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Abstract
This thesis summarizes our current studies of ultracold fermions in a two-dimensional
optical square lattice.
In the first experiments the band structure of the lattice was investigated using a
band mapping technique. Here, by tuning the filling of the lattice indication for a
transition from a metallic to a band insulating state for non-interacting fermions in
the two-dimensional lattice was observed.
The main experiments were performed with a strongly interacting sample of bosonic
Feshbach-molecules close to a Feshbach resonance. The strong interactions in our
anisotropic 2D lattice lead to the occupation of excited states in the lattice.
We successfully loaded a superfluid of these molecules in the two-dimensional lattice.
To characterize the state of the system, its momentum distribution was studied as
a function of the depth of the lattice potential, which was calibrated using matter
wave diffraction. Loss of coherence was observed above a critical depth of the lattice
potential. This hints towards a transition to an insulating state. We also found first
evidence that this transition is interaction mediated and the insulating state should
be of the Mott-insulator type.

Zusammenfassung
In dieser Arbeit präsentieren wir unsere Untersuchung von ultrakalten Fermionen
in einem zwei-dimensionalen optischen Gitter.
In unseren ersten Messungen wurde die Bandstruktur des Gitters mithilfe einer
Bandabbildungstechnik untersucht. Indem wir den Füllungsfaktor des Gitters verän-
derten konnten Hinweise auf einen Übergang von einem metallischen Zustand zu
einem Bandisolator beobachtet werden.
Unsere Hauptexperimente wurden mit stark wechselwirkenden bosonischen Feshbach-
Molekülen nahe einer Feshbach-Resonanz durchgeführt. Die starken Wechselwirkun-
gen in diesem anisotropen System führen zu der Besetzung angeregter Zustände im
Gitter.
Es gelang uns, eine Supraflüssigkeit dieser Moleküle in das Gitter zu laden und
die Impulsverteilung als Funktion der Gittertiefe zu untersuchen. Dazu wurde die
Tiefe des Gitterpotentials mithilfe von Materiewellenbeugung kalibriert. Wenn die
Tiefe des Gitters einen kritischen Wert überschritt, wurde der Verlust der Kohärenz
der Supraflüssigkeit beobachtet, was einen Übergang zu einem Isolator kennzeich-
net. Darüber hinaus wurden erste Hinweise darauf gefunden, dass der Verlust der
Suprafluidität von starken Wechselwirkungen verursacht wurde und der Isolator ein
sogenannter Mott-Isolator ist.
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1 Introduction
Scales play a crucial role in physics. There are absolute scales in nature, like the
speed of light. Comparing a system to these absolute scales determines the frame-
work, that has to be used to describe the system. For example, systems where the
resolution of the phase space — the Planck constant h — becomes important are
described by quantum mechanics.
In addition to these absolute scales, each system introduces its own relative (energy)
scales. Most systems in nature have more than one single relevant scale. The state
of these systems is given by the competition of the different energy scales. The often
cited paradigm of the hydrogen atoms is one of the simplest of such systems, where
the electron ground state is given by the competition between interaction energy,
which favours localization of the electron, and kinetic energy, which favours delocal-
ization of the electron, to minimize the total energy.
This competition of different scales is not only important for single particles systems,
but also in many body systems. There, the competition of (energy) scales deter-
mines the state and phase of the system. A prime example for such a system are
interacting particles in a periodic potential. Here, the interaction energy competes
with the kinetic energy. Again, like in the case of the hydrogen atom, kinetic energy
is increased by the localization of the particles, which in turn minimizes interaction
energy. This competition of energies determines the state of the system. If the inter-
action dominates the particles are localized on single lattice sites and cannot move,
whereas if the kinetic energy dominates the particles are delocalized over several
lattice sites and can move freely. Such an interaction induced localization was first
observed in NiO [Boe37]. This localization makes the system electrically insulating
even though it should be conducting judging from its band structure. This was
pointed out first by Mott [Mot37, Mot49]. Thus this type of insulator is called a
Mott-insulator.
The simplest model containing the essential physics of the competition between in-
teraction and kinetic energy is the Hubbard model. It describes particles in a single
band of a periodic potential, which can tunnel between the sites and interact via
an on-site interaction. Already this simple system model predicts a transition from
a superfluid to a Mott-insulator, when the relative strength of the interactions is
increased.
An ideal system to realize such simple models are ultracold quantum gases, as they
offer incredible control over most of the relevant parameters. It is not only possible
to control the external potential seen by the atoms, but also to tune the interaction
strength by using so-called Feshbach resonances [Ino98]. This allowed to directly
observe the quantum phase transition from a bosonic superfluid to a Mott-insulator,
by tuning the relative strength of kinetic and interaction energy [Gre01].
However, these experiments with bosons are not suited for simulating the behavior
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1 Introduction

of fermionic electrons. The first realizations of fermionic superfluids of ultracold
atoms were achieved close to a Feshbach resonance. There superfluidity of Feshbach
molecules was observed in a bulk gas [Joc03, Gre03, Zwi03] and shortly afterwards
superfluidity in the whole BEC–BCS crossover could be shown [Zwi05]. In theses
systems, the use of a Feshbach resonance allows to tune from bosonic molecules to
fermionic atoms. Later these strongly interacting fermionic systems were studied in
a three dimensional optical lattice. Also in this system, a transition to an insulating
state was observed when increasing the relative strength of interactions [Chi06].
In this master thesis, we extend the study of ultracold Feshbach molecules in a lat-
tice to two-dimensional systems. The advantage of a two-dimensional system is that
one can directly access the full density and momentum distribution, which allows
to determine the phase of the system [Gre01]. In our group, a measurement of the
momentum distribution was recently used to observe condensation and superfluidity
in the two-dimensional BEC–BCS crossover in a bulk gas [Rie15, Mur15]. With the
additional lattice beams, we extend this system to study the interesting physics of
strongly interacting fermions or composite bosonic molecules in a two-dimensional
lattice and to characterize the transition from a superfluid to an insulating state.
Furthermore, an insulator of molecules is an excellent starting point for studying
even more complicated and interesting systems. For example, by dissociating the
molecules, also the Fermi-Hubbard model can be realized, which has a much richer
phase diagram. This is because of the additional degrees of freedom of the spin,
which introduce another energy scale for spin ordering. Even though these systems
have already been realized with cold atoms [Jör08, Sch08], the lowest temperatures
reached so far were too high to observe long range spin ordering [Gre13, Har15].
This is partly due to the fact that these experiments started with fermions, which
limits the minimal achievable temperatures. Here, cooling of bosonic molecules and
subsequent dissociation of the Feshbach molecules makes it possible to reach much
colder temperatures which will potentially allow to study spin ordering in such a
system.
This thesis summarizes our current progress on loading a superfluid of molecules
into a two-dimensional lattice and observing a transition to an insulating state.

Outline
This master thesis is structured in the following way. First, a short summary of the
theory necessary to understand our experiment is given. Here we focus on the theory
of particles in periodic potentials. In the next chapter, our experimental apparatus
is briefly described. The calibration procedure of the new lattice setup is described
in chapter four. The fifth chapter summarizes our results on the observation of
a band insulator of non-interacting fermions. In the sixth chapter, the influence of
interactions in the lattice on reaching the quasi-2D regime is investigated. Our main
result of successfully loading a superfluid of molecules into a two-dimensional lattice
is presented in chapter seven. There, also the first indications for a quantum phase
transition to an insulting state in deep lattices are presented. This thesis concludes
with a short summary and outlook on the next steps and interesting physics which
we will study with this setup in the future.
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2 Theory of Cold Atoms
In this section a brief introduction to the theory necessary to understand the ex-
periments performed during this master thesis will be given. First, the influence
of quantum statistics will be discussed. Second, a quick introduction to low energy
scattering is given. Then the principle of optical trapping and how to create periodic
potentials with laser beams are explained. Finally the properties of particles in such
periodic potentials are discussed.

2.1 Quantum Statistics
At high temperatures the occupation of a single particle state with energy ε is given
by the Boltzmann distribution

nBoltzmann(ε, µ, T ) = exp(−β(ε− µ)), (2.1)

where µ is the chemical potential1 and β = 1/kBT is the inverse temperature. For
large temperatures the chemical potential is large and negative and at fixed total
particle number N the chemical potential increases for lower temperatures. However,
at low temperatures where our experiments are performed, this does not properly
describe the system. If the densities are such that the phase space density is large,
the behavior of particles is strongly influenced by its quantum statistics and cannot
be described by a Boltzmann distribution. There exist two types of particles: bosons
and fermions. They differ by the symmetry of their wave function under exchange of
identical particles, which is symmetric for bosons and antisymmetric for fermions.
This leads to a different occupation of states of the system and thereby strongly
influences the behavior of a many body system. Thus at low temperatures, the
occupation of states must be described by the full quantum statistics discussed
below.

2.1.1 Bosons
Since for Bosons the wave function is symmetric under the exchange of particles,
several particles can occupy the same state and the average number of particles in
a state of energy ε is given by the Bose-Einstein distribution

nb(ε, µ, T ) = 1
exp (β(ε− µ))− 1 . (2.2)

1The chemical potential acts as a Lagrange multiplier to obtain the correct average total particle
number.
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2 Theory of Cold Atoms

From this it is clear, that for bosons the chemical potential must be always smaller
than the ground state energy, as otherwise the occupation probability for this state
would be negative, which is unphysical.
The fact that more than one particle can occupy a single state leads, for low enough
temperatures, to the formation of a Bose-Einstein condensate (BEC), i.e. a macro-
scopic occupation of a single state. Let us consider particles in a 3D harmonic
trapping potential

V (x, y, z) = 1/2m(ω2
xx

2 + ω2
yy

2 + ω2
zy

2), (2.3)
where m is the mass of the particles and ωi the trapping frequency of the poten-
tial along the i-th direction. For an isotropic harmonic potential the total particle
number N is given by

N =
∞∑

nx,ny ,nz=0

1
exp(~ω(nx+ny+nz+3/2)−µ

kBT
)− 1

. (2.4)

If one sets the chemical potential to its maximum value 3/2~ω for a given temper-
ature T , the particle number in excited states is given by [Ket09]

Nmax = ζ(3)
(
kBT

~ω

)3

, (2.5)

where ζ is the Riemann zeta function. If the particle number is further increased
while the temperature is kept constant, then all added particles occupy the ground
state of the system and form a BEC.

2.1.2 Fermions
Due to the antisymmetry of the wave function under exchange of identical particles,
the Pauli principle holds and each state can at most be occupied by one fermion.
The occupation of a state is given by the Fermi distribution

nf (ε, µ, T ) = 1
exp (β(ε− µ)) + 1 . (2.6)

At zero temperature the Fermi distribution becomes a step function where all levels
up to the Fermi energy EF = µ(T = 0) are filled with one fermion, whereas higher
levels are unoccupied. For example for a 2D harmonic potential and N particles the
Fermi energy is

EF = ~ (2Nωxωy)1/2 . (2.7)
This implies that, if only occupation up to a certain energy level is possible, the
number of fermions in a system, even at zero temperature, is limited.

2.2 Ultracold Interactions
Adding interactions between particles can lead to a dramatic change of the properties
of the system. For example it can result in the emergence of new behavior and
phase transitions not possible in non-interacting systems, like the superfluid to Mott-
insulator transition in a lattice.
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2.2 Ultracold Interactions

2.2.1 Two Particle Scattering
The simplest case of interactions is the elastic scattering of two particles, which
in relative coordinates is described by the following time-independent Schrödinger
equation

~2

2m∇
2Ψ(r) + V (r)Ψ(r) = E Ψ(r), (2.8)

where m is the reduced mass of the particles and E = ~2k2

2m is a positive energy.
Describing such a process is in general very complex. However for the low temper-
atures in our experiments, we have only to consider low energy scattering which is
much simpler than solving the full problem.
In order to be in the quantum degenerate regime, the de-Broigle wavelength λdB
has to be on the order of the interparticle spacing2 of a few 100 nm. This is much
larger than the short range Van-der-Waals potential, which falls off with distance as
V (r) ∝ r−6 and has a finite effective range reff of the order of 60 Bohr radii. Hence,
the low energy (large wavelength) scattering at this temperatures cannot resolve the
details of the interaction potential and scattering is independent of the microscopic
structure of the potential.
For these short range potentials, the wave function for large distances from the scat-
terer is simply given by the superposition of an incoming plane wave and a scattered
spherical wave

Ψ(r) ∝ eikz + f(k, θ)e
ikr

r
. (2.9)

For our case of a spherical symmetric interaction potential, the scattering amplitude
f(k, θ) only depends on the angle between ingoing and scattered wave. The outgoing
particle flux is proportional to the square of the scattering amplitude and the cross-
section is given by σ(θ) = |f(k, θ)|2.
For a spherical symmetric potential, one can use the so-called partial wave expansion
and rewrite the wave function as [Dal99]

Ψ(r) =
∞∑
l=0

Pl(cos(θ))uk,l(r)
r

, (2.10)

where Pl(cos(θ)) are the Legendre polynomials containing the angle dependence and
the functions uk,l(r) are the solutions of the effective radial Schrödinger equation.
Solving this Schrödinger equation for the scattering amplitude and cross-section
gives [Sak94]

f(k, θ) = 1
k

∞∑
l=0

(2l + 1)eiδl sin(δl) Pl(cos(θ)), (2.11)

σl =
∞∑
l=0

4π
k2 (2l + 1) sin2(δl). (2.12)

Since scattering in the spherical symmetric potential does not lead to mixing of
the partial waves, each component just experiences a real phase shift δl at large

2For higher densities 3 body collisions would lead to large losses.
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2 Theory of Cold Atoms

distances. These phase shifts scale as δl ∝ k2l+1 for small k. Hence in the low (zero)
energy limit only the l = 0 partial wave obtains a non-trivial phase shift and one is
left with so-called s-wave scattering. Its contribution the so-called s-wave scattering
amplitude is given by

f0 = 1
k cot δ0 − ik

. (2.13)

Neglecting the effective range of the potential this can be approximated as [Ket08]

f0(k) = a

1 + iak
, (2.14)

where the scattering length a was introduced, which is the single parameter effec-
tively describing the low energy s-wave scattering. Hence the cross-section is simply
given as

σ(k) = 4π a2

1 + k2a2 . (2.15)

For the limiting case of ka� 1 the cross-section can be approximated by σ = 4π, a2

whereas for large scattering length the cross-section is unitary limited to σ = 4πk2.
As the physics of the scattering are all encoded in the single parameter a and the
exact shape of the potential V (r) is not important one can replace it by a con-
tact interaction resulting in the same phase shift of the scattered particle. This is
described by a (regularized) delta potential [Ket08]

V (r) = 4π~2

m
a δ(r). (2.16)

This means that in low energy scattering the shape of the potential is unimportant,
as it cannot be resolved by the large wavelength particles. The only effect of the
scattering is to shift the phase of the s-wave component. This phase shift is described
by a single quantity — the scattering length a. The mapping on this pseudo potential
makes the problem simple to describe theoretically, such that it can be solved, even
if the real potential is very complicated.
On a mean field level the interaction is attractive for negative scattering lengths
and repulse for positive scattering lengths, even though the underlying microscopic
van-der-Waals interaction is always attractive for ground state atoms.

2.2.2 Scattering of Identical Particles
The discussion so far only considered scattering of distinguishable particles, where
there is no symmetry of the wave function under exchange of particles. If two
identical particles scatter their quantum statics become important, since the two
scattering processes depicted in Figure (2.1) are indistinguishable and their ampli-
tudes interfere.
Writing the relative wave function in the form (2.10) the odd l components are anti-
symmetric and even l components are symmetric. This means for identical fermions
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2.2 Ultracold Interactions
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Figure 2.1: For identical particles the two scattering processes cannot be distin-
guished and the wave function has to be properly (anti-)symmetrized.
Adapted from [Dal99].

no s-wave scattering is possible, since the even l components of the wave function are
zero. Thus for low temperatures there is no scattering in a gas of identical fermions.
This means that a two component Fermi gas is needed in order to have interactions
and interesting physics at low temperatures. The interactions between the two com-
ponents are crucial to even achieve these low temperatures as evaporative cooling
relies on thermalisation of the cloud via scattering. For bosons the constructive
interference of the two paths leads to s-wave cross-section which is twice as big, i.e.

σ(k) = 8π a2

1 + k2a2 . (2.17)

2.2.3 Bound States
So far we have only investigated the scattering of two interacting particles, i.e the
behaviour at (small) positive energies. A closer look at the energy spectrum for small
negative energies shows, that for a positive scattering length a > 0 there exists a
two particle bound state. With a binding energy [Sak94]

E = ~2

2ma2 . (2.18)

This description is only valid, if the scattering length is much larger than the effective
range reff of the potential. From the energy of the weakly bound state one can
deduce, that its size must be of the order of the scattering length and thus much
larger than the size of the interaction potential. Hence, these bound states are also
called halo molecules.
At low temperatures and positive scattering length molecules are formed out of
two distinguishable fermions. These are bosonic3 and can form a molecular Bose–
Einstein condensate (mBEC). For dimers of fermionic atoms one can calculate the
dimer-dimer and dimer-atom scattering length [Pet04] which are

add = 0.6a and aad = 1.2a, (2.19)
3The fermionic nature of the constituents is unimportant as long as the binding energy is much
larger than all other energy scales of the system.
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2 Theory of Cold Atoms

respectively. Here a denotes the fermion–fermion scattering length. However, this
bound state is the highest excited rovibrational state of the molecule and not the
ground state. It can thus decay via inelastic collisions with another particle, which
results in loss from the trap. However, the relaxation rates αrel for inelastic collision
to deeper lying states scale as αrel ∝ a−3.33 for atom-dimer and αrel ∝ a−2.55 for
dimer-dimer scattering. Thus for large scattering lengths elastic collisions dominate
over suppressed inelastic collisions and one can reach a stable many body state,
without to much loss of particles.

