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Abstract

This master’s thesis reports on the realization and characterization of a single-atom
imaging setup for fermionic 6Li atoms via fluorescence imaging. It will have the po-
tential of resolving both the spin and the site of the atom in our multi-well potential.
In our experiment we can deterministically prepare single atoms in a tightly focused
optical potential. We can initialize the atom in one of the three lowest hyperfine
states of the ground state of 6Li. For imaging an atom in either state, we illuminate
the atom with two counterpropagating laser beams, resonant to the D2 transition
and collect the scattered photons with a high-resolution objective onto an EMCCD-
camera. Within an imaging time of 11µs, we detect around 15 photons on the
camera with single-photon resolution. This enables us to detect a single atom with
a fidelity of around (96± 5) %.
We image the atoms in high magnetic fields, where the three lowest hyperfine states
of the ground-state of 6Li are separated by around 80 MHz. At values above 900 G,
there is a closed optical transition for each spin state such that we can address each
spin state individually. This will allow us to perform spin resolved imaging.
Furthermore we plan to have site-resolution by separating the individual wells fur-
ther than the diffusion of the atom during the imaging process.

Zusammenfassung

Diese Masterarbeit beschreibt und charakterisiert einen neuen Aufbau, der es uns
ermöglicht, einzelne 6Li Atome mit einer Fluoreszenzabbildung abzubilden. Unsere
Herangehensweise hat das Potential, spin- und ortsaufgelöste Bilder von einzelnen
Atomen in einem kleinen optischen Gitter zu machen.
In unserem Experiment können wir ein einzelnes Atome auf deterministische Art
in einem stark fokussierten optischen Potential präparieren. Dieses Atom kann in
jedem der drei niedrigsten Hyperfein-Level des Grundzustands von 6Li initialisiert
werden. Um ein einzelnes Atom in einem dieser drei Zustände abzubilden, belichten
wir das Atom mit zwei zur D2 Linie resonanten, gegenläufigen Laserstrahlen und
fokussieren die gestreuten Photonen mit einem hochauflösendem Objektiv auf eine
EMCCD-Kamera. Innerhalb von 11µs detektieren wir im ungefähr 15 Photonen
auf der Kamera mit einer Auflösung von einzelnen Photonen. Dies ermöglicht uns,
einzelne Atome mit einer Wahrscheinlichkeit von (96± 5) % zu identifizieren.
In starken magnetischen Feldern sind die drei niedrigsten Hyperfeinzustände des
Grundzustandes von 6Li um etwa 80MHz getrennt. Bei Feldern über 900G besitzt
jeder der drei Zustände einen geschlossenen optischen Übergang, sodass wir jeden
Spinzustand einzeln adressieren können. Dies wird und ermöglichen, spinaufgelöste
Bilder zu nehmen.
Außerdem planen wir, die Atome örtlich aufzulösen, indem wir die einzelnen Po-
tentialtöpfe weiter auseinanderfahren, als das Atom diffundiert, während wir es be-
lichten.
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1 Introduction

Many interesting macroscopic physical effects or phases stem from the complex
behavior of a many-body quantum state. In some cases such phases can be well
described by mean-field approaches such as the famous BCS-theory for conventional
superconductivity or the description of the ground state of a weakly interacting
Bose gas. However, especially for strongly interacting and correlated systems, effec-
tive theories fail and cannot reveal the mechanisms that are responsible for curious
behavior of a many-body state. For states with long-ranged correlations the com-
plexity of an accurate description increases exponentially with system size, which
makes it literally impossible to simulate such systems on a classical computer. Al-
ready the numerical simulation of a system of 50 atoms is far out of reach with
classical computers [1].
In order to circumvent this problem, Feynman introduced the concept of Quantum
Simulation [2]. His idea was to experimentally explore quantum mechanical systems
in the laboratory, whose behavior is governed by the same Hamiltonian as the system
of interest. For example instead of studying electrons in a solid one could use an
ultracold gas of fermionic neutral atoms, trapped in an almost perfect periodic
potential. Due to the much larger size and the longer time scales, such a system is
much easier to investigate experimentally.
In order to realize such systems in the laboratory, several criteria have to be ful-
filled [3]. We need a quantum system of bosons or fermions with many degrees
of freedom with a good control over the motional states. It is necessary that the
system can be initialized into a well known quantum state. Once the system has
been initialized, we need to engineer interactions of a particle with both external
fields and other particles and have access to Hamiltonians that cannot be simulated
on classical computers. After a quantum simulation, it is necessary to probe the
final state with a method that allows the reconstruction of an observable of interest.
An effective readout also requires a reliable initialization in order to perform the
same measurement several times. The last criterion of a quantum simulator is the
possibility to probe the outcome of the quantum simulation by simulating systems
to which a solution is known.
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1 Introduction

For using ultracold quantum gases as a quantum simulator, a gas of atoms must be
cooled to very low temperatures such that the de-Broglie wavelength of the particles
becomes comparable to the interparticle spacing. At such ultra low temperatures,
neutral atoms can be trapped in optical potentials [4] which can be shaped to al-
most arbitrary forms [5, 6, 7]. Furthermore such quantum gases feature a high
controllability over the internal degrees of freedom which can be exploited for the
engineering of complex Hamiltonians [8, 9]. This high controllability allows to ini-
tialize and manipulate the quantum state of the system with very high precision
even on the single-atom level [10]. Using a magnetic field it is possible to tune the
s-wave scattering length via Feshbach resonances and thereby engineer a tunable
interaction between the particles. Also other atomic properties such as large mag-
netic moments [11], higher order Feshbach resonances [12], processes such as the
superexchange [13, 14] or artificial magnetic fields [15] can be employed to model
longer ranged interactions or to simulate the coupling to gauge fields and thus to
initialize systems with more complex Hamiltonians in the laboratory.
Not only the initialization and manipulation of ultracold atoms has made huge
progress, also the read out of the quantum state made advances. Depending on
the observable that needs to be measured, different methods are applied. The mo-
mentum distribution of the atomic sample can be accessed in time-of-flight imaging
[16, 17]. Analysis of noise correlations in the atomic density [18] can reveal correla-
tions between the particles in the atomic sample. Recently, with the realization of
quantum gas microscopes for both bosonic [1, 19] and fermionic atoms [20, 21, 22, 23]
it became possible to probe the many-body in-situ density distribution at the single-
atom level. Single-site resolution enables to probe the formation of different phases
in an optical lattice on a single-atom level as for example the phase transition from
a Mott insulator to a superfluid [24].
Each readout method has its own advantages but the reconstruction of the whole
quantum state is still a challenging problem. A big issue in most systems is the reso-
lution of the spin state of the individual atoms which is very cumbersome to achieve
[25]. Furthermore, light assisted collisions when more than one particle is occupying
the same site of a lattice restricts many quantum gas microscopes to measuring only
the parity of the atom number on each site which can only be avoided with a huge
experimental effort [25, 26].

In our experiment, we can deterministically prepare two fermions in the ground state
of an isolated double-well potential [27]. Such a system realizes the fundamental
building block of the Hubbard model. With our approach we can control each site
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of the potential separately and we have the full control over the quantum state of
the system. This enables us to repeatedly initialize the system in its ground state
with very high fidelity.
We are able to add more wells to the double-well potential and to expand the system
to an array of lattice sites with the full control over each site. For future experiments
we want to have a fast imaging system that gives us access to the spin-resolved in-situ
density distribution with single-atom resolution in the multi-well potential. With
this we realize a quantum simulator for few atoms which can be expanded towards
a larger system.

