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Abstract
This thesis reports on the investigation of the BKT phase transition in a two-dimensional Fermi
gas throughout the BEC-BCS crossover.

We build upon on previous studies where we measured the phase diagram in the crossover
regime. We use a matterwave focusing technique to access the exact momentum distribution.
Fourier transforming this yields the first order spatial correlation function which can be used to
quantify the coherence within the sample. The BKT transition manifests in a unique signature of
quasi long-range order where the correlations decay as a power law with a characteristic scaling
exponent. We observe the same form of scaling in our trapped system though the exponents
differ from those predicted in the homogeneous theory.

Quantum Monte Carlo calculations performed by a collaborator use similar parameters of a
trapped system and our results are in good agreement, suggesting that the higher than expected
scaling exponent is a feature of the inhomogeneity. We study the spatial coherence for a wide
range of interaction strengths, spanning from far on the bosonic side through the crossover to the
beginning of the BCS regime and we identify a transition at all these interactions. At a certain
part of the crossover the bosonic QMC calculations no longer predict a transition whereas we
continue to observe one. This suggests that within this regime the physics is not described
by point-like bosons and thus the transition is driven by the emergent fermionic nature of the
quantum gas. We can validate that this is the same transition for all of interaction strengths by
observing a universal divergence of the correlation length and the same critical scaling exponent.

All together, this strongly suggests that we have observed the BKT phase transition in an
inhomogeneous system from a normal to a superfluid phase.

Zusammenfassung
Diese Arbeit beschreibt die Untersuchung des BKT-Phasenübergangs in einem zweidimensionalen
Fermi-Gas im BEC-BCS-Crossover.

In früheren Studien haben wir das Phasendiagramm im Crossover Regime gemessen. Wir
benutzen hierfür eine Matteriewellen-Fokussierungsmethode um die genaue Impulsverteilung zu
extrahieren. Die Fourier-Transformation is die erste räumliche Korrelationsfunktion die ein Maß
ist für die Kohärenz innerhalb der Probe. Der BKT Übergang manifestiert sich in einer einzi-
gartigen Signatur von quasi-langreichweitiger Ordnung. Wir beobachten die gleiche Form der
Skalierung in unserem imhomogenen System, aber die Exponenten unterscheiden sich von den in
der homogenen Theorie vorhergesagten. In der Tieftemperaturphase, die Korrelationen Zerfallen
algebraisch mit einem charakteristischen Skalierungsexponenten.

Es wurden Quanten Monte Carlo Berechnungen für ein ähnliches System durchgeführt. Un-
sere Ergebnisse legen nahe, dass die Inhomogenität zu eine höheren Skalierungsexponenten führt.
Darüber hinaus untersuchen wir die räumliche Kohärenz für ein breites Spektrum von Wechsel-
wirkungsstärken von weit auf der bosonischen Seite bis in das BCS-Regime des Crossover, und wir
beobachten einen Phasenübergang unabhängig von der Wechselwirkung. Die bosonischen QMC
Berechnungen sagen nichteinen Übergang für einen Wechselwirkungsstärke, wo wir beobachten
ein. Dies zeigt dass der Übergang auftritt wegen den aus fermionischen Natur des Quantengas.
Wir prüfen ob das ist das gleiche Übergang für alle Wechselwirkungsstärken durch Beobachten
einer universellen Divergenz des Korrelationslänge.

Insgesamt wir beobachtet die BKT-Phasenübergang in einem inhomogenen System von einem
normalen zu einem suprafluiden Phase.
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1 Introduction
Complex systems are a matter of intense fascination especially in cases where
the collective interactions of ensembles give rise to a behavior that cannot be
understood in the context of single particles. Instances of this are prevalent in
nature, ranging from the self-organization of starlings to the collective intelligence
of bacteria colonies. All of these structures share a common denominator; one
often speaks of emergence since the dynamical interactions give rise to some sorts
of ordering.
A beautiful set of examples of this in physics are phase transitions, where a

system fundamentally changes its properties via the tuning of some external pa-
rameter. If we look at the liquid-solid transition in water, there is a discontinuous
jump in the density at a particular temperature and this we formally speak of as
the critical temperature Tc. At this point the translational symmetry of the liquid
state is broken and the density becomes a periodic function of the position. Thus
we speak of the new solid phase as being symmetry broken, and though a liquid
might readily seem to have less symmetry, the spatial invariance of its properties
suggests otherwise. The self-organization that we had mentioned is directly related
to this symmetry breaking and gives rise to a physical quantity that distinguishes
between the two phases which we call the order parameter.
Evidently there are some new observables and differences that occur across the

phase transition and what is particularly interesting is that this can be a global
phenomenon. For many transitions the entire system exhibits a discontinuity and
microscopic fluctuations can drive changes in the macroscopic character. Similar
to the aforementioned examples, it acquires a type of coherence and is enumerated
in the framework of a many body system. The classification extends far beyond
the primary classical states, and quantum systems exhibit a multitude of exotic
phases that do not occur naturally. We want to be able to explore them to gain a
better understanding, and commonplace transitions like the solid-liquid-gas could
be thoroughly investigated since the parameter space lies within accessible lim-
its. However there also exist unfamiliar phases like the high energy quark-gluon
plasma or the low temperature superconductor, but one often does not have the
same capabilities of tuning the external parameters. The discovery of superfluidity
within Helium-4 was an exceptional achievement but the dependence on interac-
tions could not be experimentally investigated since their strength is fixed by the
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material’s chemical properties. It is therefore of a deep interest to obtain an un-
derstanding for the physics of phase transitions, but the defects and impurities of
condensed matter systems prevent them from being the ideal environment. We
want to be able to tune many parameters in a controlled fashion which pragmati-
cally means limiting effects that can cause decoherences or fluctuations or make a
system behave probabilistically. The idea is to use simpler toy models that capture
the essential properties of the system, but without defects or other complications.
An elegant approach to reduce the complexity of a system is to reduce the en-

ergy such that the accessible states and collision processes become significantly
simpler. A defining moment in physics was consequently this experimental re-
alization, where Chu, Cohen-Tannoudji, and Phillips [Chu86] demonstrated the
trapping and cooling of atoms with laser light. It marked the birth of a new field
where these exact specifications of a sample in an isolated and closed system could
be both met and realized. For dilute clouds of neutral atoms, the low temperature
limit allows for the complex scattering processes to be approximated as a contact
potential. A theoretical description of the interaction terms thus becomes much
easier, and several atomic species even possess resonances that allow us to vary
the strength interaction. The simplicity of the system makes it significantly eas-
ier to prepare exact quantum states and few body experiments can often achieve
this with extraordinarily high fidelity [Mur15a, Kau12]. Combined with a high
optical resolution that allows for single atom addressing, it becomes possible to
engineer specific Hamiltonians. We can introduce local or global couplings and
subsequently control the evolution of complex quantum systems [Kau13]. Unique
crystalline lattices can be recreated and modified, giving rise to new and unusual
states of matter.
Still, exploring phase transitions with ultracold atoms seems to be disingenu-

ous if we are only using them to investigate abstract quantum models. However,
another remarkable aspect of phase transitions is that the universality in the crit-
ical regime, the fact that microscopic details are nonessential, means that we can
categorize them in terms of large scale properties. Each transition may have a
particular order parameter associated with it, but often we find that the same
symmetries are broken when entering different phases. As the system particulars
are only secondary in importance, the defining feature of the transition is thus the
broken symmetries of the Hamiltonian. Models with the same ones have identi-
cal critical behavior and are said to fall in the same universality class which are
independent of the medium properties.
The potential of ultracold atoms is now abundantly clear, since we can study

accessible models with full control and simultaneously gain understanding of oth-
ers in the same universality class. For example, analyzing the liquid-gas transition
can yield insights into the critical properties of the Ising ferromagnet, which may
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1 Introduction

be harder to reproduce without a regulated environment. Many of these quan-
tum states are as well strongly correlated phases that exhibit coherence due to
microscopic interactions. The ability to continuously tune this parameter among
others makes cold atoms an optimal playground with which to explore fundamental
many-body physics.
In quantum systems ordering and global coherence often emerge in new phases,

most prominently in the Bose Einstein condensate (BEC). Here the entire cloud
is said to be phase coherent, meaning that we can provide a mathematical de-
scription of the ensemble with a single wavefunction. Atoms in the BEC behave
in a synchronized manner and the collective behavior is one of the most striking
and far-reaching tenets of a phase transition. The result has found its way into
our understanding of condensed matter phenomena such as superfluidity and su-
perconductivity, and ultracold gases offer the possibility of probing the coherence
itself.
If we want to understand coherence mechanisms in the context of these physical

phenomena, it is also compelling to consider the role of reduced dimensionality.
For example the discovery of the quantum Hall effect which only manifests in two
dimensions immediately lent credence to this question, and the underlying physics
has a correspondingly strong dependence on the accessible spatial dimensions. The
pioneering superfluidity experiments already hinted at this, suggesting that the
nature of normal-superfluid phase transition was fundamentally different in 2D. In
recent decades, reduced dimensionality has been essential in describing the physics
of high-Tc superconductors and strongly correlated systems like graphene. It is
difficult though to create a full picture of this from condensed matter experiments
since there we are limited to an observational standpoint.

Outline
This thesis is therefore a mitigation of coherence and dimensionality, where we
seek to gain insight into the mystery of this 2D transition by exploring it with
quantum gases. The contents are as follows: first we need to understand the
basic properties of ultracold systems. There is no paucity of information on this
topic so we instead focus on the essential ingredients as we introduce the theory
behind some specific and relevant applications. Next, we consider the theory of
the Berezinskii Kosterlitz Thouless phase transition and motivate its development
from a phenomenological perspective. The significance of global coherence will
be thoroughly expounded upon and we will highlight the perceptible signatures.
Chapter four will detail the experimental apparatus as well as the implementation
of a new two-state imaging scheme that was developed alongside the research.
In the following chapter, we detail the creation of a 2D condensed gas and we
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seek to understand how the new phase is dependent on external variables. This
information is given in the representation of a phase diagram which illustrates how
robust the phase is against different regions of the parameter space. Chapter six
is the heart of this thesis and chronicles our efforts and analysis in understanding
the nature of the BKT phase transition. Finally, chapter seven provides a brief
summary and open questions that we raise with our experiments.
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2 Introduction to quantum gases

2.1 Quantum statistics
On the scales where the de Broglie wavelength λ = h/p grows to the order of
the interparticle spacing, wavefunction overlap leads to an inability to distinguish
between identical particles that are in the same quantum state. The rise of this
indistinguishability is the defining property of the quantum regime. Observables
such as average momentummust remain unchanged under the exchange of identical
particles, leading one to speak of superpositions of states and the wavefunction
as a probabilistic description of a particle’s possible internal states. Within the
overarching category of quantum particles one of the first points for distinction that
any physics student is aware of is the fundamental difference between particles of
integer and half-integer spin. Certainly swapping particles twice such that they
end up in their initial configuration should leave the wavefunction unchanged but
this is not necessarily true for a single operation. Indeed if one considers the parity
operator P̂ij that exchanges particles i and j in the product wavefunction Ψ, two
potential eigenvalues of +1 and −1 lead to the eigenvalue equations

P̂ijΨ = +Ψ and P̂ijΨ = −Ψ. (2.1)

Each eigenvalue can be identified with the spin quantum number and leads to two
classifications:

Bosons are particles which transform symmetrically under particle exchange, i.e.
that the bare wavefunction is invariant under parity transformations. A many-
body wavefunction consisting of bosons will be symmetric under all possible per-
mutations of single particle eigenstates. A bosonic particle need not necessarily be
something indivisible and limited to the standard model. While the force carriers
such as the photon and Higgs are fundamentally bosonic, composite particles that
have a total integer spin can additionally be classified as bosons and even behave
like them. The Helium atom for example, consisting of two protons (nuclear spin
1/2 ), two neutrons neutron (spin 1/2) and two electrons (fundamentally spin 1/2)
has a total spin that will be an integer, leading it to be classified as a boson.
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2.1 Quantum statistics

Fermions The other eigenvalue of −1 suggests that particles are switched with
an antisymmetry for each exchange, leading to an overall antisymmetrization of
the wavefunction. Fermionic particles have a requisite half-integer spin and have
the interesting property (called the Pauli Exclusion princple) that two particles
cannot occupy the same quantum state. In this case, a single particle exchange
yields

Ψ(..., xi, ..., xi, ...) = −Ψ(..., xi, ..., xi, ...), (2.2)

which demands that Ψ = 0. The many body wavefunction must therefore be
completely antisymmetrized and this has powerful implications for the application
of quantum statistics to bulk systems.

In the simplest case, one immediately sees that while two bosons may occupy
the same spatial position or wavefunction, identical fermions are forbidden from
such behavior. Spin statistics therefore maintain that at zero temperature where
all particles naturally occupy the ground state of the system, the occupation num-
bers will be qualitatively different for bosons and fermions. Whereas T = 0 in
a bosonic system implies that all particles sit in the ground state, the fermionic
many body ground state can never be product of the single particle lowest occu-
pation eigenstates. In the example of a quantum harmonic oscillator with discrete
level spacing of ~ω, the ground state for a system consisting of five fermionic spin
up particles is equivalent to each of the five lowest levels being occupied by a single
fermion. The occupation number of each single particle state can thus never ex-
ceed one, so the many body wavefunction for n particles is defined via the creation
operator b̂� as

|Ψfermion〉 =
n∏
i

b̂�i |0, ...0〉, (2.3)

while for bosons one has

|Ψboson〉 = 1√
N

(â�0)N |0, ...0〉. (2.4)

As illustrated in Fig.2.1 this leads to profoundly different ways of populating energy
states for the two types.

Having established the single particle picture, we now want to start considering
the behavior of many-particle systems, and the key is now to describe it in the
formalism of an ensemble. Instead of an exact description for each state, we can
simplify our model by use of a statistical description of the many body system,
where the statistics are heavily influenced by the symmetrization requirements of
the wavefunction. Statistical mechanics provides us with the machinery of the
partition function, which can be used to describe the thermodynamic properties

6



2 Introduction to quantum gases

Figure 2.1: As explained above, at zero temperature bosons can collectively occupy
the ground state while fermions occupy all single particle levels up to a
specified filling called the Fermi energy. This quantity EF can be used
to characterize a Fermi system and calculate relevant thermodynamic
quantities. Picture from [Rie15].

of the system in equilibrium. State variables such as temperature or entropy are
then easily calculated as average quantities of the ensemble as a whole. However
the partition function is not a universal quantity, meaning that there are unique
forms depending on particular sets of quantities which are to be kept constant in
the context of the problem. The microcanonical, canonical, and grand canonical
ensembles are each used to describe different thermodynamic pictures (e.g. con-
tact with a reservoir). With trapped quantum gases, the parameter that can be
controlled most easily is the filling of the trap which corresponds to the chemical
potential µ. For the rest of our discussion unless stated otherwise, we will therefore
work in the picture of the grand canonical partition function ZG where energy and
particles are allowed to be exchanged with the environment. In the basis of the
occupation states |ni〉 where n particles occupy the ith state, the grand canonical
partition function takes the form

ZG =
∏
i

∑
n

(
e−β(Ei−µ)

)n
. (2.5)

This is a general expression for Ei, the eigenenergy for each of the single particle
states, but evaluating the sum over n necessarily takes into account the particle
statistics. In this way, we can regain the different partition functions for bosons
and fermions, and hence we can determine the average number of particles per
state. This leads to the characteristics Bose-Einstein and Fermi-Dirac distribution
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2.1 Quantum statistics

functions

〈ni〉fermion = 1
eβ(Ei−µ) + 1 and 〈ni〉boson = 1

eβ(Ei−µ) − 1 . (2.6)

Note that this reflects exactly the occupation rules described earlier. It was men-
tioned that the Pauli exclusion principle prevents identical fermions from occu-
pying the same single particle state and in the Fermi distribution function the
occupation probability of the state |ni〉 can never exceed one. In contrast, the
Bose distribution function allows an indefinite number particles to reside in |ni〉
which should come as no surprise. Note that there is one small yet important point
to be made about the chemical potential µ; namely, one has µ < 0 for fermions
and µ > 0 for bosons.

Knowledge of the distribution function is a particularly powerful tool since it
allows one to calculate the spatial and momentum distribution functions of the
system, assuming that one knows the single particle energies Ei. Perhaps the
most useful example to consider is the quantum harmonic oscillator, since here
all quantities are well known and easy to work with. As we will see later, this
particular choice is not pointless since the trapping potentials used for confining
quantum gases can very often be approximated as harmonic. The calculation is
simple and can be made with the substitution of V (x, y, z) = m(ωxx2 + ωyy

2 +
ωzz

2)/2 to get
f(r, p)bose/fermi = 1

eβ( p2
2m+V (r)−µ) ± 1

(2.7)

The two profiles are easily obtained by integrating over r or p (with the total
number of particles given by integrating over both), and we can consider the cases
separately for the two types of particles. For fermions, in the limit of T → 0 the
distribution function simply becomes 1 for all states up to a certain point, beyond
which it becomes zero. This is of course the Fermi energy which we had visited in
Fig.2.1(a), and we can now give a more quantitative result to define it. At zero
temperature, this also corresponds to the filling of the harmonic oscillator so we
can relate it to the chemical potential µ as

EF = (6N)1/3~ω = µ(T = 0) (2.8)

We can also use EF to define other characteristic scales for quantities such as the
Fermi temperature (via EF = kBTF ), Fermi wavevector kF , and Fermi momenta
pF , and this will come in use later. At nonzero temperature the integration is not
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2 Introduction to quantum gases

as elegant and leads to a spatial distribution of

nfermion(r) = −
(
mkBT

2

2π~2

)3/2
Li3/2

(
− exp(β(µ− V (r))

)
, (2.9)

where Lin is the polylogarithmic function. In the limit of zero temperature both
this and the momentum distribution begin to approach the shape of an inverse
parabola, often called the Thomas-Fermi profile. Even though this is the under-
lying structure at finite temperatures, the profile is not easily distinguished from
a Gaussian and without complicated fitting functions it can be difficult to tell
whether a Fermi gas is in the regime of quantum degeneracy. In [Wen08], it is
shown that this is the case even down to temperatures of T = 0.2TF .
For bosons, the treatment becomes a bit more interesting since we already know

that quantum degeneracy here means a macroscopic occupation of the ground
state. A simple integral over one of the variables to obtain the density profile is
therefore insufficient and fails to capture the entire picture since the extra statis-
tical weight given to the ground state is not represented in the continuum density
of states (which gives the number of states available at a specific energy). The
integration for the total particle number in a semiclassical approximation is con-
sequently split into two parts

N = N0 +Nex = N0 +
∫ ∞

0
fboson(E)g(E)dE, (2.10)

where the second term denotes the particles in excited levels of the oscillator.
For simplicity the Bose distribution function is written in terms of energy with
the associated g(E) = E2

2(~ω)3 giving the density of states in a quantum harmonic
oscillator. Similar to the fermionic case, we can express the density profile in terms
of the polylog function as

nboson(r) = −
(
mkBT

2

2π~2

)3/2
Li3/2

(
exp(β(µ− V (r))

)
. (2.11)

In this case, the distribution is peakier than a Gaussian, but the true nature of
the system becomes clear in momentum space. The T = 0 result simply yields
all particles with the ground state wavefunction, but the momentum distribution
corresponds to all particles are zero momenta. This constitutes a clear signature of
the macroscopic ground state occupation, in stark contrast to the Fermi gas. This
quantum behavior is completely nonclassical and characterizes the Bose Einstein
condensate (BEC). We will see later on that the many body description of this
state bears several deeply interesting properties but for now the important point
is that for bosons, the BEC is the trademark of quantum degeneracy and will
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2.2 Interactions in the ultracold regime

drive the rest of our foray into phase transitions and many body physics. Already
we have hints that the BEC must be something more than a description apt for
single-particle states.

2.2 Interactions in the ultracold regime
The idea of using ultracold atoms as a foundation for quantum simulation sounds
elegant and grandiose but it has no merit if the particles have no means of com-
municating with each other. On the one hand, it seems that our efforts might be
easier if we are able to avoid confounding potentials like the Coulomb attraction
which inhibits quantum computation efforts in the ion-trapping community. On
the other hand, it seems foolhardy to use noninteracting atoms to investigate co-
herence phenomena like superfluidity which are presumably driven by interaction-
induced correlations. The resulting question is then, can ultracold atoms provide
us with an intermediate playground between these two extremes?
We will find that if we investigate the scattering properties, the answer quickly

becomes ’yes’, and this is exactly what makes ultracold atoms such a useful tool
in understanding physical models. The interactions turn out to be wonderfully
simple and can be described by a single parameter termed the scattering length.
The following derivation is one that reproduced all too often in textbooks and
theses, but the final result is one so integral to this field that it is worthwhile to
reiterate [Ket08].

2.2.1 Two body processes
In elementary quantum mechanics, the simplest collision process to consider is two
body scattering where the interaction potential is some radial function V (r). In
the center of mass frame, the resulting time independent process is captured by
the Schrödinger equation(

− ~2

2m∇
2 + V (r)

)
ψ(r) = Eψ(r) (2.12)

There is nothing surprising or insightful at this step, but we can now make a series
of crucial assumptions that defines the nature of the interactions we will deal
with. Though it may seem dubious, we can claim that the same form of two body
scattering can be used to model collisions within a cold gas. It is undoubtedly
a bizarre statement since as mentioned before, we want to use ultracold atoms
as a basis for investigating long range, strongly interacting solid state systems.
The crux of this proposition lies on that fact we have the distinct advantage of
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2 Introduction to quantum gases

working with extremely dilute systems. The interaction range is given by the
Van der Waals radius which, on the order of 50 nm, is is significantly smaller
than the typical interparticle spacing of ≈ 1µm (assuming prototypal densities of
10−12cm−3). Thus, three body collisions can be neglected in this approximation,
since the dilute nature of the gas makes it highly unlikely that three body processes
actually do occur. It is therefore sufficient to assume that all interactions can be
approximated as point like interactions, such that we attain a potential of the form

V (r) = V δ(3)(r) (2.13)

where V is dependent on some as-yet-unknown parameters that quantify the
strength of the potential, and δ(3)(r) is the 3D regularized delta function. Exploit-
ing the cylindrical symmetry of the problem, we can switch to a basis consisting
of eigenstates of the angular momentum and expand the wavefunction in series of
partial waves. In the far field this is a reasonable approximation and for low energy
scattering it is often sufficient to truncate the expansion after the first order. The
resulting wavefunction is easily constructed as

ψ(r) ∝ eikz + f(k, θ)e
ikr

r
(2.14)

as the sum of an ingoing plane wave eikz and an outgoing spherical wave eikr

r
.