2.2.4 Feshbach Resonances
A key feature of cold atom experiments is the possibility to tune the interactions to
arbitrary values by means of so-called Feshbach resonances. Here a short summary
of some basic properties, as described in [Chi10, Ket08], is given.
In order to understand a Feshbach resonance the internal structure of the scattering
particles must be taken into account. A Feshbach resonance requires at least two
coupled internal states. This coupling of a second internal state to the ingoing
scattering state strongly affects the scattering process, if the energy level of the
second state is close to the scattering state. At the end of the process the scattered
particles must be in the same state since we are discussing elastic scattering. Hence
the other channel must be a so-called closed channel, where the energy for large
relative distances is bigger than the energy of the two particles and it cannot be
populated permanently (see figure 2.2).
For concreteness take the ingoing (open) channel as a triplet and the closed channel
as a singlet state. If there would be no coupling between the states the particle would
just scatter in the open channel potential and obtain a phase shift, which is described
by the background scattering length abg. If there is a hyperfine interaction at small
distances the singlet and triplet states are not the eigenstates of the Hamiltonian if
the particles are close to each other. This introduces a coupling between the two
states. In case there is a bound state in the closed channel close to the energy of
the scattering particles this leads to an additional phase shift of the outgoing wave
and hence alters the scattering length. This is due to the fact that even a weak
coupling strongly influences (nearly) degenerate states. As the closed and open
channel have different magnetic moments one can tune the relative position of the
bound state to the continuum scattering states of the open channel by changing the
magnetic offset field. This changes the effective coupling and thus the scattering
length. The resulting scattering length as function of the magnetic field B can then
be approximated by

a(B) = abg

(
1− ∆

B −B0

)
, (2.20)

where ∆ and B0 are the resonance width and position.
Hence using a Feshbach resonance allows to tune the interactions to negative scat-
tering lengths where one obtains an attractive Fermi gas and to positive scattering
lengths where one obtains a repulsively interacting Bose gas of molecules. The cou-
pling of the two channels leads to an avoided crossing between the repulsive atomic
and the attractive molecular branch, as sketched in figure (2.2 c). The Feshbach
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2.2 Ultracold Interactions

resonance offers now two possibilities to create molecules. Either one can start in
the repulsive branch (at positive scattering length) where the molecular bound state
lies lower in energy. Then while evaporatively cooling down the sample molecules
are formed by three body collisions of the atoms, where the third atom is needed to
satisfy energy and momentum conservation. If the collision rate is sufficiently high,
chemical equilibrium between forming and breaking up molecules is reached and as
soon as the temperature becomes smaller than the binding energy the sample mainly
consists of molecules. Even though these molecules are created by inelastic 3-body
collisions they are themselves stable towards loss caused by inelastic collisions into
lower lying molecular states if the scattering length is large enough as discussed in
the previous section.
The other way to form molecules is by starting in the atomic ground state of the
system in a magnetic field region, where the energy of the molecular state is higher
than of the atomic state (right side of the crossing in figure 2.2 c). Then by slowly
ramping the magnetic field across the resonance such that the system can adiabati-
cally follow the ground state one can create a molecular sample.
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Figure 2.2: (a) Sketch of the potential of the open (black) an closed (red) channel as
a function of inter atomic distance. By changing the magnetic field, the
energy of the bound state of the closed channel can be tuned relative to
the open channel. The Feshbach resonance occurs, if the energy of the
bound state is equal to the energy of the ingoing particle. (b) Resulting
scattering length as a function of the magnetic field. (c) Energy diagram
of the bound and continuum state as function of the magnetic field. The
coupling between the states results in an avoided crossing. Taken from
[Wen08].

2.2.5 Hyperfine States and Feshbach Resonances of 6Li
After these theoretical introductions to scattering, we have a closer look at lithium
and shortly summarize its properties important for our experiment. More details
can be found in [Geh03]. Lithium is an alkali atom and hence has only one elec-
tron in its outermost shell, which makes its level structure relatively simple. In the
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2 Theory of Cold Atoms

electronic ground state the outermost electron is in the 22S1/2 state and has zero an-
gular momentum. At low magnetic fields the nuclear spin I=1 of 6Li couples to the
electron spin S=1/2 resulting in a total spin F=1/2 doublet and F=3/2 quadruplet
separated by 228.2 MHz (at zero magnetic field). In the high magnetic field region
— where the experiments are performed — nuclear and electron spin are decoupled
(Paschen–Back regime). This gives rise to the hyperfine spectrum of the electronic
ground state shown in figure (2.3).
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Figure 2.3: Hyperfine splitting of the 6Lithium 22S1/2 electronic ground state as
function of the magnetic offset field. Experiments are performed in the
Paschen–Back regime (above 200 G) where the energy of the states scales
linearly with magnetic field. Taken from [Nei13].

For our experiments we mainly use the two lowest lying hyperfine states — denoted
by |1〉 and |2〉. These are collisional stable and cannot undergo spin changing colli-
sions. Using these states we can use a broad Feshbach resonance at 832 G which has
a width of 262 G and a large background scattering length of -2000 Bohr radii at
high magnetic fields (1400 G) to tune the interactions [Zür12]. The resulting scatter-
ing length as function of the magnetic field is depicted in figure (2.4). Evaporative
cooling of our sample is done close to the resonance (790 G), where the scattering
rate is high allowing for effective evaporation. During evaporation molecules are
created and a mBEC is obtained after cooling. Due to the large scattering length
close to the resonance these molecules are stable towards 3-body loss for fields larger
than roughly 730 G. This gives access to a wide range of interactions to investigate
interesting physics, without being limited by 3-body loss.
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Figure 2.4: Scattering length between the states |1〉 and |2〉 as function of the mag-
netic field. The dashed line indicates the Feshbach-resonance at 832 G.
Adapted from [Rie14].

2.3 Optical Dipole Traps
Experiments with cold atoms, require to trap them at a fixed spatial position. There
are two main requirements for these trapping potentials. First, it should be the
same for the different hyperfine states, since at least two different components are
needed for interactions. Second, as we want to perform experiments at ultracold
temperatures, the heating rates should be low. These requirements are fulfilled by
trapping the atoms with far off-resonant light in a so-called optical dipole trap. The
trapping of the atoms in the laser beam is due to the quadratic AC Stark shift.
Here a short summary of the properties of these traps is given. More details can for
example be found in [Gri00].
A neutral atom with (linear) polarizability α placed in an external electric field E
oscillating with frequency ω gets polarized and has an induced dipole moment p,
which can be written as

E = êEeiωt + c.c. (2.21)
p = êα(ω)Eeiωt + c.c. . (2.22)

The corresponding average dipole energy of the atom is given as

Udip = −1
2 < p · E >, (2.23)

where the factor 1
2 is due to the fact that the dipole moment is induced and < · · · >

denotes the time average over the oscillating fields. Rewriting the electric field in
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2 Theory of Cold Atoms

terms of the intensity of the laser beam I = 2ε0cE2 yields

Udip = − 1
2ε0c
<(α)I, (2.24)

where <(α) it the real part of the polarizability, which is related to the energy shift
the atom feels in an electric field. Photon scattering on the other hand is related to
the imaginary part of the polarizability. Thus a large real part of the polarizability
is wanted for creating a deep trapping potential, while the imaginary part should
be small, as photon scattering causes unwanted heating of the gas. The resulting
potential depths Udip and scattering rates Γsc for the (position dependent) intensities
are [Gri00]

Udip(r) = 3πc2

2ω3
0

Γ
∆I(r), (2.25)

Γsc(r) = 3πc2

2~ω3
0

(
Γ
∆

)2

I(r), (2.26)

respectively. Here Γ is the decay rate of the excited level, ω0 is the frequency of the
atomic transition and ∆ = ω − ω0 is the detuning of the light field from the atomic
transition frequency. For red detuned laser beams (∆ < 0), as used in our exper-
iment, the potential is attractive, i.e. the energy of the atom is smaller for larger
intensities and atoms are attracted towards the intensity maxima. Furthermore, as
the potential depth scales as Γ

∆ and the photon scattering (heating) rate scales as(
Γ
∆

)2
the detuning should be large to achieve a conservative potential and reduce

heating. Thus we use 1064 nm light for the creation of the dipole traps, which is
roughly 400 nm detuned from the atomic transition at 671 nm. Producing sufficient
deep traps at this large detuning requires high intensities and thus high power lasers.
In our experiment, the traps are produced by intersecting focused Gaussian laser
beams. For the case of orthogonal polarization of the two beams no interference
occurs and one simply obtains a potential which is the sum of the single beam po-
tentials. If the atoms are trapped in a region close to the minima of the potential
one can approximate the confining potential by a harmonic trap.
If the two beams have the same polarization and are coherent, the two electric fields
interfere and create a periodic intensity and thus potential modulation in addition
to the overall confinement. The spacing d of the potential maxima is

d = λ

2 cosφ, (2.27)

where λ is the wavelength of the light and the two beams cross under an angle of
2φ. This creates a periodic potential (lattice) along one direction. By adding a
second (third) retro-reflected beam pair orthogonal to the first an array of coupled
1D tubes (zero-dimensional traps) can be created (see figure 2.5).
In our setup we create a 2D square lattice by using a set of two orthogonal Gaus-
sian beams each retro-reflected under a small angle which create the following 2D
potential

V (x, y) = −Vxe
−2 x2

w2
x sin2(2πx cosφ

λ
)− Vye

−2 y2

w2
y sin2(2πy cosφ

λ
). (2.28)
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2.4 Particles in Periodic Potentials

a) b) c) 

Figure 2.5: Trapping potentials created by retro-reflected interfering beams. (a) A
single retro-reflected beam creates a array of 2D pancake shaped traps.
(b) Adding a second lattice beam creates 1D tubes. (c) With three retro-
reflected beams a 3D lattice of (zero-dimensional) traps is produced.
Taken from [Boh12].

Here, the waist w is the 1/e2 size4 of the laser beam orthogonal to its respective
direction. Due to the position dependent intensity the depth V of the lattice po-
tential is inhomogeneous and depends on position. Furthermore, a change in the
central lattice depth changes the overall confinement, which can cause redistribution
of atoms and thus heating. The lattice depth is often given in its ’natural’ energy
scale the recoil energy Er = ~2k2

2m , which is the energy gained by a particle when
scattering a lattice photon. For the experimental setup with 1064 nm beams inter-
secting under an angle of 2φ = 14◦ the lattice spacing is 536 nm. The recoil energy
for this lattice spacing and lithium atoms and molecules are

Er,atom = h 29.0kHz and Er,molecules = h 14.5 kHz. (2.29)

2.4 Particles in Periodic Potentials
After discussing, how to create periodic potentials for ultracold atoms, the properties
of particles in such potentials are summarized. For simplicity we will first consider
a homogeneous system, without an additional trapping potential.

2.4.1 Non-Interacting Particles and Band Structure
For non-interacting particles, the periodic lattice potential simply modifies their
motion. This results in a different dispersion relation compared to the homogeneous
case [Ash76]. A particle in a 1D potential V (x) with a periodicity d, i.e. V (x+d) =
V (x), is described by the following stationary Schrödinger equation(

p̂2

2m + V (x)
)
ψ = Eψ. (2.30)

4This waist also depends on the position along the beam.
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2 Theory of Cold Atoms

The periodic potential breaks the continuous translation symmetry of the free par-
ticle and replaces it by a discrete translational symmetry, where the Hamiltonian is
invariant when shifted by the period of the potential. Hence the discrete translation
operator and the Hamiltonian commute and there exists a common set of eigenstates
of the Hamiltonian and the discrete translation operator. According to the Bloch
theorem these eigenstates can be written as [Ash76]

ψn,q(x) = eiqxun,q(x), (2.31)

where the function un,q(x) = un,q(x + d) is d-periodic and n is the band index for
the n-th solution of the Schrödinger equation. Due to the periodicity, un,q(x) can
be written as a discrete Fourier series [Ash76]

un,q(x) =
∞∑

l=−∞
c(l)
n,qe

ilkLx, (2.32)

ψn,q(x) =
∞∑

l=−∞
c(l)
n,qe

i(lkL+q)x, (2.33)

where kL = 2π/d is the reciprocal lattice vector and the quasi-momentum q is
restricted to a range q ∈

(
−kL

2 , kL

2

]
. Hence, the solutions for the wave function

ψn,q(x) in the lattice are just the sum of plane waves, whose momentum differs by
a multiple of the lattice vector kL. This is a simple consequence of the periodicity
of un,q(x).
For the 1D version of the periodic potential used in the experiment

V (x) = V sin2
(
πx

d

)
= 1

2V
(
1− cos (kLx)

)
, (2.34)

it is easy to numerically solve the Schrödinger equation in Fourier space [Lew12] by
taking only a finite number of Fourier coefficients. This yields the band structure de-
picted in figure (2.6). As expected the lattice has the biggest effect on the dispersion
for low energy particles, i.e. on the lowest band. Also the effect on the dispersion
relation is strongest close to edges of the band, where some of the coupled plane
waves, forming the Bloch states have the same energy. This results in an avoided
crossing and the opening of the band gap [Ash76]. For energies inside the band gap
the density of states is zero. Thus, if a band is completely filled with fermions and
the higher lying bands are empty, the system becomes insulating as a finite energy
(the band gap) is needed to create excitations. As the appearance of the insulator
is caused by the band gap it is called a band insulator.
For deep potentials the band structure becomes flat as particle movement is strongly
hindered by the lattice and the system becomes an array of weakly coupled single
potential wells. Then one can treat the lattice wells as independent confining po-
tentials5. To estimate the energy of the flat bands, the bottom of the wells can be
approximated by a harmonic oscillator with frequency ~ω = 2

√
V Er. Note however,

that this will always overestimate the energy, as the real potential is not harmonic
and residual tunneling will always lower the energy.

5This approximation is not valid for higher bands where the tunneling rate can still be large.
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Figure 2.6: Band structure of a 1D lattice. Depicted are the lowest 3 bands for a
(a) V = 3 Er and (b) V = 15 Er deep lattice. For deeper lattices the
band gap becomes larger and the band flatter. The band structure was
numerically calculated using Mathematica.

The above discussion is easily extended to a 2D square lattice since the problem is
separable in the two dimensions and the dispersion relation is simply the sum of the
dispersion relations of the 1D lattices along the two directions. However, in this 2D
dimensional case higher bands touch each other as there are values for qx, qy where
the solutions for nx = 1 and ny = 2 are degenerate to the solution for nx = 2 and
ny = 1 (see figure 2.7). Thus there is no gap between the second and third band,
while the gap between the lowest and the second band still remains [Gün07].

2.4.2 The Tight Binding Approximation
So far we have looked at infinitely extended Bloch waves, but as already discussed
above for a deep lattice the picture of localized particles in coupled wells is more
appropriate. A particle localized at lattice site xi is described by a Wannier state
[Wan37]

wn(x− xi) = 1√
N

∑
q

e−ıqxiψn,q(x), (2.35)

where N is the number of lattice sites and n is the band index. For deep lattices
the second band is separated form the first band by roughly the on-site trapping
frequency ~ωon−site = 2

√
V Er which — for our system of a 2D lattice with additional

harmonic confinement in the third direction — is on the order of tens of kHz for
deep lattices and much larger than all other energy scales. Thus the particles in our
experiment always stay in the lowest band of the 2D lattice. However, there are still
excitations to higher states in the direction perpendicular to the lattice possible,
where the trapping frequency is only on the order of ten kHz. The 3D wave function
for a particle localized at a lattice site is given as the product of the wave function
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Figure 2.7: Three lowest band of a 2D square lattice, for a lattice depth of V = 3 Er.
The second and third bands touch but the gap between the lowest band
and higher bands still remains.

in the 3 directions

Ψ(x, y, z) = wxi
(x)wyj

(y)φ(z), (2.36)

where φ(z) is the wave function in the harmonic confining potential in z-direction,
which for a non-interacting particle in the ground state would just be a Gaussian
wave packet. Additionally, we dropped the band index for the Wannier state, as
only the lowest band of the 2D lattice is considered. From the wave function one
can construct a bosonic field operator

ψ(�)(r) = Ψ(r)a(�)
i , (2.37)

where a(�)
i is the operator annihilating (creating) a Boson at lattice site i. The a(�)

i

are bosonic operators fulfilling the usual commutation relations

[ai�, aj] = δi,j, [ai�, a�j] = [ai, aj] = 0, (2.38)

where [a, b] = ab − ba is the commutator. The processes, which a particle located
at a site can undergo are intuitively understood. First, it can change its position
and tunnel to a different site. Second, when a contact interaction is present it can
interact with another particle sitting at the same lattice site. As the interactions are
short range their strength strongly depends on the wave function overlap between the
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two particles. For the model taking into account only nearest neighbor tunneling
and on-site interactions to give a good description of the system these must be
large compared to off-site interaction and next-nearest neighbor tunneling. This
can be simply estimated by comparing the size of the ground state wave function
of a particle localized on a single site to the lattice spacing, as this gives a simple
estimate for the wave function overlap of particles at different sites. This means
the harmonic oscillator length of the single well aon-site =

√
~/(mωon-site) must be

much smaller than the lattice spacing. For our system this is reasonably satisfied
for lattice depths above V ≈ 2.5 Er. This is in good agreement for calculations of
the next nearest neighbor tunneling and off-site interactions done in [Day05].

Figure 2.8: Sketch of particles in a periodic potential. There are two different pro-
cesses the particles can undergo, either they tunnel to a different site
with an amplitude J or, if two particles are on the same lattice site,
they interact via a contact interaction U .

In the following we will take only the lowest band into account, which is justified
if all other energies are (much) smaller than the band gap, which is the case for
lattices deeper than V ≈ 2 Er. Then, neglecting off-site interactions and next-
nearest neighbor tunneling, this system can be described by the so-called Bose-
Hubbard Hamiltonian

H = −J
∑
<i,j>

a�iaj + U
∑
i

ni(ni − 1) +
∑
i

(εi − µ)ni, (2.39)

where the first term describes hopping of particles from one site to a neighboring
site. The second term gives the interaction energy of particles sitting on the same
site. The last term includes the energy offset εi of a site and the chemical potential
µ. Here ni = a�iai is the particle number operator on site i and the sum in the
hopping term runs over the nearest neighbors. The tunneling probability J is given
by [Wei09]

J =
∫

d3r Ψ(r− ri)
(
~2∇2

2m + V (r)
)

Ψ(r− rj). (2.40)

This tunnelling element can also be calculated from the band structure as [Jak99]

J = E0(q = k/2)− E0(q = 0)
4 , (2.41)
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with E0(q) denoting the energy of a particle with quasi-momentum q in the lowest
band. The tunneling rates for Li2 calculated in this way are shown in figure (2.9).

Figure 2.9: Tunneling rate J for Li2 molecules as function of the depth of the lattice
potential. The tunneling rate was calculated using equation (2.41) and
the numerically obtained band structure.

The on-site interaction energy U is given by

U =
∫

d3r
4π~2

m
a |Ψ(r)|4. (2.42)

In an inhomogeneous system each site i can have an energy offset εi. This is the
case for a trapped system and for a harmonic confinement, this energy offset is given
by εi = 1

2mω
2
rr

2
i , where ri is the distance from the trap center.