Outline

In this thesis I will report on the implementation of a single atom imaging setup
with the potential of resolving both the spin state and the site-resolved location in a
multi-well potential. The next chapter gives an overview on this imaging setup and
its challenges and estimates the most important parameters. Our experimental ap-
paratus and the deterministic preparation scheme for few atoms is briefly described
in Chapter 3. For spin resolved imaging, it is necessary to carefully analyze the
imaging transitions in 6Li as will be done in detail in Chapter 4. For the detec-
tion of single photons during the imaging process, we employ an EMCCD camera.
The working principle of the camera is described and the camera is characterized in
Chapter 5. The last chapter will present the first results of the imaging system and
different methods to identify single atoms, before I give a summary and an outlook
on the next steps to complete the imaging procedure.
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2 Single Atom, Site-Resolved
Imaging in Lattice Systems

In a recent experiment, we realized the fundamental building block of the Fermi-
Hubbard model by preparing two 6Li atoms in the ground state of an isolated double-
well potential [27]. This potential was realized with two partly overlapping tightly
focused optical dipole traps. By adding more of these dipole traps, we can expand
our system to an array of optical tweezers, forming a small optical lattice, in which
we want to deterministically prepare few atoms in the many-body ground state.
This idea is illustrated in Figure 2.1.

Figure 2.1: In our experiment we can deterministically prepare few atoms in single
trapping potentials. By merging these systems, we want to expand the
system in order to approach the many-body limit with a bottom-up
approach.

In order to read out the quantum state at the end of the experimental sequence, we
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2 Single Atom, Site-Resolved Imaging in Lattice Systems

so far used an imaging technique that allowed us to count the total number of atoms
with very high fidelity. For this we switch off the trapping potential and recapture
the atoms that are still present in a magneto-optical trap. Then we collect the
fluorescence signal of the atoms. Figure 2.2 shows example images of this detection
technique. Although one can count atom numbers up to 1000 on a single atom
level with this technique [28], we lose information about the position and the spin
of the individual atoms. In order to reconstruct the full quantum state, we have
to perform complicated experimental schemes before the detection which become
harder and time consuming for larger systems. For future experiments, we thus aim
for an in-situ imaging with site and spin-resolution.

Figure 2.2: To detect the number of atoms, we switch off the trapping potential and
recapture the atoms into a magneto-optical trap. With this method we
can count up to around 20 atoms with very high fidelity.

2.1 The common approach: Quantum Gas
Microscopes

The common approach for site-resolved imaging of optical lattice systems is a quan-
tum gas microscope which has recently been realized for both bosonic [19, 1] and
fermionic [20, 21, 22, 23] atoms. These microscopes probe the atom-resolved in-situ
density distribution of the system via fluorescence imaging. This allows for example
to directly observe the quantum phase transition from a Mott-insulator to a super-
fluid [24, 29]. In order to achieve the site-resolution, two requirements have to be
fulfilled.

First a high resolution imaging system is needed that is able to resolve the lattice
spacing. Typical lattice spacings in optical lattices are on the order of 500-750 nm.
To resolve the individual sites of the lattice, a higher resolution is required. Our
high-resolution objective with a numerical aperture of NA ≈ 0.55 can achieve a
diffraction-limited resolution of d = 0.61 λ

NA
≈ 750 nm when imaging on the D2 line
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2.2 An alternative approach

of 6Li with 671 nm. A shorter transition wavelength and higher numerical apertures
can achieve even higher resolutions. Furthermore, images can be post processed to
further increase the resolution by exploiting the periodic lattice potential [29].
The second demand requires much more effort and is harder to realize. To access
the in-situ density distribution of the atoms, diffusion and hopping of the atoms to
neighboring lattice sites must be prohibited during the imaging process.
In conventional quantum gas microscopes, the particle distribution in the lattice is
frozen by ramping the lattice deep in order to enter the Lamb-Dicke regime. In
this regime the photon recoil energy Erec is much smaller than the quantized energy
spacing ~ωtrap of the harmonic trap and therefore inelastic scattering is suppressed.
This regime is characterized by the Lamb-Dicke parameter η =

√
Erec

~ωtrap
. In order to

fulfill η � 1, very strong lattice beams with several watts laser power are required.
Despite the suppression of inelastic scattering events in this regime, the average
increase in energy per scattered photons is twice the recoil energy [30]. Hence
during the imaging process the atomic sample heats up. The atoms only need to
scatter few photons to gain enough energy to start hopping to neighboring sites,
and so additional mechanisms such as Sisyphus or Raman-sideband cooling have to
be applied to keep the atoms localized on their lattice site.
This enables to image the atoms in the lattice over around one second to collect a few
thousand photons per atom [29]. One drawback of this method is that by entering
the Lamb-Dicke regime, the atomic density on each site becomes so large, that atom
pairs are immediately lost due to light assisted collisions. Therefore most quantum
gas microscopes can only detect the particle number modulo two. Furthermore, one
issue of quantum gas microscopes is spin-resolved imaging. Both number and spin-
resolved imaging have been demonstrated in optical lattices but it is cumbersome
to achieve [25, 26].

2.2 An alternative approach

For the identification of a single atom with a high fidelity, one needs to detect a signal
above the noise level of the imaging setup. Conventional quantum gas microscopes
do this by keeping the atoms pinned to their lattice site to collect thousands of
photons. However, with the appropriate equipment, one can detect very low photon
numbers with single photon resolution. By using an EMCCD camera (Electron
Multiplying CCD), already an average number of 20 detected photons produces a
signal above the noise level of the camera. This makes both pinning of the atoms
in a deep potential and additional cooling mechanisms unnecessary. To achieve site
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2 Single Atom, Site-Resolved Imaging in Lattice Systems

Figure 2.3: The left image shows the level structure of the lowest levels in 6Li . We
image the atoms on the D2 line. The right graph shows the dependence
of the ground state energies on the magnetic field. Due to the large
hyperfine splitting of the ground state, we can address the different hy-
perfine states separately. With this we can resolve the spin distribution
in the multiwell potential. Figure taken and adapted from [31].

resolution, one can either try to counter the diffusion of the atoms by trying to keep
the atoms trapped in their potential or, as we can do with our approach, increase
the spacing between the individual sites to a distance that is much larger than the
diffusion length before imaging the system.

Our imaging scheme for single-atom, site-resolved imaging

With a numerical aperture of NA ≈ 0.55, our high-resolution objective collects
around 11.4% of the scattered photons. Here we profit from the dipole radiation
pattern as is explained in 4.3. The collected fluorescence light is focused onto the
EMCCD camera, which has a quantum efficiency of around 85%. The setup is
illustrated in Figure 2.4. We image on the D2-line of 6Li with a wavelength of
λ = 670.977338 nm and a natural linewidth of Γ = 5.8724 MHz = 36.898 × 106 s−1

[31]. This corresponds to a lifetime in the excited state of τ = 27.1 ns and a maximal
scattering rate of γmax = Γ/2 = 18.45 photons/µs. In order to collect 20 photons
per atom with these parameters we need an imaging time of at least 11µs. One
drawback of 6Li as the lightest alkali atom is the high atomic recoil velocity of
vrec = 9.887 cm/s and the recoil temperature of Trec = 3.54µK which causes a fast
diffusion. Assuming a 3D random walk in momentum space for the absorption and
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2.2 An alternative approach

Figure 2.4: We illuminate the atoms with two counterpropagating, horizontally po-
larized laser beams, resonant to the D2 transition. We collect around
11.4 % of the scattered photons with a high-resolution objective and fo-
cus the signal onto an EMCCD. Within an imaging time of 11µs, we
detect around 20 photons on the camera with single-photon resolution.

spontaneous emission during the imaging process, this number of scattering events
corresponds to a velocity spread of σv ≈ 0.56µm/µs which causes a diffusion on the
order of σx ≈ 3µm as will be analyzed in Section 4.6. Hence by separating two wells
to a distance of 10µm we can achieve site resolution.
Ti improve the resolution of the imaging system, the diffusion can be countered by
increasing the power of the trapping beam. For this we ramp the laser power to
around 10mW. With a beam waist of 1.3µm this corresponds to around 42Erec in
the ground state and 28Erec in the excited state [32]. This helps to better localize
the atoms such that the signal is distributed over less pixels.