This is perhaps unexpectedly uncomplicated, and again quantum mechanics gives
the widely known result that the function f(k, θ) can be identified as a scattering
amplitude and allows for an immediate calculation of the differential and total
scattering cross sections

dσ

dΩ = |f(k, θ)|2 and σtot =
∫

Ω
|f(k, θ)|2dΩ. (2.15)

Since in the long wavelength limit kr � 1 the scattering object is not resolved. The
total cross section is ultimately our final parameter of interest and the difficulty is
now to calculate it without any knowledge of the interatomic potential. An elegant
way is to treat the problem in a series of partial wave expansions, that is, to expand
in the angular momentum eigenfunctions and recover a representation as a series
of the Legendre polynomials Pl(cos θ) along with a momentum dependent phase
term dl. For low momenta, the phase shift behaves as δ ∼ k2l+1, such that each
partial wave fl ∼ k2l where f(k, θ) = ∑∞

l=0 fl. Thus in the regime of ultracold
gases, s-wave scattering dominates above all higher orders so that

f ≈ fl=0 = 1
2ik

(
d2iδ0 − 1

)
. (2.16)

11



2.2 Interactions in the ultracold regime

Additionally note that the Legendre polynomial P0(cos θ) is independent of the
angle θ, so s-wave scattering is azimuthally isotropic. We see that the scattering
amplitude has a sole dependence on the momentum k and the phase shift δ0. It
is therefore appropriate to to relate these and define an effective quantity, the so
called scattering length

a = lim
k→0

tan δ0

k
. (2.17)

In terms of the scattering length, this leads to a reformulation of the scattering
amplitude as

f = − a

1 + ika
. (2.18)

Integrating this in the low momentum limit gives the total scattering cross section

σ = 4πa2. (2.19)

Exactly as we had wished, we are able to describe the entire scattering process in
terms of a single parameter, a. This result is not without stipulations though, and
one has to be mindful of the initial assumptions that were heavily imposed in each
step. For resonant interactions nearing the regime ka � 1, the above calculation
cannot be valid since the scattering length diverges, and we instead find that the
cross section takes on a momentum dependent form

σ(k) = 4π
k2 . (2.20)

The dependence on a is substituted with a dependence on k since the scattering
length becomes much larger than the interparticle spacing, and this range where
properties are independent of the microscopic two body details is given a special
name of "the unitary regime". Here the length scales corresponding to the inter-
particle potential do not play a significant role in the many body interactions,
and the only relevant measure is the energy scale of the particles which makes
comparison between different physical systems possible. It is easy to see then
that this regime is of particular interest in investigating exotic matter or other
poorly understood phenomena, since the physics can be analogously explored in
a much simpler model. Here the physics is said to be universal, and it is often
mentioned that results at unitarity for an ultracold gas of fermions can have im-
plications for understanding the physics within highly dense neutron stars. In any
case, it remains an interesting regime to explore since the highly tunable environ-
ment of ultracold gases offers an opportunity to understand universal systems in
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2 Introduction to quantum gases

a controlled manner1.
With that statement however, we must note that in the previous scattering

derivations there was no consideration given to the quantum nature of the particle.
The indistinguishable nature of the particle must be taken into account and the
requisite symmetrizations of the wavefunctions are expected to amend the cross
section. The differential cross section is indeed affected and has two different
expressions (

dσ

dΩ

)
bosons,fermions

= |f(k, θ)± f(k, π − θ)|2 (2.21)

with the second term in each expression coming from the indistinguishability of
scattering events. Integration over the total solid angle yields the interesting re-
sult that the symmetrization requirements enhance and diminish the total cross
sections for bosons and fermions respectively. In particular, one finds that

σboson = 8πa2 and σfermions = 0. (2.22)

Identical fermions, under the approximation of dominant s-wave scattering, do
no interact in the low momentum regime where higher p-wave collisions are sup-
pressed. While this does allow for an easier treatment as an ideal Fermi gas, it
is not the perfect environment for performing experiments since the absence of
elastic collisions prevents thermalization. As a result, the gas can remain in a
nonequilibrium state, preventing us from even preparing it as a degenerate ultra-
cold gas.
Of course, these elastic two body events are far from the only processes occurring

that can redistribute momentum. There are a variety of inelastic collisions possible
but the truth is that working in the ultracold regime and clever preparations of
the gas can deeply suppress the majority of these. Three body losses are always a
possibility, but at our peak densities of 1015 atoms per cm−3 the gas is still dilute
enough that the chance of this is very low. Inelastic collisions leading to trap loss
or a change of the atom’s internal state can also be eliminated if the atomic states
are carefully chosen to be robust against this.
As an addendum it is worth noting that the simplicity of s-wave interactions is

not a limitation in cold atoms. Rather, this is the easiest potential to theoretically
treat and experimentally investigate. In particular cases it is of interest to expand
the partial wave summation beyond s-wave scattering, and this can usually be

1It is both interesting and significant that universality is not related to a specific type of physics.
There is consistently universality within the topic of quantum gases, since the same physics
can be observed regardless of whether we use Li-6 or K-40. As we reach unitarity, we then have
universality with respect to kF , and we can draw analogies between the broader categories
of astrophysics, high energy, and the ultracold
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2.2 Interactions in the ultracold regime
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Figure 2.2: For indistinguishable particles, the two scattering processes above must
both be viewed as identical. Calculation of the differential cross section
in eq. 2.21 must therefore take this into account. Taken from [Pre13].

done perturbatively via a T-matrix approach. It is more accurate for approaching
scenarios where multiple-particle scattering must be considered and can be used
to study a vast range of exotic phenomena in fermionic matter, but the theoretical
treatment is undoubtedly more complicated.

2.2.2 Many-body mean field

Up until now we have considered two body processes where collisions are limited
to point like interactions depending a parameter a, the scattering length. When
considering a many-body system, this formulation is still not straightforward, and
we instead consider the scattering effects within a cloud. Certainly this will have
a dependence on the density of scatterers, but also on the phase shift δl which was
introduced earlier. In the far field, the change in the outgoing wave from s-wave
scattering (l = 0) was effectively

δ = −4πanl
k

(2.23)

for particles moving a distance l through a gas of density n. Viewing the phase
shift as a change in particle momentum as ∆k = δ/l. The corresponding change
in energy can then be calculated via the shift in the momentum, giving

∆E = ~2(k2 − (k −∆k)2)
2m ≈ −4π~2an

m
. (2.24)
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2 Introduction to quantum gases

We associate this with a potential energy that acts as the aggregate effect on the
single particle from all other particles

U = 4π~2an

m
. (2.25)

Consequently, this is referred to as the mean field potential, since the potential
energy is a mean field result. For a > 0, U is positive and this corresponds to
repulsive interactions while the opposite case is for the attractive side. Though the
approximation is not necessarily validated for strong interactions or high densities,
it serves as a good basis for describing weak scattering processes within a bulk
system.

2.2.3 Feshbach resonances
So far, we have discussed the parameter a without giving much thought into what
physical insight we can gain from it. The scattering length has been mentioned
in the context of some static parameter that ends up with a magnitude on the
order of the Van der Waals range of the interatomic potential. If this is the case,
it would seem that cold atoms experiments are then unfortunately limited by the
type of atom that the researcher ends up using since there would be very little
experimental control over the interactions within the quantum gas. Thankfully
this is far from the truth and the interaction strength, while dependent on the
residual scattering length a (now referred to as the background scattering length
abg), was realized to be a tunable parameter over a variable range of attractive
and repulsive interactions.
It is perhaps most instructive to understand this in the context of scattering

channels which are the system’s initial and final states corresponding to the quan-
tum states of incoming and outgoing particles. Open channels correspond to en-
ergetically allowed collisions and by definition these are equivalent to the entrance
channel of the incoming particles. Within the interatomic potential there exist
bound states which correspond to a different set of quantum numbers and lie
above the scattering continuum in the open channel. This makes them energeti-
cally unattainable and it is consequently referred to as a closed channel. For alkali
atoms, the result of the two body collision depends on the spin configuration of
the valence electrons, specifically whether the spin wavefunction is a triplet or
singlet state. The two spin configurations are of course different in their internal
quantum numbers and correspond to different channels. In a common scenario,
incoming particles in the triplet potential can simply undergo an elastic collision
within the open channel if the singlet continuum states are not accessible. How-
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2.2 Interactions in the ultracold regime

ever the hyperfine interaction introduces a mixing between the singlet and triplet
states which results in a coupling between the singlet and triplet potentials. With
this, the presence of the bound state still affects the scattering properties close
to resonance since additional phase shifts other than δl are accumulated in short
lived processes where the atom briefly enters the closed channel in a virtual pro-
cess. The process where atoms in an open channel are resonant with the closed
channel and form a molecular bound state is called a Feshbach resonance (Fig.2.3).
The phase shift at resonance results in a divergence of the scattering length, so
controlling the energy gap between the two channels allows one in principle to tune
the scattering length. Additionally, one can realize positive scattering lengths by
shifting the entrance potential above resonance such that the bound state is still
available.

Figure 2.3: The available scattering channels for two atoms colliding with energy
E are shown in (a). The Feshbach resonance occurs when the entrance
energy E is close to the bound state of the closed channel Ec. This is
illustrated in (b) where (B − B0)/∆ = 0 on resonance corresponds to
the formation of a weakly bound molecule. At the same point, one has
a divergence of the scattering length which abruptly switches sign to
accommodate repulsive interactions between molecules. A significant
point is that the resonance is fairly broad and this illustrates the in-
terchannel coupling that can occur in the vicinity of the bound state.
This picture is taken from [Chi10]

For quantum gases where a portion of the atoms lie in the ground state, the
energy difference is easily controlled once one realizes that the singlet and triplet
states have different magnetic moments. Knowing that we can tune this via the
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2 Introduction to quantum gases

Zeeman effect, it becomes quite simple to bring the channels into resonance merely
via

∆E = ∆µB. (2.26)

Since phase shifts still occur away from resonance via second order processes of
entering and then leaving the closed channel, one is additionally able to tune the
scattering length as

a(B) = abg
(
1− ∆

B −B0

)
with ∆ = m

4π~2
g2

0
∆µabg

(2.27)

where abg is the background scattering length, g0 quantifies the coupling strength
between the molecular and continuum states, and B0 is the magnetic field required
to make the bound state accessible. For large scattering lengths, the bound state
additionally has a universal binding energy given as EB = ~2/(ma2). As one moves
further away from the resonance with the bound state still accessible, the binding
energy grows due to the smaller a. Deeply bound molecules are therefore obtained
in the limit a→ abg.

2.2.4 BEC-BCS crossover
We have now been given a useful tool, the ability to tune the scattering length
over a wide range of attractive to repulsive interactions. In the context of the
previous discussions of phase transitions, this now becomes extremely intriguing
since it was mentioned that external parameters such as magnetic fields or inter-
action strength could be used to drive transitions between different phases. For
example at cold enough temperatures, one can create a superfluid that persists de-
spite changes in interaction strength, but has an essentially different microscopic
character on both sides of the resonance. To truly understand this, we need to
amass and amalgamate all the concepts we have so far established.

The attractive side

First we can consider the attractive side of the resonance a < 0, where we start
out with the familiar case of two-component weakly attractive free fermions. The
notion of attractive fermions may seem counterintuitive but the problem was in-
tensively studied nearly half a century ago by early pioneers of quantum theory
in the context of superconductivity. Bare electrons that interact via an electro-
magnetic potential could receive a Thomas-Fermi screening when transferred to
a solid. The consequent strong suppression of the Coulomb interaction implies
that at large distances, the repulsive interaction is weak enough that it can be ne-
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2.2 Interactions in the ultracold regime

glected. On the other hand, long wavelength lattice vibrations lead to an effective
electron-phonon coupling that results in a net attractive interaction.

For fermions in a normal phase, the interactions can be modeled by Landau’s
Fermi liquid theory, namely by considering that excitations occurring as fluctu-
ations at the Fermi surface can be described by interaction-driven particle-hole
pairs. Due to their proximity to the Fermi surface, screening of the interactions
between these quasi particle excitations enhances their lifetime which only in-
creases as their energy approaches the Fermi energy EF . Of course, this was first
formulated in the context of solid state systems and while it is nice to understand
the solid state perspective, we do not realize the same environment in our ex-
periments. However for quantum gases this still becomes interesting, because the
presence of a Feshbach resonance means that we can realize attractive interactions
without needing a lattice system.

Called the Bardeen-Cooper-Schriffer theory of superconductivity [Bar57], the
BCS occupation spectrum of the ground state looks more like a Fermi distribution
at finite temperature since some states above the Fermi surface can be occupied
due to the negative interaction energy. Since the attractive interaction occurs
only in a small momentum shell around the surface (with a thickness given by
the maximum phonon frequency ωD), the Fermi edge is smeared out over a small
number of states to minimize the total energy. However this occurs for repulsive
interactions and if the interaction is instead attractive, Cooper found that the
Fermi liquid was unstable against the creation of weakly bound pairs. In the
presence of a Fermi sea (all fermions below EF ) two fermions interacting via a
phonon above the Fermi surface can continuously scatter and reduce energy via
phonon-exchange processes if the total momentum of the two k1,↑ + k2↓ = 0.

Considering the case where they have equal and opposite wave vectors, one
can solve the Schrödinger equation to find the existence of a bound state in the
presence of infinitely weak attraction. The energy of the pair is lower than than
their potential contribution 2EF to the Fermi sea, and this was the instability
highlighted by Cooper. The pairing mechanism (called Cooper pairing) occurs
in momentum space however, and thus in real space the pair size is larger than
the interparticle spacing. This confirms that they are not true bosons and do not
satisfy the bosonic commutation relations. The essential process responsible for
the Cooper pairing is the Pauli blocking which prevents the two fermions from
occupying k1, k2 < kF , so their formation is ultimately a many-body effect. With
pairing, the Hamiltonian of the system can be written as

Hpairing =
∑
kσ

εnkσ −
g

V

∑
k1,k2

c�k1↑c
�
−k1↓c−k2↓ck2↑ (2.28)
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2 Introduction to quantum gases

Figure 2.4: While the formation of composite molecules can be understood in real
space, the mechanism of Cooper pairing is a momentum space phe-
nomenon. Two fermions located on the edge of the Fermi surface can
scatter off it several times, depending on their proximity to kF . The
energetically favorable state occurs when the center of mass has a zero
net momentum. Image taken from [Che13].

for a coupling strength g > 0, energy in a shell εF − ωD < εk < εF + ωD and
occupation number nkσ. The difficulty was now the generalization to a many-
body system where there is a macroscopic number of Cooper pairs. The Fermi
instability then gives rise to a ground state wavefunction in the form of a coherent
state which leads to superconductivity

|Ψ〉BCS ∝
∏
k

c�−k,↓c
�
k↑|0〉 (2.29)

The ground state therefore shows us that it ends up being favorable to form a
coherent state of Cooper pairs. The concept of a BEC was already introduced and
while this language will become clearer in the following chapter, one can begin to
think of the superconducting state or a coherent state of Cooper pairs as a pair
condensate in momentum space2. The reduction of energy due to the formation
of pairs leads to a gap in the excitation spectrum at the Fermi surface

∆ ≈
(2
e

)7/3
EF e

π
2kF |a| . (2.30)

The gap, which can be understood as the binding energy of a Cooper pair, disap-

2This idea was already proposed by Fritz London several years earlier in 1964 [Lon64]
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2.2 Interactions in the ultracold regime

pears above the critical temperature for BCS superconductivity and can therefore
be viewed as an order parameter for the system’s superconducting state. BCS
theory only requires the presence of an attractive potential and does not discrim-
inate on the basis of its origins. With the wide range of attractive interactions
provided by the Feshbach resonance, it becomes an ideal phenomenon to study in
the context of ultracold atoms. However, it does fail to describe the physics at
strong interaction, so it becomes an additionally interesting phenomenon to study
in our system.

The repulsive side

In the other limit for repulsive interactions, we have already seen the existence
of a molecular bound state. Here, two fermions in different internal states can
be tightly bound, and far from the Feshbach resonance for a > 0 the diatomic
molecules can be approximated as point-like bosons. The molecule size which will
be on the order of the scattering length grows to be small enough that its internal
fermionic structure cannot be resolved, and the majority of the physics can be
explained from a bosonic standpoint. Indeed for sufficiently large a, the binding
energy of the molecule with mass M is given by

EB = ~2

2Ma2 (2.31)

becomes very large as a → abg, indicating that the deeply bound molecule is
far in the bosonic regime. For low enough temperatures one reaches the regime
of the familiar phenomenon of Bose-Einstein condensation, where the composite
bosons behave with Bose statistics and condense into a molecular BEC (mBEC).
Remarkably, the critical temperature is akin to that of the purely bosonic theory,
with

TC = ~ωN1/3

ζ(3)1/3 ≈ 0.94~ωN1/3. (2.32)

The composite nature is well hidden far from resonance (called the BEC regime),
and here the atom number N refers only to the total number of molecules. Note
that the Bose symmetrization means that the cloud at the zero temperature ground
state will be significantly smaller than in the BCS limit since the wavefunction sym-
metrization means that several particles can occupy the same point in real space.
In three dimensions, condensation indicates the presence of a superfluid, though
here it has an innate bosonic nature.

The crossover
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2 Introduction to quantum gases

The BEC and BCS phenomena can be recognized as two extrema of a contin-
uum on a scale of interactions and the latter is only valid in the limit of weak
attractions3. Though a superfluid exists in both limits kF |a| � 1, the means
through which it comes about are extremely different and have a strong depen-
dence on the quantum statistics of the particles involved. The dense molecular
BEC and the large Cooper pairs delocalized in real space seem to be wildly incom-
patible with each other, and the first question we may ask is whether the coherent
state persists as the scattering length a slowly changes sign. In the picture of our
solid state systems this may seem a bizarre question to ask since there is little
chance of accessing a molecular bound state in some metallic compound. How-
ever, we are now lent an advantage by working with atoms, since we can now
tune the scattering as a parameter independent of its environment. There is no
need to worry about particular chemical materials used or the effects of impurities
affecting the phonon coupling since the only necessary variable, the interaction
strength, can be adjusted in a controlled manner. In the unitary regime where
the scattering length diverges, we have already seen that the total cross section
σ = 4π/k2 becomes independent of a. The interparticle spacing is then the only
relevant quantity, so we must expect some merging of the two theories here. The
first point that we can convince ourselves of is that moving from the Fermi gas
limit to unitarity, the cloud must decrease in size since the Cooper pairs should
become smaller for stronger attraction. This is reasonable since we also know the
occupation of the momentum states must somehow transition from the Fermi step
function to the narrower Bose distribution. Any other statements we could make
from here might simply be guesses, and not without reason.
A theoretical treatment of this transition was an additionally convoluted topic

and finds its roots in the late 1950’s when physicists noted the similarities between
BEC and Cooper pairing but struggled to conjoin the two. In the crossover where
kF |a| � 1, BCS theory fails to correctly explain the physics in the case of strong
interactions. The pivotal idea came from Keldysh, who suggested that the BCS
state evolves smoothly into a condensate of pairs. The implication is that there
must then be a single fermionic theory that connects both sides of the crossover
and reproduces the the approximations made at the limiting ends [Zwe11]. As
Leggett noted [Leg72], the generality of the BCS wavefunction allows for a limit
where occupation of the single particle fermionic states is significantly less than
one, meaning that the Fermi sphere is no longer well defined. Not only is this a
necessity for the formation of a BEC coherent state, but it was realized that this
is in fact achieved as a limit. Though there is no exact description for the system

3http://arxiv.org/pdf/1306.5785v3.pdf

21



2.2 Interactions in the ultracold regime

Figure 2.5: Pairing within the different interaction regimes is smoothly connected
within the crossover. The BEC and BCS limits are well defined by
the presence of molecules and large Cooper pairs. The consequence of
the smooth crossover is that within the unitary regime, the delocalized
pairs must contract such that the overall size is on the order of the
interparticle spacing. Within this regime, this is the only remaining
length scale of the system. Image taken from [Nei13].

within the crossover, a mean field approach can give reasonable insight into the
unitary Fermi gas. On the BCS side, the order parameter was identified as the
gap and solving for its dependence on the interaction strength, one finds a smooth
transition from the BCS to the BEC side. On the BEC side, the interpretation of a
gap in the sense of pairing is meaningless as it is instead replaced by the formation
of tightly bound dimers. However it was found that upon strong interactions,
it transforms into an equation for a composite molecule of fermionic atoms and
yields the correct expression for the larger molecular binding energy. Within this
framework, we can assume that the pair size decreases from the BCS regime where
they overlap with other pairs, to the unitary regime where they are on the size of
the interparticle spacing, and then to the BEC limit where they can be modeled
as point-like particles.
We can find expressions for the critical temperature for superfluidity in both

the BEC and BCS limits, but it is still of utmost interest how it behaves in the
crossover regime. BCS theory was intended to encompass physics in the weakly
attractive limit but the discovery of the high-Tc superconductors hinted that strong
interactions could lead to realizations of a higher critical temperature. The nature
of the superfluid in the crossover is additionally a topic of interest, especially how
it changes character from bosonic to fermionic. The pairing mechanism, how it
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changes from the many body Cooper pairing to the seemingly two particle process
required for creation of composite molecules is only beginning to be understood.
Understanding and accessing physics in this regime is therefore a highly intriguing
possibility; it is this class of questions that will drive forwards our investigation
into strongly correlated quantum gases.

2.3 Influence of dimensionality
Up until now, we have concerned ourselves only with results in three dimensions.
Indeed, why bother with any other instance? It is worth recalling that the goal
of this study is to understand the behavior of condensation and superfluidity and
phase transitions in reduced dimensionality, where the physics is purportedly very
different. It is suggested that the recently discovered class of high-Tc supercon-
ductors owe their success, i.e. their huge critical temperatures, to their particular
2D planar geometry. It is theorized that strong correlations along with this re-
striction can support even higher critical temperatures, so exploring these systems
is not without merit. Briefly we can summarize the primary variations, since the
derivation in most cases is analogous to that in 3D.
The first point of difference is that in two dimensions, the derivation of the

scattering amplitude leads to a new interaction parameter ln(kFa2D) instead of
the previous 1/(kFa). The mean field result accordingly changes to reflect this,
with the 2D interaction energy given as

g2D ≡ U2D = − 2π~2

m ln(kFa2D) . (2.33)

Note the dependence on the 2D scattering length a2D. This becomes an extremely
significant quantity with the understanding that experimental realizations of the
2D environment will always have some residual effect from the remaining third di-
mensional. Theoretically, the meaning of 2D is straightforward but experimentally
the trapping of a gas introduces a finite length scale along the confinement making
the 2D environment impossible to perfectly create. Even if a gas is confined within
a two dimensional plane there will surely be an influence from the axial direction,
and we can therefore expect the presence of some quantity dependent on the z
confinement. Optical traps can usually be approximated as harmonically shaped
potentials, so a 2D trap can be generated by making confinement along the third
axis very strong, so that only the lowest energy level can be populated. However
the finite ’thickness’ cannot be neglected and extremely small length scales, two
dimensional scattering is not a valid conjecture. On long ranges, we can incorpo-
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rate this into the 2D processes and the axial influence takes a particularly elegant
form in the shape of the harmonic oscillator length lz =

√
~/mωz. This allows for

a calculation of the modified two dimensional scattering length with regards to
a3D as

a2D = lz

√
π

A
exp

(
−
√
π

2
lz
a

)
(2.34)

where A ≈ 0.905 [Pet01]. This expression is valid for all interactions strengths
through unitarity, but the same cannot be said for an analogous calculation of the
binding energy. Whereas we might hope to defined the 2D binding energy as

EB,2D = ~2

2Ma2
2D

(2.35)

the relation does not take into consideration quasi-2D character of the experimental
approach. Strictly speaking, the absence of an lz dependence is bound to be
disastrous in some regime, so a rescaling with the scattering length leads to the
transcendental equation

lz
a

=
∫ ∞

0

du√
4πu3

(
1−

exp(−EB,2D~ωz u)√
1

2u(1− exp(−2u))

)
. (2.36)

Simpler approximations can be made in the limit of weak interactions, but equation
2.36 will persist for throughout the crossover. Interestingly, it does have a physical
interpretation since in 2D a bound state exists for all interactions strengths, includ-
ing the attractive side. However the binding energy of molecules for ln(kFa2D) > 0
is weak, and a molecule in this regime will easily be dissociated when the thermal
energy kBT surpasses it. With experiments in a bulk system, many-body pairing
is still the dominant process.
Quantities relating to the particle statistics also change but not in any surprising

way, at least for the fermions. For trapped systems, the 2D Fermi energy and
corresponding Fermi temperature can be calculated as

EF,2D = ~2

2m(4πn2D) and TF,2D = ~2

2mkB
(4πn2D) (2.37)

for the Fermi wave vector kF =
√

4πn2D with peak density n2D
4. Variations in

the bosonic case, especially the appearance of the BEC, is far more unusual and
requires a much deeper discussion of the fundamental physics involved. This we

4the use of the peak density n2D is particularly significant in trapped systems where there is
an added inhomogeneity
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will investigate in the following section.