Even though this is a very simple model, it is still interesting as its ground state
drastically changes with the relative strength between the interaction U and the
hopping J . First, consider the ground state of a homogeneous system (εi = 0) as a
function of hopping and interaction. For small interactions U � J it is energetically
favorable for the particles to delocalize over the whole lattice and thereby minimizing
their kinetic energy. Thus for zero interaction all bosons occupy the Bloch state with
q = 0 and the system forms a superfluid condensate.
This condensate wave function has a fixed phase, which is the same for all sites as
this minimizes the kinetic energy. Thus the number occupation of each lattice site
fluctuates and system is described by the following wave function [Blo08]

|ψSF 〉 = 1√
N !

(
1√
M

∑
a�i

)N
|0〉, (2.43)

where N is the particle and M the number of lattice sites. By increasing the interac-
tion energy U , particle fluctuations on each site are suppressed because it becomes
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2.4 Particles in Periodic Potentials

energetically unfavorable to have more than one particle per site. Now the state of
the system strongly depends on the filling. First, for the case of unity filling, i.e.
1 particle per site, and strong repulsive interactions U � J the large interaction
energy dominates over the kinetic energy needed to localize a particle on a lattice
site. Thus each site is occupied by exactly one particle, with no fluctuations of the
particle number. The system can then be described by the following wave function

|ψMI〉 =
M∏
i=1

a�i |0〉. (2.44)

This system is in an insulating state — the so-called Mott-insulator — since a finite
energy of U is needed to create a excitation (a particle–hole pair), which hinders
transport. Since adding a second particle to a lattice site requires the interaction
energy U, the system is incompressible, as squeezing of the system would lead to
double occupancies. This can also be seen from the schematic phase diagram in
figure (2.10), where the particle number is constant for a large range of chemical
potentials in the insulating phase. This also implies zero compressibility, since the
compressibility can be expressed as κ = ∂n/∂µ.

Figure 2.10: Zero temperature phase diagram of the Bose–Hubbard model. The
different grey shaded regions depict the Mott-insulating phases of dif-
ferent filling. The average filling factor is set by the chemical potential.
For strong repulsive interactions and integer filling the system is in
the Mott-insulating state, whereas for small interactions the system is
superfluid. Taken from [Blo08].

If the filling is not integer, the system is always in a superfluid state, since there are
mobile particles on top of an insulating background of otherwise constant density.
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This leads to the schematic zero-temperature phase diagram shown in figure (2.10).
For unity filling the mean-field critical value for the transition from a superfluid to
Mott-insulator state is (U/J)c = 5.8z [Zwe03], where z is the number of nearest
neighbors. Thus from mean field theory the phase transition is expected to occur at
a critical (U/J)c of 23.2 for a 2D square lattice. However, this value overestimates
the critical value and from Quantum Monte Carlo simulations on a 2D square lattice
one obtains (U/J)c = 16.2 [Wes04].
By changing the power in the laser beams one can tune the lattice depth and thereby
change the tunneling and on-site interaction such that it is possible to cross the
transition from a superfluid to Mott-insulator in the experiment.
The problem of experimentally adjusting the density such that the lattice is exactly
integer filled, is solved by the additional (harmonic) trapping potential leading to the
energy offset εi in the Bose–Hubbard Hamiltonian (2.39). This leads to an effective
chemical potential µ − εi on each site. This variation of the effective chemical
potential for different sites results in a variation of the average particle number for
different sites. Hence, different local densities and thus phases are realized inside
the trap and a single experimental realization probes a line of different µ/U in the
phase diagram (red line in figure 2.10)6. The chemical potential in the trap center is
maximal and decreases with distance from the center such that a ring like structure
of different phases appears, where as a consequence of the incompressibility of the
Mott-insulator the rings in the insulating phase have constant density, whereas in
the superfluid and normal phases the density drops with distance from the center
due to the decreasing local chemical potential.

6Since with distance from the center also the lattice depth changes the realized systems in the
trap differ not only by µ/U , but for lower effective chemical potential at the edge of the trap
also U/J is smaller.

20



3 Preparation and Probing of an
ultracold Fermi gas

Performing experiments with ultracold quantum gases has several technical prereq-
uisites. First, a hot gas has to be cooled down several orders of magnitude from
room temperature to the nK region. Second, the atoms must be trapped and lo-
calized for performing the experiments. In these experiments one has to be able to
manipulate the gas from outside, with out any physical contact. At the same time
the gas must still be well isolated from the environment to reduce heating and loss.
In this chapter the parts of our experimental apparatus required for the preparation
of a quantum gas in an optical 2D square lattice are shortly summarized. More
details on the different parts of the setup can be found in previous theses of the
group.

3.1 Experimental Control and Feedback
The different parts of the experiment are controlled by a ADwin pro II real time
control system, which has 16 analog outputs and 8 analog inputs, as well as 64
digital outputs. The digital outputs have an update rate of 1 µs, while the analog
channels are slower and have only an update rate of 10 µs. The input channels can
be used to provide feedback for the output channels and thus allow for regulated
setting of parameters using a digital PID-control loop. The timing table for the
channels is created via an external computer using LabView [Lom08].

3.2 The Vacuum Chamber and Resonant Pre-cooling
Having a quantum gas at low temperatures requires to limit collisions with fast
particles from the background gas, as they would lead to loss and heating. Therefore
our experiments are performed in an ultra high vacuum (see figure 3.2.1 for a drawing
of the setup). Technical details of this vacuum system can be found in [Rie10]. In
the main experimental chamber the pressure is at least as good as P=10−11 mbar
resulting in a background collisions limited lifetime of the magneto optical trap
(MOT) of approximate 23 min, which is much longer than the experimental cycle
which takes roughly 12 s. Thus our experiments are not limited by collisions with
the background gas.
The lithium vapor is produced in the oven camber, where a small piece of lithium
is heated up to 350◦C. This creates a sufficient flux of lithium atoms towards the
experimental chamber for a reasonable MOT loading time, which in the current
setup is roughly 3 s. When leaving the oven the atoms have a mean velocity of
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roughly 1500 m/s. This is much higher than the capture velocity of our MOT of
roughly 50 m/s, thus we have to slow down the atoms before trapping.

Figure 3.1: Drawing of the vacuum setup. The oven chamber on the right is con-
nected via the Zeeman-slower (red coils), with the main experimental
chamber (red octagon). The towers connecting the setup with the ion
pumps and also serve as getter surfaces. Taken from [Rie10].

3.2.1 Zeeman-Slower
On the way to the experimental chamber the hot lithium atoms are slowed down by
a Zeeman slower. This is done using light forces from a near resonant 671 nm laser
beam to drive the D2 transition from the electronic ground state to the 22P3/2 state
(see figure 3.2).
The 671 nm laser beam, which is red-detuned with respect to the atomic transition,
is propagating in opposite direction to the atomic beam from the oven. By absorbing
a photon the atom changes its momentum by the photon momentum pλ. When the
excited state of the atom spontaneously decays it gains again a photon momentum.
However, as emission from spontaneous decay is isotropic the average change of
momentum from many emitted photons is zero1. Thus the atom in the resonant
laser beam feels a net force

Fscatter = pλΓ, (3.1)

which is proportional to the scattering rate Γ. This slows down the atom beam while
moving towards the experiment chamber. However, the atoms initially resonant
with the light field shift out of resonance as soon as they are slowed down due to the
changing Doppler shift. This reduces the scattering rate and thus the force slowing

1This results in a random walk orthogonal to the propagation direction and the beam diverges.
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Figure 3.2: Level scheme of 6Lithium. For our experiments we use the D2 line.
Because at low magnetic fields there exists no closed transition we have
to use two lasers labeled ‘repumper‘ and ‘cooler‘ to address atoms in
both hyperfine states of the electronic ground state to avoid loss from
dark states. The hyperfine splitting of the excited state is not resolved
since it is smaller than the natural linewidth of 5.87 MHz. Adapted from
[Geh03].

down the atoms. Thus one has to compensate for this change in the Doppler shift
such that the atomic transition stays resonant with the laser light over the whole
length of the Zeeman-slower. As the velocity of the atoms is position dependent the
compensating shift has to vary along the atom trajectory.
For this purpose a spatially varying magnetic offset field along the tube connecting
the oven and the experimental chamber is produced. The resulting Zeeman shift
compensates the change in Doppler shift such that the atoms stay resonant with the
laser beam. Thus they get effectively slowed down on their way to the experimental
chamber and can be captured by the MOT. More on the theory of Zeeman-slowers
can e.g. found in [Foo04], whereas the experimental implementation is explained in
detail in [Sim10].

3.2.2 Magneto–Optical Trap
Cooling and trapping is done in a magneto–optical trap, which is described in more
detail in many textbooks, e.g. [Foo04]. For dissipative cooling, red-detuned counter-
propagating laser beams are used. Because of the Doppler shift and the red-detuning
of the beams, the beam propagating in opposite direction to the atom is less detuned
from the atomic resonance than the beam propagating in the same direction as the
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atom. Thus more photons from the laser beam propagating in opposite direction
will be absorbed. This leads to a net force, slowing down the atom. Using counter-
propagating laser beams along all 3 major axes, the atoms can be slowed to zero
average velocity. However, the atoms can not be cooled down to zero temperature,
since at each scattering event the atom obtains an average kinetic energy of the
recoil energy and a equilibrium is reached when this heating rate equals the cooling
rate from the damping force. This puts a theoretical limit on the MOT temperature,
the so-called Doppler-temperature which for the D2 line of lithium is TDoppler = 136
µK.
The damping force discussed so far is only velocity and not spatially depended. Thus
the atoms are not trapped in position space and can diffuse out of the trap. Confining
the atoms is achieved by combining the lasers with magnetic field gradients. These
magnetic field gradients lead to a position dependent splitting of the different sub
levels of a hyperfine state. This allows for spatially dependent photon absorption
and thus a restoring force.
The working principle of the MOT for an atom with a ground state of total angular
momentum zero and excited state of total angular momentum one is depicted in
figure (3.3). The laser beams are — as mentioned above — red-detuned so that
at some distance the transition from the ground state to the mj = −1 becomes
resonant with the laser beam such that mostly σ− polarized light will be absorbed.
Here the polarization of the light is defined with respect to the local magnetic field
direction. At the trap center the magnetic field has a zero and the magnetic field
direction and thus the quantization axis for the spin changes direction. Thus the
laser beam coming from the right (left) has σ− polarization right (left) of the trap
center and σ+ polarization on the left (right) of the trap center. Thus on the right
(left) side it drives a transition to the mj = −1 state and on the left (right) side of
the trap center it would drive a transition to the mj = +1 state, which is detuned.
Thus on the right side of the trap more light from the left propagating laser beam is
absorbed leading to a restoring force towards the trap center, which traps the atoms
near the field zero. Technical details of the laser and coil system of the MOT can
be found in [Rie10].

3.3 The Optical Dipole Trap
To further cool the atoms below the Doppler temperature, they are transferred to
an optical dipole trap (ODT). Producing a dipole potential deep enough to trap
the hot2 atoms from the MOT requires large intensities, as explained in section 2.3.
Therefore we use a 1068 nm fiber laser which can output up to 200 W focused down
to a waist of 100 µm × 20 µm. To further increase the trap depth and optimize
the shape of the trap, the ingoing beam is intersected with the retro-reflected beam
under an angle of 12◦ (red beam path in figure 3.4), where the polarization of the
retro-reflected beam is rotated by 90◦ to avoid interference. This yields a sufficient
trap depth of roughly 1.5 mK. The elliptical beams are used to produce a tighter
focus and trap in vertical direction to improve later transfer to the final 2D confine-

2The final temperature of the atoms in our MOT is several 100 µK.
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Figure 3.3: Sketch of the working principle of a MOT in 1D. Due to the change in
magnetic field direction at the trap center the quantization axis changes.
Thus the beam from the left can only drive a transition tomj = −1 state
on the left side of the center. Hence together with the red-detuning of the
laser beams and the magnetic field gradient an atom on the left (right) of
the trap center absorbs more photons from the laser beam propagating
to the right (left). This results in a restoring force and trapping. Taken
from [Rie10].

ment. This leads to a ratio of trapping frequencies ωbeam : ωhorizontal : ωvertical of 1 :
9: 42. More details and a characterization of the setup can be found in [Boh12].
This setup allows for transferring roughly 106 particles in the lowest two hyperfine
states to the ODT. By subsequently reducing the beam power, the gas is evapora-
tively cooled down to degeneracy. As efficient evaporative cooling relies on thermal-
ization it is typically done at a magnetic offset field of 795 G (Thus this preparation
scheme is called high-field evaporation.) close to the Feshbach resonance, where
the scattering length is large and positive such that a molecular BEC3 (mBEC) is
produced during evaporation.

3.4 Feshbach Coils
Accessing the Feshbach resonance for effective evaporation and to change interac-
tions during the experiments requires large magnetic fields up to 1400 G. In order
to limit the current in the so-called Feshbach coils while still creating these high
magnetic fields, the coils are placed as close to the vacuum chamber as possible.
The small field region limits the energy stored in the field. The small inductance
makes it possible to quickly ramp the magnetic field in a regulated way. Switching
off the coils in a unregulated way by closing the FETs connecting the power sup-
ply with the coils is even faster and allows for ramp speeds of roughly 2700 G/ms,
which can be used to quench the interactions near the Feshbach resonance. The two
coils are placed slightly further apart than Helmholtz configuration. This leads to a

3The binding energy is on the order of 700 nK and thus much larger than the final temperature
(≈100 nK).
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3 Preparation and Probing of an ultracold Fermi gas

Figure 3.4: Drawing of the optical setup on the experiment table. Since the compo-
nents of the two lattice setups are identical the optics of lattice 2 is not
labeled. Taken from [Nei13].

magnetic field saddle such that the high field seeking states used in the experiment
are anti-trapped in vertical direction and trapped by a small harmonic potential in
the horizontal plane. More details on the coils can be found in [Wen13].
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3.5 The RF Setup

3.5 The RF Setup
Some of our experiments require to manipulate the internal states of the atoms. The
transitions between the hyperfine states |1〉, |2〉 and |3〉 are driven by using radio
frequency (rf) pulses. The coil creating these pulses is placed inside the vacuum
chamber. The smaller distance to the atoms increases the achievable pulse power at
the atom position. Thus this allows for more efficient transfer between the internal
states compared to a coil outside the chamber. The performance of the coils and
the detailed setup can be found in [Boh12, Heu11].

3.6 Loading the 2D Trap
In our experiments we want to access the quasi-2D regime. In a harmonic trap this
regime is reached if all relevant energy scales, i.e. the chemical potential, tempera-
ture and the trapping frequencies in two spatial directions are (much) smaller than
the trapping frequency in the third direction, such that the system is in the ground
state along the tightly confined direction and motion along this axis is frozen out.
Since the aspect ratio of the optical dipole trap is too small to reach the quasi-2D
regime at reasonable particle numbers, we transfer the particles to the standing wave
trap (SWT). To better match the shape of the ODT and the SWT during the trans-
fer, we first compress the ODT by increasing its power. Furthermore to change the
aspect ratio of the ODT which is roughly 1:5 in the horizontal plane, we modulate
the beam position by quickly modulating the frequency of an AOM through which
the beam passes. This modulates the pointing of the used first diffraction order such
that the beam moves and creates a time averaged potential, which is much rounder
and has an aspect ratio in horizontal direction of only 1: 1.5, better matching the
round SWT. More details on this can found in [Rie14]. The SWT is created by
two 1064 nm laser beams (green beam paths in 3.4) interfering under an angle of
14◦ producing a interference pattern in vertical direction. More details on the setup
can be found in [Boh12, Nei13, Rie14]. The small angle results in a large spacing
of roughly 4 µm between the maxima. This makes it possible to load only a single
layer4 with a mBEC [Rie14].
To reproducible load the single layer, a high stability of the interference pattern is
required. Using a symmetric beam path makes the system relatively insensitive to
small drifts in temperature or air pressure. Also the observed long term drift of the
relative phase of the beams is less than π/8 over one week, such that the different
maxima move by less than half a µm, with an even better short term (shot-to-shot)
stability [Nei13], [Boh12].
Since the trapping potential is created by an interference pattern, the two beams
must be coherent and a narrow frequency source is needed. We use a NUFERN
SUB-1174-22 fiber amplifier, which can deliver up to 50 W, seeded by 1064 nm low
noise single mode solid state laser (Innolight Mephisto-S 500 NE). More details on
the (noise) characteristics of this setup can be found in [Nei13]. With this setup

4We can measure the fraction of particles in each maxima using a tomographic measurement
[Nei13].
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3 Preparation and Probing of an ultracold Fermi gas

we can create an oblate trap with an aspect ratio of roughly 300 : 1 and nearly
perfect radial symmetry, where the trapping frequency is ωvert = 2π×5.83 kHz along
the tight confined vertical direction and ωhor = 2π×18.2 Hz along the horizontal
directions for roughly 3 W beam power.
Further evaporation in the SWT allows us to produce a degenerate sample in the
quasi-2D regime [Rie14].

3.7 The Lattice Setup
For our experiments in a 2D lattice we turn on the lattice beams after loading
a single layer of the SWT. Each lattice arm is produced by a laser beams retro-
reflected under a shallow angle close to 180◦ (see yellow beam paths in 3.4). Since
lattice 1 and lattice 2 (adopting the notation from figure 3.4) form an angle of 90◦,
overlapping the SWT with the two lattice arms creates a 2D square lattice in each
layer of the SWT. A sketch of the SWT and the lattice setup is shown in figure
(3.5).

Figure 3.5: Sketch of the laser beams creating the SWT (green arrows) and the
lattice (yellow arrows). The green disks illustrate the different pancake
shaped traps created by the SWT. The red tubes show atoms localized
at the lattice sites in the central layer of the SWT. The direction vertical
to the lattice is taken to be the z-axis.

The used wavelength of 1064 nm produces a lattice spacing of d = λ
2 cosφ = 536 nm.

The light for creating the lattice is taken from the same laser as for the SWT. The
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light for each beam is delivered by a high power optical fiber to the experimental
table. Distributing the power from the laser to the different fibers is done on a
separate breadboard, described in detail in [Bec13].
To avoid interference between the different lattice arms and the SWT they are
detuned from the laser frequency by + 100 MHz (SWT), + 120 MHz (lattice 1)
and - 100 MHz (lattice 2) using acousto-optic modulators (AOM) in front of each
fiber. These AOMs are also used to switch and control the power of the beams,
where the feedback signal is taken from a photodiode placed behind a mirror on the
experiment table. To avoid interference between lattice 1 and the SWT, which are
not far detuned from each other, the light creating lattice 1 is vertically polarized,
while for lattice 2 and the SWT horizontally polarized light is used.
On the experimental table the setup for both lattice arms is (apart from one λ/2-
waveplate in lattice 1 to turn the polarization) identical. After leaving the fiber the
collimated beam has a Gaussian diameter of roughly 1.2 µm and passes trough a
Brewster polarizer to clean the polarization.
Then the beam passes trough a cylindrical telescope built out of a f = -75 mm and
f = 500 mm focal length cylindrical lens to expand the vertical beam size by a factor
of approximately 6.7. Thus we can achieve a much smaller focal spot size in the
vertical direction at the position of the atoms, reducing the laser power needed for
the same intensity and trap depth. This we can safely do, since the confinement
in vertical direction is mostly given by the SWT and we want to investigate only a
lattice in a single layer of the SWT.
After the telescope the beams are focused down by a f = 300 mm lens onto the atoms
yielding a focal spot size of 25 µm × 160 µm. On the other side of the chamber
the beam is collimated using a f = 300 mm lens and then imaged on the atoms by
another f=300 mm lens. The calibration of the trapping frequencies as a function
of beam power is described in the next chapter.