Towards spin resolved imaging

We image the atoms at magnetic fields of around 900G. We do this for two reasons.
On the one hand, if we do not want to add a repumper to our system, we need
a closed optical transition which we only have at such magnetic fields. The other
reason is that it enables to address the different spin states individually. As shown
in Figure 2.3, the different sublevels of the ground state split up with increasing
magnetic field. The splitting between the three lowest states at typical fields is on
the order of 80MHz which is much larger than the linewidth of both the imaging laser
and the D2-line. This splitting enables us to image the different spins individually.
For the spin-resolved imaging, we will use our camera in fast kinetics mode which
allows us to take two images with a delay of only some microseconds. To probe the
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2 Single Atom, Site-Resolved Imaging in Lattice Systems

spin resolved density-distribution, we image each spin state separately. For this we
tune the laser frequency resonant to the first spin state for the first image and then
jump with the laser frequency to become resonant with the other spin state for the
second image.
This approach also has a huge advantage when more than one atom is occupying the
same well. Due to the low atomic density during the imaging process, losses caused
by light assisted collisions can be neglected and counting of atoms in the same well
becomes possible. As will be discussed in 6.2, we need to detect around 40 photons
per atom on average in order to clearly separate the signal of one and two identi-
cal atoms. With some improvements to our system, this might soon be achievable.
However, if two different spin states are sitting on the same site, taking one image
per spin states only requires around 10 photons per atom. Thus it becomes very
easy to identify two distinguishable atoms on the same site.

With our approach, there is no need for powerful lasers or for complex cooling mech-
anisms. Moreover we are able to image at high magnetic fields which will give us
access to the spin-resolved density distribution. However this requires a good under-
standing of both the imaging transitions and the working principle of the EMCCD
camera. For completeness, the next chapter briefly explains our experimental setup
and how we initialize our system. The relevant chapters for the imaging of single
atoms are Chapter 4, [?] and 6.
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3 Experimental Setup

The deterministic preparation and the coherent manipulation of a ground-state sys-
tem of few fermions requires many different experimental steps. This chapter will
summarize our experimental sequence to prepare single atoms. We start from a
hot sample of 6Li-atoms, cool them down into the quantum degenerate regime and
then transfer atoms into an array of tightly focused optical dipole traps in which we
deterministically prepare few atoms.

3.1 Vacuum chamber and Zeeman slower

For a stable experiment, the atomic sample must be isolated from the environment.
Hence we need an ultra-high vacuum on the order of 10−12 mbar inside the exper-
iment chamber to avoid any collisions with background gases. Figure 3.1 shows
the basic setup of our vacuum chamber. The vacuum is produced by two titanium
sublimator pumps 1 and two ion pumps 2 . In order to prevent outgasing of the
underlying substrate, the walls of the science chamber 5 are coated with a non-
evaporable getter coating. Furthermore, this coating can be used to pump residual
atoms once it gets activated at 180 ◦C.
The first step of the experiment is the production of a beam of 6Li -atoms. For this,
lithium is heated up in the oven chamber 3 to around 360 ◦C and then emitted
through a conical tube under an emission angle of α ≈ 12 ◦. There are two gate
valves 6 which can be used to seal off parts of the experiment so that for example
the oven can be refilled without breaking the vacuum in the science chamber. An
atomic beam shutter has been implemented between the oven chamber and the first
gate valve to interrupt the beam of 6Li -atoms after the first step of the experiment
which is the loading of the Magneto-Optical Trap (MOT).
A counterpropagating laser beam, resonant to the D2 transition, is used to slow down
the hot atomic beam on their way to the science chamber. Due to the decreasing
velocity in the slowing process, the resonance frequency is doppler shifted which is
compensated with a decreasing magnetic field generated by the Zeeman slower coils
4 . The Zeeman slower consists of eight coils with different winding numbers so
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3 Experimental Setup

Figure 3.1: The figure illustrates the vacuum chamber of the experiment. For our
experiments, we need an ultra high vacuum of P ≈ 10−11 mbar. Atoms
get heated in the oven and slowed down with a Zeeman-slower. A MOT
captures the atoms in the science chamber where the actuel axperiment
is performed. In total 8 windows give good optical access to the atoms.
Figure taken from [33]
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3.2 Trapping and cooling 6Li -atoms

a) b) 

Figure 3.2: The left picture shows the configuration of a Magneto-Optical Trap. Six
counterpropagating laser beams from all three spatial dimensions create
a so called optical molasses. In order to prevent particles from diffusing
out of the molasses, two coils in an anti-Helmholz configuration create a
constant magnetic field gradient. By choosing σ−-polarized light, atoms
become resonant due to the Zeeman-effect as is shown in the right graph.

that the magnetic field decreases when the atoms approach the science chamber.
The light pressure of the resonant laser beam slows down the atoms from an initial
velocity of around 800 m/s to a final velocity of 60 m/s which is slow enough to be
captured by the MOT. A more detailed characterization of the Zeeman slower can
be found in [34].

3.2 Trapping and cooling 6Li -atoms

In order to achieve very low temperatures and entropies, we need to cool down the
atoms into the quantum degenerate regime. For this purpose, the atoms are cooled
and prepared in a three step process. The first step is to capture the atoms in a
MOT where they are cooled to a temperature of T = 200µK. The atoms are then
transfered into a crossed beam dipole trap where the atoms are evaporatively cooled
to a temperature of 250 nK. By applying a tightly focused red-detuned laser beam
to this sample, we use a spilling scheme that allows us to deterministically prepare
few atoms in the ground-state of a quasi one-dimensional trap.

3.2.1 Trapping and cooling in a magneto-optical trap (MOT)

A Magneto optical trap relies on the interplay between the light force of counter-
propagating laser beams and the linear Zeeman-shift, introduced by a magnetic
field gradient. The working principle is illustrated in Figure 3.2. In order to capture
atoms inside a MOT, two counterpropagating, red-detuned laser beams are applied
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3 Experimental Setup

in each of the three spatial dimensions. Due to the absorption of photons, atoms
inside the MOT experience a light force from each of the six laser beams. If the
atom is resting, the light forces from opposite laser beams cancel and the atom does
not get accelerated. If the atom is moving along one axis, it becomes more resonant
to its counterpropagating laser beam due to the the Doppler effect. This increases
the probability to absorb a photon with the opposite momentum such that the light
force decelerates the atom. However this restoring force vanishes when the atom is
resting again and is not able to bring it back to the trap center. It only introduces
strong damping of the atomic velocity (that is why this state is called an optical
molasses). With this configuration, atoms are slowed down but not trapped since
slow atoms may diffuse out of the optical molasses without getting resonant to a
laser beam. In order to prevent this diffusion, a constant magnetic field gradient
is added via two coils in an anti-Helmholtz configuration. Atoms, that are slowly
diffusing out of the optical molasses, experience an increasing magnetic field, that,
due to the Zeeman-effect, shifts the resonance frequency such that they become res-
onant to the counterpropagating red-detuned laser beam. For this the polarization
of the laser beams have to match the resonant transition. As shown in Figure 3.2(b)
for a simplified 1D-system, the laser beams require a σ− polarization such that a
red-detuned laser beam gets resonant to the mJ = −1 state. Overall this configu-
ration has both a velocity and a position dependent restoring force which allows to
trap neutral atoms.

In our experiment we use three retro reflected laser beams that are red-detuned to
the D2-transition of 6Li by approximately 6 Γ, with Γ = 2π× 5.8724 MHz being the
natural line width of the D2-transition. As was already shown in Figure 2.3, the
hyperfine splitting of the 22P3/2 state at vanishing magnetic field is 4.4 MHz and
can therefore not be resolved since it is smaller than the natural linewidth of around
6MHz. Atoms in the excited state can decay into both hyperfine levels of the ground
state, which are separated by 228 MHz. Hence atoms can get non-resonant if they
decay into the (wrong) hyperfine level of the ground state. Due to the decay into the
non-resonant states, we need an additional repumping laser, that excites the atoms
from the F = 1/2 manifold back to the exited state.