25





3 Condensation and the BKT
Transition

3.1 Introduction

The aim of this chapter is to introduce the physics of the Bose gases, the peculiar-
ities arising from reduced dimensionality, and most importantly to connect this
to the broader framework of phase transitions. In simple toy models like the 1D
Ising chain, the use of a particular parameter to characterize to appearance of or-
der seems to be a natural concept. The appearance and disappearance of magnetic
ordering is used to distinguish between macroscopic phases of the spin chain, and
at a certain point correlations between individual spins grow to encompass the
entire system where it exhibits a global coherence [Hei26]. Phase transitions are
therefore a beautiful phenomenon to study, since the entire system can be studied
via a global ordering, and the microscopic physics can additionally be dynami-
cally investigated via the particle correlations. The BEC phase transition is even
more astonishing as the transition from disordered particles to coherent matter
waves is described not by a natural state variable such as magnetization, but by
the appearance of a coherent many body wave function. Constraining the system
to two dimensions fundamentally changes the nature of the ordered phase and
several of the defining features of the Bose Einstein condensate disappear when
extended to the 2D environment. The machinery that replaces the true BEC
has an entirely different behavior, characterized by the physics of the Berezinskii-
Kosterlitz-Thouless transition. The majority of this thesis will be the study of the
BKT phase transition, but understanding the mechanisms behind it is an involved
procedure. The theory itself was not developed immediately, but rather piece by
piece as previous physicists began to realize that this 2D transition occurred in a
stark contrast to its three dimensional counterpart. Understanding this therefore
requires one to consider the initial construction of the BKT theory that embarked
on a journey from early explorations of superfluidity [Rub97] to phase transitions
and reduced dimensionality.
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3.2 Condensation and coherence in 3D
The concept of using a density matrix ρ(r, r′) to characterize the quantum states of
a system was well known from quantum mechanics, but a physical interpretation
for many body states was not apparent. Bose Einstein condensation was clear in
that it had the defining feature that the ground state corresponds to all particles
occupying the zero momentum mode, and a finite temperature realization would
result in a macroscopic occupation. In a density matrix formalism, it was never
clear how this was to be described since a many body state would have to consist
of more than a product of single particle eigenstates. The foundations of many
body coherence were thus established in 1956 when Penrose and Onsager equated
condensation with large finite fraction of particles occupying a single quantum
state [Pen56], and that condensation was evident in the case of ρ(r, r′) having a
ground state eigenvalue of order N. In a reduced density matrix consisting solely
of the condensed particles, the BEC would manifest in the presence of a single
eigenvalue and would exhibit the mathematical phenomenon of Off Diagonal Long
Range Order (ODLRO), or more colloquially display a long range correlation. The
immediate consequence was a realization that a single wave function could provide
a description for particles and in the ground state and for a macroscopic BEC, one
could speak of a macroscopic ‘many body wavefunction’. Furthermore, since the
appearance of the condensate coincided with the population of the ground state,
this macroscopic wavefunction could be used to characterize the new phase and
could serve as the order parameter for the phase transition.
The conclusion is powerful but doesn’t seem to serve any apparent purpose in

condensed matter systems which we may be interested in investigating. The next
crucial step was therefore in 1962 when Yang proposed that the appearance of
ODLRO additionally characterizes the appearance of superfluidity and supercon-
ductivity [Yan62]. These many-body phenomena were then only possible with the
concept of ODLRO deeply constructed into their mechanisms. Indeed, he con-
cluded that ODLRO was fundamentally tied to Bose Einstein condensation and
concluded with the notion that the onset of order would precede a phase transition.
The proposition was groundbreaking, as long range order would physically man-
ifest within the gas, with each atom retaining a memory of its neighbors’ phase.
The corresponding macroscopic ‘memory of phases’ would be the driving factor
for emergent many-body phenomena. Until now, there remains uncertainty about
whether superfluidity in quantum gases is equivalent to condensation [Lon38] as
there are competing definitions for the ground state of the system. In the partic-
ular case of a trapped Bose gas, the condensate order parameter is at least highly
suggestive since various approaches have marked the superfluid velocity as the
gradient of the wavefunction’s phase [Fey63, Leg75].
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3 Condensation and the BKT Transition

Before exploring the physics giving rise to superfluidity, we begin with a simpler
concept: condensation in three dimensions and the associated order. It was shown
that the appearance of a BEC is accompanied by long range phase coherence,
meaning that the gas can then be described in terms of a macroscopic wavefunction
Ψ. The exceptionality of this fact contains several subtleties, the foremost being
that the emergence of a global wavefunction Ψ can be used to mark the appearance
of a BEC. In 3D, the appearance of a many-body wavefunction as a coherent state
can be used as an order parameter to mark the phase transition for condensation
The macroscopic wavefunction Ψ(r) =

√
N0e

iS(r) determines both the contribution
of particles in the ground state and the global behavior of the system. The complex
phase, defined up to a static eiφ, can be used to characterize the coherence of the
system. In a true BEC, S(r) is taken to be independent of distance and therefore
becomes a global quantity that breaks a U(1) gauge symmetry. Interpreting this
in the context of phase, one then speaks of the BEC as exhibiting true long range
order; if one could access the phase for an infinitely large BEC, it would be constant
across the system.

3.2.1 Quantifying coherence
One can quantify the degree of coherence in a system by its first order correlation
function g1(r, r′). Similar to the quantum theory of coherence for electromagnetic
waves, coherent states of atoms can be described by their quantum field operators
[Gla65] such that the spatial correlation function is calculated as

g1(r, r′) = 〈ψ̂�(r)ψ̂(r′)〉. (3.1)

Under our order parameter ansatz, note that r = r′ yields the particle density at
that particular position, i.e. that

g1(r, r) = 〈ψ̂�(r)ψ̂(r)〉 = n(r). (3.2)

With the total atomnumber given by the integration of n(r) over the system.
In essence, the g1(r, r′) simply gives us a way to measure some of the information
encoded within the single particle density matrix. For the particular case of r = r′,
the correlation function is simply the on-diagonal elements of ρ(r, r′), i.e. the
observable n(r). For all other instances r 6= r′, the density matrix characterizes
the way in which its basis state amplitudes are phase shifted relative to each other.
The g1(r, r′) can serve as a measurement of this information and thus a degree of
coherence between the basis state amplitudes is captured as long range correlations.
For this reason, coherence of the many body state is additionally referred to as
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3.2 Condensation and coherence in 3D

‘Off Diagonal Long Range Order’, and it provides a unified framework for many
macroscopic quantum phenomena [Su93].

Obtaining the first order spatial correlation function of the quantum gas is not
a straightforward task, but is significantly less difficult if one has access to the
momentum distribution of the sample. Note that the field operator in momentum
space is simply the Fourier transform of that from real space:

ψ̂(r) = 1
2π~

∫
dr ψ̂(p) exp

(−ipr
~

)
. (3.3)

Using the Dirac delta function definition

δ(r − r′) = 1
2π~

∫
dp exp

(
ip(r − r′)

~

)
(3.4)

One obtains the first order correlation function:

g1(r, r′) = 〈ψ̂�(r)ψ̂(r′)〉 (3.5)

= 1
2π~

∫
dp
∫

dp′〈ψ̂�(p)ψ̂(p′)〉 exp
(
i

~
(pr − p′r′)

)
(3.6)

= 1
V

∫
dp n(p) exp

(
i

~
p(r − r′)

)
. (3.7)

Remarkably, the correlation function can be directly calculated via a Fourier
transform of the momentum distribution. In experiments a conventional time-
of-flight measurement doesn’t provide one with accurate information to use the
resulting distribution for the g1(r, r′). However, as will be seen in later sections,
a 2D system allows for a near-exact refocusing method to obtain the momentum
profile of strongly interacting gases.

To understand the concept of true long range order in a 3D BEC, it is insightful
to consider the case of condensation in a uniform homogeneous system. For a
thermal gas with a Boltzmann distribution, one can easily see that a Gaussian
momentum distribution in the form of

n(p) = 1
2πmkT

3/2
exp

(
− p2

2mkT

)
(3.8)

can be analytically Fourier transformed to obtain a correlation function decaying
with a behavior ∝ exp(−r2). For a BEC, one can consider a bimodal momentum
distribution with a macroscopic occupation of low momenta, meaning one can
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3 Condensation and the BKT Transition

consider the addition of a delta function:

n(p) = N0δ(p) + nthermal(p). (3.9)

Separating the expression, the thermal portion conveniently decays on the order
of the De Broglie wavelength as seen above. The occupation of the ground state,
modeled by the delta function, is more interesting and yields:

g1,cond(r, r′) = 1
V

∫
dpN0δ(p) exp( i

~
p(r − r′)) (3.10)

= N0

V
. (3.11)

Normalizing the correlation function by its density then yields the more intuitive
value

G1,cond(r, r′) = g1,cond(r, r′)√
g1,cond(r, r)g1,cond(r′, r′)

= g1,cond(r, r′)√
n(r)n(r′)

= N0

N
. (3.12)

If one considers the total correlation function from the n(p) ansatz above, then in
the long range limit for s = |r − r′| one obtains:

G1(s)|s→∞ →
N0

N
. (3.13)

Thus, for an infinite isotropic system, the spatial correlation function for a BEC
displays long range correlations that reflect the condensate fraction N0/N . Since
the coherence persists in the infinite distance limit s→∞, a BEC is said to exhibit
true long range order. Since the correlation function is innately a measure of the
order parameter across the gas, the condensate is phase coherent over the extent
of the system.

3.2.2 2D condensation

However our area of interest is two dimensional systems and we consider this
separately since reduced dimensionality influences the associated physics. The
exclusion of a finite temperature condensation in 2D for the homogeneous gas
emphasizes the significance of the trapping potential in the formation of a BEC. It
is useful to understand this and undertake a brief foray into the mechanism of the
system. The first peculiarity to note is that the density of states in two dimensions
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3.2 Condensation and coherence in 3D

has no dependence on energy. For a free gas with dispersion p = ~k,

g(E)dE = 2 2πkdk
(2π/L)2 (3.14)

And
E = ~2k2

2m → kdk = m

~2dEg(E) = A

2π
(2m
~2

)
(3.15)

Somewhat trivially, it can then be shown that one doesn’t attain a phase space
density that gives rise to condensation. Via the 3D derivation, one evaluates

n2Dλ
2 = − ln(1− eµkBT ) (3.16)

Under the constraint that for a Bose gas, µ ≤ 0 with thermal De Broglie wavelength
λDB = h√

2πmkBT
. At µ = 0 one would find a macroscopic population of the low

momentum mode, but the 2D case shows that any density at a finite temperature
can still yield a strict µ < 0. Put simply, one would need a nonphysical infinite
phase space density in order to achieve a BEC in two dimensions. Of course, a
way is eventually found around this and a quick glance at the expression makes it
evident that an additional contribution within the exponential could yield a finite
phase space density. A clever engineering of the Hamiltonian can then sufficiently
modify the expression for a population of low momentum modes. An external
potential as simple as a harmonically confining trap modifies the density of states
to

g(ε) = ε

(~ωr)2 . (3.17)

Following the above line of reasoning, the resulting expression for the density then
finds a transition to a condensed state, with the critical atomnumber for a given
temperature

Nc = π2

6

(
kBT

~ω

)2
. (3.18)

The discrete spectrum of energy states is decisive and one sees that in the lowest
state, ρ(E) = 0 as in the 3D case, allowing for macroscopic ground state popula-
tion.

Fluctuations From a phase transition perspective, it may also seem odd that
all of our treatment so far has only considered disruptions in the phase field. A
basic mean field argument would suggest that we consider small fluctuations of
the order parameter in the form

Ψ = Ψ0 + δΨ, (3.19)
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3 Condensation and the BKT Transition

where the fluctuation term has an effect on both the density and phase. In prin-
ciple it is negligent to ignore the role of density fluctuations, especially as finite
temperature thermal fluctuations do not favor a particular one. There may be sev-
eral more subtle explanations for the generic case, but for our system the role of
strong interactions can be highlighted with a simplistic argument reproduced from
[Had11]. Calculating the energy cost for adding a single particle to the system (or
for an inhomogeneous system, adding it to a particular point)

∂E

∂N
= ~2

m
g̃n, (3.20)

And normalizing by the thermal energy of the system

1
kBT

∂E

∂N
= g̃nλ2. (3.21)

For low temperature or more importantly large g̃, density fluctuations are sup-
pressed by the interactions of the system. The system can then ideally be described
by an effective Hamiltonian that only takes into consideration the low energy, long
wavelength fluctuations in the phase field. Additionally, the renormalization pro-
cedure of coarse graining the system effectively provides a short range cutoff where
any local density fluctuations can be absorbed. All that is important therefore is
that we include the effects of phase fluctuations and our goal now is to understand
how this is incorporated into the 2D theory.

3.3 The role of reduced dimensionality
In two dimensions the nature of the phase transition is vastly different, which can
already be inferred by the absence of 2D ideal gas condensation. In 1966, Mermin
and Wagner approached the question of dimensionality’s effect via a consideration
of 1D and 2D Heisenberg models [Mer66]. The result was an unexpected ab-
sence of ferromagnetic and antiferromagnetic order for any nonzero temperatures,
leading to the inference that the spontaneous appearance of an order parameter
(particularly magnetization in this case) was not possible. Hohenberg quickly re-
sponded less than a year later with a consideration of Yang’s original fascination
for ODLRO [Hoh67]. Again the result was definitive with respect to dimensional-
ity as once again low dimensions precluded the existence of long range ordering.
The implications were far from clear and Hohenberg himself remarked that he was
unable to make any statement about the existence of a phase transition as the cal-
culation appeared to be inconsistent with the notable appearance of superfluidity
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3.3 The role of reduced dimensionality

in 2D Helium films. If Yang was to indeed be correct with his connection between
phase transitions and ODLRO, there was some subtlety to the mechanism that
had yet to be uncovered.
At the same time, Kadanoff and Kane began to analyze the coherence in lower

dimensional systems in an attempt to understand machinery of ODLRO [Kan67].
The important of long wavelength phonon-like excitations was already noted, and
the divergence of the correlation function was only studied in the context of a high
momentum cutoff. A perturbative study of the single particle’s Green’s function
gave rise to a logarithmic contribution to an analytic first order. The tenacious
consequence was that it conclusively prohibited the existence of long range order in
2D, but Kadanoff additionally commented that existence of a phase transition was
not necessarily disallowed. Rather, its existence would be contingent on it having
a fundamentally different character than the 3D transition to phase coherence.
Indeed, condensation accompanied by true long range order is forbidden at finite

temperatures by the Mermin-Wagner theorem. For the ideal Bose gas the 2D
density of states is energy independent; consequently a calculation of the requisite
phase space density for condensation yields a divergent expression and a necessary
µ = 0. In the presence of an external potential Bagnato and Kleppner [Bag87]
proved the possibility of condensation in 2D for a power law potential Vext =
rη. In the particular case of a quasi two-dimensional potential one can consider
Vext(r) = 1

2mω
2
perpr

2
⊥+ 1

2mω
2
zz

2 with anisotropy ωz/ωperp � 1. With the additional
conditions kBT � ~ωz and kBT > ~ω⊥, the axial motion is frozen out and the
atoms can be described by an effective 2D model. A straightforward integration
for the total number of particles gives a nonzero condensation temperature in 2D

T 2D
c = ~

√
6

π
ω⊥N

1/2 (3.22)

3.3.1 The XY model

Obtaining additional understanding requires that the transition be quantified, and
here one can gain further insight by realizing that the uniform, interacting 2D Bose
gas is in the same universality class as the 2D XY model [Pos06]. In terms of a
phase transition, the properties of the Bose gas near the quantum critical point
can be determined by the behavior of scalings in the XY model. For this, one
typically begins by formulating a simple Hamiltonian of spins on a 2D lattice

H = −J
∑
i 6=j

si · sj = −J
∑
i 6=j

cos(θi − θj) (3.23)
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3 Condensation and the BKT Transition

Analogous to the breaking of a continuous U(1) symmetry, θ can be envisioned
as a variable with a phase freedom eiθi . For the discrete parametrization, one
considers an orientation of classical spins that can rotate in the lattice plane. In
a high temperature approximation of the spin correlation function, correlations
decay exponentially as

〈~Si · ~Sj〉 ∝ exp(−r
ξ

), (3.24)

indicating an unordered phase for T > Tc. For low temperatures, one expects
that the spin may vary smoothly across the lattice, leading to the spin wave
approximation where the low energy thermal fluctuations lead to slow rotations of
the spin (the equivalent Goldstone modes). The spin wave approximation leads to
an equivalent approximation for the continuum where

H = −J
∑
〈i,j〉

cos(θi − θj) ≈ −J
∑
〈i,j〉

(
1− (θi − θj)2

2

)
= J

2

∫
dr
(
∇θ(r)

)2
. (3.25)

A calculation of the spin-spin correlation via the partition function leads to a
low temperature algebraic decay

〈~Si · ~Sj〉 ∝ r−η (3.26)

At low T, thermal effects are still capable of driving spin fluctuations which
destroys true coherence and instead realizes a quasi-long range order that has no
characteristic length scale (unlike thermal exponentially decaying correlations), in
agreement with Mermin-Wagner. The change in the qualitative behavior of the
correlations at low and high temperature is indicative of a finite temperature phase
transition.
This result is general for phase transitions and is not dependent on the XY

model, but the mechanism for the phase transition is not fully encapsulated in
this simplified spin wave illustration. To truly capture the topological character
of its phase transition, the model requires a mechanism that allows for an abrupt
annihilation of long range phase order. The second source of fluctuations that is
particular to the phenomenology of the BKT transition requires the inclusion of
topological defects, particularly the appearance of vortex pairs that can be disso-
ciated into singular vortices above the transition. The spin wave approximation
only accounts for continuous deformations around the ground state and fails to
consider the contribution from possible defects or holes in the field. Berezinskii,
Kosterlitz, and Thouless proposed [Ber72, Kos73] that the leading order expan-
sion of the minimized Hamiltonian additionally supports configurations where the

35



3.3 The role of reduced dimensionality
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Figure 3.1: The correlations functions for true long range order, algebraic decay,
and the thermal unordered phase are shown here. In a log-log plot,
the stark difference in 2D phase coherence and a thermal gas is clearly
visible. Distinguishing between a condensed and uncondensed distri-
bution is therefore relatively straightforward if one has access to the
spatial correlation function

phase field θ(r) contains singularities where ∇2θ(r) = 0. This holds under the
conditions that a circulation around the gradient of the phase field∮

∇θ(r) dl = 2πn, (3.27)

for an integer value n, often referred to as the topological charge of the vortex. All
other loops that do not enclose a net vortex charge are appropriately zero∮

∇θ(r) dl = 0. (3.28)

The vortex properties may seem assumptive in nature, but one can see that a key
feature of the spin wave approximation is that allows for a global U(1) symmetry
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3 Condensation and the BKT Transition

in the spin. Namely,
θi → θi ± 2π (3.29)

Which highlights an invariance under a phase twist of 2π. Below the transition,
bound vortex-antivortex pairs only result in local perturbations to the phase field;
coarse graining the system in the field theoretical sense screens the field from any
long range effects that can cause a phase decoherence. On a microscopic scale
perturbations to the phase prevent a true long range order, and so one ends up
with a quasi-condensate in the sense that phase coherence slowly decays across
the system. Above TBKT , the unbinding of vortex pairs is energetically favorable,
and they form a disordered gas of phase defects resulting in a decoherence of the
phase [Had11] and a loss of long range order.
The excitation energy of a vortex is sufficiently high such that they could safely

be neglected in the low temperature calculations for the XY model. However the
continuous generalization which may analogously be written as

H = ~2

2mns

∫
d2r(∇θ)2 (3.30)

does not allow for their inclusion due to the phase singularity in the vortex center.
In a proper treatment, the calculation proceeds via Renormalization Group with
the implementation of a short distance UV cutoff for the lower integration bound,
where pairs separated by a set distance are iteratively integrated out. By splitting
the phase field into two parts

θ0 = θvor + θcw, (3.31)

it can be shown that the vortex solution and spin wave solution are independent
and the cross-terms in the fields vanish [Imr]. One can then proceed with the XY
partition function split into a vortex and a spin wave contribution:

Z ∝
∑
θvor

∫
D[θsw]e−β

(
H[θvor]+ 1

2

∫
dr1
∫

dr2θsw(r1) δ2H
δθr1δθr2

θsw(r2)
)
, (3.32)

where one considers the spin wave fluctuations around the vortex minima of the
Hamiltonian H[θvor]. Though subtle, the importance of the vortex-spinwave inde-
pendence cannot be overstated, since it allows one of the phenomena to character-
ize the long range order while the other sets the point of the phase transition. By
considering the fugacity or density of vortices as well as the coupling rescaled by the
temperature, one obtains the RG flow equations which quantitatively characterize
the response of the vortex pairs as the high temperature phase is approached.
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3.3 The role of reduced dimensionality

The cutoff Λ additionally identifies a termination for the renormalization since
coarse graining the system to length scales of the healing length ξ screens the
system to perturbations due to the vortices. As the temperature increases the
vortex core increases in size, which consequently raises Λ up to the critical tem-
perature where the flow equations pinpoint an instability. At the critical point,
one suddenly finds a runaway flow where the vortex fugacity increases, indicating
the diffusion of free vortices throughout the gas. The transition then marks a
universal jump in the resistance of the system’s ground state to low energy excita-
tions. The “stiffness” of the system can be identified with the superfluid density,
which then undergoes a phase transition and exhibits a discontinuity at the criti-
cal temperature. In this context, the RG flow indicates that the superfluid phase
space density nsλ2 for the thermal de Broglie wavelength λ jumps from 4 to 0, for
T > TBKT . Subsequently it is apparent that the phase transition at TBKT ties the
appearance of a superfluid to the binding of free vortices. The RG flow therefore
indicates a renormalization of the superfluid density to lower and lower values up
to TBKT where a vortex pair can unbind to produce free vortices that destroy the
phase coherence.
The scaling exponent of the correlations’ algebraic decay is innately tied to the

presence of a superfluid, as η is equated with the superfluid phase space density
nsλ

2 . Since the transition specifies the appearance of a superfluid with the critical
phase space density of 4, one should in theory retrieve an exponent of 0.25 for the
algebraic decay. Additionally since the relations between the vortex fugacity and
the bare coupling specify a thermal dependence of the superfluid density, one then
expects to extract a lower exponent (corresponding to a higher nsλ2) approaching
zero temperature. In principle the sudden appearance of algebraic decay with
unique exponent should simplify the pinpointing of the transition. The truth of
the matter is that this is often more nebulous in experiment as a typical gas is
trapped in an inhomogeneous potential, making the extraction of homogeneous
correlation function difficult. However this will be discussed more extensively in
later sections.
A convenient result of the RG calculations is to highlight the divergence of the

correlation length when approaching the phase transition from above, which is
characteristic of any continuous phase transition. However, the specific behavior
is to diverge with the form

ξ ∝ exp
√

TBKT
T − TBKT

, (3.33)

which is in contrast to the typical slow algebraic divergence that one is accustomed
to in second order phase transitions. It is worth noting that the typical algebraic
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3 Condensation and the BKT Transition

divergence of ξ dictates a divergence of polynomial form, which can then be used
to specify a discontinuity in some thermodynamic quantity. In the 3D case, the
approach of condensation is accompanied by a kink in the specific heat which can
be used to identify it as a second order phase transition. In the 2D case, exponential
divergence fails to realize a discontinuity in any number of derivatives (which may
be used for extracting the relevant thermodynamic quantity). Thus, one often
colloquially speaks of the BKT transition as a topological phase transition of
‘infinite order’.
The fast divergence of the correlation length near the transition makes it dif-

ficult to observe, but it motivates an interesting qualitative understanding of 2D
condensation. The experimental case of a finite system, one should note that an
additional relevant length scale for the appearance of coherence is that of the sys-
tem size. At some point with T > TBKT , the correlation length ξ will grow to
the order of the system without reaching the true BKT transition point. One may
then observe the appearance of a pre-condensate, which can be observed in the gas’
nonthermal density profile. Of course, one must realize that this is not synony-
mous with the true transition; though it may seem that correlation lengths greater
than the system size are sufficient for establishing phase coherence, the binding
mechanism for free vortices is not energetically favorable until TBKT is reached.
The presence of unbound vortices is still sufficient for disrupting the phase field
and preventing the formation of long range order.