3.8 Absorption Imaging
At the end of the experimental cycle, the sample has to be probed to obtain infor-
mation about the state of the system. For this we use absorption imaging, where the
atomic cloud is illuminated with resonant light. Absorption of light by the atoms
results in a shadow behind the cloud which is imaged onto a camera and recorded.
By taking a reference image without atoms one can calculate the fraction of ab-
sorbed light and thus the (integrated) column density of atoms. Since the imaging
uses resonant light the sample gets heated and lost.
We can image the system from different directions (see cameras and blue lines in 3.4),
either from the side to obtain information about the vertical distribution or from
the top to obtain the distribution in the radial plane. The resolution of all imaging
systems is worse than approximately 3 µm such that single lattice sites cannot be
resolved. For more information on our imaging system see [Lom08, Nei13, Bec13].
One can obtain two kinds of information. First, by imaging the atoms inside the
trap one obtains the in-situ density distribution.
Second, by switching off the trap and letting the cloud expand freely before taking
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3 Preparation and Probing of an ultracold Fermi gas

the image one can access the momentum distribution of the cloud, as the freely
expanding atoms move according to their initial velocity and thus if the final size is
much larger than the initial size the density distribution reflects the in trap velocity
distribution. Here the free expansion of the atoms is crucial, as interactions and
scattering would lead to a redistribution of the initial particle momenta.
Also, to obtain the true momentum distribution and to be able to completely neglect
the effect of the initial density distribution one has to wait infinitely long, which is
experimentally not feasible as the signal to noise ratio decreases for longer expansion
times, which go along with a large size and small density of the expanding cloud.

3.8.1 Matter-Wave Focusing
Hence, for obtaining the momentum distribution we use the so-called matter-wave
focusing technique, as described in [Mur14]. When switching off the optical trap
the sample is not expanding freely but in the magnetic potential of the saddle point
of the offset field, which is to a very good approximation harmonic. The trajectory
x(t) of a classical particle moving in a harmonic potential is given by

x(t) = x0 cos(ωt) + p0

mω
sin(ωt), (3.2)

where m is the mass of the particle, ω the trapping frequency and x0 and p0 are the
initial position and momentum, respectively. Obviously, after a quarter of a period,
at T = 2π

4ω , the initial momentum has been mapped onto the position and vice versa.
Thus the in-situ density distribution is obtained after a finite time of flight in a
harmonic potential using the T/4-imaging technique. Our magnetic potential has a
trapping frequency of ωmag ≈ 2π × 10 Hz, resulting in a 25 ms time of flight for
the momentum focusing technique.
Like conventional time of flight imaging this technique relies on ballistic expansion
of the sample without scattering, in stark contrast to our strongly interacting sample
with a large scattering length. Part of this problem is solved by the system geome-
try. Due to the tight confinement in vertical direction, the sample quickly expands
along this axis after switching of the trap, reducing the density and thus the scat-
tering rate. Additionally, interactions are quenched by quickly ramping the offset
field to 527 G, i.e. close to the zero crossing of the scattering length shortly before
the release of the atoms from the optical trap. This is done in approximately 150 µs
such that the many-body wave function cannot react and is mostly unaffected.
Combining the fast expansion with the magnetic field ramp leads to a nearly ballistic
expansion of the sample, where only less than 10 percent of the atoms are scattered
and redistribute their momentum during the expansion [Mur14].
Note, that when imaging along the vertical (tightly confined) axis the full infor-
mation of the 2D system is obtained, since the density distribution along the tight
confined direction, which is integrated out during the imaging process, is trivial.
This is not the case for a 3D system, where by imaging along an axis the density
distribution along this axis is integrated and only the column density is obtained.
There some further image processing has to be done in order to obtain the true
density distribution.
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3.8 Absorption Imaging

3.8.2 Stopping Pulse
While the fast vertical expansion is useful to quench interactions it also cause some
problems. During the 25 ms long time of flight the sample significantly expands and
has a final Gaussian width of several hundred micron, which is larger than the depth
of focus and thus blurs the image and decreases the signal. The axial expansion is
slowed down by pulsing on the painted ODT 100 µs after releasing the sample from
the trap. This free expansion time is such that the sample is already dilute enough
to significantly reduce scattering. By pulsing on the ODT for a quarter period of its
vertical trapping frequency, where the particles reach their classical turning point
and thus have no energy, we stop the expansion of the cloud (see figure 3.6a). For
the trapping frequency of ωvert ≈ 2π ·200 Hz this correspond to a stopping pulse
duration of 1.25 ms. This does not significantly alter the matter wave focusing in
radial direction as the estimated trapping frequency of the painted ODT is on the
order of ωradial ≈ 2π·10 Hz. Thus also distortion due to the non-harmonicity of the
painted ODT should only have a negligible effect on the momentum distribution.
Further expansion of the cloud after the stopping pulse (see figure 3.6b) is due to
imperfections of the stopping pulse and the axial anti-confinement of the magnetic
offset field. The smaller vertical cloud size during imaging significantly increases
the signal, allowing to image smaller atom numbers. More detail can be found in
[Rie14] and [Mur14].
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Figure 3.6: (a) Sketch of the vertical expansion of the cloud with and without stop-
ping pulse. (b) Vertical cloud size as a function of time of flight. With
stopping pulse the cloud size is much smaller, minimizing distortions
during imaging. Taken from [Mur14].
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4 Characterization of the Lattice
The state of a system in a periodic potential strongly depends on the depth V of this
lattice potential. Thus it is crucial to know its exact depth, to be able to perform
senseful experiments. So in a first step we calibrated the lattice setup and measured
its depth V and overall confinement for different laser powers (for a sketch see figure
4.1). In the following all parameters are given as a function of the voltage on the
photodiodes used by the experimental control, where 1 V roughly corresponds to
1 W of power in the lattice beam.

Figure 4.1: Sketch of the confinement provided by the lasers. The red line indicates
the overall confinement due to the Gaussian shape of the beams, whereas
the blue line shows the periodic modulation of the lattice potential with
a central depth V. The periodicity of the lattice is not to scale and much
smaller in reality.

4.1 Calibration of the Lattice Depth
The depth V of the periodic potential is especially important as the tunneling rate as
well as the on-site interaction strength depend on this parameter. Hence by tuning
this parameter the ground state of the system can be changed from a superfluid to
a Mott-insulator. The calibration of the periodic potential V is done by means of
Kapitza–Dirac scattering, whose details are explained in the following.
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4.1.1 Kapitza–Dirac Scattering
From the particle–wave duality of quantum mechanics it is clear that similarly to
the diffraction of light on a grating, the roles can be reversed and particles can
be diffracted on a standing light wave. This diffraction of matter on a standing
light wave is known as Kapitza–Dirac scattering. Kapitza and Dirac originally
proposed to diffract electrons on a standing light wave [Kap33]. Due to the weak
(ponderomotive) coupling of free electrons to light this requires high power (pulsed)
lasers [Fre01]. However, diffraction of atoms on a standing light wave is much easier
because of the larger coupling of the polarizable atoms to the light-field. This not
only lead to the much earlier observation of the Kapitza–Dirac effect for atoms
[Gou86], but also enables us to use the effect to calibrate the depth of our lattice
potential.
The diffraction process can be thought of as absorption of a photon from one of the
beams creating the standing light wave followed by stimulated emission of a photon
to the beam propagating in the other direction. Thus for counter-propagating beams
two times the photon momentum is transferred to the atom.
Instead of using a propagating beam of matter passing through a standing light
wave, as originally proposed, we pulse on the standing wave for a short time on our
static condensate. Thus the interaction time is not given by the transverse atom
velocity and beam diameter, but by the time the lattice beams are turned on.
Neglecting interactions, the time evolution of the condensate wave function ψ can
be described by [Fre02, Gad09]

i~∂tψ =
[
− (~2/2m)∂2

z + V cos2(kz)
]
ψ, (4.1)

where k = 2π/λ denotes the wave vector of the light. Note that this is the same
Hamiltonian as discussed in the theory section (see equation2.30). Here we are not
interested in the static properties of the system, but in the time evolution, if the
potential is turned on for a short time. Since only discrete momenta — multiple of
the lattice momenta kL — can be transferred to the atoms it is again convenient to
Fourier expand the wave function. This leads to the following coupled differential
equations for the coefficients of the different diffraction orders

i∂tcn =
(

2~k2n2

m
+ V

2~

)
cn + V

4~(cn+1 + cn−1). (4.2)

Depending on the strength of the potential V compared to the two photon recoil
energy E(2)

r = (2k~)2/(2m) — the kinetic energy gained by a single scattering event1
— different regimes can be distinguished (more details can be found in [Fre02],
[Gad09] and [Bec13]):

• If the potential dominates over the kinetic energy, i.e. V � E(2)
r , the kinetic

energy (for low diffraction orders) can be neglected. This is the so-called
diffraction or Raman-Nath regime, where the occupation probability of the
different orders after a time t is given by |cn| = J2

n(V t/~) with the n-th Bessel
1Absorption of a photon from one beam and subsequent stimulated emission in the other beam.
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4.1 Calibration of the Lattice Depth

function Jn. Here one sees, that many different orders can be occupied. This
is a consequence of the broad frequency spectrum of the short pulses. Thus
the absorbed and emitted photon might have slightly different frequencies
(energies) which compensates for the change of kinetic energy of the diffracted
and thus accelerated atoms and total energy is conserved.

• For the case of a shallow lattice V ≈ E(2)
r , the number of diffraction orders is

limited, since at most all of the potential energy can be converted to kinetic
energy. This gives a maximal diffraction order nmax = V/E

(2)
R . Thus only a

finite set of coefficients are non-zero and the 2 nmax + 1 coupled differential
equations can be solved. For example for the case of 1 ≤ nmax < 2 the
coefficients are given by [Gad09]

|c±1|2 = C2 sin2

t 1
2~

√
V 2

2 + (E(2)
r )2

 , (4.3)

|c0|2 = 1− 2|c±1|2. (4.4)

Here C2 is the maximal fraction of atoms transferred to the first order, which
depends on the coupling strength and the energy difference (detuning) between
the first and zero order. It is always smaller than 1/2 as in each first order can
be at most half of the atoms. In this effective 2-level system undergoes Rabi-
oscillations and the population of atoms oscillates back and forth between the
zero and the two first orders.

In both regimes the population of the different orders oscillates as a function of
the pulse area V

~ t. Since we want to calibrate the lattice depth by observing the
oscillation of occupation between the orders, we decided to work in the shallow
lattice regime, where the population oscillates more slowly between the orders. In
this regime the oscillation can be resolved with our limited timing resolution of 1 µs
(see chapter 3.1).

4.1.2 Calibration of the lattice depth
For the calibration measurement, we produce a molecular condensate at a magnetic
field of 692 G in a single layer of the SWT. This lower magnetic field reduces the
interaction energy, compared to higher fields. The relative short lifetime is not a
problem for this measurement, as the atoms are not hold in the trap for a long time.
Then the trap is turned off and one lattice beam is pulsed on for a variable time t be-
tween 1 and 30 µs. The intensity of the laser beam of roughly 200 mW is chosen such
that only the first diffracted order is populated. Afterwards the cloud expands for 5
ms in the harmonic potential of the saddle point of the magnetic offset field to sepa-
rate the diffraction orders (see figure 4.2 a). We extract the fraction of atoms in the
first orders by fitting a Gaussian to each of them. The fraction of atoms in the first
order oscillates according to equation (4.3), with a frequency f = 1

h

√
V 2

2 + (E(2)
r )2.

Due to inhomogeneities of the beams the oscillations are not perfect but damped
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Figure 4.2: (a) Kapitza-Dirac scattering of a condensate using lattice beam 1. The
picture is the average of 14 single images. After the pulse the particles
expand in the external magnetic potential until they are separated. This
allows to extracting the fraction of atoms in the first orders. This quan-
tity is plotted in (b) as a function of pulse duration for the same lattice
depth. The population oscillates between the first and the zeroth order
as a function of pulse duration.

as a function of pulse duration2 (figure 4.2 b). From the frequency we calibrate the
lattice depth in units of the molecular recoil energy3 as defined in equation (2.29)
for a given control voltage. The resulting depths are summarized in table 4.1. Since
the potential depth is proportional to the intensity (power in the beam) this allows
us to calculate the lattice depth as a function of control voltage.

lattice control voltage [mV] lattice depth V [kHz] lattice depth V [Er]
1 236 113 7.75
2 195 212 14.5

Table 4.1: Calibration of the lattice depth V as a function of the control voltage. The
potential energy of the lattice is not sufficient to populate higher orders.
Because of the quadratic dispersion relation populating the second order
would require a potential depth of V = 16 Er.

We can use this method to calibrate the relative strength of both lattice arms. This
enables us to produce a square lattice with the same depth in both directions. In

2That this is true can be seen from latter measurements with a larger beam, where the damping
of the oscillation is smaller.

3Since we use Kapitza–Dirac scattering only as a tool to calibrate the lattice we give the energy
in terms of the single photon recoil energy as it is done in lattice experiments and not in units
of the two photon recoil energy, which is the natural energy scale for Kapitza–Dirac scattering.
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the following only the control voltage of lattice 2 is given and the control voltage
of lattice 1 is set accordingly such that the central lattice depth V is equal in both
directions.
Note however, that this calibration might have some error due to the size of the atom
cloud, which is comparable to the size of the beams. Thus the intensity and hence
lattice depth is not constant over the whole cloud. This might lead to errors, since
in different parts of the cloud the population of the orders oscillates with different
frequency, resulting in errors of the lattice depth calibration.
More importantly, this measurements should have been repeated for several powers
to fit the lattice depth as a function of beam power and obtain a more reliable result.
Hence, this measurement can only give a very rough estimate of the lattice depth.
Form a current measurement with different powers ,but a slightly changed setup,
we estimate the error of the here obtained lattice depth to be on the order of 20 %.

4.1.3 Calibration of the Matter-Wave Focusing
Using Kapitza-Dirac scattering, we have a tool to transfer well defined and large
momenta to a part of the cloud. This can be used to calibrate our setup with high
accuracy. By changing the time of flight after pulsing on the lattice, we probe the
evolution of the peaks in the radial confinement created by the saddle point of the
magnetic offset field. This is shown for a condensate diffracted on lattice 1 in figure
(4.3).
This method allows not only to calibrate the matter-wave focusing technique, but
also the magnification of the imaging system. In the harmonic potential created
by the magnetic offset field the particles oscillate and after a quarter of the period
the density distribution reflects the initial momentum distribution [Mur14]. At this
time T/4 the position of a particle xT/4 is connected to the initial momentum by
p0 = mωxT/4. Since the transferred lattice momentum during the Kapitza–Dirac
scattering is much larger than the momentum spread of the condensate we observe
distinct peaks after a quarter of a period in the external potential. Thus experimen-
tally, after a quarter of a period the distance between the peaks is maximal. From
this a matter wave focusing time4 T/4 = 24.6 ms and a corresponding trapping
frequency of ωmag = 2π×10.2 Hz are obtained (see figure 4.4).
These results also allow for a precise characterization of the magnification of the cam-
era, as the transferred momentum pL = ~kL, the frequency of the magnetic offset
field potential and the distance of the peaks on the camera are known. The so calcu-
lated magnification of the camera in the up-down (z-)direction is M = 2.14± 0.04,
roughly 10 % larger than the old value of 1.96. Which was obtained in a less precise
measurement, where the expansion in the harmonic potential was neglected.

4.2 Trapping Frequencies of the Lattice
The lattice beams also change the overall confinement seen by the atoms. Since
this can influence important quantities like the dimensionality of the sample, we

4Including the expansion in the stopping pulse.
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Figure 4.3: Kapitza-Dirac scattering of a condensate using both lattice arms. The
different images correspond to different evolution times of (a) 4 ms, (b)
24 ms and (c) 36 ms in the magnetic offset field. For 4 ms expansion
time also the mixed orders, where a photon of lattice arm 1 is absorbed
and emitted into lattice arm 2, are visible inside the imaging region.
Note that after a quarter of a trap period (b) the peaks are focused and
have minimal width reflecting the narrow momentum distribution of the
condensate. For expansion times longer than T/4 (c), the atoms return
towards the center of the magnetic potential as expected for particles
propagating in a harmonic trap. Also the peaks get blurred over time
due to the expansion in vertical direction. Each picture is the average
of roughly 40 images.

measured the overall confinement including the lattice beams. In order to perform
this measurement nicely we first have to slightly change our experimental setup and
place λ/2-waveplates in the retro-reflected lattice beams. These are used to rotate
the polarization of the beams by 90◦ such that they are not interfering with the
ingoing lattice beams. This is done to avoid effects due to the optical standing
wave, i.e. a different effective mass of particles moving in a lattice. Since in the end
a two dimensional lattice is investigated, we measured the confinement of the full
potential including the SWT and both lattice arms. This is done by measuring the
trapping frequencies of the confinement, which allows to characterize the harmonic
part of the potential.
The trapping frequencies are measured by exciting the so-called breathing mode,
where the cloud changes its size with twice the trapping frequency. The measurement
was done with a single component and thus non-interacting Fermi gas5 in order to
avoid any interaction effects on the oscillation frequency [Ket09].
The Fermi gas is produced by loading a mBEC in a single layer of the SWT and
afterwards adiabatically ramping the magnetic field to the BCS side of the resonance.
There the molecules are transferred into weakly interacting fermions. To remove one
component a light pulse resonant to state |1〉 is applied and the atoms in this state
are ‘kicked‘ out of the trap. This, of course, heats the remaining component, but

5Due to Pauli pressure the cloud of non-interacting fermions is much bigger than the mBEC but
is still smaller than the approximately harmonic region of our potential.
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4.2 Trapping Frequencies of the Lattice
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Figure 4.4: Distance of the first order peaks of Kapitza–Dirac scattering in pixels as

a function of expansion time. To find the turning point of the motion
in the harmonic potential, the distance between the peaks as function
of expansion time was fitted with a sine. Note that the atoms return
to their initial position after half a period of evolution in the harmonic
potential.

one obtains a single component and thus non-interacting Fermi gas in a single layer
of the SWT trap.
The breathing mode is excited by rapidly changing the power in the lattice beams
to the final value6. The density distribution cannot follow this rapid change in trap
depth and a breathing mode is excited. This can then be detected by measuring the
cloud size for different wait times after the excitation.
In figure (4.5), the cloud size as a function of the hold time is depicted for a control
voltage of Vcontrol = 0.1 V. The cloud size along the lattice directions shows a
damped oscillation as a function of the hold time after quickly changing the lattice
beam powers. The damping of the oscillation is due to dephasing of the atoms.
All of these trap frequency measurements were done at a magnetic offset field of
730 G and at a SWT power of roughly 3 W, which already provides a harmonic
confinement with a trapping frequency of approximately 18.2 Hz. The trapping
frequency along the tightly confined z-direction was not measured for different lattice
depths. The confinement provided by the lattice beams is less than 1 kHz in this
direction, which is much smaller than the confinement provided by the SWT in this
direction. Since the total trapping frequency is obtained by quadratically adding the
different trapping frequencies, the contribution from the lattice is less than 3 % and
can be neglected. Thus the trap frequency in z-direction is to a good approximation

6 The quick ramp must not be to big as otherwise also the non-harmonic part of the confinement
is probed. On the other hand if the rapid change is to small the amplitude of the oscillation is
to small to detect.
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given by the value obtained for the SWT.
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Figure 4.5: Gaussian size of the cloud for different hold times after quickly ramping
the lattice power to a final depth of Vcontrol = 0.1 V , which would
correspond to a V ≈ 7.4 Er deep lattice. A damped oscillation of the
cloud with twice the trapping frequency is visible. Each point is the
average of approximately 20 measurements and error bars denote the
standard error of the mean.