The temperature of a MOT is intrinsically limited by the process of absorption and
spontaneous emission of photons. For 6Li atoms, this so called Doppler temperature
is

TD = ~Γ
2kB

= 141µK. (3.1)

Hence we need a second cooling step to achieve low enough temperatures.
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3.2 Trapping and cooling 6Li -atoms

3.2.2 Evaporative cooling in an optical dipole trap

The temperature of the atoms in the MOT is still too high for the deterministic
preparation of few-atom systems. The next step in the cooling process is evapora-
tive cooling in an optical dipole trap. The idea of evaporative cooling is to trap
the atoms in a conservative potential and remove fast atoms from the trap while
allowing the remaining ones to rethermalize. By incrementally decreasing the depth
of the potential, fast atoms can be removed from the trap. Hence the energy and
the temperature in the system are constantly decreased. Due to the fermionic na-
ture of 6Li , the scattering crossection for identical atoms decreases rapidly with
temperature. The reason for this is that cold 6Li-atoms only interact via the s-wave
contact interaction but identical fermions have zero probability to be at the same
spot. Since a rapid thermalisation of the atomic sample is essential for an effective
cooling process, we need a balanced mixture of at least two different spin sates in
the dipole trap. For this we choose the two lowest hyperfine states of 6Li .
For the creation of a conservative potential, one makes use of the dipole force, which
relies on the interaction of an induced dipole moment ~p with the oscillating electric
field ~E of a laser beam.

~p = α~E (3.2)

with α being the polarizibility of the atom. For a two level atom, the dipole moment
experiences a dipole potential of the from [4]

Udip(r) = − 1
2ε0c

Re(α)I(r) = −3π2

2ω3
0
Γ
(

(ω0 − ω)−1 + (ω0 + ω)−1
)
I(r) (3.3)

with ω0 being the resonance frequency of the optical transition, ω the frequency of
the electric field, i.e. of the laser beam. Γ is the linewidth of the resonance and I(r)
the intensity of the laser beam. A red-detuned laser therefore creates an attractive
potential whereas a blue-detuned laser can be used for repulsive potentials. The
trapping potential is directly proportional to the intensity of the laser beam so
that also more complex trapping geometries can be created by shaping the laser
beam. Hence a gaussian beam creates a gaussian potential in radial direction and a
Lorenzian potential in axial direction.
For our dipole traps we use a far red-detuned, focused laser beam with a wavelength
of 1064 nm and a maximum power of 200W. The light is taken from a Ytterbium
doped-fiber laser (YLR-200-LP) from IPG Photonics. The beam is focused onto the
atomic sample trapped in the MOT and reflected to obtain a crossed beam dipole
trap with an intersection angle of 14 ◦. We need such high laser powers to make the
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3 Experimental Setup

Figure 3.3: The microtrap is created by focusing a 1064 nm beam with our high-
resolution objective to a beam waist of 1.3µm. The tightly focused
beam creates a dimple in the large dipole trap. Due to the relatively
high Fermi energy and the low temperature, the occupation probability
of the lowest level is almost 1. We switch off the large optical dipole trap
(ODT) to retain a highly degenerate fermionic gas.

transfer into the dipole trap efficient.
As explained above, by slowly decreasing the overall power in the laser beam, the
potential gets more shallow so that atoms with relatively high energy can escape from
the trap. With this technique we can prepare around 40.000 atoms at a temperature
of T/TFermi = 0.5. This is sufficiently low temperatures to deterministically prepare
few atoms as is explained in the next section.

3.3 Deterministic preparation and detection of single
atoms

Cooling the atoms as described above is the common approach for the preparation
of a sample of ultracold atoms. From here we can prepare few atoms in the ground
state of potential with high fidelity by adding a tightly focused dipole trap via a
high-resolution objective.

3.3.1 The Dimple-Trap and the Spilling-Scheme

Once we have reached sufficiently low temperatures in the optical dipole trap, we
shine in a second 1064 nm laser beam through our high-resolution objective, perpen-
dicular to the crossed beam dipole trap. This is the same objective that we use for
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3.3 Deterministic preparation and detection of single atoms

the new imaging setup. It produces a beam waist of 1.3µm in the focal plane. By
overlapping this beam with the large dipole trap, a potential as shown in Figure 3.3
is realized. Due to its shape, this trap is called dimple trap. In order to not heat
up the atomic sample, the dimple trap is ramped on adiabatically. In this process
the temperature of the sample nearly stays constant but the Fermi energy increases.
With this trick we create a highly degenerate Fermi gas with T/TFermi ≈ 0.08 in
the dimple [35]. In such a fermionic sample the occupation probability of the lowest
energy levels is almost one. We use this high occupation probability in the lowest
levels for the preparation of single atoms.

Once the dimple trap is populated, the large dipole trap is switched off so that we
retain around 1000 atoms in the tightly focused dipole trap. The free atoms are
quickly removed by applying a magnetic field gradient along the top-down axis.

The last step for the deterministic preparation of single atoms is the spilling process.
For this we add a magnetic field gradient along the z-direction, which corresponds to
the long axis of the microtrap. The total potential in z-direction then given by the
optical microtrap which with a Lorentzian profile and the magnetic field gradient.
It can be written as

Vtot(z) = Vopt(z) + Vmagn(z) = pV0

(
1− 1

1 + (z/zR)

)
− µm

∂B

∂z
z. (3.4)

V0 is the initial trap depth, p the trap depth parameter and µm the magnetic moment
of the atom. By tuning the trap depth parameter, we can remove certain atoms from
the trap. Figure 3.4(a) illustrates this spilling process. We start from a completely
filled microtrap and ramp up a magnetic field gradient to 30 G/cm. This tilts the
potentials and creates a potential barrier that allows the atoms on the highest trap
levels to escape from the trap. Lowering the power in the trapping beam (this
corresponds to decrease the trap depth parameter p) decreases the height of the
potential barrier so that more atoms can escape from the trap. For very low beam
powers, only the lowest trap levels are populated and all the others escape from the
trap. Figure 3.4(b) shows a scan of the beam power, which is directly proportional to
the trap depth. Every time, when the potential barrier is lowered below a trap level,
all atoms above this level can escape from the trap. This scheme allows us to prepare
two atoms in one well with fidelities of around 95%. In addition, by exploiting the
different magnetic moments of the hyperfine sublevels, we can even prepare single
atoms or imbalanced systems. At a magnetic offset field of Boffset ≈ 27 G, the
magnetic moment µm = ∂E

∂B
of state |2〉 vanishes (see Fig. 4.4) so that its potential

is not affected by the magnetic field gradient. Thus only the other state is removed
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Figure 3.4: (a) In order to deterministically prepare few atoms in the microtrap, the
power in the trapping beam is lowered and a magnetic field gradient is
applied. The highest atoms are no longer bound and can escape from
the trap. Switching off the magnetic field gradient and ramping the
power in the trapping beam back to its original value yields a few-atom
groundstate system. (b) The plot shows the mean atom number as a
function of the trap depth parameter.

by the spilling scheme, leaving a single atom in the trap.
We cannot only prepare atoms in a single well with this technique. As is indicated in
Figure 3.5, we use an accousto-optical deflector (AOD) in front of the objective. The
AOD consists of a crystal whose density can be periodically modulated by applying
an RF-frequency to a piezo element. The light that passes through the crystal is
deflected by an angle that is proportional to the frequency of the RF-signal. By
applying two different frequencies to the piezo element, we can deflect the light into
two different angles. Focusing these two beams with the objective, a double well
potential is created in the focal plane. We can extend this method to more wells
to realize a small lattice system in which we can control both the depth and the
position of each well individually. This part of the setup is characterized in [36].

3.3.2 Detection of single atoms

At the end of the experimental sequence, we have to read out the quantum state
of the system by detecting the number of atoms and their spin state in each well.
So far the total atom number has been counted by switching off the microtrap and
recapturing all atoms into a MOT, called microMOT. In the microMOT, the atoms
are illuminated for about 1 s and the fluorescence signal is focused onto a CCD-
camera. The collected signal is proportional to the number of atoms so that we
are able to count the number of atoms with high fidelities up to around 20 atoms.
The histogram in Figure 3.6 shows the collected fluorescence signal normalized to
the atom number. In this data the odd atom numbers appeared less often due
to the preparation scheme but we can deterministically prepare any of these atom
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3.3 Deterministic preparation and detection of single atoms

Figure 3.5: The picture above illustrates our method to generate a multiwell po-
tential. We use an AOD to deflect multiple beams in different angles.
Focusing for example two beams with our high-resolution objective gen-
erates a double well potential in the focal plane. We can control the
both the power and the position of each well individually.