3.3.2 Quantifying the transition
Identifying the transition point within the phase space density is an experimen-
tally demanding task as theory suggest using the quantity nsλ

2 which is often
inaccessible in experiment. A typical absorption image can provide only the to-
tal density of the system with little information about the insitu distribution of
superfluidity. Schemes do exist to allow for the specific probing of ns but these
may involve exhaustive methods such as rotating the gas and measuring a spa-
tial nonclassical response in the moment of inertia. Regardless, our experiment
doesn’t allow for such a measurement so easily, so once again we can turn to the-
ory for a more immediate scrutiny of the transition point. Assuming short range
contact scattering with the quasi-2D interaction parameter a3D/lz, Svistunov and
Prokof’ev undertook the calculation via a mean-field analysis [Pro02]. The crucial
point is to note that the calculation is performed for weak interactions, and in in
this regime the microscopic physics giving rise to g̃ are not important. Instead,
one can merely focus on phase transition physics and the fluctuation regime for
weak interaction. Remarkably, one can obtain a generic description of the weak
low momentum fluctuations via a simple |φ|4 theory. The |φ|4 model then allows
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3.3 The role of reduced dimensionality

for universal relations for the fluctuation regime and is completely independent
of BKT physics. The only contribution is a relation between T and ns that can
be obtained via the RG treatment for the BKT transition. Prokof’ev and Svis-
tunov then solve the model using a 2D lattice quantum Monte Carlo method and
determine the critical phase space density as:

nλ2 = ln
(
C

g̃

)
(3.34)

where C = 380 ± 3. The primary constraint is the derivation via |φ|4 theory
meaning that the interactions are assumed to be weak and must at least correspond
to g̃ � 1. Thus the validity of the theory can be called into question for strong
interactions, particularly those that are experimentally accessible to us in the
crossover regime. However a more rigid and fundamental relation can be imposed
if one considers extremely strong interactions in the regime g̃ ' 1. Here, the QMC
result predicts a total critical phase space density of nλ2 < 4, and recall that the
previous analytic calculations of the transition predict the universal jump of the
superfluid phase space density from 0 to 4. Of course if the total density is less
than this quantity, one can either naively expect the lack of a transition, or more
realistically a failure of the calculation. It will be useful to remember this point
in the future sections, as here especially our experiment can serve as a benchmark
to theory.
The understanding of the vortex mechanism is then that the bound vortices

contribute nothing to the coherence below the critical temperature aside from
small local phase perturbations on scales smaller than the healing length. The
algebraic exponent of the correlation function can then be described by spin wave
theory whereas above TBKT , the presence of free vortices abolish all coherence.
Here, vortex pairs are thermally excited and the pair size grows to the extent that
they overlap with others.

3.3.3 Unifying the concepts of BKT and BEC
At this point, we have discussed both BKT and BEC with little mention of their
unification. It may appear that the two are unrelated phase transitions, one driven
by total cloud density, and the other by temperature, and indeed the connection
may seem unclear. In a trapped system, the physics becomes even more captivating
as the density inhomogeneity can lead one to speak of local superfluid or condensed
phases, and the role of interactions complicates it further. In the latter case,
intuitively one sees that interactions flatten out the effective potential which in turn
slightly recovers the homogeneous limit. In the context of this discussion, the term
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‘BEC’ has been repurposed to mean macroscopic occupation of low momentum
modes, i.e. appearance of a non-gaussian or quasi-condensate fraction. True long
range order, the hallmark signature of T = 0 condensation in 2D, is therefore
not expected at the transition, and would no doubt be replaced by the BKT
algebraic scaling. Only at some finite T < TBKT could true condensation possibly
be achieved in the case that we are aided by the discrete spectrum of the harmonic
trap’s energy states. For low enough temperature, all excitations [Pet04] including
phonon and vortex pairs could in principle be gapped out, in which case one
would have no local disruptions to the field and would regain g1(r) = constant.
For our purposes, this region is inaccessible and can instead take BEC to mean
the presence of a nonzero condensate fraction. The relevant question is therefore
whether condensation is induced by finite size effects, and whether the apparent
transition is actually BKT driven at all. The difference is subtle and complicated
by the fact that direct observation of BKT has so far proven difficult. Recent
experiments by Fletcher et al [Fle15]. have provided some insight into the issue
and instead show that in the thermal limit of g̃ = 0, BEC and BKT converge to
the universal ideal Bose gas value for condensation. Intuitively this is apparent
if one considers the QMC expression for the BKT critical phase space density.
In the limit converging to zero interactions, one recovers the peculiar result that
the transition occurs at an infinite nsλ2, the predicted result for ideal Bose gas
condensation in 2D (recall that this is in the absence of a trapping potential). We
will approach the problem from a different direction, instead seeking to elucidate
the connection between the appearance of the condensate and the true nature of
the phase transition. As an addendum, it is worth noting that this of course holds
only in the bosonic limit where the gas can be described as obeying Bose-Einstein
statistics. For us, fermionic Lithium has the distinct advantage that we can explore
the bosonic, fermionic, and crossover regime where one has a mixture of the two.
The validity of the above statements may seem meaningless with our consideration
of a bosonic BEC but recall that BKT theory does not prejudice on the quantum
statistics of the particle.
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4 Creating an ultracold gas

4.1 The Lithium system
Having set the base for the physics that we want to study, our discussion now
becomes much more applied as we discuss how to actually realize this in a physical
system. Before embarking on an explanation of different trapping and cooling
schemes, note that a key component has been left out. Here, we will first provide
a brief overview of the Lithium system that will be used for our experiments.
Lithium-6 which has a nuclear spin of I = 1 and electronic spin S = 1/2 is

effectively a fermion, and has a ground state with two hyperfine states set by
F = 1/2 and F = 3/2. Transitions between the two states can be easily addressed
with their 228 MHz level separation, but the application of a magnetic offset field
opens the spectrum to more transitions. The Zeeman effect lifts the hyperfine
mF degeneracy so that The F = 3/2 splits into a quadruplet while the F = 1/2
splits into a doublet. At high magnetic fields (for 6Li above 30 gauss), we enter
the Paschen-Back regime where the hyperfine F is no longer a preserved quantum
number. Instead, the nuclear and electron spins decouple leading to a regrouping
of the hyperfine states such that there are then triplets of high field and low field
seeking states. By convention we number these sublevels |1〉 to |6〉 and restrict
our experiments to a two component gas of the lowest two lying states |1〉 and |2〉
(recall that s-wave scattering of fermions can only occur if they are distinguishable
particles requiring the use of two species). Restricting oneself to states lying in
the lower triplet is experimentally sound since two body collisions of atoms in the
higher states can lead to a relaxation into the lower |1〉, |2〉, or |3〉.
For our particular branch of inquiry into strongly correlated Fermi systems,

Lithium provides the unparalleled advantage of a broad s-wave Feshbach reso-
nance. Ranging over several hundred Gauss with a large background scattering
length on the order of hundreds Bohr radii, it grants access to a regime that most
other species cannot reach. The wide resonance is also technically attractive since
tuning the scattering length is achieved by an offset B-field, and this diminishes
the necessity for precise stabilization of the magnetic field. The exact resonance
occurs at B0 = 832.2G and the left side corresponds to the BEC side with a > 0
while the right corresponds to the BCS. Note that BEC side has a zero crossing,
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Figure 4.1: The hyperfine splitting for Lithium-6 is shown here. At strong fields,
the lower three hyperfine states are grouped together and denoted as
states |1〉, |2〉, |3〉. We typically use the lowest two for our experiments.

meaning that there exists a certain field value where the scattering length goes to
zero. At this point the interactions within the gas could essentially be tuned to
zero

Figure 4.2: Use of the |1〉 − |2〉 mixture is not necessary and there are additional
Feshbach resonances between the other states that are shown here. The
broad resonances make it relatively easy to access strong interactions.
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4 Creating an ultracold gas

4.2 Generating, cooling, and trapping atoms
Cooling the gas to the millionths of a Kelvin that we hope to achieve is far from
a straightforward task. In principle we need to start with a sample at room
temperature and cool it nearly eight orders of magnitude while simultaneously
doing this in a fast and reproducible process. Several steps are often used that
are each effective within a particular velocity range. The light mass of Lithium
lends itself to a scheme called all optical cooling, meaning that all the trapping
and cooling is achieved solely with light, and without the use of additional buffer
gases or magnetic fields. Our goal is to understand the uses and limitations of
each step that we take to cool into the quantum degenerate regime.
Before beginning any preparation, we first need to ensure that we can actually

prepare an isolated environment for the atoms. Because such a requirement seems
so trivial it may be overlooked when lauding the seemingly limitless potential
of cold atom simulation. One of the great advantages of this field is that we
actually can prepare physical systems in complete isolation from their environment.
This salvation is only provided by a stable and reliable vacuum so it is of utmost
importance that one takes good care to achieve this. Thankfully such a chamber
was already well designed and tested before the beginning of this thesis, so here
we only outline its key properties (with further details found in [Rie10]).
Of course we mustn’t forget to consider how the Lithium is actually generated -

an inconvenience that can easily be overlooked by overeager students. Lithium has
a melting point of 180◦C, and our oven is simply a stainless steel li source heated
to 350◦C to provide a high atomic flux. This is sufficiently high to produce a nice
Lithium vapor, but the high temperature means that the atoms have an extremely
high thermal energy, and exit the oven with an approximate velocity of 1500m/s.
This is far too high for any sort of atom trapping; were this the case, one could hope
to simply capture some room temperature molecules in the beam of a laser pointer.
Despite the strength and versatility of atom trapping, we need to bring the atoms
into a reasonable energy regime before we can hope to start exhibiting any control
over them. Since trapping them is not an option, we can instead allow them to
exit the oven with their high longitudinal velocity and then decelerate them as
they approach the experimental chamber. An elegant method was developed by
Bill Phillips and awarded the 1997 Nobel Prize, in which a counterpropagating
laser beam is used to slow down an atom by a series of momentum kicks. In a
semiclassical picture, the laser light can be viewed as a stream of photons, each
of which (assuming the light is near resonant to a transition) can drive the atom
to an excited state. If the lifetime in the state is short, the atom can re-emit
it and quickly absorb another. This slowing technique relies on the fact that
the spontaneous emission is isotropic, so averaging over the entire emission area
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4.2 Generating, cooling, and trapping atoms

results in a net deceleration of the atom in the direction of the slowing laser. An
important technicality is that the reduction in velocity results in the atom being
Doppler shifted out of resonance. Phillips’ idea was to use a spatially dependent
magnetic field to bring the atoms back into resonance via the Zeeman effect such
that the longitudinal position of the atom corresponds to a particular velocity.
Our particular slower is constructed in one of the more typical fashions, where
we use a series of eight water cooled coils in a configuration that results in a net
decreasing field. For the 40 cm long slower that we use, the exit velocity is roughly
50 m/s which is then slow enough for atom trapping.

Figure 4.3: The oven is located on the right side of the setup, feeding into the Zee-
man slower with the red coils. The atoms are transported to octagon-
shaped MOT where all the experiments are performed. The six view-
ports allow for large optical access. Taken from [Rie10].

4.2.1 Trapping in the MOT
Capturing the atoms goes hand-in-hand with slowing them to necessary veloci-
ties, so it is fitting that this next stage of trapping shared the 1997 Nobel for
advancements in atomic physics. The working principle is not dissimilar from the
slower where we used a spatially varying B-field and resonant photon scattering
cool the atoms. The major difference is that now we want the cloud to have no
center of mass motion. Rather than have one single beam, we use three along each
principal axis, so that atoms Doppler shifted from the transition can each feel the
appropriate force that pushes them back into resonance. To understand this, we
can consider a simply 1D case, where we want to trap atoms along a single axis.
Using a linear magnetic field gradient B(z) = A · z we can lift the degeneracy of
the total angular momentum levels mJ and drive transitions between the states
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4 Creating an ultracold gas

using σ− polarized light. Atoms at the center of the trap feel no force, but those
sitting farther away can be shifted closer to resonance, where the corresponding
counterpropagating beam pushes it back towards the center using the spontaneous
light force (this is appropriately called magneto-optical trapping). In the 3D case,
all three beams together confine the atom to the center of the trap while con-
currently providing a damping force to slow them down and reduce the cloud’s
average thermal energy.
This only sketches the briefest manner the operation of the MOT and a full

characterization can be found in [Rie10], but it revolutionized the field of atomic
physics. It allowed for a stable and long-term trapping of atoms, and in our case
we find a vacuum lifetime in the MOT of approximately 23 minutes, far longer
than timescales used in most other atom experiments. The loading procedure is
relatively fast as well, and within a singly experimental cycle we might collect
atoms for 3-4 seconds to reach a cloud size of 5 × 108 atoms. Beyond this point
we don’t gain much in terms of the total number, and are usually limited to a
maximum of 1.2× 109 atoms. Both the slowing and trapping processes we cool on
the 6Li D2 line, which involves exciting the lithium from its 2 2S1/2 ground state to
the 2 2P3/2 excited state, a transition that can be addressed with 671nm laser light.
Recall that the hyperfine splitting of the ground state’s F = 3/2 and F = 1/2 have
an energy difference of 228 MHz which is larger than the linewidth of our laser
(see [Rie10]). Consequently we use two separate cooler and repumper frequencies
to address relaxations into both of the hyperfine states. Both frequencies are
generated from a single tapered amplifier and shifted by ±114MHz by acousto-
optic modulators.

4.2.2 Sub-Doppler cooling
The MOT is not without its disadvantages though, and the primary limitation
is the so-called Doppler recoil temperature which places a lower bound on how
cold we can get with this technique. Relying on a cooling method that continu-
ously scatters resonant photon light means that the atom will always be receiving
momentum kicks of ~kphoton. While we choose to typically prepare a MOT at
temperatures of 400µK, we are physically restricted from cooling below 140µK.
Certainly this is colder than room temperature but it is still several orders of
magnitude above quantum degeneracy, which we would like to reach. One can see
that in order to escape the limitations of the Doppler recoil limit, the rest of the
optical trapping and cooling must be done with non-resonant light. Driving transi-
tions would simply result in these unwanted momentum transfers. Instead, we can
’cool’ by exploiting the statistical properties of the cloud’s temperature. Classical
objects behave according to a Maxwell Boltzmann distribution which yields the
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Figure 4.4: The optical setup of the experiment, with different trapping beams
highlighted in different colors. Taken from [Wen13]
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probability of a particle having a particular energy at a given temperature. For
the 108 atoms that we capture in the MOT, certainly a small fraction of them will
have significantly less energy than the average of the ensemble. We can therefore
aim to capture only these atoms in a smaller trap, and here the MOT provides
some assistance since the magnetic gradient spatially selects the coolest atoms to
sit near the trap center. Ideally then we would like to turn on the smaller trap
exactly at this point but we still have not established what type of potential this
will be, or how the trapping forces are generated.

For atoms of low momenta, we can make use of the radiation force: for a neutral
atom, an incident electric field will induce a dipole moment that can be charac-
terized by an interaction energy with the surrounding potential. The magnitude
of this dipole potential is dependent on the strength of the field, which for a laser,
can simply be given by its intensity profile I(r). The calculation is fairly standard
and can be found in several texts, and by solving the interaction potential for a
given oscillating field with frequency ωL one can obtain the explicit expressions

Udip(r) = 3πc2

2ω3
0

( Γ
ω0 − ωL

+ Γ
ω0 + ωL

)2
I(r) (4.1)

with a scattering rate

Γsc(r) = 3πc2

2~ω3
0

(
ωL
ω0

)3( Γ
ω0 − ωL

+ Γ
ω0 + ωL

)2
I(r). (4.2)

For a typical intensity profile (Gaussian for example) the intensity decreases for
r > 0, and we can see that this has a direct effect on the induced dipole potential
from Eq.4.1. This is not the only dependence however, the expression also relies
on the laser detuning from the transition frequency ω0. We know from earlier that
we want to be detuned far from resonance but we did not specify to which side. In
fact, there are two regimes, one where ω0 < ωL and one where ω0 > ωL. The effect
on the potential is quite clear; in the former case of a red-detuned laser frequency,
the potential is attractive and pulls atoms towards the region of highest intensity
(which for a gaussian beam is at r = 0). The opposite scenario of blue detuning
can be used to trap the atoms between light sheets since the potential ends up
being repulsive, and pushes atoms to minima in the intensity profile. If we want
to be economical in the use of our lasers, red detuned traps are perhaps a better
choice since we can in principle trap atoms with only a single beam.

The other advantage of using a large detuning is clear from Eq.4.2. The tran-
sition linewidth is fixed as Γ, but the whole expression can be minimized if one
uses a laser with ωL far from resonance. The only detriment is that this leads to
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4.3 Entering the 2D regime

an overall weak dipole potential, which must therefore be compensated for with a
high laser power.
In our experiment, we create the dipole trap using red detuned 1064 nm infrared

light generated by an IPG Photonics YLR-200-LP Ytterbium single-mode fiber
laser. The 393 nm detuning from the 671 nm D2 transition line requires that we
use the full output of the laser at 200 W. When transferring from the MOT to the
dipole trap, we use this to create a potential 1.5mK deep to capture a sufficiently
large fraction of atoms. The high power leads to high scattering meaning that
thermalization within the cloud occurs on a short timescale. Cooling the cloud
from here entails lowering the depth to 40 W for forced evaporation and this leaves
us with a sample on the order of 100 nK. For this purpose, we can also ramp on
an offset field close to the 832 G resonance, so that the large scattering length
enhances the thermalization rate.
For a single beam dipole trap, confinement along the beam axis can be extremely

weak in comparison the transverse axis especially it is well collimated. This is
good for trapping atoms along two axes but does a poor job along the third, so
it is sensible to overlay it with another beam. This dramatically increases the
intensity in the region of overlap resulting in a significantly smaller trap. One can
additionally be prudent by overlaying the beam with its own reflection under a
small angle so that a single laser can be used to create a crossed beam dipole trap.
This is the approach that we use and the 12◦ angle of intersection between the
beams creates a planar cigar shaped trap in the center of the chamber with an
aspect ratio of 8.3 : 44 : 1. The discrepancy between the x and z sizes might
seem concerning (note that the beam is longest along y since it intersects in the
x−y plane) but the small crossing angle means that it is larger in the intersection
plane than in the axial one. With the evaporation procedure, this itself is enough
to cool the lithium atoms into the degenerate regime. The next step is to adapt
this to two dimensions.

4.3 Entering the 2D regime
The significance of dimensionality in studying a certain type of physics has already
been expounded upon in the previous chapters, and here we will attempt to create
an environment that mimics a 2D setting. The first point of importance is to note
that there are indeed limitations to calling a setting explicitly two dimensional.
Expanding on the intuition gained from the dipole trap, one can imagine that
the dimensionality of a sample can be varied by tuning the trap parameters of
the external potential. Increasing the axial confinement to the regime of ωz �
ωr for example would generate a cigar shaped trap to model a one dimensional
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setting, while doing the opposite to attain ωz � ωr would instead result in a flat
pancake potential where the atoms would largely be confined to the 2D plane.
The necessary proportionality between ωz and ωr is not obviously, and one could
naively assume that a factors of 10 or 100 could be sufficient. The crucial point
requires one to deliberate on the previous discussion of interactions and to recall
that changes in dimensionality introduce the rescaled parameters g1D and g2D.
Here we introduced a dependence on the harmonic oscillator length and from
the simplified bosonic picture, one sees that high anisotropies are convenient for
achieving large interaction strengths. The true picture is that there is always a
residual influence of the third dimension which can most easily be seen in the
discreteness of the harmonic oscillator motional states. For a large aspect ratio
ωr � ωz, low temperature kBT < ~ωz and filling µ < ~ωz, one trivially can
conclude that the gas exists in the quasi-2D regime where the large energy scale
~ωz confines it to the ground state of the axial confinement. It is then expected that
higher modes are only populated in the radial plane, meaning that the kinematics
would be effectively 2D.

4.3.1 Finding the 2D environment
Following the rationale above, an easy way to create a 2D sample would be to
establish a large aspect ratio between the axial and radial planes since the discrep-
ancy in trap frequencies can suppress population of modes in one of the axes. For
a typical dipole trap with a Gaussian mode, the intensity profile is given as

I(x, y, z) = 2P
πwx(z)wy(z) exp

(
− 2 x2

w2
x(z) − 2 y2

w2
y(z)

)
(4.3)

where the waists in the radial plane are characterized via the Rayleigh length zR,
or the distance until the beam waist in z has grown by

√
2

w(z) = w0

√
1 + (z/zR)2. (4.4)

We could in principle attempt to engineer an elliptical intensity profile with
highly anisotropic dimensions, but conventional methods such as passing the beam
through an elliptical lens would still be a significant challenge. One can addition-
ally see that the constraint of a small beam waist the tightly confining direction
results in an intensity profile that would be difficult to work with.
A smarter option would be to use the approach of crossed beam dipole traps

that intersect under a smaller angle so that the radial confinement is diminished
due to the effectively broader trapping potential. For two beams intersecting
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under an angle 2φ, the diameter of the potential in the radial plane increases to
l ≈ 2wx,y/ sinφ. A small crossing of 20 degrees between both beams for example,
can increase the planar diameter of the potential by a factor of nearly 6 but
this again may not be enough to fabricate a 2D environment. A more fruitful
alternative is to consider E-field interference of the two. For no interference, a deep
optical dipole trap overlayed with its counterpropagation can be approximated to
first order, leading to harmonic confinement of

Udip ≈ −U0

[
1− 2

(
x

w0, x

)2
− 2

(
y

w0, x

)2
−
(
z

zR

)2]
. (4.5)

The depth at the center U0 scales linearly with the laser power, but is also doubled
due to the overlap of the counterprogating and propagating beams. Using effective
harmonic potential gives rise to distinct energy levels with discretized spacing, and
these can be characterized by the consequent trap frequencies

ωx,y =
√√√√ 4U0

mw2
0,x,y

and ωz =
√

2U0

mz2
R

. (4.6)

This is exactly what we would like in terms of a building an anisotropic trap,
but the requirements for the beam waists and Rayleigh lengths are too stringent
to make a two dimensional ODT appealing. If instead the two beams have an
identical polarization, the intensity adds as

Itot ∝ | ~E1 + ~E2|. (4.7)

For a crossing angle of 2φ, the potential takes on a periodic structure as

U(z) ∝ cos2
(
πz

d

)
(4.8)

where
d = λ

2 sinφ. (4.9)

For laser wavelength λ. The periodicity then gives rise to a lattice structure,
with sites separated by spacing d. For a small angle crossing such that we can
approximate sin θ ≈ θ, the width of the layer is now on the order of the laser
wavelength which will be significantly smaller than the beam waist. The large layer
spacing means that it is additionally possible to address each layer, and suppresses
tunneling between adjacent layers. As a method it becomes clear that dipole
trapping with polarization interference naturally begets the anisotropic potential
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that we are seeking, and is well suited to constructing the quasi-2D environment.