We have measured the trapping frequencies f for different control voltages (powers)
Vcontrol of the lattice beams (see figure 4.6). The trapping frequencies show the
expected behavior and are described by

f =
√
const2 · (Vcontrol − V0) + f 2

SWT . (4.5)

They increase as the square root of the intensity (control voltage7) plus a quadrat-
ically added offset given by the trapping frequency of the SWT confinement fSWT

(compare to section 2.3).
The strong increase in radial trapping frequency at nearly constant vertical trapping
frequency reduces the possible atom number in a quasi-2D system. This can seen
from the Fermi energy of a non-interacting 2D gas in a harmonic trap (see equation
2.7),

EF = ~ (2Nωxωy)1/2 . (4.6)

In the quasi-2D, regime the Fermi-energy (chemical potential) must be smaller than
the trapping frequency in the tightly confined direction. For increasing radial trap-
ping frequency the particle number must thus be smaller in order to stay in the 2D
regime. This means that even if we start with a quasi-2D sample in the SWT, excited
levels in the z-direction can become populated, when the lattice is turned on and
the aspect ratio of the trap changes. Thus we have to be careful that most particles

7The offset in the control voltage is needed since the photodiode used for feedback gives a non-zero
voltage even without any light from the lattice beam.
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4.3 Lifetime in the Lattice

stay in ground state of the confinement in z-direction, when doing experiments in a
2D lattice. Furthermore, these particles in the excited z-states will not contribute
to the coherent part of the sample and only make the system more complicated.
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Figure 4.6: Trap frequency along the two lattice arms as a function of control voltage
and lattice depth. The black line indicates a trap frequency of 18.2 Hz
provided by the SWT and magnetic offset field. The data points show
the expected behavior as discussed in the text. The different trapping
frequencies in the two directions might be due to alignment problems or
errors from the calibration of the lattice depth V.

4.3 Lifetime in the Lattice
Since low temperatures and high degeneracy are crucial for experiments, probing the
ground state properties of a system (e.g. the superfluid to Mott-insulator transition),
we need to know the heating rates and lifetime of the atoms in our lattice. To
measure the lifetime of the atoms in the trap, we produced a single component Fermi
gas in state |2〉 as described above. These particles are hold for up to 8 s at different
lattice depths. The particle numbers as a function of the hold time are shown in
figure (4.7). From the small change of roughly 10 percent in atom number over
several seconds it is clear that the lifetime will not limit the experiments performed
in the lattice, since these normally take less than 1 s of time. The number of atoms
can be fitted by an exponential decay N = N0 exp(−t/τ), with a 1/e-lifetime of
24 s and 27 s for lattice depths of V ≈ 37 Er and V ≈ 22 Er, respectively. This
functional shape suggests that the losses are due to single particles processes. Hence
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processes like scattering non-resonant photons from the trapping beams, collisions
with the background gas and heating due to trap noise [Geh98], do not lead to atom
loss limiting the planed experiments in the lattice. As expected the lifetime is longer
for lower light intensity.
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Figure 4.7: Particle number of a single component Fermi gas as function of hold time

in our square lattice for lattice depths of V ≈ 37 Er (red) and V ≈ 22 Er
(blue). The number of atoms is well described by an exponential decay
with a single time constant.
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5 Non-Interacting Fermions in a
Lattice

The aim of this thesis is to study the superfluid to Mott-insulator transition for
strongly interacting bosonic molecules in the 2D lattice. However, also ultracold
fermions in optical lattices are interesting. Since these systems can be used as sim-
plified toy models for electrons in solid-state systems. Thus in a first step and to get
a better handle on our system, without the complications arising from strong inter-
actions, we performed some measurements with non-interacting fermions. These are
produced using the high-field evaporation scheme, described in the previous chapter.
This allows us to load a single layer of the SWT, but as we shoot out one component
in this scheme we cannot switch on interactions again in the single component Fermi
gas, making thermalization impossible.
For (non-interacting) fermions at low temperatures1 the properties strongly depend
on the filling of the highest occupied band. From solid state physics it is well know
that if the highest occupied band of a solid is completely filled the system is in-
sulating, as excitation of the electrons to higher bands requires more energy than
is (thermally) available and are thus gapped out. On the other hand if a band is
only partially filled the electrons can easily be excited to other states inside the
band and transport is possible. The system is then in a conducting metallic state.
Changing continuously from a band insulator to a metallic state is impossible in a
solid, but can be done with a fermionic quantum gas in an optical lattice [Köh05]
by either changing the number of atoms in the trap or by tuning the overall lattice
confinement.
Both methods allow for obtaining the right filling of one particle per spin and lat-
tice side required for a band insulator. For non-interacting systems the occupation
of the different bands can be probed using a so-called band mapping technique
[Köh05, Gre01].

5.1 Band Structure
The occupation of different quasi momentum states in different bands is obtained by
turning off the confining lattice potential slowly compared to the trapping frequen-
cies of the single lattice sites2. Thereby the quasi-momentum states are adiabatically
mapped to the free-particle momentum states and the occupation of the bands is
conserved [Kas95]. Afterwards the particles expand freely to make the momentum

1The temperature must be smaller than the band gap.
2The ramp down must be fast enough that no redistribution of atoms inside the trap is possible,
i.e. faster than the overall trapping frequency.
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5 Non-Interacting Fermions in a Lattice

distribution visible and are imaged after time of flight. This allows for obtaining the
quasi-momentum distribution. Hence, particles in the lowest band of the 2D lattice
are mapped to states in the first Brillouin zone. The different Brillouin zones for a
2D square lattice are depicted in figure(5.1).

Figure 5.1: The first Brillouin zones of a 2D square lattice in momentum space. The
different zones are separated by the Bragg planes. Take from [Gre01].

From this it is now clear that one would expect a round quasi-momentum distri-
bution in the metallic state, if the chemical potential (Fermi energy) lies inside the
(first) band. For the band insulator on the other hand, one would expect a squarish
top hat quasi-momentum distribution, since all states within the Brillouin zone are
occupied with exactly one particle and all other higher quasi-momentum states are
unoccupied. This transition can be nicely seen in figure (5.2). Figure (5.2 a) shows
the squarish quasi-momentum distribution of a band insulator, whereas in figure
(5.2 b) a round Gaussian (Fermi) quasi-momentum distribution is visible. Here the
time for the adiabatic ramping down (5 ms) and (free) expansion was chosen such
that the best signal was obtained. However, this required short expansion times of
only 2 ms and thus the initial cloud size has a significant influence on the imaged
density distribution. Therefore, the size of the cloud released from the lattice is twice
as big as expected from the momentum spread of the first Brillouin zone and the
expansion time3. Surprisingly, still a top hat like density distribution is observed,
where the rounding off at the edges might be due to the initial size of the cloud,
which still matters for these short expansion times and non-adiabaticity at the end
of the ramp. This squarish flat top distribution indicates that only the first band of
the 2D square lattice is occupied4 whereas all higher bands are unoccupied and the
system is a band insulator, with only the lowest band occupied (compare to figure
5.1). The influence of the initial cloud size is even bigger for releasing from the SWT

3This is in relatively good agreement with the initial cloud size with is roughly half as big as the
final size.

4Also the second Brillouin zone has a quadratic form, but its sides are oriented differently.
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5.1 Band Structure

(figure 5.2c), due to the smaller trapping frequency and thus larger in-situ size.
Increasing the depth of the lattice potential tightens the overall confinement and
decreases the width of the lowest band. Thus at a constant particle number a larger
fraction of the system becomes a band insulator with (nearly) full filling of the lowest
band. This implies that in the inhomogeneous system one can go from the metallic
to the band insulating state for fixed particle number by only tuning the lattice
depth, as done here.
The relatively small trapping frequency of the SWT in z-direction of only ωvert ≈ 2π×
5.8 kHz makes it impossible to populate higher bands in the xy-plane of our 2D lat-
tice. This is because of the fact that ωz is much smaller than the on-site trapping
frequency of the lattice in the xy-plane ~ωon−site = 2

√
V ER, which roughly gives

the energy gap between the lowest and the first excited band. As the cold fermions
fill up the energy level from the bottom, loading more particles in the lattice only
populates higher excited oscillator states in the z-direction orthogonal to the 2D lat-
tice confinement while still all particles are in the lowest band in the xy-plane of the
2D lattice, as particles in the second band in xy-direction would have an additional
energy on the order of several 100 kHz.
The band mapping technique is unfortunately not usable for strongly interacting
two component Fermi gases. Thus we have no easy tool to probe the transition to
a band insulating state of interacting fermions. These we can create by our high-
field evaporation scheme and subsequent adiabatically transfer of the molecules into
atoms by ramping across the Feshbach resonance. There the scattering length is still
large a ≈ −2500 a0 such that the interaction energy is on the order of the trapping
frequency in z-direction (see chapter 6.3.2). Thus during the slow ramp down of the
potential, scattering leads to redistribution of momenta and the density distribution
after time of flight does not reflect the initial quasi-momentum distribution [Nat12].
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Figure 5.2: (a),(c) Atom distribution obtained from band mapping. The atoms were
imaged after adiabatically ramping down the trapping potential for a
V ≈ 44 Er deep lattice (a) and without lattice from the SWT (c) in
5 ms and subsequent free expansion for 2 ms, for a single component
Fermi gas. When releasing the sample from the lattice one obtains a
squarish top hat density distribution, reflecting the occupation of the
quasi-momentum states in the first Brillouin zone for a band insulator.
Note that the images were rotated by 45◦ such that the lattice 1 direction
corresponds to the y-axis. (b) and (d) cuts parallel to the lattice 1
direction through the density distributions of (a) and (c), respectively.
Also here a top hat occupation of states is seen when releasing from
the lattice, while the sample released from the SWT (d) has a Gaussian
shape. Each picture is the average of 13 measurements. The larger size
of the cloud released from the SWT is due to its larger initial size, which
is not much smaller than the final size and the atomic distribution only
approximately reflects the momentum distribution.
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6 Reaching the Quasi-2D Regime in
the Lattice

In this chapter we investigate the occupation of excited states in the z-direction
perpendicular to the 2D lattice (see figure 3.5 for the orientation of the different
axes). This is important as in order to minimize complications arising from occu-
pation of excited states in the direction orthogonal to the lattice, we want only a
small occupation of the excited level in z-direction perpendicular to the lattice and
the sample to be as quasi-2D as possible. Furthermore, the particles in the excited
states will not contribute to the coherence and thus are of no interest for studying
the superfluid to insulator transition. In the first part of this chapter the method
to characterize the occupation of excited states is explained. Then the results ob-
tained for the 2D bulk system, without the lattice are presented. In the last section
the occupation of excited states in the tightly confined z-direction in the lattice is
discussed.

6.1 Measuring the Occupation of Excited States and
the Interaction Energy

Measuring the occupation of excited states in the z-direction and the interaction
energy Eint is possible by investigating the expansion of the cloud after the release
from the trap [Bou03]. The energy of a freely expanding cloud can be deduced from
its velocity distribution and thus from its size after a given time of flight.
The energy of the expanding cloud, the so-called release energy Erel is given by
[Pit03]

Erel = Eint + Ekin, (6.1)

where Ekin is the kinetic energy of the trapped system. For small interactions the
release energy can be used to deduce the occupation of excited states in z-direction,
as the kinetic energy is larger for excited states resulting in a faster expansion. For
a particle in the harmonic oscillator ground state the kinetic energy is given by
Ekin = 1

4~ωz. The potential energy does not contribute to the release energy as it is
lost by quickly switching off the trap.
When the cloud flies apart the interaction energy gets converted into kinetic energy
directly after the release, when the density is still high. The expansion of the
sample released from our trap is very anisotropic and most of the interaction energy
is converted in kinetic energy in the tightly confined z-direction, where the gradient
of the density is highest. Thus in the following we will only investigate the expansion
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6 Reaching the Quasi-2D Regime in the Lattice

in the initially tightly confined z-direction. Thus, the vertical width z of the cloud
in the harmonic oscillator ground state after an expansion time τ is

z = τ

√
~ωz
2m + 2Eint

m
. (6.2)

Here the initial size of the cloud of less than 1 µm was neglected. Furthermore, we
neglected the acceleration of the atoms due to the anti-confinement produced by
the magnetic offset field, as this results in an error of less than 1 µm for the short
expansion time used.
Hence measuring the release energy and expansion of the cloud in z-direction allows
to measure the occupation of excited z-states for a weakly or non-interacting system.
If the system is prepared such that there is negligible occupation of excited states,
the release energy can be used to measure the interaction energy.
In the experiment we load the sample in either the SWT or the combined potential
of STW and the lattice and image the cloud after a short expansion time τ . Then
the radial and vertical size of the cloud are obtained by fitting the atom distribution
with a Gaussian. This gives a good estimate for the cloud size after the expansion.

First, we measured the expansion of a non-interacting fermionic sample, produced
using the so-called low field evaporation scheme. In this scheme a sample of weakly
interacting fermions is produced. During the evaporation in the ODT we ramp down
the magnetic offset field to 300 G, where the scattering length is negative. This is
done before molecules are created. By continuing evaporation with the weakly in-
teracting Fermi gas at a magnetic field, where the scattering length is negative no
molecules are created.
This low-field evaporation scheme is less effective than evaporation with bosonic
molecules because of the smaller scattering length and Pauli blocking of the Fermions,
which limit thermalization during evaporation and thus the achievable temperatures
[DeM99].
A second more important problem arises because of the Fermi pressure, which limits
the size of the cloud and makes it impossible to load a single layer of the SWT. At
reasonable particle number to have sufficient signal to noise at least 3 layers of the
SWT are usually loaded [Nei13]. In principle it is possible to remove atoms from
the non-central layer, by applying a magnetic field gradient in vertical direction and
selectively transferring the population in the other layers in to high field seeking and
collisional unstable states (e.g. |6〉) using a microwave pulse. But this is not fully
implemented in our setup yet. Thus the possibility of tuning interactions in a weakly
interacting Fermi gas comes at the expense of averaging over different layers. With
the sample of free fermions it is possible to go to the zero crossing of the scattering
length at magnetic field of 527 G without having any losses, which is not possible
for the system in the molecular branch as discussed before.
To measure the release energy of a non-interacting Fermi gas in the ground state,
the sample was prepared using low field evaporation. Then the magnetic field was
ramped to the zero of the scattering length at 527 G before the release. The particle
number and the temperature are such that only the ground state of the z-confinement
is occupied. The atoms are released from the SWT and imaged after τ = 2 ms of
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6.2 The 2D Bulk System

expansion.
The expansion width of 24.3 µm of this non-interacting gas yields an trapping fre-
quency of ωz = 2π × 4.4 kHz, which is roughly 20 % smaller than the value of
ωz = 2π × 5.3 kHz obtained from a trap frequency measurement. This discrepancy
is most likely due to a wrong calibration of the magnification, which results in a
wrong value for the cloud size. Thus we used the trap frequency measurement to
recalibrate the magnification of this camera. The new magnification Mnew can be
calculated from the old magnification Mold and the measured zold and expected cloud
znew = 26.4 µm size as

Mnew = Mold
zold
znew

= 1.9. (6.3)

This is roughly 10 % smaller than the old value of Mold = 2.0. Note, that this
deviation cannot stem from neglecting the anti-confinement or the initial cloud size
or occupation of excited states of the vertical confinement due to temperature, as
all these would result in an larger measured cloud size than expected from the free
expansion of the ground state. Since the measured cloud size was smaller than
the value expected from the calculation and all of these correction would result in
a larger calculated cloud size, the deviation is most likely due to a error in the
calibration of the magnification. For the following measurements we used this new
value of the magnification.

6.2 The 2D Bulk System
In this section we discuss the results obtained for the expansion of a sample released
from the SWT without a lattice. This is done as we later us the measurements
for a sample released from the SWT to benchmark the measurements performed
in the lattice. The measurements presented in this section were already used to
show, that the bulk system in the SWT is in the quasi-2D regime for low enough
particle numbers [Rie14, Rie15]. Thus we uses these measurements to validate the
method of measuring the release energy to estimate the occupation of excited state
in the tightly confined direction. This measurement is performed using a relatively
weakly interacting two component Fermi gas, at a magnetic offset field of 1400 G,
where the scattering length is a = −2500 a0 [Rie15]. This scattering length is small
enough, that from the release energy the occupation of the states in z-direction can
be deduced.
If the particle number is such, that the chemical potential µ is smaller than the
axial trapping frequency ~ωz, the system should be in the ground state of the z-
confinement and the width after expansion is independent of the particle number.
If the chemical potential reaches the axial trapping frequency, particles start to
occupy excited states and the size of the cloud after expansion increases with particle
number1. This is nicely illustrated in figure (6.1), where we see that the cloud size
is independent of the particle number for up to 60000 atoms. Hence the bulk gas is
in the quasi-2D regime for a experimentally feasible particle number.

