plan to set up a simple square optical lattice to study the physics of sys-
tems described by the Fermi-Hubbard Hamiltonian. Therefore two additional lattice
beams have already been implemented in the setup. Figure 7.1 a) shows a first impres-
sion of the effect of this 2d lattice on the atoms. Here we released a molecular BEC from
the 3d trap and then switched on the lattice beams for a short time. The expanding
cloud gets diffracted of the optical lattice potential which leads to the depicted density
distribution. After implementing the lattice we plan to investigate the quantum phase
transition between a superfluid and a fermionic Mott-insulator state by loading a two
component Fermi gas into the optical lattice potential.

Furthermore, we plan to implement a new objective in the up-down imaging axis

a) b)

Figure 7.1.: Kapitza-Dirac scattering of a 2d optical lattice and a schematic
view of the high resolution objective. a) shows a released mBEC
which scattered on the optical potential provided by two lattice beams.
The symmetric pattern of this so-called Kapitza-Dirac scattering shows,
that the lattice beams are well aligned with respect to each other. Further
details of the scattering procedure can be found in [Nei13, Bec13]. b)
depicts the high resolution objective placed above the Feshbach coils. It
was calibrated for two wavelength and built during a Bachelor thesis in our
group [Kri13]. The pictures are taken from [Bec13] and [Rie10].

with a high numerical aperture and a small working distance depicted in Figure 7.1 b).
Due to the fact that the objective has been designed for λ = 671nm imaging light and
λ = 1064nm trapping light we want to use this objective in combination with a spatial
light modulator to create arbitrary 2d optical potentials at the position of the 2d sam-
ple. Together with the increased resolution of the objective (1.08µm for λ = 671nm
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and 0.68µm for λ = 1064nm) we should be able to achieve single site resolution of our
lattice.
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A. Appendix

A.1. Dispersion of a Gaussian wave packet

We start with a general ansatz for the wave function:

Ψ(x, 0) = A · exp

(

− x2

2σ2

)

exp
(

ip0x

~

)

, (A.1)

where p0 corresponds to the momentum. From the normalization condition we can
calculate A

1
!

=
∫

|Ψ(x, 0)|2dx =
∫

A2 exp

(

−x2

σ2

)

dx = A2
√
πσ, (A.2)

here we substituted a = x/σ and da = dx/σ and obtainA = 1
4
√

π
√

σ
from

∫

exp(−αx2)dx =
√

π
α

for α > 0.

Further it is useful to calculate the variance (∆x)2 = 〈x̂2〉 − 〈x̂〉2. Therefore we need

〈x̂〉 =
∫

x|Ψ(x, 0)|2dx = 0, (A.3)

where we used
∫

x exp(−a(x− b)2)dx = b
√

π
a

for a > 0 and

〈x̂2〉 =
∫

x2|Ψ(x, 0)|2dx = A2
∫

x2 exp

(

−x2

σ2

)

dx.

By substituting a = x/σ and use
∫

x2 exp(−ax2)dx = 1
2

√

π
a3 for a > 0 one gets

〈x̂2〉 =
A2

2
σ3

√
π =

σ2

2
. (A.4)

Hence the standard deviation is given by ∆x = σ√
2
. Now we change to the momentum

representation by Fourier transforming the wave function.

Ψ(p, 0) =
1√
2π~

∫

exp
(

−ipx

~

)

Ψ(x, 0)dx =

1√
2π~

A
∫

exp

(

− x2

2σ2

)

exp

(

−i(p0 − p)x

~

)

dx,
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A.1. Dispersion of a Gaussian wave packet

to solve the integral we use the following relation with u = x, α = 1/σ, y = (p0 − p)/~

∫

exp

(

−u2α2

2
+ iuy

)

du = exp

(

− y2

2α2

)

∫

exp(x2)

√
2

α
dx =

√
2π

α
exp

(

− y2

2α2

)

.

The wave function in momentum representation is then given by

Ψ(p, 0) =
σ√
~
A exp

(

−(p0 − p)2σ2

2~2

)

. (A.5)

Further holds then

|Ψ(p, 0)|2 =
A2σ2

~
exp

(

−(p− p0)2σ2

~2

)

and ∆p =
~√
2σ

(A.6)

Now we introduce the time evolution by the time evolution operator

Ψ(p, t) = exp

(

−iE(p)t

~

)

Ψ(p, 0) and Ψ(x, t) =
1√
2π~

∫

exp
(

ipx

~

)

Ψ(p, t)dp

(A.7)
and we obtain

Ψ(x, t) =
1√
2π~

∫

exp

(

i(px− E(p)t)
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by substituting p′ = p− p0 we can write the first exponent as

px− E(p)t = (p′ + p0)x− 1

2m
(p′ + p0)

2t = −p′2 t

2m
+ p′

(

x− p0t

m

)

+ p0x− E(p0)t.

By separating the terms in powers of p′ and one gets

Ψ(x, t) =
σA

√

2π~
√
~

exp
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By defining the constant as C and the first exponential as D and further substitution
k = p′/~ and β = 1 + i ~t

mσ2 the integral reduces to

C ·D
∫

exp

(

−k2σ2β

2
+ ik

(

x− p0t

m

)

)

dk
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which can be solved with a last substitution u = k, α = σ
√
β and y =

(

x− p0t
m

)

leading
to

Ψ(x, t) =
A√
β

exp
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i(p0x− E(p0)t)

~

)

exp
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−
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m

)2 1

2σ2β
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(A.8)

Now we have to calculate the probability |Ψ(x, t)|2 = Ψ∗(x, t)Ψ(x, t) which can be
obtained by introducing z = exp(−r/β) with r is real and β a complex number. From
this follows

|z|2 = z∗z = exp(−r/β∗) exp(−r/β) = exp

(

−r
(

β + β∗

β∗β

))

= exp

(

−r
(

2 Reβ

|β|2
))

.

Applied to the latter exponential leads to

|Ψ(x, t)|2 =
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β∗β

exp
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)2 1

2σ2

(

2 Reβ
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,

and since |β|2 = 1 + ~
2t2

m2σ4 and Re β = 1 one finally obtains

|Ψ(x, t)|2 =
1√
πσ|β| exp

(

−
(

x− p0t

m

)2 1

σ2|β|2
)

. (A.9)

If one compares the exponents with |Ψ(x, 0)|2 = A2 exp
(

−x2

σ2

)

the following scaling can
be obtained

x → x− p0t

m
and σ = σ|β|, (A.10)

with |β| =
√

1 +
(

~t
mσ2

)2
. Thus, the probability density is now centered around 〈x〉 = p0t

m

and the width is given by

∆xβ =
σ√
2

√

√

√

√1 +

(

~t

mσ2

)2

, (A.11)

The relation between the σGfit we obtain from the Gaussian distribution fit is 2σ2
Gfit =

(σβ)2 and thus σGfit = ∆xβ. In our case we use the Gaussian ground state of the
quantum harmonic oscillator given by

Ψ(x, 0) =
(

mω

π~

)1/4

exp

(

− x2

2aho

)

, (A.12)

with the harmonic oscillator length aho =
√

~

mω
and ω = ωz. Since we are just interested

in the scaling of σ = aho we can follow if Ψ(x, 0) → Ψ(x, t) then aho → aho|β| and we
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A.1. Dispersion of a Gaussian wave packet

achieve the relation given in Section 5.5

∆xβ =

√

~

2m

(

1

ωz

+ ωzt2
)

= σGfit (A.13)
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