4.3.2 The standing wave trap
The experimental realization is now straightforward since we have understood
requirements and limitations for creating a two dimensional trap. The trap itself is
formed by the intersection of two 1064 nm laser beams, generated by a 50W Nufern
SUB-1174-22 fiber amplifier. The seeding laser is a single frequency solid state
1064nm Innolight Mephisto-S NE and only outputs 500mW which is insufficient
for trapping with the standing wave potential (SWT). It does however offer the
advantage of an extremely narrow ≤ 1 kHz linewidth with an active intensity
noise reduction. Amplification by the Nufern does increase the relative intensity
noise, but the laser light is passed through an acousto-optical modulator where
the diffraction efficiency can precisely regulated on a sub-percent level via PID
feedback.
The intersection of the beams is unusual compared to typical approaches and was

designed specifically with a high stability in mind. Throughout the optical table a
single beam is used for the SWT and only before the MOT chamber is it split into
two. The optical table schematic in Figure 4.4 is misleading in the sense that it
suggests something akin to a single beam optical tweezer, but the NUFERN light is
split in a vertical interferometer that results in an interference pattern in the axial
plane. The mechanical apparatus consists of an non-polarizing 50:50 beam splitter
that subdivides the incident beam into two of equal intensity, and a dielectric
mirror that reflects each component to converge within the experimental chamber.
The entire setup is enclosed within a heavy aluminum casing to prevent thermal
effects and dampen mechanical vibrations. The particular choice to have a vertical
interferometer is economic in terms of space and allows access for other trapping
beams. We are also not limited by available room on the optical table but instead
by the windows to the chamber, leading us to use a crossing angle of 14◦ between
the two beams. In the resulting interference pattern this leads to a layer spacing
of approximately 4.4µm. As inferred from the estimations above, this is indeed
a pleasant number to work with since we can be sure that there is no coupling
between layers or ’pancakes’. We would like to compare this to the beam waists but
there was a critical point left out in the previous discussion of dipole trapping. in
the coordinate plane of the vacuum chamber, round beams intersecting at a small
angle will lead to pancakes with an elliptical aspect ratio. Since an azimuthally
symmetric 2D environment is easier to work with, it behooves us to begin with
elliptically shaped beams that produce a round potential upon interference. Well
before the beam enters the aluminum interferometer, it is elliptically focused with
a 1:8 aspect ratio corresponding to waists of wvert0 ≈ 75µm and whor0 ≈ 600µm and
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this ensures that the resulting pancakes are round in the 2D physics plane.
It was mentioned earlier that we like to work in the limit of small kBT (here

we use a trap depth no greater than 500nK) and this is because a low filling of
the trap allows us to approximate the trapping as a harmonic confinement. The
frequencies are simply given by the power of the SWT beams and we find that a
combined power of ≈ 3W in both beams leads to trap frequencies of

ωx = 2π(14.10± 0.02)Hz (4.10)
ωy = 2π(14.02± 0.03)Hz (4.11)
ωz = 2π(5.53± 0.03) kHz. (4.12)

In the x-y plane the is almost perfectly circular with an aspect ratio of 0.995 be-
tween ωy and ωx. The significantly tighter trapping in the axial direction confirms
the 2Dness of our sample with a total aspect ratio of 392 : 394 : 1. From the
oven to the trapping, the whole range of cooling can be summarized below, with
a typical sequence taking around 9ms.

Cooling Method Temperature Atom number Density
MOT 400µK 108 ?
ODT 100 nK 105 108cm−3

2D trap 60 nK 5× 104 108cm−2

Table 4.1: Temperatures, atom numbers, and densities at different stages of the
cooling process

4.3.3 Magnetic fields and gradients
There are two sets of coils that we use for generating magnetic fields, and they
are separate used for trapping in the MOT and applying the offset Feshbach field.
While for many cases the broad lithium s-wave resonance is a blessing, it does
require that we are able to access a wide range of field values. Both the Feshbach
coils are mounted close to the chamber and are relatively small (30 windings and
a radius of 44 mm) so that the total current flowing through them is not too high.
Even so, they are glued onto water cooled heat sinks and can handle currents of up
to 220 A. With this, we can access magnetic fields of up to 1500 G with a maximum
ramping speed of dB/dt ≈ −2.4G/µs and a relative stability of 1× 10−6 (on time
scales of several days it grows to 6×10−6) . Mounting the coils slightly farther apart
than a Helmholtz configuration means that we can obtain a magnetic saddle point
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with a slight overall confinement in the radial plane (anti-confining for the axial
direction). The potential can in fact be taken as harmonic to a very high accuracy,
and we find that ωr,mag ≈ 0.39Hz

√
B[G] corresponding to ω = 2π × (10.2± 0.03)

Hz at B = 700 G. Since the z confinement from the SWT is on the order of kHz,
the antitrapping on the order of 2π × 20 Hz is almost negligible. The current
through the upper coil can also be in order to create magnetic field gradients.
Magnetic fields for the MOT trapping are generated by four stacked coils with

25 windings each. These are slightly wider in size so the large inductance leads to a
slower switching. They provide magnetic field gradients of ≈85 G/cm at currents
of 70 A. In later stages when the atoms are in the optical traps, they can be used
for gravity compensation or applying large gradients.

4.4 Two state imaging
4.4.1 Details of the acquisition and camera
A side project during the course of this thesis was the implementation of two
state imaging. In the present mode we are able to image cloud from three axes,
and looking from the side (in the plane of the 2D gas) is typically only used for
diagnostics such as measuring the 2Dness. The 2D environment allows for the
distinct advantage that all of the interesting physics can be captured by imaging
the entirety of the 2D plane, i.e. looking from above. The current method is
to obtain information via absorption imaging, where a resonant beam is projected
onto the cloud and the ratio of transmitted to incident intensity yields information
about the optical density of the cloud. To combat shot to shot fluctuations and
effects due to aberrations on the imaging beam, it is typical procedure to then
take a reference image without atoms, and a dark image where there is no incident
light and only pixel fluctuations are captured. The three images should then in
principle contain all the necessary information for studying the physics in the gas,
and consequently all three shots are taken for each experimental cycle. One can
calculate the optical density of the gas from these three via

ρod = lnT (x, y) = ln Iabs(x, y)− Ibg(x, y)
Iref(x, y)− Ibg(x, y) . (4.13)

The unfortunate reality is that we end up imaging a single state in each cycle for
our two component gas, effectively allowing us to only observe half the physics we
have access to. The primary limitation is the manner in which we image, since we
are limited by the minimum exposure time between shots. Out particular model
for the top-down imaging (perpendicular to the 2D plane) is an AVT Stingray
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F-145B camera with image dimensions of 1388 × 1038 pixels and a pixel size of
6.45µm× 6.45µm. Using the full area of interest limits the acquisition speed to 16
frames per second, or a minimum time of 62.5 ms per image. The exposure time
for an actual image has a much more dynamic range and can be set anywhere from
the minimum of 74µs to 67 seconds. Ideally one would like to be able to image the
second component after the first, but the relatively long exposure time means that
the atoms in the first state will have enough time to react to the momentum kick
that they receive from the imaging pulse. Our imaging pulse at 8 microseconds is
significantly shorter than any timescales the camera can provide, so we naturally
use the shortest shutter time and trigger both with an external signal from our
experiment control. The current sequence allows 70ms between images. Adding
another image after the first to image the second state 70ms later is clearly not
suitable for resonant imaging or any time flight so a different technique is needed.

Figure 4.5: A typical CCD is shown on the left where all pixels are exposed to
the light. At the end of exposure, the data is shifted down onto the
readout register. An interline CCD (right) operates differently, with
alternating rows of exposing and non-exposing pixels. Rather than
send all the data for readout, the charges are shifted horizontally to a
dark column allowing for immediate exposure of the next image. Both
images taken from [CCD15].

The usual camera for general applications is a full frame CCD which has the
advantage of offering high quantum efficiency since the entirety of the camera chip
is exposed to light. In particle image velocimetry, one typically wants to obtain
images in succession as quick as possible and a distinct advantage is offered by using
interline transfer cameras. Unlike the full frame CCD, interline transfer sensors
have alternating columns of photodiodes and ‘dark pixels’ which are masked to
prevent light from striking the chip. Instead of transferring all pixels down to the
readout register which can be a limiting factor for fast frame acquisition, stored
charges on the photodiode columns are immediately shifted to the adjacent masked
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4 Creating an ultracold gas

pixels. The transfer is significantly faster and may be on the order of 10µs, leaving
the light-sensitive columns open for instant exposure. While the second image
exposes, the first image can simultaneously be read out, allowing one to effectively
take two images separated by the time for shifting to the dark column.
One constraint is that the exposure time should be at least equal to the time

needed to read the data from the output register, which is given as 1/framerate
or 62.5ms in our case. An imaging pulse on the order of tens of milliseconds
is nonsensical and PIV measurements make use of a strobe that only pulses on
for a short time during the necessarily long exposure. The time between strobes
therefore sets the time between the two images, so we instead image the first state
in the last few microseconds of the first exposure, and image the second state in
the first few microseconds of the second exposure. Then we can image both states
within a range equal to 2 * (exposure pulse) + time for the interline transfer.
The Stingray F145B has a jitter of ±23.2µs per image, so to be safe we separate
the two images by 100µs. The separation is short enough that we do not observe
significant heating when comparing the pictures of the two hyperfine states that
were imaged. The imaging flash which plays the role of the PIV strobe pulses for
two 8µs durations which is the standard length used a single absorption image.
The switch for the imaging beam is controlled via an AOM, and thus can easily
open and close on a microsecond timescale. 4.6.

8+100+8 µs 8 µs

63 ms8 µs8 µs 63 ms

Trigger

Exposure

Laser

Figure 4.6: The optimal two state sequence for the shortest time between images
requires us to use long exposure times of 63 ms (1/frame rate) . The
two 8µs imaging pulses are separated by a short 100µs for shifting to
the dark columns. Since one trigger is used for two images, we use a
second one to begin the exposure for the reference picture. Here the
exposure time need not necessarily be the same length as the imaging
pulse. It can instead be longer for a better signal to noise.

The acquisition attributes for the camera in two-state mode are different from
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those used in the normal three image sequence. The imaging program was rewrit-
ten in Labview and adapted from previous versions, such that it now allows pro-
cessing of an additional absorption image and changes the capture settings for the
camera. To realize this in Labview, we use a bulk trigger and the multishot mode,
set to two images. Rather than trigger each image separately and create a separate
image for each, this allows us to trigger once for two images, and creates two empty
arrays as a 3D matrix for the counts to be read into. Combining this with the
multishot mode allows to camera to automatically use the interline transfer after
the preset exposure time has expired, and avoids any additional delay due to the
processing of an external trigger. An imaging sequence for 2 states, a reference,
and a dark picture can be seen in Fig.4.6. We can also see that having access to
both spin components is an advantage in terms of the signal to noise ratio.

Figure 4.7: An alternative method for imaging just one spin state allows us to
greatly reduce the time between the reference and absorption images.
The reference image takes the place of the second state image, and the
second trigger begins exposure for the dark image.

The ability to use the interline transfer is particularly useful since it is not only
limited to the four image sequence. The long wait time between the absorption
and reference image is disadvantageous especially when using magnetic field jumps
since the resulting vibrations are enough to cause fringes to appear in the output
image. It is possible to use a fringe removal algorithm to remove it with a significant
degree of success, but the method requires a detailed data analysis to process the
pictures. Instead, one can replace the second absorption image with the reference
image and resonantly remove all atoms from the field of view. The absorption
and reference image can consequently be separated by a significantly shorter time,
ideally on the length of hundreds of microseconds but realistically on the timescale
needed for the atoms to disperse. Such a sequence is shown in Fig.4.7.

58



4 Creating an ultracold gas

4.4.2 Laser frequencies and locking
The second component for the two state imaging is achieving a stable frequency
lock for the imaging beam. The large 80Hz frequency jump between the spin
states should additionally occur in as short a time as possible to prevent notice-
able dynamics. Combined with the necessary 11MHz Doppler shift for each spin
state, the laser frequency sequence becomes more involved. The current method
of using a VCO realizes the frequency ramp via a current modulation without any
feedback. A better alternative is to use a programmable frequency source, e.g. a
Direct Digital Synthesizer (DDS) which can precisely realize the frequency wave-
form. It provides an additional advantage that the GHz frequency span allows
for imaging at a wide range of magnetic fields and can be accessed directly via
the experiment control. The integration with Labview is not done directly, and
we instead use an Arduino Due mounted with an Arduino Ethernet Shield. The
waveform parameters set in Labview are the minimal number of elements needed
to specify the precise shape of the signal (pulse duration, speed to ramp for the
Doppler sweep, etc.) so the amount of data sent to the Due is significantly less
than if it sent every bit corresponding to a time dependent value. This method of
transmission is also crucial since the experiment control writes the ramp values to
a web server that is only accessed by the Ethernet Shield at a 16kb/s bit rate. Fast
communication between the Arduino and the DDS is then established by directly
addressing the microcontroller’s processor, and details can be found in [Kra15].
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5 Condensation and phase diagram
in the 2D BEC-BCS crossover

Creating a two dimensional gas first means that we somehow have to transition
from a 3D environment to 2D. Looking from the top, the optical dipole trap’s
cigar shape is a far match from the round pancake potential that we ultimately
want to trap the atoms in. Simply turning on the standing wave trap in the same
manner as the ODT immediately changes the shape of the potential by dastically
decreasing the z width and can excite oscillations in the form of a breathing mode.
An adiabatic ramping on of the SWT while simultaneously decreasing the power
in the ODT is a reasonable solution but we can additionally mitigate this by
increasing the mode matching. We ’paint’ the ODT potential by modulating the
diffraction angle of the trap beams beams as they pass through an AOM. At high
frequencies of ≈ 100 MHz that are several time the trapping frequencies in the
ODT, the atoms are unable to react to the scanning and see an effectively wider
time-averaged potential. Optimizing the modulation so that the flattened ODT is
roughly the same size as one of the standing wave pancakes leads to a much better
overlap of the two and consequently a much better transfer.

5.1 RF tomography
Before we become too enthusiastic, realize that all we have done so far is to nicely
overlap the two traps. The loading procedure contains another subtlety that the
SWT in fact consists of a series of traps arising from the interference between
trapping beams. The difficulty is then loading the entire gas into a single one
of these layers. Splitting the sample between two layers lowers the overall phase
space density and ultimately leads to a trapping of two decoupled gases. Imaging
from the side is not enough to resolve both layers and from the top there is no
hope for distinguishing between the two. We therefore want to have a loading
procedure that reliably transfers atoms from the ODT into a single layer of the 2D
trap. Our solution to this mandates a tomographic spectroscopy technique that
allows us to measure the density distribution over all layers.
Since the interference spacing is too small to address a single layer optically, we
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200 µm 200 µm 200 µm

A B C

Figure 5.1: The cigar shaped gas in the dipole trap (A) is poorly matched for trans-
ferring into the standing wave trap (C). To remedy this, we modulate
the dipole trap beam and create a time averaged potential (B). The
axial width of the distribution also becomes smaller making it easier
to transfer into a single pancake. These images are of a mBEC at 795
G, and are the average of several pictures.

cannot try to drive a hyperfine RF transition within a single layer. However, we
could try to make this transition frequency spatially dependent and then look for
resonances in the transfer. This may appear convoluted but it is simply another
variation on using magnetic fields to introduce a position dependence by way of
the Zeeman effect. Consider a mBEC of states |1〉 , |2〉 distributed over a few
pancakes. We can apply a magnetic field gradient B(z) across the z axis to make
the frequency for a |2〉 → |3〉 RF transition to vary as a function of z. Scanning
the frequency over a sufficient range and imaging the atoms in state |3〉 effectively
allows us to resolve the individual pancakes via the RF-pulse.
In the experiment, we begin by loading our two component gas into the SWT,

but before driving any transitions we remove the atoms in state |1〉 with a reso-
nant light pulse. Initiating RF transitions with the first component still present
would result in three body losses and other interaction effects, so to preserve the
atomnumber and temperature of the cloud we dissociate the molecules at high field
(1000 G) and apply the light pulse (performing a tomography with a heated cloud
will also result in an incorrect measurement of the density distribution). Note that
the composite character of the mBEC signifies that at this point we now have a
single component Fermi gas. The coupling between the pancakes is weak enough
that there is no tunneling between them as the atoms attempt to redistribute.
Shown in Fig.5.2, we next apply a strong gradient of 70G/cm with the MOT

coils to create the spatial dependence, but one must be careful that it does not
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Figure 5.2: The gas can be loaded into several layers that are stacked vertically.
Application of a magnetic field gradient breaks the degeneracy and
makes the |2〉 → |3〉 RF transition position dependent. By scanning
across this transition with different frequencies, we can address atoms
in each pancake and extract the distribution across them. Picture
taken from [Rie15].

lead to spilling from the trap. The applied field can exert a force on the atoms
(we use this technique for evaporative cooling), but it can be curtailed by increase
the power of the pancakes. Since the total power can apply with the 1064 nm is
limited, this places an upper bound on the maximum gradient that can be applied.
The |2〉 − |3〉 is now dependent on the offset field’s spatial position, so we scan
around the resonance frequency while imaging the transferred atoms in state |3〉.
When the traps are misaligned, i.e. we load into several pancakes, the distribution
of atom number vs. frequency shows more than one peak, indicating a significant
amount of the gas in a different layer.
The tomography provides a way to identify this, but it does not tell us how to

fix the issue. In reality, this is hardly a troubling problem since we can simply
shift the vertical position of the ODT before transfer by increasing or decreasing
a magnetic field gradient during the transfer. To avoid having to perform several
iterations of doing a tomography and shifting the dipole trap, we instead scan
different transfer gradients as well as the RF frequency. In a single experimental
run, we can then find the best ODT position that results in the largest amount
of atoms being transferred into a single pancake. For well-optimized values, we
find that we can load the majority of the mBEC (over 95%) into a single layer.
However, we’re interested in doing experiments in the BCS side as well, and for a
degenerate Fermi gas the situation is a bit more complicated. The Pauli pressure
for the fermions leads to the formation of a large Fermi surface, and subsequently
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5.2 The 2D regime

a large atomic cloud. For atom numbers where the mBEC is in a single pancake,
we can see that the Fermi gas is distributed across roughly three of them. Loading
into a single pancake would therefore mandate that we prepare the Fermi gas with
a significantly smaller number of particles, and this brings us to our next point.

5.2 The 2D regime

In the context of the standing wave trap, we began a discussion of what it means
to be 2D but we did not truly plunge into the topic. Since we are now ready
to commence measurements, this becomes a necessity and here we will begin a
much more in depth investigation. First we will discuss theoretical calculations
for determining the 2D edge, and then we will measurements for the same quantity.

5.2.1 Determining the 2D edge

The low temperature, low filling, and high aspect ratio were the first conditions we
imposed for the 2D environment. The discrete spacing of energy levels that come
with a harmonic trap imposes a more precise condition for maintaining the dimen-
sionality of the system. We can require that the Fermi energy (as well as all other
energy scales µ and kBT ) of the gas be smaller than the axial confinement ~ωz,
meaning that only radial levels of the trap are occupied. Crossing this threshold
has a physical signature as well since filling beyond the first excited state leads to
a growth in σz, the width of the distribution when viewed along the side. Once
the temperature is high enough that the gas begins populating the first excited
state in z, it is a weak assumption to impose 2D physics on what is no longer
a 2D sample. Knowledge of the Fermi energy can ensure that the quantum gas
only populates the radial modes, and it can also be used to define characteristic
temperature, momentum, and radius TF , pF , rF . In principle we can check this
experimentally, but we also undertook somewhat extensive theoretical calculations
for the quantity, which are summarized below.
Numerical calculations
To first gain an intuitive understanding, we considered a T = 0, non-interacting

analytic computation to study how σz behaves above the the Fermi energy (below
EF is trivial since we know the width of the cloud to be constant at zero temper-
ature). We use an approach of counting states, by finding the number available
before the first excited level can be filled. At any point, the total number of parti-
cles can be expressed as N = Ng+Ne for the number of particles in the ground and
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excited state respectively. Counting in x and y, we find that for wx = wy = wr,
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It is then useful to calculate the ratio of of particles in ground state (R0) and
excited state (R1) since we can express σz in terms of them:
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and R1 = 1−R0, we obtain
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)
. (5.2)

Along with our trap parameters and scanning across the atom number N , we can
determine the position where EF changes behavior to be at roughly 40000 atoms.
It appears relatively sharp which is to be expected at T = 0, but we can intuitively
conclude that finite temperature effects might cause this to smear out. Filling the
trap as a harmonic potential is erroneous since it fails to consider the Gaussian
profile of the beams, and as a leading order correction we can include an additional
anharmonic quartic term k′x4/4. Via first order perturbation theory, we calculate
the corrections to the energy levels. This leads to a 5% increase in the total atom
number and we can additionally include a mean field perturbation for each level
due to the attractive interaction between particles. The density change for each
radial mode forces us to consider the perturbation to each wavefunction and the
energy shift can then be computed as

E(1)
n = 〈Ψ(0)

n |g n(r)|Ψ(0)
n 〉 = 〈Ψ(0)

n |g|Ψ(0)
n |2|Ψ(0)

n 〉 = g|Ψ(0)
n |4. (5.3)

The unperturbed wavefunctions are known to be of the form Ψn = CnHn(x) exp(−x2

2 ),
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Figure 5.3: Simulation result of the T=0 non-interacting Fermi gas in a harmonic
potential

so calculating |Ψ(0)
n |4 amounts to integrating over four Hermite polynomials of the

same order (due to orthogonality constraints). We find this result to be
∞∫
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(5.4)
Including this along with the anharmonic correction, we find the full spectrum of
shifts to be on the order of 23% corresponding to Ncritical ≈ 49000. However the
T = 0 calculation is highly conservative since it neglects the broadening of the gas
from finite temperature. For simulating a gas above zero temperature at a fixed
T , we adopt an approach using the 3D Fermi distribution function

f(x, y, z) = 1
exp

(
β(~wr(nx + 1

2) + ~wr(ny + 1
2) + ~wz(nz + 1

2)− µ)
)

+ 1
. (5.5)

From our measurements we also find a correspondence between temperature and
atomnumber for a particular preparation procedure (e.g. 70nK at 24000 atoms
vs 145nK at 78000 atoms). Within the distribution, we implement a temperature
dependence T(N) via a fit to the data. Anharmonic effects can be easily included in
the distribution by including the energy corrections, but interactions are now less
trivial since using a self-consistent term gn(r) is computationally taxing. Instead,
we introduce a perturbative correction to the chemical potential as µ → µ +
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δµ where δµ can simply be considered as the Hartree shift in the presence of
interactions. Thus, we have

µ→ µ+ δµ = µ+ 2πn2
0

2M log(kFa) = µ

(
1 + 1

log(√µa2D)

)
. (5.6)

The mean-field treatment of the interactions allows us to avoid a self-consistent ap-
proach as there is no explicit reliance on the position dependent density. It rather
corresponds to the atom number shifting as a function of µ asNint(µ) = N0(µ+δµ).
A comparison of the noninteracting with the interacting case can be seen in Fig.5.4
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Figure 5.4: Comparison of non-interacting with anharmonic and interacting gas,
at 40nK starting temperature

for the same variable temperature range, starting at 40nK for the lowest atom-
number. Evidently the inclusion of interactions and anharmonicities results in a
sharper increase of the cloud size, still increases at low atom numbers. The 2D edge
that shows us the maximal number of atoms populating the lowest axial state is
unusually low for typical temperatures. Most likely this represents an error in the
model, but it is not so clear why it requires us to be at extremely low temperatures.