1Note that this argument requires the temperature to be much smaller than the axial trapping
frequency.
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Figure 6.1: Gaussian width of a weakly interacting fermionic cloud, after releasing
the sample from the SWT and τ = 3 ms expansion as a function of
the particle number. For low atom numbers the system is in the axial
ground state and the width after expansion is independent of the particle
number, whereas the width increases with the number of particles once
the chemical potential is larger than the axial trapping frequency. This
allows us to estimate the maximal particle number of approximately
60000 in the quasi-2D regime for the bulk system. Taken from [Rie15].

6.3 The 2D Lattice
As explained in the last chapter increasing the particle number in the lattice pop-
ulates excited states in the z-direction of the SWT, while all particles stay in the
lowest band in the xy-directions of the 2D lattice. This is due to the fact that the
on-site trapping frequency ωon-site in the radial xy-plane is much larger than the
trapping frequency in the z-direction ωz, which is given by the SWT2. Thus it is
energetically much more costly to populate the second band in xy-direction of the
lattice, than occupying excited states in the z-direction. Furthermore the overall
radial confinement is larger in the lattice than in the SWT. In combination with the
constant trapping frequency in the z-direction, this decrease the maximal particle
number in the quasi-2D regime. Thus it is possible to start with a sample in the
quasi-2D regime in the SWT and leave this regime, while ramping on the lattice.
Therefore, we will now examine in more detail how to the lattice confinement in-
fluences the occupation of excited states in the tightly confined z-direction. These
measurements are compared to similar measurements performed in the SWT without
the lattice confinement. First, we will investigate the expansion for non-interacting
samples.

2The confinement in the z-direction is mainly given by the SWT whereas the contribution from
the lattice beams in this direction is neglected, as it changes the trapping frequency ωz by less
than 2 %.
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6.3.1 Non-Interacting Gas
In the lattice, the experiment at 1400 G performed in the SWT gives no useful
information about the vertical ground state occupation. This is due to the fact, that
in the lattice the expansion of the cloud is dominated by the release of interaction
energy, already for very small scattering lengths. Thus measuring the release energy
does not give us information about the occupation of the trap levels at this magnetic
field. This strong effect of the interactions results in an increase of the cloud size
with particle number for all particle numbers and no plateau of the expansion is
observed. The effect of interactions in the lattice is discussed in more detail in the
next section.
Thus interactions have to be completely switched off, when we want to test the
increased ’geometric’ occupation of the higher excited states due to the additional
lattice potential and increase in overall confinement in the radial plane compared to
the SWT. The non-interacting sample can be produced in the two different sample
already mentioned in the last chapters:

• Low-field evaporation: two component non-interacting gas Evapora-
tive cooling is done at a magnetic field of 300 G at negative scattering lengths.
This produces a sample of weakly interacting fermions. The interactions can
be switched off by ramping the magnetic field to the zero crossing of the scat-
tering length at 527 G. The drawback of this method is, that at least 3 different
layers of the SWT are loaded during the transfer. Thus the atom number in
a single layer cannot be determined.

• High-field evaporation: single component non-interacting gas During
the evaporation strongly interacting molecules are created. These are dissoci-
ated by ramping to the BCS side of the resonance. Then the atoms in state
|1〉 are removed by a resonant light pulse. This produces a single and thus
non-interacting Fermi gas. However, this leads to significant heating of the
remaining atom, but allows to load a single layer of the SWT, and therefore
to determine the particle number in this layer.

Since this ’geometric’ occupation of excited states of the SWT in the non-interacting
case depends — for low temperature — only on the particle number, we have to
exactly know the particle number in a single layer of the SWT. Thus it is important
that only a single layer of the SWT is occupied. Hence we have to use high-field
evaporation scheme. However, the removal of the second state considerably heats
the remaining atoms. As a result we never observe a plateau of the vertical width
as function of the particle number (see figure 6.2). This is true for both the mea-
surement with and without the lattice and the single component gas.
Nevertheless, the expansion from the SWT with and without the lattice confinement
can be compared, to obtain an estimate for the additional occupation of excited z-
levels due to the lattice confinement. Here, one sees that the sizes after releasing
the atoms from the SWT with and without lattice only differ significantly for par-
ticle numbers larger than 50000 atoms. This is somewhat surprising as one would
expect a deviation to occur for smaller particle number when considering only the
radial trapping frequencies of ωlattice ≈ 60 Hz for a lattice depth of V = 7 Er and
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Figure 6.2: Gaussian width of a single component Fermi gas, after releasing from the
SWT (red) or the SWT and lattice (blue) as a function of the particle
number. For low atom numbers the expansion widths are the same for
both systems. However the system is never in the axial ground state
due to heating during the removal of the second component. It seems as
the heating is increasing with particle number. At higher atom numbers
(= 50000) the width increases strongly for the sample released from the
SWT and the lattice, whereas it stays nearly constant for the gas trapped
only in the SWT.

ωSWT ≈ 18 Hz of the system and applying equation (2.7). This, however, is not
correct as the additional periodic potential modifies the density of states (in the
limit of tight binding each lattice well can be filled with one atom per state). This
leads to a higher density in the lattice compared to the bulk gas and more particles
fit into the lattice at the same chemical potential.
Also temperature plays a significant role. The removal of component |1〉 heats the
remaining atoms so much, that there are always excited states occupied and the
width after the expansion is always larger than expected from theory for a gas in
the ground state. Note, that this was not a problem for the band mapping measure-
ments discussed in the last chapter, as the excitation to a higher band of the 2D
lattice requires much more energy than excitation of vertical trap levels and thus
there is no measurable occupation of these level due to temperature.
As already discussed, producing a non-interacting Fermi gas via low-field evapora-
tion and ramping the magnetic field to 527 G to solve the heating problem would
not help us for this measurement as we then load several layers of the SWT and
cannot determine the particle number in a single layer.
More generally, also the radial size of the cloud can be used to estimate, whether
axial states are occupied. Here we follow the reasoning of the supplementary mate-
rial of [Rie15]. The energy of a particle sitting at a radial distance r from the trap
center has an additional potential energy of

E = 1
2mω

2
rr

2 (6.4)
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6.3 The 2D Lattice

compared to a particle at the trap center. To have no significant occupation of
excited states in the vertical direction (assuming equipartition) the energy of a
particle sitting at the edge of the cloud must be smaller than the excitation energy
in axial direction (in a local density picture this estimates the chemical potential
µ). Thus, from the requirement that the chemical potential is smaller than the axial
trapping frequency, one can estimate the maximal cloud radius for a system to be
in the quasi-2D regime as

r2 ≤ 2~
m

ωz
ω2
r

. (6.5)

For the lattice it is possible to translate this radius to a maximal particle number
as the density is limited by one fermion per state and lattice site. Assuming this
maximal density, i.e. unity filling of each lattice site inside this radius and no
particles outside (which is of course unrealistic as one would expect a smooth density
distribution) this gives a upper bound for the particle number of

N ≤ π
r2

d2 = π
1
d2

2~
m

ωz
ω2
r

, (6.6)

where d = 536 nm is the lattice spacing and the density for unity filling is ρ =
1
d2 = 3.48 µm−2. For the parameters of the lattice used for the measurement in
figure (6.2), this yields a maximum number of roughly 60000 particles before higher
vertical levels get occupied. Which is — considering that these assumptions are not
completely justified — surprisingly close to the atom number, where the expansion
from the lattice begins to differ from the expansion without the lattice.
The strong increase in radial trapping frequency when turning on the lattice beams
limits the possible particle number in the quasi-2D regime, to roughly 50000 atoms.
This is on the same order of the value estimated for the bulk gas (see figure 6.1),
which has a much weaker radial confinement. This is due to the much larger density
of fermions in the lattice compared to the bulk gas.

6.3.2 Interaction Effects
In the last section we have investigated the occupation of excited states in the tightly
confined z-direction for non-interacting fermions in the lattice. There we have seen
that despite the increased radial confinement of the atoms in the lattice, the system
of non-interacting fermions can still be in the quasi-2D regime at reasonable par-
ticle numbers, as also the maximal possible density increases. However, having no
significant occupation of excited states in the tightly confined z-direction limits the
particle number to below 50000.
So far we only considered non-interacting particles, but our main experiments are
performed close to a Feshbach resonance with an interacting sample. The interac-
tions between particles can not only change the state of the system, but can also
result in the occupation of excited states and as a result of this the atoms can leave
the quasi-2D regime. Thus we will have a closer look at interacting systems in the
optical square lattice and how the presence of interactions influences the occupation
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6 Reaching the Quasi-2D Regime in the Lattice

of excited states.
As a first naive guess for the strength of interactions, the on-site interaction en-
ergy U can be calculated using equation (2.42). Furthermore, we approximate the
ground state Wannier wave function with a product of Gaussians in each direction,
i.e. we assume that the atoms are tightly bound to a single site and the ground
state of an atom localized on a lattice site can be approximated by that of a har-
monic oscillator. In the xy-plane, the on-site trapping frequency for deep lattices is
well approximated by ~ωon−site = 2

√
V Er, whereas the confinement in z-direction is

given by the SWT as the additional confinement provided by the lattice beams is
negligible in this direction. This yield an on-site interaction energy of

U =
√

8
π

a

az
h
√
ErV , (6.7)

where az =
√

~
mωz

is the harmonic oscillator length in z-direction given by the con-
finement of the SWT. Even though the approximation of taking the ground state
to be Gaussian is not correct and in principle the full Wannier functions have to
be used this should give a reasonable result for deep lattices and small scattering
lengths [Zwe03]. For our main experiments, described in the next chapter, neither of
these two assumptions is true. There, we investigate the transition from a superfluid
to an insulating state close to the Feshbach-resonance. Thus for these experiments
the scattering length is large and the interesting physics of a transition to the insu-
lating state happens at relatively low lattice depths.
However, to gain better understanding of our setup, we first performed some ex-
periments with weakly interacting fermions in the lattice, where this approximation
should give a good estimate of the interaction energy.
To probe the interaction energy in this regime, we load a non-interacting Fermi gas
produced by low-field evaporation in a V = 5.6 Er,mol deep lattice. The particle
number of roughly 30000 is such that only the ground state in z-direction is occu-
pied. At the final lattice depth we turn on interactions by ramping the magnetic
field from the zero of the scattering length at 527 G to its final value. Then the
atoms are released from the trap and imaged after τ = 2 ms of expansion.
Here we observe that the radial size is independent of the scattering length in the
investigated region, whereas the vertical size strongly changes with the scattering
length (see figure 6.3). This confirms, that the interaction energy is predominantly
released in the tightly confined z-direction, where the density gradient is highest.
Now, assuming that each lattice site is filled with one atom per spin state, the on-
site interaction energy can be determined from the release energy. This assumption
of one atom per state and site is reasonable as shown below. First, there can be
more than one atom per state on only very few sides, as the expansion of the non-
interacting cloud is well described by the expansion of a non-interacting gas in the
ground state. Thus only a small fraction of atoms can occupy excited state of the
vertical confinement. Hence, there cannot be a considerable fraction of sites with
more than one atom per state, as the second atom would be in the first excited state
of the z-confinement (Pauli principle). Second, we load a balanced non-interacting
sample of the same temperature for both spin states. Thus the occupation of the
different states in the trap should be approximately the same for both spin states.
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Figure 6.3: Measurement of the release energy. Shown is the Gaussian width in
z-direction of a fermionic cloud after releasing from a V = 5.6 Er,mol
deep lattice and τ = 2 ms time of flight for different scattering lengths.
For positive scattering lengths the width is fitted to obtain the on-site
interaction energy U (red curve). The orange curve gives the expected
expansion if one assumes the lattice to consist out of quasi-1D tubes and
the interactions are quasi-1D. For negative scattering lengths the expan-
sion of the cloud is well described by taking into account the dissociation
of molecules bound in this quasi-1D tubes.

As the filling in the trap center is reasonably high a considerable fraction of sites
should be occupied with two particles.
Hence, measuring the release energy should give a good approximation for the on-site
interaction energy. For small positive scattering lengths a, the on-site interaction
energy U can be approximated by the result from equation (6.7). The size of the
cloud after expansion should then be given by

z(a, τ) = τ√
m

√
~ωz
2 + 2hγa, (6.8)

where m is the mass of the fermions and hγ =
√

8
π

1
az
h
√
ErV = U

a
gives the on-site

interaction energy per scattering length as calculated from equation(6.7). From the
fit of this function to the data points for positive scattering length in figure (6.3)
the following values of ωz = 2π × 5.2 ± 0.2 kHz and γ = 9.1 ± 0.6 Hz/a0 are ob-
tained. These are in reasonable agreement, but slightly smaller than the values of
ωz = 2π× 5.3 kHz and γ = 10.3 Hz/a0 obtained from the trap frequency and lattice
depth measurements described in chapter 4.
The smaller measured value of the interaction energy γ for a given scattering length
can be partly attributed to our calculation of the on-site energy. Calculating the
energy using the Gaussian ground state overestimates the interaction energy U, as
the real ground state (Wannier) wave function in the lattice is more extended than
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6 Reaching the Quasi-2D Regime in the Lattice

a Gaussian. Another reason for this deviation could be an error in the very rough
calibration of the lattice depth.
Due to the large ratio of the on-site trapping frequencies, with a large on-site trap-
ping frequency ωon−site in the xy-plane and small trapping frequency ωz in the ver-
tical direction, the system can also be viewed as an array of coupled quasi-1D tubes
with weak confinement in the z-direction. For these measurements, viewing the
atoms confined on a single lattice sites to be in the quasi-1D regime is a good ap-
proximation, as the ratio of the trapping frequencies is ωon−site/ωz ≈ 25. Thus a
quasi-1D theory can be applied to calculate the interaction energy of two particles
occupying the same lattice site. For a large aspect ratio of the trap and positive
scattering lengths the interaction energy can be calculated via [Idz06]

1
a

= − az
a2
on−site

(
Γ(−ε/2)

Γ(1/2− ε/2) + aon−site
az

ζ(1/2)
)
, (6.9)

where ζ(1/2) ≈ 1.46, Γ is the gamma function and ε is the interaction energy in
units of the trap energy of the weakly confined direction, i.e. ~ωz and aon−site is the
harmonic oscillator length of a single lattice well in the xy-plane. The calculated
values for the cloud size after expansion are shown in figure (6.3) as orange curve for
positive scattering lengths and show fair agreement with the measured data. The
deviation from the measured values could be due to the fact that our system is more
complicated than a single quasi-1D tube. First, the different lattice sites at this
depth are still coupled in the xy-plane, with a tunneling rate of several hundred Hz,
thus the on-site wave function in the radial plane is not that of a particle trapped
in a harmonic potential, for which this theory is developed. This coupling results in
a broader wave function in the xy-plane than for a harmonic trap of this trapping
frequency. This smaller confinement results in a different interaction energy. Also
the large tunneling rate in the xy-plane leads to a more complex system, where
the interaction dynamics of two atoms on a single site are mainly along the weak
confined z-direction, whereas tunneling and coupling between the sites is along the
xy-directions, where the on-site confinement is stronger.
Second, the used theory is developed for harmonic traps, which is not exactly true
for our system.
Another possible explanation for the deviation could be errors from the calibration
of the lattice depth, which would result in a different on-site trapping frequency and
thus interaction energy in these quasi-1D tubes.

The increasing expansion width for negative scattering lengths show that also for
negative scattering lengths the released interaction energy is positive. This can again
be explained by the fact, that the lattice can be thought of as an array of coupled
quasi-1D tubes with weak confinement in the z-direction. In these quasi-1D systems
there exists a bound state for negative scattering lengths. Its binding energy εB is
determined by [Idz06]

1
a

= aon−siteζH(1
2 ,

εB
2~ωon−site

), (6.10)

where ζH is the Hurwitz zeta function. When the trap is switched off, the molecules
dissociate, since for negative scattering lengths there exists no bound state in three
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6.3 The 2D Lattice

dimensions and the system is projected onto the free momentum states. Thus the
binding energy is released as kinetic energy. The expected cloud size after expansion
for negative scattering length are shown in figure (6.3) in orange and show reason-
able agreement with the measured value for negative scattering lengths. However,
the calculated cloud sizes lie systematically lower, than the measured values. Again
this systematic deviations form the measured values could be due to problems of ap-
plying this quasi-1D theory to our more complicated system, as already mentioned
above.

Now we will consider a strongly interacting Bose gas of molecules close to the
Feshbach-resonance produced via high field evaporation. In the following, we will
only consider positive scattering lengths, as our current experiments with the su-
perfluid Bose gas are done with repulsive interactions. From the above discussion it
is clear that for small positive scattering lengths a ≈ 100 a0 the on-site interaction
energy can be calculated using the simplified ansatz of equation (6.7).
However, this naive picture does not hold for our experiments on the molecular
branch. In this regime our system is more complicated due to the combination of
the relatively weak confinement in vertical direction and the large scattering length
close to the resonance. The on-site interaction energy U for a scattering length
a ≈ 1500 a0 (corresponding to the molecule-molecule scattering length3 at a mag-
netic field of 732 G where we perform most experiments) is depicted in figure (6.4).