Figure 3.6: For imaging we recapture the atoms from the microtrap into a MOT for
around 1 s. By integrating the collected signal, we can count up to 20
atoms with fidelities close to 1. Figure taken and adapted from [33].
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numbers. As can also be seen in the Figure, the raw images (single images shown of
2, 4 and 8 atoms) do not contain any information about the well in which the atoms
where trapped just before the microtrap was switched off and due to the vanishing
magnetic field inside the microMOT, the information about the spin state of the
atoms also gets lost. However, exploiting different experimental schemes, we are
able to reconstruct the entire state of the system. For example, in order to gain
information on the location of the atoms in a double well potential, we first remove
the atoms from one well by switching it off. After this, we can count the remaining
atom number in the microMOT. By repeating the measurement many times and
by employing complex experimental sequences before imaging, we can deduce the
quantum state of the system. For larger systems, these detection schemes become
very cumbersome so that we aim for a new imaging technique that gives us direct
access to the location and the spin state of the atom. This for example enables to
directly probe spin-correlations in a multiwell potential.
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4 Fluorescence Imaging of 6Li

We illuminate the atoms with sigma-polarized light, resonant to the D2-transition
and collect the fluorescence signal with our high resolution objective. This Chapter
will first explain the imaging configuration and then give a detailed analysis of the
relevant level structure of 6Li . As will be explained, a deep understanding of the
relevant dipole transitions and decay channels is necessary in order to collect enough
signal of the atoms without adding a repump-laser. At the end of this chapter, the
diffusion of the atom will we simulated numerically and compared to the signal that
we measure in the imaging process. In order to prevent the diffusion of the particles
during the imaging process, we did measurements where we increased the trap power
and compared this to the case where we switched off the trap right before imaging.
Both cases are studied at the end of this Chapter.

4.1 Imaging configuration and calibration of the
imaging beams

We illuminate the atomic sample from the side with two counterpropagating, hor-
izontally polarized laser beams. We capture the fluorescence photons with a high
resolution objective in the vertical direction. Our magnetic field is generated by a
pair of coils, one sits on top of the vacuum chamber, the other is right below the
chamber. Hence the magnetic field points in the vertical axis. Since the polarization
of the imaging light is perpendicular to the orientation of the magnetic field, the
atoms experience both σ+ and σ−polarized light as is illustrated in Figure 4.1. We
are using two independent imaging beams from the two directions. For this setup
we were trying out two different imaging sequences. Either both beams are applied
to the atom at the same time or both beams are pulsed alternately. In the first case,
since both beams have the same wavelength, the imaging beams create a standing
wave pattern, which causes - especially for a dense sample of atoms - peculiar effects
which are very hard to understand. In the other case, the beams are not overlap-
ping in time, so that the behavior of the atoms is much easier to understand and
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4 Fluorescence Imaging of 6Li

Figure 4.1: We image the atoms with two horizontally polarized laser beams in one
axis. The imaging beams are perpendicular to the magnetic field. Hence
the atoms experience both σ+ and σ− polarized light.

to describe. Figure 4.2(a) illustrates the described imaging sequence, where only
one beam is switched on at a time. The first imaging pulse has a length of 1µs1

and the subsequent pulses all have a length of 2µs. The typical trap depths of the
experiment are so shallow that the confining potential does not hinder the atoms
from diffusing. Hence we typically switch off the trapping beam before the imaging
process. However we also tried to increase the trap depth for the imaging process.
These two cases will be analyzed at the end of this chapter.

The intensity of the two imaging beams was calibrated by measuring the power
broadening of the D2-transition. The scattering rate for an ensemble of identical
two level atoms is given by [37]

γsc = s0Γ/2
1 + s0 +

(
2δ
Γ

)2 (4.1)

with s0 = I/Isat, δ the detuning and Γ the natural linewidth of the optical transition.
By increasing the imaging intensity s0, the atomic absorption curve gets power
broadened with a linewidth of

Γ′ = Γ
√

1 + s0. (4.2)

For the calibration of the imaging beams, we image an atomic sample at low density2

for only 1µs. The short imaging time is necessary to prevent a line broadening due
1This is the shortest timescale of our experiment.
2We prepared 50 atoms in our micro trap and let them expand for 50ms
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4.1 Imaging configuration and calibration of the imaging beams

Figure 4.2: (a) illustrates the imaging sequence. Instead of retroreflecting the imag-
ing beam, we use two different beams in order to pulse them alternately
from both sides. This imaging sequence does not produce a standing
wave interference pattern at the position of the atoms. We start with
a first imaging flash of 1µs from one site. The subsequent flashes are
applied for 2µs. The plot in (b) shows the calibration of the imaging
power.

to the acceleration of atoms during the imaging process. By scanning the detuning
of the imaging laser, we can measure the linewidth of the transition for different
imaging powers. Figure 4.2(b) shows the measured linewidths for different imaging
powers. By fitting Equation 4.2 to the data we can deduce the power that is needed
in the imaging beam to get the saturation intensity at the position of the atoms.

P Front
Sat = 28.3± 2.3µW
PBack
Sat = 15.6± 0.5µW. (4.3)

The difference in the saturation power that might be caused by the different beam
diameters of the two imaging beams due to a different collimation. These values
agree with our estimations of the imaging intensity that we calculated from the mea-
sured beam size of the imaging beams. For the chosen configuration of alternating
imaging flashes we want to have the maximum scattering rate since the "tempera-
ture" of the atoms is much too low for any kind of cooling mechanism. For s0 � 1,
the scattering rate in Equation 4.1 saturates to Γ/2 = 18.45µs−1.

In order to verify whether we achieve the maximum scattering rate, we measure the
average momentum transfer within 1µs by illuminating the atoms with one imaging
beam for 1µs, letting them expand for several µs and then pulse the same imaging
beam again for 1µs. Figure 4.3 illustrates the atomic sample at different flight
times. By fitting gaussians to both the sum in x and y-direction one can deduce the
distance that the atoms have traveled within 1µs. Plotting the distance over time,
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4 Fluorescence Imaging of 6Li

Figure 4.3: The images show the trajectory of the atomic cloud after an imaging
pulse of 1µs. By fitting a gaussian to the signal, we can deduce the
momentum transfer and hence the scattering rate.

we can calculate the velocity and the momentum transfer from the laser beam to the
atoms. This data was taken at very high imaging power (s0 ≈ 100). We measure a
momentum transfer of

ptransfer = (19.3± 1.5) pphoton, (4.4)

where pphoton is the photon momentum for the D2-line. From Equation 4.1, for
s0 = 100 one expects a scattering rate of 18.36µs−1 which agrees with the measured
value within the given error. The large error of the measured momentum transfer
is not only caused by the fit, it also includes a 5% error of the magnification which
was not exactly known. The uncertainty of the fit was mainly caused by the large
spread of the atomic sample after the flight time.