Experimental verification

Compared to our experimental data, these quantities do not seem to be wholly
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feasible, so we instead choose to extract Ncritical from measurements. It is likely
that a mean field treatment is not sufficient at this interaction strength, and a first
order correction to the anharmoniciy is a bad approximation as we start filling sev-
eral radial states. Typically we transfer the same number atoms from the dipole
trap to the pancake and then evaporatively cool to reduce the atom number and
increase the phase space density. Applying a magnetic field gradient augments the
process and additionally expedites it by carrying away atoms spilled from the trap.
Our experiments will be performed over a wide range of interaction strengths, and
we could find the Ncritical for each field, but it would be nicer to characterize it
with a single number. We therefore choose to carry out the measurement at a field
of 1400 G which corresponds to a weakly interacting Fermi gas, and marks the
highest field which we would potentially access (limited by the current to the Fes-
hbach coils). As we saw with the tomography, the Fermi statistics make the cloud
grow in size faster than any other effect, and characterizing the cloud where it is
most fermionic should serve as an upper bound for the fields where the attractive
interaction is stronger.
To do this, we carry out the spilling in the SWT, adiabatically ramp the field to

1400 G (to let the cloud evolve into a gas of fermions), and then release the atoms
for a 3ms time-of-flight. Imaging from the side, we can measure the axial distri-
bution and extract the width σz by fitting it to a Gaussian. Varying the spilling
depth of the 2D trap allows us to tune the total number of particles with this we
can extract the same type of plot as in the theory section. This may have been an
additional source of discrepancy from theory since the interactions undoubtedly
affect the gas during its expansion. A linear fit to the two regions is perhaps an
oversimplification, especially after seeing the theoretical calculations, but the pres-
ence of a kink is certainly clear. We find that the critical atom number is roughly
69000 atoms per spin state but we need to consider the implicit dependence on
interactions and temperature. Filling the trap just under this number is a dan-
gerous assumption and begins to take into account the impending 3D character
of the system. To be safe, we perform our measurements well below this region
where we can comfortably presume that the gas remains in the axial ground state.
The quasi-2D nature is however always present, and if for some reason (which will
be clear later on) we wish to access higher atom numbers, it is not obvious that
we remain 2D. Rather, it is quite likely that a small fraction of the sample begins
occupying higher axial excited states which means that the gas becomes free to
explore the third dimension. In this sense we are not limited in exploring colder
and more degenerate regimes since this will take us deeper into the 2D limit, but
there is always an upper bound placed on temperature or atom number.
There is one cautionary point to consider, namely whether fitting the axial

distribution by a Gaussian is a rigorous procedure. As the Fermi distribution favors
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Figure 5.5: The 2D edge that we are looking for is quite clear in the measurements.
The critical atom number marks the point where increasing the pop-
ulation coincides with a growth in the cloud size. The exact position
of Ncritical is not crucial since we limit ourselves to a lower atomnum-
ber. The σz is extracted by fitting the axial width of the cloud with a
Gaussian after 3 ms TOF

a distribution into the first axial state, it may be inaccurate to fit a Gaussian to the
profile since the wavefunction becomes a sum of the ground and first excited state
wavefunctions. In a very trivial model, we can see that the resulting wavefunction
becomes something similar to a form of

ΨTot(x) = c1 |ψ0〉 〈ψ0|+ c2 |ψ1〉 〈ψ1| (5.7)

= c1
(
e−α

2x2/2
)2

+ c2
(√

2αxe−α2x2/2
)2

(5.8)

where c1 and c2 are coefficients for weighting the two wavefunctions according to
the distribution in the ground and excited states. Simulating the density n(r) =
|ΨTot(x)|2 for different c1 and c2, we find that even for a gas evenly over the
two levels, n(r) is well approximated by a Gaussian. We can conclude that the
Gaussian fit of σz is an accurate representation of the actual width of the gas. As
a result we believe the experimental data and use this as a benchmark of the level
occupation. In principle we could furthermore estimate the axial excitatios from
the cloud size
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5.3 Accessing the momentum distribution
Now that we’ve ensured that our system and the corresponding physics will be
within the 2D regime, we are in a situation where we could begin thinking about
observing the BKT transition. Observing the quasi-condensation as well as the
algebraic order are both signatures that unfortunately will not appear clearly in
the insitu, or real space images. Rather, we saw that the BEC population of low
momentum states as well the characteristic g1(r) behavior left their defining and
unmistakable trademarks in Fourier space. Of course, we can see then that it is
advantageous to be able to access the momentum distribution.
In practice, this isn’t such a simple task. Mathematically we can easily Fourier

transform from x space to k space, but doing this to insitu images yields an
artifact that does not reflect the true physics. The Fourier transform of the insitu
distribution if a Fourier transform of the x plane information projected onto the
spatial distribution, and and therefore does not give us anything akin to the n(p).
Experiments often attempt to realize this by doing a time-of-flight (TOF), which
we have mentioned a few times so far. The idea is as straightforward as turning
off the trap to let the atoms expand with their initial momentum. A short TOF
allows the cloud to become more dilute, but a long TOF is equivalent to revealing
the momentum distribution of the atoms (that is, if there is no redistribution from
scattering). Atoms with low momenta will not move much while those with high
momenta will appear at the edges of the image. For condensation this gives a nice
qualitative signature, but it is improper to try and extract physical quantities from
this. It yields an approximation to the momentum distribution in the t→∞ limit
but it is in no way exact. The 2D system however offers a subtle yet beautiful and
unique advantage.
As an analogy, we can consider the much simpler case of classical optics. When

an incident wave is scattered on some object in Fraunhofer diffraction, it is not
straightforward to calculate the effect on the total wave. Instead one often breaks
it down into a discrete Fourier sum, and this makes it clearer that the distribution
in the far field limit we can resolve the frequency components and understand the
composition of the initial wave. However, we can easily bring the far field into an
accessible regime by using a lens, where the frequency information is found in the
focal plane, given by Fourier optics. A lens essentially gives immediate access to
the momentum information, and moreso, the information is exact assuming per-
fect alignment and no aberrations. We want a similar sort of technique that we
can use with our atoms, i.e. one that brings the far field, long TOF, momentum
distribution into an experimentally accessible plane. Realizing this in the context
of classical mechanics seems like a difficult task, but all we really need is a mech-
anism that generates a periodic orbit of position and momentum in phase space.
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With this in mind we see that the harmonic oscillator does exactly as mentioned,
and instead acts as a ’matterwave lens’. A full period maps a single particle back
to its initial position and a quarter period therefore maps it to its momentum in k
space. For a many particle system, we can achieve the exact same effect since the
canonical coordinates for each particle decouple from the others. We can see this
in Fig.5.6 where a phase space representation highlights the fact that each particle
is mapped to the Fourier plane, analogous to a transformation of the many body
system. We attain

n(x, t = T/4) = n(p, t = 0) (5.9)

where T is the period of the oscillator. For a one dimensional system we can
convince ourselves that this holds, but a 2D system appears to have the distinct
feature that the gas cannot be focused in both the radial and axial directions.
The remarkable fact is that this works to our advantage, since we can impose
the collimating potential in the radial plane while we allow the gas to ballistically
expand in z. This is precisely because the physics we want to observe takes place
directly in the plane of view (the x − y radial direction); what happens in the
axial direction is typically not what we are trying to observe. However this is only
of secondary importance since interactions with the gas completely prevent the
use of this method. Attempting the refocusing technique would lead to several
scattering events within that cloud that scrambles the momentum distribution.
Strong interactions however are the key to circumventing this, since they lead to
a fast ballistic expansion which enables us to use this method.
The gas becomes dilute enough in z that the strong s-wave scattering does very

little to alter the resulting momentum distribution. The power of this technique
thus lies in the fact that we can do this for all interactions strengths with our 2D
gas, and we can still extract the true n(p, t = 0).
We can implement this just as easily in our experiment by using the underlying

weak confinement of the Feshbach coils. We know these to be harmonic to a high
precision and offers a distinct advantage over performing the T/4 expansion in an
optical trap where high order anharmonicities would undoubtedly play a role. So
to achieve this, we release the atoms from the 2D optical potential but maintain
the offset field from the coils which are confining radially and anti-confining axially.
Trapping frequencies for our typical offset fields are weak, and at 692G we have
ωr = 2π(10.2 ± 0.1) Hz1. A quarter of the period thus corresponds to a time of
t = 25ms, which is then our evolution time in the potential. There is also the
possibility to use this method along with a series of hyperfine RF transitions to
obtain a magnification of the gas. Further details describing this as well as the

1we always do the T/4 technique at this field. Our reasoning will become clear in the next
section when we discuss the pair projection method
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Figure 5.6: Here we show the evolution of the gas in a phase space representa-
tion. The trajectory can be calculated exactly for any particle, and
the dashed lines represent the closed orbit that maps an atom in posi-
tion space to momentum space

focusing can be found in [Mur14].

5.3.1 The rapid ramp technique
During the ballistic expansion during the T/4 evolution it was mentioned that
redistribution due to scattering is small, but this does not necessarily mean that it
can be neglected. In the crossover region where the scattering length a→∞, one
might certainly argue that a few scattering events per particle is sufficient to make
the n(x, T/4) useless since the redistribution does not accurately reflect the initial
information. This is true, and we in fact take precautions against this by reducing
the scattering length with a method called the rapid ramp technique (previously
used in [Reg04, Zwi04]). The density of the gas becomes small very quickly, but
in the initial milliseconds of expansion it is sufficiently dense for redistribution to
be an issue for magnetic fields where a is large. Changing the interaction strength
very quickly, to a value where it is comparatively weak, is an effective solution and
we can do this for all field values. We choose a final field value of 692G which is
the weakest interaction strength we use in our experiments (below this, the gas
is too collisionally unstable for us to hold it at the length of a typical sequence).
On the bosonic side this reduces the scattering length but we can additionally use
this on the fermionic side, where it has the interesting consequence that fermionic
pairs are projected onto deeply bound molecules. The relative momentum of each
atom in the pair becomes nondescript, and the relevant number is therefore the
center of mass motion of the pair.
It is reasonable to fear that holding the gas at a different offset field could allow
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5 Condensation and phase diagram in the 2D BEC-BCS crossover

it to adapt to the new interactions, and to mitigate this one has to be sure that
the response of the many-body state is slow compared to the timescales of the
projection. To guarantee this we measured that the ramp is fast enough that the
system cannot follow adiabatically, and the equilibration time at the new field is
found to be on the order of ms (whereas our quench is on a timescale of 100µs)2.
Since the ramp exceeds the time needed for the formation of a mBEC, the presence
of a condensate reflects the actual condensation of fermionic pairs. The usual issue
with time of flight measurements for paired atoms is that this mechanism does not
subsist throughout expansion since pairing is a many body effect. The projection
therefore allows us to probe the pair momentum distribution of a many body
correlated system, which is of particular relevance on the BCS side.

5.4 Analyzing the gas
After establishing the methods for measuring the momentum distribution, it ap-
peared that we were in a strong position to begin investigating coherence. We could
prepare degenerate gases, tune interactions, and directly access the n(p) which we
had planned to use for extracting the first order correlation function. This in turn
could be used to identify the presence of a superfluid, and to characterize the
nature of the phase transition.
However, the potency of the pair projection technique opened our minds to an-

other, more fundamental possibility: namely, measuring the phase diagram. In
the introductory chapters we highlighted the ambiguity of condensation in the
crossover where theory was unable to provide a well-agreed upon description.
Along with the broad Feshbach resonance of Lithium and the previous 3D mea-
surements [Reg04, ?], this offered the tantalizing and almost obvious opportunity
of measuring condensation over the BEC-BCS crossover. All the tools were in
our possession, and all that was required was to simply do the measurements and
extract the relevant parameters. The trials and tribulations of this journey are
not the focus of these thesis (though details are found in [Rie15], so we again only
focus on the victories and primary results.
The matterwave focusing technique can provide us with a very clear signature

of condensation since we can directly view the momentum distribution of the gas.
Seen in Fig.5.7, the enhanced occupation of low momentum states is clearly visible,
which is in contrast to the in situ image where by eye it is difficult to determine
whether the gas is in a symmetry broken phase. A by product of the refocusing is
that the momentum distribution is not artificially rescaled by the gas’ expansion.
The units are indeed in k space, but the same field of view is in both images.

2Measurements validating these statements are found in [Rie15]
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In situ density
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Figure 5.7: When the gas reaches degeneracy, the in situ distribution (a) does
not offer exhibit behavior that is qualitatively non-thermal. Using the
focusing technique mentioned above, we can measure the momentum
distribution (b) which shows a clear enhanced occupation of low mo-
mentum states

For a full phase diagram, we do need to be able to access different temperatures
(this is a thermal phase transition after all) in a systematic manner. An easy
way to do this is to evaporate to different trap depths in the pancake potential,
especially since this provides us with a large tunability. The issue with this is
that it introduces an additional factor, the atom number, into our parameter
space. The complications of this make temperature via evaporation an unattractive
method. We instead perform a much more controlled procedure where we prepare
our coldest sample and progressively heat it up. To introduce a small amount
of heat we access the lowest set of temperatures by simply holding the gas and
letting the technical instabilities of the trap heat it up (ranging from hold times of
0 to 1000ms). This does lengthen the experimental sequence, so we opt to access
higher temperatures by modulating the trap depth sinusoidally. Colloquially one
can think of it as shaking the trap and imparting momentum to the particles.
Depending on the amplitude of this modulation, we can heat the gas over a wide
range, though the highest temperatures that we can reach within a reasonable
time are limited.
Combining this along with the tunability of interactions by changing the offset

field, we can obtain a qualitative understanding of the condensation as shown in
Fig.??.The appearance of the condensate peak is dramatic and denotes quantum
degeneracy, but solely noting its appearance by sight is not enough to extract
meaningful quantities. It is certainly a nice visual that gives us intuition on how
condensation depends on interaction and arbitrary temperatures, but one can-
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5 Condensation and phase diagram in the 2D BEC-BCS crossover

not claim a critical temperature or compare it to theory in this manner. These
questions necessitate that we quantify the transition and characterize each of the
images.

5.4.1 Extracting temperature
Thermometry is a nontrivial topic in the context of ultracold gases. In the regime
of nanokelvins, one cannot use a reference probe to extract the temperature and
we instead rely on statistical physics. One of the common techniques for trapped
gases is to fit the distribution function to the momentum profile and extract the
temperature from there. Rather than use complicated bimodal or Bose/Fermi fit
functions, we rely on the the fact that finite temperature implies a finite thermal
fraction of the gas. One essentially has a condensate that sits on top of the rest
of the sample which conforms to a Boltzmann distribution. If the interactions can
be neglected during the evolution (as they are in the wings of a dilute cloud of
ultracold atoms), a time of flight results in decoupled motion of the thermal and
non thermal fractions. Since the thermal part is initially in equilibrium with the
rest of the gas, we can simply fit the high momentum tail (where we are sure to
find the thermal atoms) with a Boltzmann distribution. The expression for this is
well known and significantly simpler, so we can fit the distribution with the form

n(p, t = 0) = n(r, t = T/4) = A exp
(
− Mω2

rr
2

2kBT

)
. (5.10)

Aside from a constant A, the only parameters we need to know are the mass
of particles M and the trap frequency ωr. Since the images are symmetric in
the x − y plane, we radially average them and and fit the radial profile. Fitting
the thermal tail proves to be successful as seen in Fig.5.8 where the data is well
described for over an order of magnitude. Notably the radial average helps us in
this regard since the low signal in the dilute high momentum tails is effectively
enhanced when averaging over a large number of pixels. This works for nearly all
temperatures accessed with our heating procedure except for the very last few,
highest in temperature. Here we note that we in fact heat particles out of the trap
and are likely no longer 2D as they are in excited z states. However the condensed
portion of the cloud disappears far before this point and since we are sure that the
gas is entirely thermal here, it is not so relevant for our BKT or phase diagram
analysis. A more concerning point is the explicit mass dependence, since we want
to use mLi and 2mLi for the BCS and BEC limits respectively. The crossover is
difficult to treat since the atoms are neither deeply bound molecules nor long range
pairs. We instead retrieve a mixture of atoms and molecules, and at the point of
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5.4 Analyzing the gas

this measurement we were unable to use a procedure that distinguishes between
the two. Developing such a method ultimately might not be useful since we cannot
comment on the effect of the projection during the ramp. However, the concept
of a smooth crossover prevents us from suddenly jumping between the two masses
at some point, and we instead assume that the average per-scatterer mass behaves
continuously between the two limits. We therefore linearly interpolate between the
two mass starting from a point where we believe the gas to be purely molecular
to a point where it is composed only of paired fermions (details in [Rie15]). This
does lead to an interpolation of the temperature between these regimes.
Since we want our data to be universal for comparison, we need to normalize

the temperature by some quantity to make it dimensionless. The natural energy
scale for this purpose is the Fermi temperature TF , but now we definite it via the
homogeneous theory. If we make a local density approximation and assume that
the gas is uniform at the trap center, we can extract it directly from the peak in
situ density n2D also allowing us to make comparisons to the homogeneous case.
We get

TF = ~2

2mkB
(4πn2D). (5.11)

Using this we obtain a universal expression for the cloud’s temperature via T/TF .
We additionally wanted the Fermi energy to extract the wave vector kF which is
used in the characteristic 2D interaction energy ln(kFa2D). From the expression
for the Fermi temperature we obtain

kF =
√

4πn2D. (5.12)

This is a bit more of peculiar quantity since the interaction strength apparently
now depends on the peak density of the gas. This prevented us from knowing the
exact interaction strengths we attained before the measurements were done. We
could in principle also tune the interaction strength by varying the density but
since this is less systematic and not very effective we only vary the offset field
between a magnitude of 692G to 1400G.

5.4.2 The quasi-condensed fraction
The purpose of the Boltzmann fit is only to model the thermal distribution, and
therefore any signal lying above this must correspond to some non-thermal portion
of the gas. We can use this to identify the degenerate part of the cloud and we
define the non-Gaussian fraction Nq/N as the ratio of the integrated momentum
density (number of quasi-condensed particles Nq) lying above the Boltzmann fit
to the total number of atoms. For the coldest temperatures we can obtain con-
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5 Condensation and phase diagram in the 2D BEC-BCS crossover

densed fractions of nearly 70% of the sample. While this is a significant portion
of the cloud, it is also not so large as to repudiate the use of the Boltzmann fit.
Intuitively one can imagine that the densities in the high-k region are low enough
that interactions can be neglected and the gas behaves thermally.
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Figure 5.8: Plotting the radially averaged momentum profile in a log-log plot al-

lows us to easily identify the exponential Boltzmann wing. In the high
k region where the gas is fully thermal, we fit a Boltzmann distribu-
tion. The grey shaded area above the Boltzmann fit (dashed blue line)
indicates the non-thermal fraction of the cloud

We can characterize all of our data in terms of these two parameters T/TF and
Nq/N , but it would also be of interest to extract the critical temperature Tc where
we begin to see the appearance a non-thermal fraction. Extracting this for all of
our interaction strengths would yield the boundary for the 2D phase transition
that we are interested in. However above Tc, bosonic enhancement leads to a
nonzero Nq/N and we additionally find that this grows smoothly as temperature
is increased. Qualitatively it is hard to see evidence of a phase transition from this
behavior alone and we had difficulties using the condensate fraction to determine
the critical temperature. Instead we use the normalized peak momentum density
∼ n0/n0 ≡ n0,T/4/n0,insitu to provide us with a signature. The population of low
momentum states becomes dramatic in k space whereas it is less sudden in situ
(growth in coherence manifests in a population of small k), and the ratio of the
two therefore displays a sharp feature at the transition temperature. The position
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5.5 The Phase Diagram

of this kink is determined by two linear fits as depicted in Fig. 5.9, and this
analysis is performed for all fields where we have the appearance of a condensed
fraction. On the BCS side we are limited by temperature and above interaction
strengths of ln(kFa2D) ≈ 1.8 (corresponding to B = 852G) we are unable to reach
the degeneracy regime as the fermionic character becomes more pronounced.
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Figure 5.9: The vertical axis shows the normalized peak density (momentum by
in situ), and both regions of high and low T can be approximated by
linear fits. The intersection of the two dashed lines reveals the position
of Tc. The data here is shown at 782G and each point is averaged over
approximately 30 shots

5.5 The Phase Diagram
Combining all these methods allows for a straightforward measurement of the
phase diagram. Data was taken for a total of 17 temperature intervals and ten
interaction strengths. Higher temperatures and the fields where no condensation
was observed were omitted, plot the resulting Nq/N as a color scale over the
interaction parameter ln(kFa2D). The data points are plotted as the gray circles
and the rest of the diagram is a linear interpolation between these values. Black
data points and the complementary errors correspond to our extracted critical
temperatures, and the large error bars in the crossover are a result of the mass
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5 Condensation and phase diagram in the 2D BEC-BCS crossover

interpolation for the Boltzmann fits. Grey patches in the diagram denote regions
we could not probe, either due to interactions or temperature.

Figure 5.10: The condensate fraction of the phase diagram is plotted on a color
scale indicating Nq/N . The grey circles are the data points, each of
which is the average of approximately 30 images. Black dots indi-
cate the extracted critical temperature for each magnetic field with
the black line acting as a linear interpolation between them. The two
white lines are theory curves marking the boundary of the phase tran-
sition. The left curve is for the BEC regime, and the result of Monte
Carlo simulations. The right dotted and dashed curve is calculated
via BCS theory.