Already for a lattice depth of V = 3Er one would expect an interaction energy of
U = h× 8.4 kHz, which is larger than the vertical trapping frequency. This simple
calculation gives not the correct result, since if the interaction energy becomes too
large, the wave function should be deformed from the ground state and the approx-
imation of using a non-interacting wave function becomes poor. In this case it is
more appropriate to calculate the interaction energy using the quasi-1D theory de-
scribed above. The so obtained values for a molecule–molecule scattering length of
a = 1500 a0 are depicted in figure (6.4) in orange and are lower than the interaction
energy calculated in the naive approach and the vertical trapping frequency.
The above mentioned deformation of the wave function reduces the interaction en-
ergy at the cost of increasing the kinetic energy. The energy gained from this
admixture of excited trap levels should be on the order of the energy scale of the
trap, i.e. the trapping frequency in the weakly confined direction and thus limiting
the gained energy to the same scale. Busch et al. [Bus98] analytically calculated the
energy and wave function of two particles with contact interaction in a harmonic
trap and indeed observe that turning on interactions results in admixture of excited
trap levels. The maximum change in energy when going from zero to infinite strong
interaction is given by the trap energy in the weakly confined direction, which in
our case is ~ωz [Bus98, Idz06].
However, also the so calculated values have to be taken with caution, as these cal-
culations are done for harmonic potentials with constant level spacing, which is not

3The scattering length was obtained from the atom-atom scattering length and equation (2.19).
However, this might not give the correct result for the deformed molecules in the elongated
tubes.
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6 Reaching the Quasi-2D Regime in the Lattice

Figure 6.4: Interaction energy U calculated from equation (6.7) (blue) and from a
quasi-1D theory (orange) as function of the lattice depth V, for a scat-
tering length of a = 1500 a0. The trapping frequency in z-direction
(red) is independent of the lattice depth as it is mainly given by the
SWT confinement. Already for a small lattice depth of V = 1.5 Er the
interaction energy calculated this way becomes larger than the vertical
trapping frequency and thus does not describe the interaction correctly.
Furthermore, the calculated interaction energies should give a good es-
timate only in deep lattices, at least deeper than 3 Er. Thus the naively
calculated interaction energy U using equation (6.7) completely fails to
describe the system.

true for our potential given by the interference of laser beams. Since the poten-
tial has a sinusoidal shape, the level spacing is decreasing for the excited states,
especially when considering the small depth of the potential of the SWT of roughly
VSWT ≈ h 50 kHz [Nei13]. Thus the used quasi-1D description does not give a good
estimate, when many excited levels are expected to be occupied.
As mentioned above our system is even more complicated as the lattice sites are
coupled due to the tunneling in the 2D lattice. Thus, the dynamics are mainly tak-
ing place in the 2D plane, and not along the weakly confined direction of the tubes.
Furthermore, the molecules consist of two fermions and it is unclear, whether the
interaction can be described by the interaction of the two molecules or if also the
internal structure of these molecules has to be taken into account.
However, the effect that these strong interactions in the lattice lead to occupation
of excited vertical trap levels can nicely be seen in figure (6.5). Here, we performed
the same measurement as for the non-interacting system and looked at the vertical
expansion of the cloud as a function of atom number for releasing from the SWT and
from the SWT plus the lattice at a magnetic offset field of 732 G. The vertical cloud
size after 3 ms expansion is significantly larger when releasing from the lattice for
all particle numbers. This indicates an increased occupation of excited trap levels
due to the additional lattice confinement, where in double occupied sites the large
interaction leads to occupation of excited states of the vertical confinement. The
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6.3 The 2D Lattice

fact that the expansion width follows the lattice depth very quickly compared to
the overall radial confinement on a time scale of less than 1 ms indicates that this
occupation of excited states is local few body physics and does not require transport
in the trap.
The expansion width is nearly the same for both shown depths of the lattice po-
tential. It is only slightly larger for the sample released from the deeper lattice.
This is in agreement with the on-site interaction energy obtained from the quasi-1D
calculations, as at this lattice depth the interaction energy only weakly depends on
the potential depth (compare figure 6.4). This interaction induced occupation of
excited states in the direction of weakest confinement has already been observed for
fermions in a lattice [Köh05].
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Figure 6.5: Gaussian width of a Bose gas at 732 G, after releasing from the SWT

(black) or lattice (blue,red) and subsequent expansion for 3 ms as a func-
tion of the particle number. Due to the release of interaction energy the
size of the clouds is much larger than the size expected for the expan-
sion of the non-interacting ground state of the potential. Even for low
atom numbers the width for releasing from the lattice and the SWT
significantly differ. This indicates the increased role of interactions and
the interaction induced occupation of higher vertical trap levels in the
lattice.

These results have two main implications for our goal of creating a Mott-insulator
of molecules. First, the on-site interaction energy can be relatively well described
by a quasi-1D theory. However, due to the complicated nature of the system precise
calculations to determine the interaction energy are very hard. Thus a good experi-
mental method to precisely determine the interaction energy has to be found. This
is crucial as the state of the system in the lattice depends on the ratio of interaction
and kinetic energy.
Second, the interaction energy U is on the order the vertical trapping frequency of
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6 Reaching the Quasi-2D Regime in the Lattice

the SWT, which can cause occupation of excited states in the z-direction. Thus our
system is more complicated than the single band Bose-Hubbard model discussed in
the theory section and the system has to be described by a multi band model.
Nevertheless the atoms always stay in the lowest band in the xy-direction of the
2D lattice. This makes the system unusual, as the occupation of excited states in
z-direction is orthogonal to the xy-directions, where the dynamics take place.
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7 Superfluidity in a 2D Lattice
The first experiments investigating the superfluid to Mott-insulator transition in
three dimensional systems have been done using weakly interacting rubidium [Gre01].
There the disappearance of sharp peaks in the momentum distribution of the sample
was used to determine the transition to the insulating state. In a two dimensional
lattice the direct observation of incompressible Mott shells was used to determine
the phase transition to the insulating state [Gem09]. The first experiment showing
the transition from a superfluid to insulating state in a 3D lattice in the BEC–BCS
crossover were done using lithium [Chi06].
In our setup we now want to extend this study of the superfluid to insulating tran-
sition for lithium in the vicinity of a Feshbach resonance to a 2D square lattice. Our
current progress on loading a superfluid from the SWT in the lattice and reaching a
Mott type insulating state is summarized in this chapter. In a first step, the experi-
mental constraints on the loading procedure arising from our setup are discussed. In
the second part the superfluid in the lattice is characterized and preliminary results
on a transition to an insulating state are presented.

7.1 Constraints on the Loading Procedure
Loading only a single layer of the SWT makes it possible to access the total par-
ticle number and density distribution in this layer without averaging. This makes
it, in principle, possible to observe Mott shells of constant density [Gem09], when
averaging over several 2D systems with different densities and thus degeneracies is
avoided.
For our experiment this comes at the expense of a small vertical trapping frequency,
which is linked to the large distance of the different layers of the SWT. Since with
our current scheme the loading of a single layer is only possible for bosonic molecules
close to the Feshbach resonance, also the scattering length is large. Tuning to smaller
scattering lengths is not possible, as there the molecules become collisionally unsta-
ble, if the scattering length becomes too small as discussed in chapter 2.2.
For the 2D bulk system this is not a problem, but in the lattice this combination leads
to excitations in the vertical direction, making our system more complicated than a
simple single band Hubbard model. As a compromise between not too large scatter-
ing lengths and not too big heating rate due to loss at small scattering lengths, we
decided to load the lattice at a magnetic field of 730 G. There the molecule–molecule
scattering length is approximately 1500 Bohr radii and the system is still sufficiently
long lived. Later, we want to extend this measurement over the whole crossover to
the fermionic side as done for a 3D lattice in [Chi06].
The problem of the strong interactions and small trapping frequency vertical to the
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lattice potential could be solved by increasing the vertical confinement using a differ-
ent setup for the interfering beams or a light sheet to produce the 2D confinement.
This would require a major change of the setup and has therefore not been done so
far.
The problem of the strong curvature of the overall confinement due to the lattice
beams, as discussed in section 6.3.1, was (partly) solved by increasing the focal spot
size, which decreases the curvature of the trapping potential created by the lattice
beams. This was achieved by replacing the last f = 300 mm lenses which focus down
the ingoing lattice beams onto the atoms with f = 500 mm lenses. The new lenses
were shifted in a way that the focus position did not change. This increases the
focal spot size by a factor of 5/3 and thus reduces the overall confinement trapping
frequency by a factor of (5/3)2. As the retro-reflected beam is imaged back onto the
atoms by the two lenses after the chamber (see figure 3.4), only the lenses in the
ingoing beam path had to be changed while leaving everything else untouched. The
results of the calibration of the lattice depth and the overall confinement, which were
done in the same way as discussed in chapter 4, are summarized in table 7.1 and fig-
ure (7.1). The calibration factor for the power between the two lattice arms needed
to create potential of the same depth in both directions is Vlattice1 : Vlattice2 = 2.36 : 1.
This is larger than the value obtained in the previous measurement. Partly this is
due to slight misalignment of lattice beam 1. As lattice beam 1 was not perfectly
aligned with the atoms the Kapitza–Dirac scattering probed only the lower intensity
wing of the laser beam. Thus the central depth of the lattice potential should be
higher than the value obtained from this calibration. For the data presented in this
chapter, this has not been fixed, since we also had issues with the transfer of atoms
from the MOT to the ODT. These have been solved while this thesis was written and
we will hopefully be able to perform more experiments with a well aligned lattice
and obtain a better understanding of the system soon.

lattice control voltage [mV] lattice depth V [kHz] lattice depth V [Er]
1 1320 153 10.5
2 650 178 12.2

Table 7.1: Calibration of the lattice depth V as function of control voltage for the
new setup after changing the lenses. The lattice potential is roughly a
factor of 4 smaller for the same power, which is more than the factor of
(5/3)2 ≈ 2.8 expected from the different spot sizes. Part of this deviation
might be due to non-perfect alignment. Again the lattice depth is just
a rough estimate, as for a more reliable calibration, data at different
intensities has to be taken.

As expected the depth of the lattice potential is smaller with the new setup and
thus limits the maximally achievable lattice depth. However, with our experimental
setup we can put up to roughly 7 W of power in each beam. This yields a lattice
depth of up to V ≈ 50 Er. This is sufficient for most of the planned purposes, as this
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Figure 7.1: Overall confinement trap frequency as function of the lattice depth. (a)
For the new setup as function of the control voltage. (b) Trap frequencies
of the new (dots) and old (triangles) setup as function of the lattice
depth. The power was set such that the central lattice depth is the same
in both directions. The black line indicates a trap frequency of 18.2 Hz
provided by the SWT and magnetic offset field saddle. The lines are fits
to the data, as described in chapter 4. At the same lattice depth, the
trapping frequencies of the new setup are smaller than in the old setup.
The different trapping frequencies in both directions might partly be due
to a wrong relative calibration from the Kapitza–Dirac scattering and
non-perfect alignment.

allows to freeze particles on single sites with a tunneling rate of less than 1 Hz. The
new lenses make the lattice potential more homogeneous, i.e the change in the depth
of the periodic potential between different lattice sites is smaller. Also the overall
confinement is smaller at the same central lattice depth. Thus, at the same lattice
depth the maximal possible particle number in the quasi-2D regime is larger, which
enhances the signal-to-noise ratio. In the next step we loaded a strongly interacting
superfluid of bosonic molecules into this lattice and studied its properties.

7.2 Superfluidity in an Optical Lattice

7.2.1 Probing the Momentum Distribution
Our main observable to probe the state of the system is the momentum distribution,
which is obtained using the T/4-imaging which was described in chapter 3.8.1 and
in [Mur14]. The transition to the superfluid is signaled by a peak in the momentum
distribution [Rie15]. This peak originates from the macroscopic occupation of the
low momentum states in the condensed phase.
For a superfluid in a lattice, the observed momentum distribution shows additional
peaks at distances corresponding to the lattice momentum kL from the central peak,
as can be seen nicely in figure (7.2). This can easily be explained by the fact that the
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low quasi-momentum states of the lowest band are macroscopically occupied in the
superfluid phase. These states are a superposition of plane waves, whose momentum
differs by a multiple of the lattice momentum (see equation 2.33). When the trap
is now switched off the wave function is projected on these free momentum states,
which then after time of flight are visible as distinct peaks at positions correspond-
ing to the lattice momentum.

Figure 7.2: Momentum distribution of the atoms as obtained from T/4-image of a
superfluid in a V = 4.5 Er deep lattice. In the momentum distribution
additional peaks at the lattice momenta are visible. The different vis-
ibilities of the four peaks are most probably due to inhomogeneities of
the imaging light beam at these large distances of roughly 1 mm from
the beam center. Furthermore, the peaks along different lattice axes
have different visibilities due to different lattice depths along the two
directions. They stem from the previously mentioned systematics in the
calibration of the lattice depth. The picture is the average of 17 single
images.

Experimentally it is hard to detect these additional peaks at the lattice momenta,
due to the relatively small number of less than 1000 atoms per peak. The signal
is further reduced by scattering at the beginning of the time of flight expansion, as
the fast particles with lattice momentum have a large transverse velocity and thus
scattering rate. This problem of scattering particles out of the peaks was solved
by quickly ramping the magnetic field to 527 G, close to the zero of the scattering
length before releasing the cloud from the lattice1. Furthermore, we turn off the
SWT 50 µs before the lattice is turned off. Thus the atoms expand in vertical di-
rection, which drastically reduces the density and scattering rate, while the lattice
confinement is still on. The initial tight vertical confinement leads to a fast expan-
sion and a quick drop of the density. This quenches the interactions much more

1Note that this magnetic field ramp is to significantly smaller fields than the ramp for the mea-
surements in the 2D bulk gas.
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efficiently than in a 3D lattice, where the same scheme was used [Chi06]. The less
efficient quench of interactions in the 3D system is due to the much slower decrease
of the density, after the release of the atoms from a 3D trap. For shallow lattices the
particles are delocalized over several lattice sites and the expansion after the release
is determined by the weak overall 3D confinement. For deep lattices the particles
localized on a single site have large momentum and quickly expand after the release,
but this does not lead to a quick drop in density, as they cross particles released
from the other layers of the lattice.
Since the enhanced role of interactions in the lattice leads to population of vertically
excited states of the SWT, it also increases the vertical cloud size after time of flight.
This causes — due to the limited depth of focus — a worse signal compared to a
sample released from the SWT without the additional lattice potential. To solve
this problem a stopping pulse was applied as described in chapter 3.8.2. Without
this the additional peaks at the lattice momenta are very difficult to resolve.
In principle, there should also be peaks corresponding to multiples of the lattice
momenta visible. But, with the used matter-wave focusing technique they are out-
side the field of view of our camera. One could use a shorter expansion time, but
still they would be hard to detect, as their relative weight is much smaller. This
is because of their smaller admixture to the lowest band quasi-momentum states.
Furthermore, the signal would be even worse, as for shorter time of flights the width
of the peaks is larger. This is due to the much larger size of the in situ density
distribution compared to the momentum spread of the superfluid (see figure 4.3).

From the momentum distribution we extract three quantities to characterize our
system. The number of condensed/superfluid atoms in the central peak Nc, the
thermal atoms in the central peak Nthermal and the number of atoms in the side
peak Np as depicted in figure (7.3).
The atom number is determined by first summing up the signal of the image along
the x-axis. The obtained integrated density profile is then fitted. To account for
the bimodal structure of the central peak with a thermal and superfluid part (see
figure 7.3 c), it was fitted with a sum of two Gaussian distributions. The number
of atoms in a side-peak Np is extracted fitting a single Gaussian distribution to the
integrated density profile. This is done because, the thermal atoms around the side
peaks are not distinguishable from the background. Thus we assume that all the
atoms in the side peak are superfluid.
Due to imaging imperfections the visibility of the side peaks is different. Only the
best visible upper-right side peak was fitted, as it is often the only one which can
be clearly distinguished from the noise. As we believe that the observed differences
in the particle numbers in the peaks are due to the imaging process, we assume the
number of particles to be the same in all side peaks.
We choose fitting instead of summing up different pixels to extract the particle num-
ber due to the noise and fringes on the images. We fit the peaks in the direction
orthogonal to the fringes to reduce their influence on the extracted values. In the
future, the effect of technical noise and fringes could be reduced by applying a fringe
removal algorithm [Ock10]. The signal-to-noise ratio is further improved by averag-
ing several pictures before fitting.
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Figure 7.3: (a) Momentum distribution of a superfluid released from a V ≈ 3.8 Er
deep lattice. It was obtained using T/4-imaging. (b) Optical density
summed along the x-axis around the upper right peak, which is fitted
with a Gaussian to obtain the number in the side peak Np. (c) Optical
density summed along the x-axis around the central peak, which is fitted
with a double Gaussian to obtain the atoms in the condensed Nc and
thermal part Nthermal. The image is the average of 130 single images.

7.2.2 Optimization of the Loading Scheme
In a first step, we optimized the speed at which the lattice potential is turned on.
On one hand the ramp speed should be as large as possible, because a short loading
time reduces heating of the sample due to technical noise and photon scattering.
On the other hand the ramp speed has to be small enough such that it is adiabatic
with respect to excitation of higher oscillator states and bands. For our system, this
means the ramp time of the lattice must be adiabatic with respect to the vertical
trapping frequency of the SWT.
For the current setup the more important problem limiting the ramp speed is the
difference in the initial and final density distribution, shown in figure (7.4). This
difference leads to significant redistribution of particles during the lattice loading,
which has been identified as the major source of heating during the loading of an
inhomogeneous lattice [Dol15]. Hence, the ramp must be slow enough to allow for
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transport during the loading of the lattice. The time scale for transport is difficult
to estimate in a lattice, since tunneling and transport are hindered by the lattice.
Most probably, this limits the maximal possible speed for ramping on the lattice.

Figure 7.4: Density distribution of bosons in the SWT (a) and in a V ≈ 4.5 Er
deep lattice (b). The cloud in the lattice is significant smaller due to
the increased overall confinement in the lattice. The different positions
of the cloud and the halo visible in the upper-right part of the cloud
in the lattice are due to the discussed slight misalignment of the lattice
beams. Also the density in the lattice is much higher. Each picture is
the average of 30 measurements.

Experimentally, finding the best ramp speed was done by ramping to the same lat-
tice depth with different speeds and looking at the number of condensed atoms in
the central peak Nc and in (upper-right) side peak Np. As we always start with the
same initial system and ramp to the same final lattice depth, these atom numbers
give a measure for the coherence. Hence, we can use them as a measure for degen-
eracy and thus temperature.

Starting from a condensed sample in the SWT, we linearly ramp the power in the
lattice beam to the same final depth with a variable speed. Afterwards we give the
system 10 ms to equilibrate and then probe its momentum distribution.
The thus obtained number of condensed particles in the central and upper-right
side peak for a V ≈ 3.8 Er deep lattice are depicted in figure (7.5) as a function of
lattice ramp speed. The number of condensed atoms is relatively insensitive to the
ramp speeds at moderate values. For low ramp speeds (≤ 0.04 Er/ms) the number
of condensed atoms quickly drops. Because of the long time required to load the
lattice at this ramp speeds technical noise and photon scattering lead to significant
heating and loss of coherence. For all further experiments, we chose a ramp speed of
dV/dt = 0.08 Er/ms, which also gave the largest number of condensed atoms, when
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7 Superfluidity in a 2D Lattice

ramping to different final lattice depths. In order to further optimize the loading of
the lattice one can try different functional forms. However, this will not solve the
problem of the different initial and final density distributions, which we believe to
be the main source of heating [Dol15].
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Figure 7.5: Number of condensed particles in central Nc (b) and upper right side-
peak Np (a) for a final lattice depth of V ≈ 3.8 Er as a function of
the ramp speed. For all further experiments we chose a ramp speed of
dV/dt = 0.08 Er/ms, where the number of condensed atoms is maximal.
Each data point is the average of 130 single runs and the errors are the
errors of the fit.