4.2 Level structure of 6Li
6Li has a single valence electron and thus features a simple level structure with a
total electronic spin of s = 1/2. Hence the ground state of 6Li is 2S1/2. For imaging on
the D2 line, we drive the dipole transition (∆J = 1) into the state 2P3/2. The energy
splitting to state 2P1/2 is around 63 GHz, so that the D1 and the D2 transitions do
not overlap. Things become a little more complicated, when the hyperfine coupling
of the nuclear spin of I = 1 to the total angular momentum ~J = ~S + ~L is taken
into account. Even though, the angular momentum and the nuclear spin decouple
at magnetic field strengths of a few gauss, we need a deep understanding of the level
structure in order to explain the temporal evolution of the fluorescence signal for

24



4.2 Level structure of 6Li

Figure 4.4: The left picture shows the level structure of the lowest levels of 6Li with
the fine and hyperfine splitting at no magnetic field. The graphs on the
right side show the splitting of the different hyperfine states as a function
of the magnetic field. The ground state splits into 6 Zeeman sub levels
which we label states 1 to 6 with increasing energy. Figure taken and
adapted from [31].

the different hyperfine levels of the ground state.
As shown in Figure 4.4, without a magnetic field, the ground state 2S1/2 splits into
two hyperfine states with a total angular momentum of F = {1/2, 3/2}. The splitting
between these two substates is around ∆EHF

GS = 228.2 MHz ≈ 39ΓD2 . This splitting
is very large compared to the hyperfine splitting of the excited state 2P3/2. This
state splits into three substates with total angular momentum F = {1/2, 3/2, 5/2} and
a total energy splitting of ∆EHF

ES = 4.8 MHz < ΓD2 .
Each of the hyperfine substates has 2F + 1 different mF Zeeman sublevels that split
up if a magnetic field is applied. Hence at zero magnetic field, the ground state is
sixfold degenerate and the relevant excited state twelvefold respectively.
Without an external magnetic field, the total angular momentum F and the mag-
netic quantum number mF are valid quantum numbers and characterize the eigen-
states of the atom.

6Li in an external magnetic field

Also for small magnetic fields, i.e. in the linear Zeeman-regime, F is still a good
quantum number. Hence all substates of both the ground and excited state split up
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4 Fluorescence Imaging of 6Li

linearly according to their magnetic quantum number mF [31]

∆EZeeman = µB
~
gFmFB (4.5)

with the Bohr magneton µB, the magnetic field B and the g-factor

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1) + gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1) .

(4.6)
As the magnetic field increases, the magnetic field energy becomes comparable to
the hyperfine energy and F ceases to be a valid quantum number. This causes a
decoupling of the nuclear spin I from the angular momentum J and a bending of
the energy levels in Figure 4.4(b) with increasing magnetic field. The decoupling of
the nuclear spin and the angular momentum already happens on the order of 1 G
for the excited state and on the order of 10− 20 G for the ground state respectively.
In this regime, the eigenstates of the system can best be described in the |mJ ,mI〉-
basis. For the ground state, the six sublevels can be written in an analytic form [31]
with B-field dependent prefactors.

|1〉 = A+ |1/2, 0〉 −B+ |−1/2, 1〉
|2〉 = A− |1/2,−1〉 −B− |−1/2, 0〉
|3〉 = |−1/2,−1〉
|4〉 = B− |1/2,−1〉 − A+ |−1/2, 0〉
|5〉 = B+ |1/2, 0〉 − A− |−1/2, 1〉
|6〉 = |1/2, 1〉 (4.7)

with A± = 1/
√

1 + (Z± +R±)2/2, B± =
√

1− A±, Z± = (µn + 2µe)B/A22S1/2
± 1/2

and R± =
√

(Z±)2 + 2, A22S1/2
= 152.1368407 MHz is the magnetic dipole constant,

µn/e the magnetic moment of the neutron and electron respectively. The states are
labeled according to their energy where |1〉 is the lowest lying state. The right graph
in Figure 4.4 identifies the six different states from Equation 4.7.
Our experiment is conducted with the three lowest states, i.e. |1〉 , |2〉 , |3〉. Hence
we need to analyze the optical transitions starting from these three states, which
will be done in the next section.
In higher magnetic fields, i.e. beyond the linear Zeeman-regime, the nuclear spin I
and the angular momentum of the electron J decouple further so that the spitting is
governed by the strongest {mJ ,mI} component. In this regime, the energy splitting
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4.2 Level structure of 6Li

between two neighboring states is on the order of 80 MHz ≈ 14ΓD2 so that we can
individually address the different spin states by tuning the imaging laser resonant
to the corresponding transition. This means that in Equation 4.7, the value for A±
decreases and converges towards zero with increasing magnetic field.

|1〉 → |−1/2, 1〉
|2〉 → |−1/2, 0〉
|3〉 = |−1/2,−1〉
|4〉 → |1/2,−1〉
|5〉 → |1/2, 0〉
|6〉 = |1/2, 1〉 (4.8)

Figure 4.5 shows the evolution of the coefficients A± and B± of the ground state in
(a) and for the excited state in (b). The energy of the states in Equation 4.8 shift
linearly with the magnetic field again and arrange according to the main mJ -value
as can be seen for high magnetic fields in Figure 4.4.

There is no analytic form for the different levels in the excited state. The qualitative
behavior is the same as in the ground state except that the decoupling happens at a
much lower magnetic field. This is caused by the angular momentum of L = 1 which
keeps the electron far from the nucleus. As will be explained in the next section, we
only need to consider the three lowest levels of the excited state which we can write
in a similar form as we wrote for the ground state.

|1′〉 = |−3/2,−1〉
|2′〉 = a2 |−3/2, 0〉+ b2 |−1/2,−1〉
|3′〉 = a3 |−3/2, 1〉+ b3 |1/2,−1〉+ c3 |−1/2, 0〉 (4.9)

where a, b, c are the field coefficients that are illustrated in Figure 4.5(b). Again the
states are labeled with increasing energy. Already in magnetic fields on the order
of 10G the angular momentum and the nuclear spin start to decouple so that for
fields around 500G we can write the states as
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Figure 4.5: The graphs show the coefficients of states |1〉 and |2〉 of the ground
state from 0G to 1000G and |2′〉 and |3′〉 of the excited state from 0G
to 15G. For increasing magnetic fields the angular momentum of the
electron decouples from the nuclear spin such that only one coefficient
survives. This happens much faster for the excited state since the mean
distance from the electron to the nucleus is much larger than in the
ground state.

|1′〉 = |−3/2,−1〉
|2′〉 → |−3/2, 0〉
|3′〉 → |−3/2, 1〉 . (4.10)

However, even if the spins decouple and the states of both the ground and the excited
state can well be described as above, there is always a small admixture of another
state as is known from Equation 4.7. These admixtures of other states influence the
optical transition as will we see in the next chapter.

4.3 Dipole transitions in the imaging process

In order to understand the transitions during the imaging process, let us start at
very high magnetic field and assume, that the states can be written in the forms of
Equations 4.8 and 4.10 respectively, i.e. we only consider the main mJ contribution
for now. Figure 4.6(a) attributes the main mJ values to the different manifolds in
both the ground and the excited state. Starting from the three lowest levels of the
ground states, σ−-polarized light brings us into the lowest manifold of the excited
state. Since π polarized light does not change the mJ value, it excites the atom into
the second lowest manifold. Hence, σ+-polarized light excites the atoms into the
mJ = +1/2 manifold. At our typical magnetic fields, the splitting of the different
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4.3 Dipole transitions in the imaging process

Figure 4.6: In very high magnetic fields the angular momentum of the electron de-
couples from the nuclear spin. In this regime, the states can well be
described by the quantum number mJ . The left plot shows the possi-
ble dipole transitions for different polarizations of the imaging light and
the right graph shows a zoom into the σ− transition. From the excited
state, the atom can only decay into its original state since ∆mJ = +1
and ∆I = 0 has to be fulfilled.

manifolds in the excited states is on the order of some GHz, so that we can select the
different manifolds in the excited state by tuning the laser resonant to the according
transition. In the experiment we image into the lowest, i.e. the mJ = −3/2 manifold
so that we only need to consider the three lowest sublevels of the excited state. We
can apply the selection rules for σ− polarized light to the three lowest hyperfine
sublevels of the ground state and find the transitions as indicated in Figure 4.6(b).
The decay always happens into the initial state, since the orientation of the nuclear
spin does not change during the imaging process.