Qualitatively, the phase diagram shows us roughly the same behavior that we
might expect. The BEC side is considerably easier to access than the fermionic
limit and the change in interaction strength far from the crossover does not appear
to have a significant effect on the condensate fraction, as opposed to the BCS limit.
In the regime of strong interactions, we find a maximum in the Nq/N where the
critical temperature peaks at Tc/TF = 0.167 and for all interaction strengths we
find that the phase transition occurs roughly at about Nq/N ≈ 0.3. In an attempt
to quantify this, we also plot theoretical predictions as the white dashed lines for
Tc/TF on the BEC and BCS sides.
The comparison to theory now becomes interesting, since we can now comment

on the nature of the transition. Experimentally we have been able to show the
presence of a phase transition, but the only sign has really only been the appear-
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ance of a significant non-thermal fraction. Qualitatively this may be sufficient to
show condensation, but we are unable to make any remarks about superfluidity.
Though we certainly expect the presence of a superfluid due to the BKT-type
transition in 2D, we cannot explicitly show this without stirring the gas [Des12] or
looking for other superfluid characteristics [Ku12, Zwi05]. However theory calcu-
lations for the phase transition implicitly take this into account since superfluidity
in 2D systems is innately tied to the mechanism of BKT. Comparison to this al-
lows us to prematurely comment on microscopic physics giving rise to macroscopic
behavior.
Earlier we saw that the Monte Carlo predictions of Prokof’ev and Svistunov gave

an expression for the critical temperature. These are adapted by Petrov [Pet04]
for a gas of composite bosons and find the transition temperature on the BEC side
to be

TBKT
TF

= 1
2

(
log

[ C
4π log

( 4π
k2
Fa

2
2D

)])−1
(5.13)

with C = 380 ± 3. This fits the BEC side nicely and within the errors, and
surprisingly extends all the way through ln(kFa2D) = 0. The calculation does
not seem to be perturbed by the strong interactions, but also seems to provide
a good description for the physics assuming a purely bosonic standpoint. We
therefore suggest that the fermionic character comes into play beyond this point
for ln(kFa2D) > 0. This is a regime of particular interest since we cannot be
entirely sure as to what the influences are from the pairing and molecules. In 2D,
the persistence of the two body bound state shifts the zero crossing of the chemical
potential to roughly ln(kFa2D) ≈ 1 and this appears to coincide with our maximal
Tc/TF = 0.167 3. This is an exceptionally rich question, and we will come to this
again when we approach the problem via an analysis of the coherence.
On the fermionic side, the agreement with BCS theory is less notable. We

unfortunately cannot generate a gas cold enough to reach the same T/TF , but the
absolute temperature is in fact roughly the same (∼ 65 nK for lowest temperatures
on both the BEC and BCS sides). The apparent increase in T/TF is in fact
due to the lower Fermi temperature since we obtain it directly from the peak
insitu density which is lower for fermions. BCS theory predicts an exponentially
decreasing critical temperature

Tc
TF

= 2e0.577

πkFa2D
(5.14)

3The match with 2D BEC theory line as well as the position of the 2D zero crossing of µ
strongly suggests that we are in the two dimensional regime, and that 3D physics does not
play an apparent role
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where Tc is set at the point where the pairing gap goes to zero. In the crossover it
is not expected that we should have a perfect agreement with the theory since it
predicts a divergence as a2D → ∞. In the microscopic picture the Fermi surface
is no longer well defined as molecules start forming so understandable it is bound
to fail at some point. The non-thermal fraction does seem to suggest a decrease
after 832G and the critical temperature at 852G (ln(kFa2D = 1.72)) appears to
fit the BCS theory within the errors. It is also unclear what the influence of the
finite trap is on the extracted parameters. In the middle of the crossover where
the dimer size is roughly lz the axial confinement, the residual influence of the
third dimension has an effect as detailed in [Lev15] , and we cannot comment on
its changes to the microscopic physics.
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6 The BKT phase transition
The measurement of the phase diagram was certainly interesting in and of itself,
but it also provided a benchmark for the phase transition that was rooted in
local quantities. As we have stressed before though, the true elegance of phase
transitions lies in the long range effects with the formation of long range order. In
the critical regime the system quickly grows to be correlated on large length scales
and the irrefutable mark of criticality is the appearance of correlations. It is clear
then why this approach is more fulfilling. Any quantities that we extract for the
criticality can be corroborated by interesting behavior in local variables, but the
truly dramatic and beautiful properties of the phase transition are most apparent
in the system’s spontaneous coherence.

6.1 Mapping momentum to real space
The BKT transition is extremely prominent in 2D condensed matter systems mak-
ing ultracold atoms a natural analogue to use. However the majority of approaches
have only grazed the surface of the mechanism by investigating local variables such
as compressibility or the phase space density. The acclaimed ENS experiment of
Jean Dalibard considered a different approach by probing the performing an in-
terference experiment of two ultracold clouds [Had06]. The resulting interference
pattern contains information about the phase coherence which is quantified by
considering the contrast of the fringes. Calculating the integrated contrast yields
the extent to which correlations extend over the entire system, and this is a valid
method for establishing (quasi) long range order. The other option is to look at
the g1(r) directly with a single quantum gas [Rit07], and this is the approach that
we will take.
Coherence can always be a relevant local quantity, but the defining feature of new

phases is that is necessarily becomes global. In our phase diagram, any images
from the thermal side can be said to exhibit coherence but a further analysis
of the statement shows that this is limited to length scales of the thermal De
Broglie wavelength. An ordered system however extends this to the scope of the
system size, and if one can extract this, it becomes an unambiguous signature.
The key advantage that our 2D system provides us with is the access to the
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exact momentum distribution, and we showed in earlier theory chapters that it
can be Fourier transformed to obtain the first order spatial correlation function
g1(r). Intuitively this is the best probe into long range behaviour since higher
correlations at larger distances implies a stronger and more extensive coherence of
the gas. Anything extending past the length of λT hints at non-thermal physics
but the 2D BKT-type transition is even more compelling. BKT theory tells us
that the entire nature of the coherence decay changes from exponential (near
the transition) to algebraic, the significant point being that the latter has no
characteristic length scale. As this is additionally accompanied with a spontaneous
jump in the superfluid density, the transition should be sharp and a qualitative
change in the g1(r) should be unmistakable.

6.1.1 Schematic checks
However we are now faced with the archetypal difficulty faced in experiment,
namely that we do not always have direct access to these quantities. For a the-
orist, calculating the full density matrix of a system leads to an easy extraction
of the correlation function from the off-diagonal elements. Inclusion of a trapping
potential is not a significant hindrance, but one must now be careful to extract it
as g1(r, 0), i.e. the coherence from the center of the trap. Of course this is not
mandatory for the characterization of the phase transition, but it certainly useful
since it captures the physics from the homogeneous frame of reference. The gen-
eral expression g1(r, r′) which is now different, is not incorrect but instead tells us
about the coherence of the entire system. At the trap center the gas is expected to
reach its highest levels of degeneracy, so if the transition is to begin at any point
it should be here. The sudden appearance of a superfluid will occur as the phase
space density crosses a critical threshold and for a harmonic potential this occurs
at r = 0. Obtaining the correlation function amounts to calculating the two point
function of the field at a distance r from the center of the trap. In this manner
we can see how the coherence grows from a specific point in the gas and extends
over the rest of the cloud. In implementation though this is hardly a simple task,
since without single site resolution we cannot address specific regions of the gas
with high accuracy. Limiting ourselves to the Fourier Transform of the momen-
tum distribution, the function that we obtain is g1(r, r′), where neither of the two
points are necessarily at r = 0. The complication is thus that we get the values
between all points in the cloud, and the radial average g1(r) of this is an average
of all the correlations across the trap. The consequences of this in particular due
to the inhomogeneity of the trap are not clear, nor is it even expected that the
algebraic order persists.
Before we begin answering such questions, we should first undertake a more
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6 The BKT phase transition

methodical verification of the analysis. For thermometry, we took the momentum
distribution and radially averaged it in order to fit a 1D Gaussian. For the Fourier
Transform we certainly don’t want to do this since it results in a high loss of
signal. Rather, we perform a 2D discrete Fourier transform with Matlab which is
appropriate since the image is pixellated. A single transform introduces imaginary
components to the image in the Fourier plane, and the complication is then whether
the magnitude of this returns an artificial quantity. To check this, we 2D Fourier
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Figure 6.1: In (a) we show the effects of the Fourier transform on the g1(r). A
sequence of Fourier transforming and Inverse Fourier transforming does
appear to slightly change the correlation function, but to a degree that
does not affect our results. In (b) we show the effects of zero padding
(red) compared to a Fourier transform of the original n(k) (blue). It
is clear to see that the sampling is increased by a factor of two.

transformed and inverse Fourier transformed a n(k) image and compared it to
the original. Without any modification to the image it should be the same as the
original, and it is. Taking the modulus in between before the inverse transform (i.e.
obtaining the 2D correlation function) and radially averaging the n(k) changes it
a bit, but by a hardly discernible amount. The difference between the original and
new momentum distributions is well within the technical error of the experiment
and is therefore no cause for worry. The relevant quantity is the g1(r), and we
also check whether subsequent Fourier transforms result in a loss of information.
In Fig.6.1(a) we plot the g1(r) and a ’new’ g1(r) (Fourier transforming to the new
n(k), taking the modulus, and inverse transforming back) and again the difference
between the two is well within any errors. Note that before the transform, we
always pad the image to twice its dimensions with an empty background. If for
example the original image is 500×500 pixels, we create a blank image of dimension
1000×1000 where the central 500×500 pixel region is the original data. The zero
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padding is especially helpful for the discrete Fourier transform since it increases
the sampling and allows one to achieve greater frequency resolution in k space.
Additionally we verify that this does not adversely affect the data in any way (by
changing the g1(r) values) but merely reduces the interpolation between points
(Fig.6.1(b)).
In the momentum distribution images it may appear that the gas is not truly

radially symmetric and this is indeed the case. During the T/4 evolution the
gas expands in z along an axis that is slightly tilted with respect to the vacuum
chamber. The angle is relatively small and we suspect that the offset coils are
slightly displaced from the correct positions leading to a small rotation of the
coordinate system. Performing a radial average of the n(k) or the g1(r) could
potentially be an issue if it misrepresents the true radial profile, so we investigated
the deviation by performing elliptical averages. The ellipticity of the cloud is
below 10% (major axis over minor) hence the radial average could lead to small
deviations, but it turn out that this does not affect the variables we are interested
in.
To summarize, the reason we extract the correlation function is first because

we want to qualitatively see the scaling behavior conform to BKT theory, and
second because we are quantitatively interested in the decay exponent η. The
former remains the same for the elliptical and radial averages, and the latter is
surprisingly unaffected. The decay exponent differs slightly but falls within the
fit errors, so for simplicity and brevity we perform the rest of the analysis with a
radial average.

6.1.2 Momentum and real-space calibration
While the scaling of the above graphs in units of pixels is useful for a qualitative
comparison, it does not offer any insight into the physical system. This requires
a rescaling to microns or inverse microns (k space), which we can then compare
to meaningful quantities such as the cloud size. The insitu distributions can be
calibrated easily with the minimum spatial resolution given by the pixel size of
the camera, since this is the smallest distance that can be resolved. Though it is
tempting to think of the momentum distribution in the same units, recall that the
n(p) is truly a projection of the wavefunction in k space, so we instead the Fourier
transformed relation for k

kmin = mωrxmin
~

. (6.1)

The xmin introduces the camera constraints of the pixel size, and the expression is
trivially found between the relation for x and k in a quantum harmonic oscillator
model. The upper bound on our resolution we can easily find as the image size
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with one wavelength extending over half the field of view, but the zero padding
evidently doubles this. It is clear now why this offers a better sampling in the
correlation function, and we can set

kmax = Lkmin
2 (6.2)

where L is the total width of the picture. With the Fourier transform of this, we
return to real space with the g1(r) with a lower bound set by the imaging resolution
xmin ∼ 5µm and the upper bound as xmax = 2π/kmax ∼ 105µm. This defines
our fit range for power law or exponential decays. We will additionally denote
temperature in units of TBEC (condensation temperature for 2D noninteracting
gas of bosons) for comparison to theory calculations on the bosonic side of the
crossover.

6.2 The trap-averaged G1(r)
Already we have provided some tempting previews of the correlation function, but
we will do this more systematically. The parameter space that we can investigate
is exactly that of the phase diagram since we use the same data, and we will first
limit ourselves to data taken on the BEC side at 692G. The BKT transition is
unique among its counterparts since it does not involve the emergence of constant
order parameter, and the ’smoking gun’ is instead the algebraic decay. If we
consider the momentum distribution at our coldest temperature at T/TF = 0.04
(T/TBEC = 0.39), the corresponding correlation function shown in Fig.6.2 displays
the striking signature of long range coherence. The scaling of the correlations are
undeniably algebraic from ∼ 1 ah.o. to 8 ah.o., and they persist over a range several
times that of the thermal De Broglie wavelength. The slow decay suggests an
extended coherence in the phase field and in a 2D system this is an unquestionable
condition for superfluidity1 reaffirming what was originally put forth by Yang with
ODLRO. We can certainly confirm this by fitting an actual algebraic decay to our
distribution, in the form of

g1(r) = Ar−η (6.3)

where A is a generic amplitude. Though we rescale the data to a peak correlation of
g1(0) = 1 for ease of comparison, our fit range does not include the first few points
necessitating an additional fit parameter. For small r on the order of the thermal
wavelength λT ∼ 1.5µm, short range correlations from the thermal gas have a

1This could potentially arise from nonequilibrium physics but this does not seem to be the case
in our system and we will reaffirm this later on
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6.2 The trap-averaged G1(r)

significant contribution to the g1, and we can avoid their influence by waiting until
they decay over a few λT . On the other end of the spectrum we are eventually cut
off by the finite size of the gas, so the resulting fit range is from 3λT to 20λT .

Figure 6.2: Here we show the signature for a BKT phase transition by investigat-
ing the first order correlation function g1(r) for different T . The fit
region is illustrated by the vertical dashed gray lines. Our coldest tem-
perature (purple) is unmistakably algebraic, and the x scale is plotted
in harmonic oscillator lengths to emphasize the range of coherence. As
the temperature is increased, the correlations fall off faster to the point
where we transition from algebraic to exponential correlations (here it
is at T/TBEC ∼ 0.5). Between these temperatures lies the critical tem-
perature. This data is shown for our lowest field on the bosonic side
at 692G

If we now consider the next, slightly hotter temperature at T/TF = 0.047
(T/TBEC = 0.45) we see that the algebraic form is still present, but decays slightly
faster. At a single point, say r = 20µm, the coherence is slightly weaker as the
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6 The BKT phase transition

gas is expectedly less degenerate. As higher temperatures correspond to stronger
thermal fluctuations, the long range correlations should certainly be weaker. Since
the BKT framework incorporates these in the form of vortex pairs and since their
unbinding is contingent on the phase space density which decreases with temper-
ature, it is no surprise that we see a temperature dependence of the correlation
function. While a portion of the cloud within some critical radius rc can have
the requisite phase space density to suppress vortices, regions outside of it by
the thermal boundary might not. If in this sense the critical radius changes with
temperature, it is sensible that coherence is lost as temperature is increased.
If we keep increasing T the coherence is only on the order of the thermal wave-

length, and the g1 itself appears to decay as an exponential. Presence of the
algebraic decay is unapparent, and looking back to theory suggests that we should
expect an exponential decay in the disordered phase. If we fit the profile to the
form of Eq. 3.26, we regain the correlation length ξ which denotes the range
of coherence in the gas. In accordance with our expectations, the nature of the
coherence qualitatively changes in the regime of the phase transition, and the ap-
pearance of ordering is relatively sudden. Alongside the phase diagram we now
have another method to quantify the transition and pinpoint the critical tempera-
ture TBKT , and these results should be in good agreement. The essential difference
is that we are now probing long range features of the system, whereas the phase
diagram was an investigation of its local features.
By eye we can identify a temperature where it seems equally suitable to fit either

an exponential or a power law but we will adopt a more rigorous approach. For
the g1 at each temperature we fit both functions and extract the χ2 as measure
for the goodness of fit. As we consider hotter samples, the data begins to favor an
exponential fit at a particular point indicating that we have crossed the threshold
for the phase transition. The χ2 appears to linearly increase for increasing T/TF ,
and we approximate the behavior by two piecewise functions

χ2
alg(T ) = c1θ(T (1)

c − T ) + c2(T − T (1)
c )θ(T − T (1)

c ) (6.4)
χ2

exp(T ) = c3(T (2)
c − T )θ(T (2)

c − T ) + c4θ(T − T (2)
c ) (6.5)

where θ(x) is the Heaviside theta function. Considering the first equation, we
should expect a constant behavior of the χ2 for the power law fits up to a point
T (1)
c where hotter data is better fit by an exponential. The approximation to the
χ2 is then linearly given as c2(T − T (1)

c ) with c2 a fit parameter. The quantity
χ2

exp(T ) behaves analogously for the exponential fits, with T (1)
c giving the transi-

tion temperature found the other fit function. Though our initial intent was to
extract the Tc from the intersection of the two χ2 lines, the systematic error was
undesirably large and we instead define it as the average of T (1)

c and T (1)
c with
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the error given as the distance between the two. In this manner at 692G we find
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Figure 6.3: On the left we show that even fitting an exponential with a correlation
length of the system size does not provide a better description for the
data. The algebraic scaling cannot be due solely to the finite size of
the cloud. On the right the χ2 fits to the two different fit functions are
shown. At a particular temperature each of them rises sharply, and
interpolating between the two yields the critical temperature. The
right figure is taken from [Mur15]

a Tc/TF = 0.091 ± 0.021 as compared to the 0.089 ± 0.015 from the phase dia-
gram. The agreement is extremely good and not only validates the first method
of extracting Tc from the peak density, but also suggests that the measurement
of condensation is a corresponding measurement of superfluidity. From the 2D
theory this must be the case but the concurrence between critical temperatures
assuages any fears of finite size effects. In the vicinity of the critical point one usu-
ally has a universal scaling of all physical quantities that manifests in power law
behavior. The BKT-type transitions are an outlier in this regard since one of the
easily accessible observables ξ the correlation length, has the peculiar exponential
divergence at the critical temperature

ξ ∝ exp
(√

TBKT
T − TBKT

)
. (6.6)

Now that we can specify a transition temperature, we can collect all correlation
lengths down to TBKT and plot them in this form. We show this in Fig.6.4 and
there is a large discrepancy between the experimental and theoretical values that
neither explained by some offset or a scaling by a constant. Trivially we might
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6 The BKT phase transition

assume that the faster divergence in the calculated ξ suggests that we overesti-
mated TBKT , but we need to recall that the experimental realization introduces
a crucial site for disparity: the trapping potential. All of the analysis so far has
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Figure 6.4: The theoretically predicted exponential divergence of the correlation
length (black) does not seem to describe our measurements. ξ does not
diverge to infinity however since it saturates at the system size of ∼ 8
harmonic oscillator lengths. This is likely due to the inhomogeneity of
the gas.

assumed homogeneous BKT theory for infinite systems, neither of which is realized
in our system. Why we don’t consider models with the inclusion of a trap seems
to be an obvious question, but theory of this sort is extremely scarce. Implemen-
tations with ultracold atoms have been few in number and the BKT framework
was originally developed in the context of larger homogeneous condensed matter
systems. The question of how the transition and its microscopic physics are af-
fected in inhomogeneous systems is largely unanswered, and it is not even clear
that the same signatures should be present. The observation of algebraic order in
a trapped system is highly surprising as there is no guarantee that the spatially
varying potential preserves the power law scaling of the coherence. Applying a lo-
cal density approximation, we might even convince ourselves that each local region
of the trap can be characterized by a decay of different strength, but apparently
this is not the case. The fact that we do see coherence with a single algebraic scal-
ing in an inhomogeneous system is puzzling and simultaneously intriguing, and we

91



6.2 The trap-averaged G1(r)

have opened the question to the greater community in the hopes that it can be
understood.
The other option is that the transition we observe is in fact not of the BKT

type, and this we can verify by extracting the scaling exponent η. For this, we
simply read off the exponent found in the power law fits from earlier, and hopefully
find that this meets the superfluidity criterion of η = 1/nsλ2 < 0.25. Curiously
at our coldest data of T/TF = 0.04 we find η = 0.6 which is significantly higher
than any value we should expect from the homogeneous theory (if we are at all
able to fit a power law, the exponent should be no larger than 0.25) and at the
critical temperature TBKT we extract our highest exponent of about 1.4. The
root of the discrepancy is the form of the correlation function that we calculate,
particularly that we have g1(r, r′) 6= g1(r, 0). For the trapped system we discussed
that the latter gives us more useful information for comparison to the homogeneous
case (the former is not worse but simply gives us global information about the
coherence), but whether the corresponding exponent is more meaningful is also
not clear. Within a local density approximation we can argue that the scaling
of the correlations right at the center must have η = 0.25, but if this isn’t the
case farther out then we cannot characterize the correlations by a single exponent.
Furthermore, we would not even see an algebraic decay if we consider each shell
of thickness δr to have its own η and then average over all of them. We would not
be able to conclude that the transition is BKT.
Intuitively we can see that our Fourier transformed g1 is some sort of trap-

averaged correlation function. If in some manner the exponent is higher because it
is consolidated with thermal correlations then we can perhaps think of this g1,trap
as a quantity that shows us the slow growth of coherence across the system instead
of the sudden jump in just the superfluid core. Certainly this is presumptuous,
but we hope that the theorists will soon be able to offer some insight into this.
In a first approach we undertook various attempts to explain the high exponent,

none of which were conclusive or entirely correct, but worth reproducing since
they highlight incorrect ways of thinking. The first idea that we had was to try
and remove the inhomogeneity by considering the normalized correlation function,
where the g1 is weighted by the insitu densities at r and r′ as

G1(r, r′) = 〈φ̂�(x)φ̂(x′)〉√
〈φ̂�(x)φ̂(x)〉〈φ̂�(x′)φ̂(x′)〉

. (6.7)

For the homogeneous case, this is simply equivalent to g1(r, r′) and g1(r, 0) up
to a constant. The varying trap density breaks the equality and our question
was whether this could be restored by or ameliorated by removing the density
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6 The BKT phase transition

variation. Since the correlation function is the Fourier transform of the n(k),
we define a weighting function ζ(r) such that we con obtain the homogeneous
correlation function via
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Figure 6.5: On the left we show the weighting function ζ(r). By application of the
local density approximation it gives the strongest weight to particles
sitting in the center of the trap and diminishes the contribution for
those that are farther away. The dashed line indicates the region that
we actually consider for the correlation length, and the variation in
ζ(r) is not so large. The right displays the correlation functions for a
normal trap averaged n(k) (black) and one that is weighted with ζ(r)
to map to the homogeneous distribution (red).