To make sure the heating rates in the lattice are low enough to perform experiments
in the superfluid phase, we tested the lifetime of the coherence for different depths
of the lattice potential. For this we loaded a superfluid into the lattice and looked at
the number of atoms Np in the side peak after a variable hold time. This is shown in
figure (7.6) for different depths of the lattice potential. The lifetime of the coherence
is only on the order of tens of ms and limits the time available for experiments before
heating out of the superfluid into the normal phase. Nevertheless, it should still be
possible to perform experiments due to the large tunneling rates2 of several hundred
Hz at these lattice depths, before the coherence is lost. The lifetime of the coherence
is decreasing for deeper lattices indicating larger heating rates. Another explanation
for this could be the increased occupation of excited states in z-direction for deeper
lattices, as discussed in section 6.3.2. This might also lead to loss of coherence. Note
that the lifetime of the coherence is roughly a factor 100 smaller than the lifetime
of non-interacting particles (see chapter 4.3). This indicates that the heating rate is
higher for these strongly interacting particles and the interactions in our anisotropic
lattice lead to a loss of coherence.

2The tunneling rates are calculated for the non-interacting system and might be strongly affected
by the strong interactions in our system.

68



7.2 Superfluidity in an Optical Lattice

0 5 0 1 0 0
0

4 0 0

8 0 0

1 2 0 0
 V  =  2 . 6  E r  ,   τ =  7 5 m s
 V  =  3 . 4  E r  ,   τ  =  3 3 m s
 V  =  3 . 8  E r  ,   τ  =  2 7 . 5 m s
 V  =  4 . 1  E r  ,   τ  =  2 2 . 6 m s
 V  =  4 . 5  E r  ,   τ  =  1 5 . 2 m s

 

 
N p

h o l d  t i m e  i n  l a t t i c e  [ m s ]

Figure 7.6: To determine the lifetime of the coherence, we measured the number of
(superfluid) particles in the upper-right side peak as a function of the
hold time in the lattice for different depths of the lattice potential. The
half-life time τ of the coherence is strongly dependent on the depth of the
lattice. The atom number as a function of the hold time is well described
by an exponential decay, which we used to determine the lifetime of the
superfluid.

7.2.3 Observation of a Transition to an Insulating State
As our main measurement, we started to characterize the superfluid in the lattice.
For this we measured the momentum distribution of the molecules as function of the
depth of the lattice potential. First, we investigated the number of atoms (visibility)
in the upper-right peak Np as a function of the depth of the lattice potential. To
obtain the best signal we ramped to the final lattice depth and immediately released
the sample, in order to not be limited by the finite coherence lifetime. In figure (7.7
a), it can be nicely seen, that at moderate potential depths the particle number in
the peak is increasing with the potential depth.
This initial increase of the particle number in the side peaks can be understood by
looking at the admixture of the different free space plane waves to the Bloch states
with low quasi-momentum (equation 2.33). The admixture of states with lattice
momenta to the Bloch states with zero quasi-momentum is increasing with the lattice
depth. Thus, the number of particles visible in the side peak is increasing. This
is nicely seen, when considering the fraction of superfluid atoms in the side peaks
(again taking all atoms in the side peaks to be superfluid) on the total number of
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superfluid atoms, which is given by

fpeaks = 4 ·Np

4 ·Np +Nc

. (7.1)

Here, we assume that the number of particles in the other side peaks is equal to the
number in the upper-right peak. The fraction of atoms in the side peaks fpeaks is
depicted in figure (7.7 b) and monotonically increases with the depth of the lattice
potential up to a lattice depth of V ≈ 6 Er, where Np quickly drops and the atoms
in the side peak cannot be distinguished from the background, signaling a loss of
superfluidity.
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Figure 7.7: (a) Number of (superfluid) particles in the upper right side-peak Np as
a function of the depth of the lattice potential. For potentials smaller
than V ≈ 1.5 Er or larger than V ≈ 6 Er no signal above the background
is visible. The fluctuations in Np at large lattice depths are due to
fluctuations in atom number and temperature and are not present when
looking at fpeaks. (b) Fraction fpeaks of condensed atoms in the side peaks
as defined in equation (7.1). The fraction of superfluid atoms in the side
peaks increases with the depth of the lattice potential up to a depth of
V ≈ 6 Er, where the superfluid fraction quickly drops and no more side
peaks can be observed (red points).

For deeper lattices, the side peaks (Fig. 7.7 a) quickly disappear. To investigate
this in more detail we look at the and the fraction of condensed atoms

fcoherent = Nc + 4Np

Ntotal
= Nc + 4Np

Nc + 4Np +Nthermal
, (7.2)

shown in figure (7.8). For deeper lattices fcoherent decreases and becomes zero at
a central lattice depth of V ≈ 6.5 Er. This we interpret as the transition from a
superfluid state, with long range coherence and thus visible interference peaks in the
momentum distribution, to an insulating state, with no phase coherence between
atoms on different lattice sites. However, the disappearance of the interference peaks
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Figure 7.8: Coherence in the lattice. Depicted is the fraction of superfluid atoms

fcoherent as a function of the depth of the lattice potential. fcoherent in-
creases with the depth of the lattice up to a potential depth of V≈ 4.5 Er,
where the superfluid fraction quickly drops and reaches zero at a lattice
depth of V ≈ 6 Er. The data points are obtained from the average of
130 single experimental realizations.

could also be due to heating in the lattice, especially when considering the short
lifetime of the coherence. Furthermore, loss of coherence could be caused by the
occupation of excited states in vertical direction. These states do not contribute to
the coherence, but get populated when increasing the depth of the lattice potential,
as the overall radial confinement also increases.
The finite width of the decrease of the superfluid fraction fcoherent is most likely due
to the inhomogeneity of the lattice. As the depth of the lattice potential is decreas-
ing with distance from the center (for a sketch see figure 4.1) the sample becomes
first insulating in the center, while still being superfluid in an outer ring. By in-
creasing the central lattice depth, this ring shrinks until the whole sample is inside
the insulating regime. Then one would place the critical central lattice depth rather
at a lower value of V ≈ 5 Er, where the superfluid fraction begins to decrease. To
clarify the cause for the complete loss of coherence at a lattice depth of V ≈ 6.5 Er
we performed the measurements described in the following.
One method to elucidate the type of phase transition is to investigate the re-
occurrence of coherence when ramping down the lattice potential from a depth,
where no coherence is present to a depth, where initially coherence was present.
This was done in the first experiments observing the superfluid to Mott-insulator
transition [Gre01] and for the experiments in the BEC–BCS crossover in a 3D lattice
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[Chi06]. If the loss of coherence is due to a quantum phase transition, i.e. because
of a transition to a Mott-insulator type state and not due to heating out of the su-
perfluid phase or loss of coherence due to occupation of excited states, the coherence
and the interference peaks in the momentum distribution reappear on a very short
time scale on the order of the tunneling rate [Gre01, Chi06], when ramping down
the lattice.
To perform this measurement, we ramp into a V = 6.8 Er deep lattice, where no
coherence is visible and hold the system there for 5 ms. Afterwards, we quickly ramp
down the lattice in 1 ms to its final depth Vprobe, where the system can equilibrate
for another 4 ms and then probe the momentum distribution via T/4-imaging (see
figure 7.9 for a sketch).

Figure 7.9: Illustration of the timing graph used to probe the reappearance of coher-
ence when ramping down from a deep lattice to a variable final lattice
depth Vprobe.

When releasing the atoms directly from the V = 6.8 Er deep lattice, no peak can be
distinguished from the background in the momentum distribution (see figure 7.10
a), whereas if the lattice is ramped down to Vprobe = 3.1 Er a peak in the momentum
distribution can be observed (figure 7.10 c).
To obtain a more quantitative understanding, we investigated the integrated mo-
mentum distribution. There, for the sample released from the V = 6.8 Er deep
lattice a very broad distribution is observed (7.10 b). This is most likely due to
the localization of the particles on the lattice sites. Then the momentum spread
corresponding to this localization would be larger than the momentum difference of
the peaks in the superfluid regime. Thus the cloud would be larger than the dis-
tance of the different momentum peaks visible in the superfluid regime. This would
lead to the observed effect, that the distribution is extremely broad and the width
of the cloud in T/4-imaging is larger than the imaging region. Furthermore this
broad momentum distribution of the sample shows that there is no phase coherence
between the particles on different sites and the system cannot be superfluid.
When ramping down the lattice to Vprobe = 3.1 Er before releasing the sample, the
integrated momentum distribution is bimodal (see figure 7.10 d). This quick reap-
pearance of coherence when ramping down indicates that the loss of coherence is not
due to heating out of the superfluid phase, but due to a transition to an insulating
state, when the lattice depth exceeds V ≈ 6.5 Er.
Despite the reappearance of a bimodal structure after ramping to a shallow lattice,
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the fraction of coherent atoms in the a V = 3.1 Er deep lattice, when first ramp-
ing into the deep lattice is only Nc/Ntot = 0.17 ± 0.02 and thus much lower than
the fraction of superfluid particles of Nc/Ntot = 0.33 ± 0.01 observed when directly
ramping to the final potential depth, without going through the insulating phase.
This reduction of the coherent fraction is due to the faster loss of coherence in deeper
lattices. This results in the observed smaller degeneracy and superfluid fraction of
the sample after the ramp down of the lattice. Partly, this loss of coherence might be
caused by the excitation of particles to vertical excited states in the deeper lattice.

Nevertheless, these results hint towards a transition to a Mott-insulator like state.
However, further studies have to be performed to unambiguously clarify the nature
of the phase transition. For example one could probe the in situ density distribution
and look for the appearance of a plateau of constant density, indicating a incom-
pressible and insulating Mott-insulator type phase, as it was done with Cs in a 2D
lattice [Gem09]. In a preliminary measurement probing the in situ density, we could
not clearly observe a plateau of constant density, but the average densities close
to the trap center were higher than expected for unity filling. This indicates that
vertically excited states where occupied and the data should be retaken with smaller
atom numbers once the experiment is running again.
Even though the reason for the loss of coherence is not fully clear yet, one can
compare the potential depth of V ≈ 6.5 Er, where no more coherence is visible
to the theoretical prediction for the superfluid to Mott-insulator transition in a
Bose–Hubbard model. As a first crude approximation, one can take the tunneling
rates J calculated in chapter 2.4 and assume that the on-site interaction U between
to molecules is given by the quasi-1D theory discussed in section 6.3.2. Then the
critical (U/J)c of 16.2 for the transition to a Mott-insulator for the Bose–Hubbard
Hamiltonian [Wes04] would be reached for a lattice depth of Vtheo = 10.5 Er, which
is roughly 40 % higher than the measured value above which no coherence is visible.
This deviation is larger than the estimated value of approximately 20 % for the
calibration of the lattice depth. However, this calculation is only valid for a weakly
interacting single band model, which does not properly describe our system as the
scattering length is large and excitations to higher vertical trap levels are possible.
Also a previous experiment in the BEC-BCS crossover in a 3D lattice has observed
the transition to an insulating state at smaller lattice depths than expected [Chi06].
For this experiment of fermions close to a Feshbach resonance in a 3D lattice a
simple multi-band model predicts a transition to an insulating state at lower lattice
depths [Zha07] than expected from a simple single band Hubbard model. This is in
agreement with our observation. However, there are currently no theoretical predic-
tions describing the anisotropic 2D lattice, such that a quantitative comparison of
our system to theory is not possible at the moment.
In the last weeks we fixed the already mentioned stability issues of the experiment,
so now we will hopefully be able to unambiguously clarify the nature of the observed
transition and further study the condensate and insulator in the lattice.
Another question is whether the fermionic nature of the atoms forming the Fesh-
bach molecules influences our lattice system and affects the phase transition. The
influence of this effect will be tested by tuning the magnetic offset field across the
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Figure 7.10: Momentum distribution of the atoms released from a V = 6.8 Er (a)
and a V = 3.1 Er (c) deep lattice. The atoms were first loaded into
a V = 6.8 Er deep lattice. Before the release the lattice depth was
ramped down to the final depths of V = 6.8 Er (a) and V = 3.1 Er (c).
(b) and (d) show the corresponding integrated optical densities. After
the ramp down to a shallow lattice a bimodal momentum distribution
is visible in the integrated momentum distribution (d), whereas the
integrated momentum distribution for the V = 6.8 Er (b) is a broad
Gaussian. This indicates that the loss of coherence in the V = 6.8 Er
deep lattice is not due to heating. Each picture is the average of 40
measurements.

Feshbach resonance to the fermionic side. This will extend the current measure-
ments of the superfluid to insulator transition over the whole BEC–BCS crossover,
where the type of the insulator changes from a Moot insulator (BEC side) to a band
insulator (BCS side).
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8 Conclusion and Outlook
During the course of this master thesis we combined a two-dimensional optical lattice
potential with an existing two-dimensional trapping potential. The square lattice is
created by two retro-reflected laser beams. This setup was used to study the physics
of strongly interacting particles in a single layer of a 2D square lattice.
To characterize the setup, the depth of the lattice potential was calibrated using
Kapitza–Dirac scattering.
Then, starting form a degenerate quasi-2D gas in an anisotropic trap, the particles
were loaded into the 2D square lattice. To obtain a better understanding of the sin-
gle particle processes and heating rates, the first experiments were performed with
non-interacting fermions. By applying a band mapping technique, the occupation
of quasi-momentum states in the lattice was obtained. We were thus able to observe
indications for a transition from a metallic to a band insulating state, when the
filling of the lattice was tuned. This was done by increasing the overall confinement
such that the density in the trap center increases.
In the next step, the effect of interactions in the lattice was investigated. Because
of the large anisotropy of the single lattice wells, where the trapping frequency in
the direction orthogonal to the lattice is much smaller than the on-site trapping fre-
quency in the radial plane, the system can be thought of as coupled one-dimensional
tubes. Strong interactions in these tubes result in the occupation of excited states
in the direction orthogonal to the lattice. Thus our system is not in the usually
investigated regime of a simple single band Hubbard model and a multi band theory
is necessary to describe our system.
Our main findings were obtained by loading a strongly interacting superfluid of
molecules into a 2D square lattice. Using a matter wave focusing technique, the
momentum distribution of the sample was measured [Mur14, Rie15]. Here, in ad-
dition to the central coherent peak, peaks at the lattice momenta were observed
as can nicely seen in figure (8.1). This indicates that the system shows long range
coherence over several lattice sites. Thus the system is superfluid, like the bulk gas
[Mur15].
Increasing the depth of the lattice potential decreases the kinetic energy compared
to the interaction energy. Above a critical value of the lattice depth of roughly
V ≈ 6.5 Er, both the central and side peaks in the momentum distribution disap-
peared, as shown in figure (8.1 c). Thus indicating that phase coherence between
different lattice sites and superfluidity are lost at this lattice depth. When ramping
down the lattice potential, the coherence partly reappeared on a short time scale,
compared to the radial trapping frequency. This hints that the loss of coherence was
due to a change of the ground state of the system at this lattice depth and not due
to heating. We attribute this change to a transition from the superfluid to a Mott
type insulating state, where the particles become localized due to interactions.
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Figure 8.1: Momentum distribution of a superfluid released from the SWT (a) and
from a shallow lattice (b) as obtained via t/4-imaging. The sharp peaks
indicate long range coherence. The superfluid released from a lattice
shows additional peaks at the lattice momenta. The momentum distri-
bution of a sample released from a deep lattice (c) is broad and shows
no coherence.

The transition was observed at a lower lattice depth than expected from Bose-
Hubbard theory. However, as mentioned above this single band theory is not ex-
pected to properly describe our setup.
After these first studies of the system, a further characterization has to be done in
the next steps. These experiments are currently performed after we solved some
minor stability problems of the experimental setup. With these experiments on the
way, we hope to obtain an unambiguous and clear signature of the phase transition
to the insulating state soon. Furthermore, the properties of this insulating phase
have to be investigated, as they could be different from the predictions for a simple
Mott-insulator, as several bands are involved. For example, the compressibility of
the insulating phase could be tested using in-situ imaging [Gem09]. For our 2D
system this is easily possible, since we have access to the complete density distri-
bution, without averaging over several layers. This would allow to check whether
the insulating phase is incompressible as expected if the insulating behavior occurs
due to interactions. Additionally the excitation spectrum and the on-site interaction
energy have to be investigated in more detail, to obtain a full and clear understand-
ing of this system. Then these studies can be extended over the whole BEC-BCS
crossover to observe the transition from a Mott type insulator of molecules to a band
insulator of free fermions on the BCS side of the resonance.

For the near future, this insulating state with exactly one molecule per site is also a
perfect starting point to explore more interesting physics and accessing systems with
a richer phase diagram. Two examples for these systems and possible directions for
the experiment are:

• Transferring the molecules into free fermions and tuning the system to repul-
sive interactions would allow for realizing a Fermi–Hubbard model at very low
temperatures and entropy. Then, by changing the filling in a smart way (i.e.
lowering the overall confinement or removing part of the atoms), the system
can be tuned from a band insulator to a metallic state to a fermionic Mott-
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insulator at half filling and potentially low enough temperatures to realize
anti-ferromagnetic order. This would be a starting point to investigate the
still not completely understood phase diagram of the Fermi–Hubbard model.

• Another interesting system that can be accessed from this insulating state is
a three component mixture. This should be possible to realize by starting
from an insulator and driving some of the atoms to a third internal spin state
using an rf pulse. This technique has already been used in our group to
produce three component gases [Ott08]. Theses systems are not stable in a
bulk gas. However, in a lattice this system is predicted to be stable towards
three-body loss due to the quantum Zeno effect [Kan09]. This effect prevents
tunneling of a third fermion on a site already occupied by two other fermions
and has been demonstrated for bosons [Sya08]. In our system, this would
allow for studying three component physics, with BCS pairing and atomic
color superfluity [Kan09, Pri11].

After studying the above mentioned systems, we plan to implement a spatial light
modulator (SLM) together with a high resolution objective (see figure 8.2). This is
currently being tested in an external setup [Kri13, Hol14]. The objective is designed
for 671 nm and 1064 nm light and thus would not only allow to project nearly ar-
bitrary potentials onto our 2D confinement, but also offers the possibility of high
resolution imaging. This upgrade will allow us to probe the transition from mi-
croscopic to mesoscopic physics in lattices. Alternatively, also different potentials,
like a box potential or more complicated lattice geometries could be realized. The
combination of a larger lattice spacing of roughly 1 µm for potentials created with
the SLM together with the high resolution objective should allow to perform single
site resolved imaging.
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Figure 8.2: Illustration of the high resolution objective together with the Feshbach
coils (brown), lattice beams (red) and SWT beams (yellow). The objec-
tive is designed for 671 nm and 1064 nm light. Thus it can not only be
used for high resolution imaging, but also, together with a spatial light
modulator, to project arbitrary potentials onto the 2D confinement of
the SWT. Taken from [Rie10].
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