As explained in the previous section and as shown in Figure 4.5, |1〉 and |2〉 of the
ground state and states |2′〉 and |3′〉 of the excited state do have small but finite
admixtures of other spin states which need to be included into the analysis of the
dipole transitions. State |3〉 of the ground state and state |1′〉 of the excited state
do not have any admixture of other states. This is due to the fact that the angular
momentum ~J of the electron points in the same direction as the nuclear spin ~I. For
this reason the magnetic moment of these both states is µ = ∂E

∂B
= const and the

energy shifts linearly with the magnetic field in all regimes. As already explained,
the convergence of the coefficient of the main mJ state is much faster in the excited
state than in the ground state. Hence for typical magnetic fields above 500G, we
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can use the form of Equation 4.10 for the excited state3.
However, for the ground state, we need to take the full form into account since
even a very small residual other spin state causes significant loss during the imaging
process. In the following, we first analyze the excitation from the three different
levels in the ground state |1〉 , |2〉 , |3〉 and then the spontaneous decay from the
corresponding excited states.

Excitation from the ground state

As explained in section 4.1, the imaging light is linearly polarized in the horizontal
plane. The magnetic field is pointing in z-direction. Hence the polarization is
orthogonal to the magnetic field such that the atoms experience both σ+ and σ−

polarized light. Since our laser beam is tuned resonant to the σ− transition, we need
the selection rule for the excitation of an electron from the ground state

∆J = 1,∆mJ = −1,∆mI = 0. (4.11)

With these selection rules in the |mJ ,mI〉 basis, let us now analyze the full form of
the ground state levels |1〉 and |2〉 that was given in Equation 4.7. Both of these
states have one main mJ value which was already analyzed above and one secondary
mJ value that still needs to be taken into account.
Table 4.1 analyzes the three different sublevels of the ground state separately. The
J-selection rules from above are applied to each of the admixtures to see into which
mJ -states an excitation is possible. Then these mJ - states are compared to the
different levels in the excited state from Equation 4.9 to find the final state after
the transition. The final state can be found in the last column. Fortunately the
large detuning to the σ+ and the π transitions to the excited state restrict each level
from the ground state to only one level in the excited state when σ-polarized light
is used. Hence no atoms can get lost or dark during the excitation with σ-polarized
light.
However, one should note that also π-polarized light can also drive a transition
into the lowest manifold of the excited state, if the full form of the excited state is
considered. There are two possible π transitions within the σ− transition.

|2〉 → |3′〉 , |3〉 → |2′〉 (4.12)

However, the probability for such transitions is on the order of 10−12 and can there-
3E.g. at 500 G, State 2 has admixtures b2 = 1.3× 10−6, 1− a2 = 1.15× 10−6.
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4.3 Dipole transitions in the imaging process

Initial State Admixtures State after applying Final state within
∆mJ = −1 mJ = −3/2 manifold

|1〉 secondary: |1/2, 0〉 |−1/2, 0〉 |3′〉
main: |−1/2, 1〉 |−3/2, 1〉 |3′〉

|2〉 secondary: |1/2,−1〉 |−1/2,−1〉 |2′〉
main: |−1/2, 0〉 |−3/2, 0〉 |2′〉

|3〉 |−1/2,−1〉 |−3/2,−1〉 |1′〉

Table 4.1: Excitation from the ground state with σ-polarized light: The first column
shows the three different levels of the ground state. If the selection rules
from Equation 4.11 are applied, each admixture from the second column
can be excited into two different states. The fourth column shows the
resonant transitions so that in the last column the final state is identified.

fore be neglected. Furthermore in the experiment we ensure with polarizing beam
splitter cubes, that there is no π polarized light in the imaging beams.

Decay from the excited state

As already argued above, we can approximate the levels in the excited states with
Equation 4.10.

|1′〉 = |−3/2,−1〉
|2′〉 = |−3/2, 0〉
|3′〉 = |−3/2, 1〉 (4.13)

These states can only decay by emitting σ−-polarized light since there is no state
with mJ = −3/2 available in the ground state. We can apply the selection rules from
Equation 4.11 in a reverse fashion and write the output as a superposition of the
different levels in the ground states

|1′〉 = |−3/2,−1〉 → |−1/2,−1〉 = |3〉
|2′〉 = |−3/2, 0〉 → |−1/2, 0〉 = −B− |2〉 − A− |4〉
|3′〉 = |−3/2, 1〉 → |−1/2, 1〉 = −B+ |1〉 − A+ |5〉 . (4.14)

This shows, that for σ-polarized light we have a completely closed transition for
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Figure 4.7: The graph above shows the probability for both state |1〉 and state |2〉
to get lost into a non-resonant state (states |5〉 and |4〉). Once the atoms
decays into one of these states, they do no longer scatter photons and
we therefore might not be able to collect enough signal for the detection
of the atom.

state |3〉

|3〉 → |1′〉 → |3〉 . (4.15)

The two other levels of the ground state do not have a completely closed transition

|1〉 → |3′〉 → −B+ |1〉 − A+ |5〉
|2〉 → |2′〉 → −B− |2〉 − A− |4〉 . (4.16)

After one cycle the excited state can decay into states |5〉 or |4〉 with probabilities
ploss|1〉 = |A+|2 and ploss|2〉 = |A−|2 respectively. This probability is plotted in Figure
4.7. In the plot, two magnetic fields are marked, 527 G, where the s-wave scattering
length of states |1〉 and |2〉 vanishes and 900 G. At these magnetic field strengths,
the probability to decay into the non resonant state is

ploss|1〉 (527) = 0.47%
ploss|2〉 (527) = 0.58%
ploss|1〉 (900) = 0.17%
ploss|2〉 (900) = 0.19% (4.17)
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4.4 Dipole radiation pattern

This means that we can close the optical transitions of the sublevels |1〉 and |2〉 by
increasing the magnetic field. These two values were measured in the experiment
for state 2 and will be presented in the next section.

4.4 Dipole radiation pattern

The magnetic field not only influences the available atomic dipole transitions, it also
has an effect on the spatial radiation pattern of the atom. The magnetic field, which
is pointing in the vertical direction, polarizes the atom. This effect enhances the
emission of photons into the direction of the objective.
As explained, the atom can only emit σ+ polarized light when decaying from the
excited state into the ground state. Thus the atoms radiate according to the dipole
radiation pattern [38]

Î(θ) = I(θ)
I0

= 3
16π

(1 + cos2 θ)
2 . (4.18)

The factor of 3
16π is a normalization factor so that the integral over the whole solid

angle is one. Thus the total signal S, that is collected by the objective with a
numerical aperture of NA = sinα is given by

S =
α∫

0

2π∫
0

Î(θ) sin θdθdφ

= 2π
α∫

0

Î(θ) sin θdθ

= −3
8

α∫
0

[1 + cos2 θ]d cos θ

= −3
8[cos θ + 1

3 cos3 θ]|α0

= 3
8[43 − cosα + 1

3 cos3 α]. (4.19)

The numerical aperture of our objective is NA = 2sin(α) ≈ 0.55. This corresponds
to an opening angle of 2α = 66.7 ◦ and therefore to a solid angle of Ω

4π = 1
2(1 −

cos(α)) = 8.2%. However, due to the dipole radiation pattern we collect 11.4% of
the scattered photons. A plot of Equation 4.19 is shown Figure 4.8.
The optical elements that focus the fluorescence light onto the camera cause a loss
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4 Fluorescence Imaging of 6Li

Figure 4.8: The graph illustrates the enhancement of the collected signal due to the
dipole radiation pattern from Equation 4.18. For our objective with a
numerical aperture of NA = 0.55, the dipole radiation increases the
signal by 3.2%.

on the order of 10%, such that approximately 10.3% of the emitted photons impinge
on the sensor of the camera. The camera itself has a specified quantum efficiency of
85% at 671 nm, so that 8.7% of the photons can be detected.
Assuming a near-resonant laser beam, red-detuned by one linewidth from the reso-
nance frequency, with a saturation parameter of s0 = I/Isat = 100, the atoms scatter
photons according to Equation 4.1

γsc = 17.6 photons/µs (4.20)

With the above parameters, this gives rise to 1.54 detected photons per µs on the
camera if the scattering rate stays constant. As explained in the previous section,
this is only the case for state |3〉 since the two other states |1〉 and |2〉 decay into
non-resonant spin states. This will further be analyzed in the next section.