G1,hom(r) = G1r

ζ(r) (6.8)

where

ζ(r) =
√√√√√ ∑

x1,x2
|x1−x2|=r

n(x1)n(x2)
N

. (6.9)

The ζ(r) is naturally constructed such that it only extends over the cloud size.
Computing the resulting G1,hom(r) as shown in Fig.6.5 still results in power law
decay of the correlations, and the extracted exponent of 0.51 is smaller than the
previous 0.60 but still far off from the expected homogeneous value. Apparently
this method is incorrect, and we can see that we failed to take into account the
modified density of states in a trapped gas and neglected contributions of variations
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6.2 The trap-averaged G1(r)

in the phase field to the correlations (which are arguably more important).
Still, we harbor the unease that our apparent algebraic decay might only arise

from finite size effects, particularly that the correlation length only grows to scales
of the trap but is not truly algebraic. Yet even if we fit an exponential to our
data with ξ on the range of the cloud size (Fig.6.3a), the distribution is still
clearly better fit by the BKT behavior. Consequently this question of power law
scaling we also investigated theoretically, and with more success. Here the query
was simply whether we recover the same algebraic behavior in a trapped system,
and we approach this by first making a low-k approximation to the momentum
distribution as

n(k) = kη−2. (6.10)

We will use this approximation with the addition of a UV cutoff kmax such that
we only model contributions from the degenerate portion. Per usual, we calculate
the first order correlation function as the Fourier transform of the momentum
distribution

g1(r) =
∫ kmax

k0
dkkη−2eikṙ =

∫ kmax

k0
dkkη−2eikr cos θ (6.11)

=
∫ kmax

k0
k dkkη−2J0(kr) (6.12)

=
∫ kmax

k0
dkkη−1J0(kr). (6.13)

The lower bound k0 is only used to avoid the infinity divergence of the momen-
tum distribution. The resulting correlation function is shown in Fig.6.6, and does
appear to be strongly algebraic. The point here is slightly subtle, since nowhere
in the above approximations did we include explicitly include a trapping poten-
tial. Rather, we assume a particular form of the momentum distribution which
theoretically is a valid approximation for a trapped gas and phenomenologically
we know we can reproduce. For a profile of this shape we find that the power law
scaling is not explicitly destroyed, so it may be physical that we still see it in our
trapped gas.
As a final point and more of a validation, we wanted to confirm that high expo-

nent was not an artifact of finite imaging resolution. Taking the length scales of
our correlation function, we simulated a similar algebraic decay with the expected
η of 0.25 or lower and inverse Fourier transformed this to the projection n(p) in
momentum space. For lower temperatures (presumably lower η) the momentum
profile becomes narrower, and by binning the simulated n(p) by the pixel size we
can identify any distortion due to the finite resolution. The resulting distribution
suggests that at current temperatures were are not hindered by technical limita-
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Figure 6.6: Our approximation to n(k) gives a correlation function that is strongly
algebraic from roughly 0.05 to 10, well over two orders of magnitude.
The constant region for r < 0.05 is a restriction from the high momen-
tum cutoff, and is resolution limited.

tions. Additionally we consider the vertical extent of the sample and propagate
this with paraxial wave equations to test whether cold samples appear to have an
artificially high η due to a defocusing of the axial distribution after T/4 evolution.
The resulting simulations suggest that this is insufficient to explain the abnor-
mally high scaling exponent, but the narrower distributions at lower temperatures
may overestimate it. Further details on this can be found in the supplementary
materials of [Mur15b].

6.3 QMC verification
As of now our understanding of the physics that begets our data is underdevel-
oped, and without any heavy theoretical machinery it is difficult to expand this.
Thus we were fortunate enough that we were able to enlist the help of Markus
Holzmann who had previously investigated 2D physics in trapped Bose gases with
both semiclassical and perturbative approaches. Most useful however was his em-
ployance of quantum Monte Carlo (QMC) to reproduce the spatial momentum
profiles of trapped Bose gases that were measured in [Pli11]. The path integral
approach results in a numerically precise calculation of the single body density
matrix ρ(r, r′), which therefore allows him to extract both the momentum and
g1(r) distributions for our experimental parameters.
The n(p) he simulates is therefore generated to close specifications of our trap
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parameters and interaction strength, and is in good agreement with our measured
values. If he then extracts the g1(r, r′) equivalent to our correlation function
calculated via the Fourier transform, he obtains the same remarkable result that
the coherence decays as a power law and furthermore that the exponent at the
transition is significantly larger than 0.25. Indeed he obtains a value of 1.3 that is
rather close to ours of 1.4. Alongside our measurements this vindicates the high η
that we find, and emphasizes that the trap-averaged correlation function (the off
diagonal portions of ρ(r, r′)) retains the power law decay of the coherence. We can
potentially interpret by stating that the trap influences the nature of the decay,
but the QMC also allows us to inspect this more closely. He additionally has
access to the off-diagonal density at the center and in the most beautiful result
yet, he finds that the central coherence g1(r, 0) at the transition is characterized
by an exponent of η = 0.25. The universal superfluidity condition of nsλ2 = 4
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Figure 6.7: Monte Carlo simulations for the trap-averaged g1(r, r′) (left) at 692G
(g̃ = 0.59) find an exponent of η = 1.24 near the transition, higher than
expected from theory for a homogeneous system. However, looking at
the homogeneous correlation function g1(r, 0) shows that the exponent
at the same temperature but from the trap center is η = 0.22 which
is below the expected threshold. The length scale aho is in units of
the harmonic oscillator length. These images are taken from private
communication with Markus Holzmann.

is apparently locally fulfilled at the center of the trap and fundamental to the
onset of power law correlations. This conclusion is both delightful and marvelous
since it proves to us that the BKT framework is still valid in inhomogeneous
systems but can only be recovered by studying specific quantities. Coherence
quantities consistent with the theory for the homogeneous phase transition must
be analyzed via the local correlation function g1(r, 0). If we are alternatively
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Figure 6.8: The extracted scaling exponent for the both experiment and QMC
starts at the same value of ∼ 1.4, well above that of the homogeneous
theory. The two values (shown here at 692G) deviate for colder tem-
peratures, but the discrepancy can be explained by considering the
effect of the finite imaging resolution on the QMC momentum distri-
bution. Therefore the true η of our gas is likely lower than we actually
measure.

interested in something akin to the coherence across the entire system, we can
instead study the trap averaged correlation g1(r, r′) which is the better quantity
for this. The exciting implication is that inhomogeneous systems with finite size
effects offer two different measures for analyzing coherence, and this distinction
cannot be made in the ideal homogeneous case. As of yet, we still do not fully
understand the meaning of the trap-averaged η, but it seems likely that this is
influenced strongly by the atom number; as we approach the thermodynamic limit
with a correspondingly decreasing ω, our intuition is that we would recover the
homogeneous result since the transition becomes sharper for large systems and the
density variation is reduced (assuming we remain 2D).
The QMC g1(r, r′) can be simulated for a wide range of temperatures matching

those accessible in our experiment. We can therefore extract scaling exponents and
compare them to ours for the dimensionless T/TBEC. While the transition appears
to occur at η ∼ 1.4 for the same temperature, a gap quickly grows between ηexp
and ηtheory (see Fig.6.8). While a portion of this may be due to the anharmonicity
or trap induced heating, we find via our imaging simulation that a significant
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fraction of the deviation can be explained by the finite imaging resolution. At
lower exponents the momentum profile becomes very narrow and thus the true
axial width of the n(p) (recall the ballistic expansion in z during the momentum
evolution) is overestimated as the gas exceeds the depth of focus. Including these
"smearing out" effects in the QMC-generated momentum distributions we find a
much better correspondence between measurements and theory, confirming the
legitimacy of our trap-extracted exponents. In concordance with the results for
the local coherence, we can conclude that the quasi-long range ordering that we
observe is established by the BKT phase transition.

6.4 Phase space density
So far we have only look at quantities relating to the momentum distribution,
and since we have access to the insitu profiles as well, we can try to identify the
transition from a completely different set of information. As a final check, we can
compare this to local quantities by using the prediction for the total phase space
density at a particular interaction strength. Locally at the trap center, it is well
known that we can apply an LDA approximation to compare our central densities
to the homogeneous theory, and we can gage the accuracy of our TBKT measure-
ment by associating it with the critical PSD. The relation is straightforward and
given in Eq. 3.34 and we it expect it to be valid at 692G (g̃ = 0.59) for compara-
tively weak interactions. With the peak insitu density n0 that we used for calcu-
lating TF , we find the peak phase space density D0 = n0λ

2 at the trap center and
compare this to the theoretically predicted critical value Dc = ln(380/g̃) = 6.45
[Pro02]. Linearly interpolating between our data points we find that this corre-
sponds to Tc/TBEC ≈ 0.65 which is in excellent agreement with the temperature
of 0.69TBEC ± 0.09 that we extract via the ξ2 fits.
The QMC calculations provide us with an additional benchmark since it also

generates quantities detailing the local properties of the system. Assuming a de-
scription of point like bosons, the simulations predict PSD values that closely
match our data within experimental error. The prediction for the critical tem-
perature is similarly 0.69 and since this is encompassed within our uncertainties,
we can conclude that we find no deviation from theory. In conjunction with the
ξ2 fits, we find a strong match between both local and global predictions for the
transition point, and this alone suggests that the observed correlation scaling is
a result of BKT physics rather than trapping or finite size effects2. Alongside

2As a finite system phase transition, the physics cannot be said to be independent of the
trapping potential or the finite size, but the correlations only scale weakly with these effects.
A description of the larger variation is captured by BKT theory.
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Figure 6.9: The peak phase space density is calculated from the peak insitu density
at the trap center, and is compared to the same quantity calculated via
QMC. There is a strong agreement between the two and both predict
a phase transition at nλ2 = 6.45 in accordance with theory (horizontal
black dashed line). The corresponding temperature is also the critical
temperature (dashed vertical line) that we find from the χ2 fits.

the QMC calculations the picture becomes much clearer and we begin to under-
stand that inhomogeneous systems have additional observables that can be used
to understand the extent of coherence in a system. While the trap-averaged g1(r)
produces scaling exponents that deviate from the established homogeneous theory,
the expected values are uncovered in a study of the local coherence.

6.5 Entering the crossover
If the phase diagram was not suggestive enough, note that we have another param-
eter with which to explore the phase transition. Tuning the interaction strength is
now arguably more intriguing since we can explore tenets of the fermionic BKT the-
ory. Though the theory and the associated spin models are valid for free fermions,
it assumes limiting cases of pointlike particles, e.g. single fermions or pointlike
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and tightly bound molecules. Exploring the crossover offers the chance to probe
the workings of the mechanism for the intermediate regime (where we have the
highest Tc) that conjoins the two extremes. Our study of the phase diagram found
different models like the Petrov line and BCS curve that quantified the Tc/TF
transition for the BEC and BCS limits. The absence of multiple 2D coherence
theories suggests compelling and nontrivial physics in the crossover.
In principle we are only limited by the data in the phase diagram, so we should be

able to analyze any magnetic field at which we observe condensation. At higher
interaction strengths of g̃ = 1.07 and g̃ = 2.76 (732G and 782G respectively)
we again observe algebraic decay of the correlations, the onset of which is well
matched by theory and QMC calculations (for both the phase space density and
the g1(r)). The critical temperatures of Tc/TF = 0.094 and Tc/TF = 0.114 are
consistent with those that we extracted from the phase diagram where we had
Tc/TF = 0.100 and Tc/TF = 0.129 for the two fields. We also find that the decay
exponent η from the g1(r, r′) is consistently higher than 0.25 which now should
not be unexpected. What is more unusual is that we find the exponent at TBKT
(the first temperature where the algebraic decay is present) to be similar values of
1.36 and 1.48 for both the fields, suggesting that ηcrit is independent of or weakly
dependent on interactions. What we also find surprising is that the critical phase
space density is well described by the theory of pointlike bosons even at large
interaction strengths of g̃ = 2.76. There was no guarantee that the model would
be accurate to such high values, and we rather expected it to fail at g̃ ∼ 1. It
appears that other derivations using this formula make the same conjecture, or at
least are unable to provide a description for large g̃. Holzmann et al. [Hol08] make
a prediction for the transition temperature in a trapped gas and find a first order
correction to the ideal BEC temperature as

TBKT
TBEC

=
[
1 + 3g̃

π3 ln2 g̃

16 + 6g̃
16π2

(
15 + ln g̃

16

)]−1/2
. (6.14)

For our measurements on the BEC side, we plot TBKT for different interactions
in Fig.6.10 and for our g̃ the correction is a surprisingly strong model even for
large interaction strengths. For g̃ < 0.6, it was shown in recent experiments in the
Hadzibabic group that the weakly interacting Bose gas is excellently captured by
the above theory.
Up until now, our measurement of TBKT has coincided with predictions for the

local physics but as noted in the theory chapter we even expect this to fail at high
interaction strengths. For g̃ > 7 the critical phase space density is less than 4 which
places restrictions on the maximum superfluid PSD. According to this we easily
see that one cannot have nsλ2 = 4, yet we do observe a condensate in this region of
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Figure 6.10: The theory line in blue yields the critical temperature for a strictly 2D
Bose [Hol10] and is a remarkably good match to our data for strong
interactions. It is furthermore interesting that the deviation is not
too large even at g̃ = 7.75 where a picture of pointlike dimers is no
longer applicable.

the phase diagram. The most immediate suggestions seem to be that the theory
either fails in this regime or that we measure something induced by the trap’s
finite size. Conveniently we can check this with the quantum Monte Carlo by sim-
ply doing the same calculations at higher interaction strengths (we use g̃ = 7.75,
corresponding to our measurements at 812G). The QMC per expectation finds
no transition with the peak PSD > 4 at all accessible temperatures, matching the
theory. What is therefore astonishing is that our measured correlation function
at this field displays a clear algebraic decay for several points corresponding to
condensed ones in the phase diagram. Furthermore we are unable to fit any sort of
long-ranged exponential to it and our measured phase space density now deviates
from the QMC results.
The question remains how to make sense of what we observe, and resulting con-

clusions are remarkable. We should comment on the divergence from theoretical
results, but one must now recall that the whole Monte Carlo procedure is strictly
bosonic, and only models the bosonic portion of the system. Far on the BEC side
this is expected to be extremely accurate if the claim of pointlike molecules is to
be believed. Nearing the crossover, the emerging fermionic nature has no presence
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Figure 6.11: Data here is shown for an offset field of 812G and power law correla-
tions are visible for the four coldest temperatures. However bosonic
QMC calculations do not predict a transition and differ from our mea-
surements of the phase space density. The peak PSD in our cloud is
significantly higher, indicating that a purely bosonic description is
inadequate since molecules are no longer tightly bound here.

in these calculations and the disparity and observation of a transition is therefore
attributed to fermionic contributions to superfluidity. In principle, comparing our
data to the QMC on smaller increments throughout the crossover would give us
a precise way to measure the emergence of non-bosonic behavior in the gas. This
is an extraordinary result, not only because it provides a glimpse at fermionic
superfluidity, but also because it suggests that the underlying fermionic nature of
the sample plays an important role in the transition for fields above 782G.
Earlier in the phase diagram analysis we noted the exact same point, that the

Petrov line (assuming a bosonic description) could not provide us with an accurate
prediction of Tc for interaction strengths above ln(kFa2D) = 0 (or 782G). Though
not surprising, it is still a nice result that looking at different and more accessible
observables (recall that we looked at the ratio of the peak momentum density to
the peak insitu density) can still yield some insight into the bosonic/fermionic
nature of the phase transition. At even higher fields of 832G and 852G we see a
power law decay and a transition, and neither of these fields can be captured by a
picture of pointlike bosons3.
At these fields we consistently see exponents larger than predicted by the homo-

geneous theory, but the exponent ηcrit at TBKT appears to be constant throughout
the transition. This is strongly surprising since we change the scattering length
over orders of magnitude and from positive to negative values. An unchanging

3A characterization in terms of g̃ and TBEC is no longer valid
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Figure 6.12: The exponents for our data far on the BEC side are shown in panel
(a), along with the QMC results. The center panel (b) displays the
data taken in the crossover up to 852G where there is significant
influence of the fermions. TBEC is no longer a good measure and so
we use T/TF as the temperature scale. Panel (c) shows the maximal
exponents ηcrit and it is striking that all appear to lie on the same
line. The consistency suggests that we are continuously probing the
same transition in the critical regime where microscopic details are
largely irrelevant.

η for different interactions is reminiscent of some sort of universality and since
we characterize this at the boundary of the phase transition, ηcrit behaves like a
critical exponent along the critical isotherm TBKT . Generally a phase transition
can be classified by the scaling behavior of physical quantities close to criticality.
Since the 2D transition has power law scaling throughout the ordered phase, ηcrit
appears to be a separate critical exponent and its independence on microscopic
details of interactions suggests that BKT transition in inhomogeneous systems
falls into the same universality class. However it is still likely that this is the
same universality class of the homogeneous BKT since locally we still extract the
expected η = 0.25 from the local correlation function. The ηcrit from the power
law fit is simply another exponent to look at, and the universality ensures that we
are observing the same phase transition throughout the crossover. In the previous
chapter we had raised concerns that this might not be the case, in particular that
the 2D character of the gas is compromised when a2D ∼ lz. The persistence of
the algebraic decay as well the universality strongly suggests that the internal 3D
structure of the dimers has no effect on the long range coherence.
What we can instead do is look at the behavior of a critical exponent near the

critical point. The Landau theory of phase transitions tells us to expect power
law scaling of observables in this region, and the exponents are something uni-
versal within each universality class. Previously we had tried to do this with the
correlation length and found that the scaling did not conform to the expected
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Figure 6.13: All five fields ranging from far on the BEC side to the BCS display
the same divergence of ξ when rescaled by mass. Here, Tc is equiva-
lent to TBKT and (T − Tc)/Tc = 0 is the critical temperature TBKT .
Higher temperatures are available but they are not plotted since we
do not expect universality at this point, and we only plot the lowest
four temperatures above TBKT for each field. The correlation length
eventually saturates on the system size, but it diverges quickly to this
point and we did not have the resolution to probe it.

exponential form that was predicted. Here we can easily convince ourselves that
the inhomogeneity must play a significant role due to the varying spatial density,
and perhaps this makes the scaling again be algebraic. We plot this in Fig.6.13 for
the different fields with the correlation length ξ extracted in the same manner as
before. The difference is that we now compare different interaction strengths with
each other instead of a wide range of temperatures at one field. In the crossover
we run into the same issue of mass interpolation but here we cannot simply in-
troduce it into TF since the scaling temperature (T − Tc)/Tc is a dimensionless
quantity. Instead, recall that the k-space calibration is mass dependent as k ∼ m.
In real space the correlation function scales inversely and using the interpolated
mass for setting r, we in fact find that all the different curves lie almost entirely
on top of each other. Beginning at 692G and ending at 852G we span a wide
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6 The BKT phase transition

range of interaction strengths and the resulting conclusion is an extremely strong
indicator of universality. Plotting similar rescaled quantities over the crossover has
been previously used to demonstrate scale invariance [Hun11a] for the equation
of state. For critical behavior in the vicinity of low (T − Tc)/Tc (≤ 0.3) where we
would hope to see power law divergence, we unfortunately do not have a range of
points wide enough to fit a function. In the ideal case if it did exhibit an algebraic
scaling, we could extract the exponent and determine which universality class it
falls into. Nevertheless, though the behavior deviates from the theoretically pre-
dicted exponential divergence, the collective scaling is an additional advocate of
universality across the phase transition.
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7 Conclusion
We motivated this thesis with the very general topic of complex systems, specifi-
cally to highlight the role of coherence in phase transitions and their interplay with
inhomogeneous systems. This phenomena has been studied several times before
in the context of the superfluid-Mott insulator transition and the self-organization
of cavity BECs [Bau10], but almost always via local observables. Looking at co-
herence is distinctly different since it is a global quantity that is discovered by
probing the system at large length scales, and this has been closely studied in the
3D BEC [Hun11a].
The Berezinskii-Kosterlitz-Thouless phase transition has received significantly

less attention, likely due to the fact that the 2D environment is harder to create
and more complex to understand. For the few experiments that do investigate it,
the majority have approached it from a local standpoint of density fluctuations
[Hun11b] or local probing of the interference. The point therefore is that look-
ing at the long range coherence is something special and in experiments is not
always readily available. The core of this lies in our ability to exactly measure
the momentum distribution with the matterwave focusing technique. Traditional
time-of-flight experiments provide qualitative information but naturally inhibit
the extraction of the exact momentum profile. From the n(p) the g1(r) is readily
available and for phase transitions, this is a fundamental quantity to look at. In
Ginzburg-Landau theory (a mean-field framework near the critical point) the two
point function is one of the first quantities we can use to search for new phases. At
the critical point, nonlocal points within the material start to exhibit an enhanced
coherence and the same phenomena is just as striking in our ultracold system. We
first investigated this phase transition through the condensate fraction, which is a
byproduct from the occupation of low momentum states. Though in 2D it comes
as a result of the BKT mechanism (finite size effects still play an important role),
the Nq/N doesn’t allow us to truly observe its key features.
It instead manifests in quasi-long range order which can be identified in a par-

ticular behavior of the correlations. Access to the momentum distribution allows
us to measure, which we did by means of a 2D Fourier transform of n(p) and then
a radial average. The resulting g1(r) displayed the characteristic behavior of al-
gebraically decaying correlations, and we identified a transition at a temperature
TBKT that was in excellent agreement with the critical temperatures of the phase
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diagram. The degree of quasi-long range phase coherence, set by the scaling expo-
nent η, differed from the values expected in a homogeneous system. We understood
this as a feature introduced by the inhomogeneity. This quantity encapsulates the
coherence of the entire system, mixing thermal correlations with those of the BKT
type. As there is no current prediction of BKT theory for inhomogeneous systems,
we compared our results to QMC simulations of a trapped 2D Bose gas that were
performed by Markus Holzmann. The computations also obtained the higher η
from the "trap averaged" g1(r, r′) but also confirmed that the local coherence at
the trap center (equivalent to mapping to the homogeneous theory) recovered the
expected predictions.
We repeated our procedure for the whole 2D BEC-BCS crossover phase dia-

gram and studied the g1(r) for a wide range of interaction strengths, ranging from
relatively weak repulsion to the BCS regime of the crossover. We found that the
power law scaling persists for all these regimes even in regions where the fully
bosonic QMC failed due to the influence of fermionic behavior. This suggests that
the emergent fermionic nature of the gas plays a role in the transition to a su-
perfluid phase. This could initially suggest that a different mechanism is at play
here, but we are able to dispute this claim. By extracting the diverging correlation
length above TBKT , we find that the behavior is the same regardless of interac-
tion strength, hinting at a universal scaling. Thus the mechanism must lie in the
same universality class and the transition must be of the BKT type regardless of
interactions or particle statistics.

Outlook
While the observation of the power law correlations was thrilling, it raised several
new questions that can be explored in future studies. Our match to the QMC
calculations provided reassurance that the g1(r) behavior was indeed physical.
However, exact values of the scaling exponent and how it is influenced by the trap
still remains unexplained. The discrepancy from the homogeneous theory can
be explained, but why η attains its particular values and why ηcritical ∼ 1.4 are
at this point not understood. It seems likely that they have a dependence on the
trapping potential and this could be studied in future theoretical and experimental
works. Finite size effects are unfortunately difficult to test since the majority of
experimental systems prepare cloud sizes within an order of magnitude of ours.
Theory however, could explore this more thoroughly by scaling the system even
up to experimentally unfeasible sizes.
More readily available is the option to study the inhomogeneity with different

trap geometries. For most setups this can be a labored process that involves chang-
ing the beam parameters or adding trapping beams, but we are currently working
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7 Conclusion

on implementing a spatial light modulator (SLM) into our setup. With the ad-
dition of a high resolution objective, this allows for the generation of arbitrary
potentials including a uniform flat-based trap [Gau13] that creates a homoge-
neous, finite environment. Here we could again check the correlation function and
hopefully regain the homogeneous scaling exponent. One could additionally add a
gradual harmonic confinement and probe the transition from the homogeneous to
the inhomogeneous case. Another option is to compare the two correlations func-
tions g(r, 0) and g(r, r′) in the trapped case by only investigating rings of width
δr, similarly to the studies performed in [Dra12]. Trivially we would expect the
trap averaged correlation function to converge onto the limit of the g(r, 0). The
two state imaging will also soon be an available technique, and one could use it to
examine the correlations between the two spin states.
But perhaps the most stunning result and the culmination of this thesis was the

identification of fermionic superfluidity. To our knowledge, BKT theory has not
been specifically applied to fermions, so we can only speculate on the peculiarities
of the superfluid. We hope that our publication on this stirs up interests and
investigations of the topic. In the end we learn more about phase transitions in
finite systems and the emergence of many body physics within inhomogeneous
systems. This invariably remains a relevant question since ultimately all physical
systems are finite and exhibit these effects.
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the continent have all given me immense joy. Near or far, I have cherished these
experiences.
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