4.5 Temporal evolution of the fluorescence signal
As we saw in the previous sections, only state |3〉 features a completely closed
transition. The two other spin states |1〉 , |2〉 may decay into non-resonant states
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(|6〉 , |5〉). This probability can be decreased by increasing the magnetic field. Since
single images of single atoms do not contain enough photons to analyze the temporal
increase of the collected signal, we analyze averaged images.
For this, we prepare a single atom in either state |3〉 or |2〉 and image it with varying
imaging time. State |2〉 was imaged at two different magnetic fields B1 = 527 G and
B2 = 900 G. Around 200 images per data point were averaged. We subtract the
background from the averaged image and sum up the counts on the camera. From
this we can estimate the average number of collected photons by dividing the result
by the gain was will be explained in Chapter 5.2.
From the analysis above, we expect that for state |3〉 the fluorescence signal increases
linearly with time. Knowing the approximate scattering rate, this also allows us to
determine the total fraction of detected photons by comparing the slope of the signal
with the scattering rate. In contrast, for state |2〉, which does not exhibit a com-
pletely closed transition, we expect a saturation of the average fluorescence signal.
However, the saturation should be slower for higher magnetic fields.

For a state that decays into a non-resonant state with a probability p and initially
scattered photons with the rate γ, the population in the initial state evolves as

P(t) = (1− p)n = (1− p)tγ, (4.21)

with n being the number of scattered photons. Hence, the average collected fluo-
rescence signal S (t) on the camera is given by the integral of the time dependent
scattering rate

S (t) = Fγ

t∫
0

P(t′)dt′ = (1− p)tγ − 1
log (1− p) . (4.22)

F is the detection fidelity of a photon with the camera.

Figure 4.9 shows data for state |3〉 and for state |2〉 at two different magnetic fields.
The black data belongs to state |3〉 and can be fit with a linear model. Using the
slope of the fit of a = 1.65 photons/µs, and a scattering rate of γ = 17.6 photons/µs4,
we can estimate the detection fidelity to be

F = 1.65± 0.03
17.6± 0.9 = 9.4± 0.5% (4.23)

4The experiment was done with Iimg ≈ 100ISat and at a detuning of almost one linewidth. This
corresponds to a scattering rate of γ = 17.6 photons/µs
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Figure 4.9: The graph above shows the temporal evolution of the collected fluores-
cence signal for state |3〉 and |2〉 at 527G and 900G. Due to the com-
pletely closed optical transition of state |3〉, the signal increases linearly
while the signal of state |2〉 saturates. For a higher magnetic field, this
saturation takes longer.

The uncertainty of the detection fidelity is taken from the fit. For the scattering
rate an uncertainty of around 5% was assumed. This value is slightly above the
estimation that was done with Equation 4.19. The reason for this might be a
slightly higher numerical aperture of our objective than NA = 0.55.
We fix the detection fidelity to this value since it is needed for fitting the remaining
data with Equation 4.22. The red and the blue data points in the figure correspond
to state |2〉 at 527 G and 900 G respectively. Fitting Equation 4.22 to the data
yields a scattering rate of γfit = 15.7 ± 0.7 photons/µs. From the fits, we extract
the probability p for state |2〉 to decay into the non-resonant spin state |4〉

Aexp527 = (1− p) = (99.53± 0.02) %
Aexp900 = (1− p) = (99.83± 0.02) %. (4.24)

The given error is only the 1σ uncertainty of the fit but it does not include the
uncertainty of the scattering rate or the detection probability. From section 4.3 and
from Figure 4.7 we expect probabilities of
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Ath527 = 99.42 %
Ath900 = 99.81 %. (4.25)

Keeping in mind that these numbers only include σ-polarized light with the correct
detuning and that both the scattering rate and the detection fidelity are not exactly
known, the measured values agree very well with the expectations. For even higher
magnetic fields, the average signal of the atoms increases even further so that at high
magnetic field also states |1〉 and |2〉 can be imaged with an almost closed optical
transition.

4.6 Diffusion during the imaging process

As explained at the beginning of this chapter, each imaging flash, except the first one,
is 2µs long. The alternating imaging technique causes the atom to oscillate along
the beam axis. According to Equation 4.1, an intensity of s0 ≈ 100 and a detuning of
one linewidth corresponds to a scattering rate of γ ≈ 17.6 photons/µs. The absorbed
photons are isotropically emitted in the polar angle φ. In θ-direction, the emission
happens according to Equation 4.18. With these assumptions we can perform a
Monte-Carlo simulation of the trajectory of the atom. For this a mean scattering
rate of γ = 17.6µs−1 with a width of δγ = 1µs−15 is assumed. Each photon is
emitted according to the dipole radiation pattern and the momentum is projected
onto the plane in which the atoms are imaged. Figure 4.10 shows the temporal
evolution of the particle-trajectory in the xy-plane in both axes, along the imaging
beam (a) and perpendicular to the beam (b) within an imaging time of 20µs. For
the simulation, a 1/e2 trap diameter of 1.3µm was assumed. This corresponds to an
harmonic oscillator length of aHO = 0.5µm. Along the beam axis, already after 5µs,
the diffusion due to the random emission dominates the oscillation that is caused
by the imaging technique. Obviously, the spread of the atomic distribution along
the imaging beam is larger than the perpendicular spread. Shorter imaging pulses
should produce a smaller signal on the camera and thus improve the resolution of
the imaging process. Below the images with the simulation, the temporal evolution
of the fluorescence signal is illustrated. The graphs correspond to the sum of the
images along the time-axis up to different imaging times. Due to the diffusion, the

5This has been estimated from the variance of the time for being in the excited state. For this
an exponentially decaying probability with a 1/e-time of Γ−1 was used.
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Figure 4.10: The images show a simulation of the diffusion of the atom during the
imaging process both along the beam axis (a) and perpendicular to it
(b). The graphs below show the spread of the collected signal on the
camera. They have been obtained by integrating the images along the
time axis for different imaging times.
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maximum height of the signal saturates for longer imaging times in both axes and
the signal gets accumulated in the wings of the distribution. This saturation is
indicated by the horizontal lines in the plots which always mark the peak height.
Already after around 7µs, the increase of the signal is small compared to the spread
of the atomic distribution. A longer imaging times can indeed increase the number
of collected photons but the signal gets more and more accumulated in the wings.
Hence, for a multi-well potential this would decrease the contrast of neighboring
wells.
We compare these calculations to averaged images of single atoms. For an averaged
image, one expects a slightly elongated signal along the imaging beam. Figure
4.11(a) shows 4 such images. They were obtained by averaging around 150 raw
images of single atoms. Each image is normalized to its peak value. The imaging
time is always indicated on the image. The imaging beams are pointing along the
diagonal direction6. In the images, one can see the diffusion of the particles away
from their initial position, with a larger spread along the imaging beam axis. The
graph in (b) analyzes the temporal evolution of the signal within a specified region
of interest. For simplicity we choose only the brightest pixel of the averaged image
which corresponds to a size of 2.7× 2.7µm2 in the focal plane. For the comparison
we integrate the spatial profiles from Figure 4.10 for different imaging times over the
size of a single pixel both along the imaging beam and perpendicular to it. We plot
this together with the height of the brightest pixel of the averaged image. Both the
experimental data and the simulation have been normalized to the (extrapolated)
number of collected photons after an imaging time of 40µs. The measured data
qualitatively agrees very well with the simulation. Hence the simulation describes
the diffusion of the atom appropriately.
Another thing that we can compare is the spread of the atomic density distribution.
The graphs in 4.12 show the temporal evolution of the signal in the same fashion as
was plotted in the graphs in Figure 4.10. Instead of plotting both axes separately,
the Figure shows the radial average of the images. This means that the signal is
averaged over the whole azimuthal angle φ7 and plotted as a function of the radius.
As mentioned above, one pixel of the images corresponds to a size of 2.7µm in the
focal plane. This gives us only a few data points within the signal of the atoms.
The first graph in the figure shows the real data and the second plot shows fitted
Voigt-profiles without the real data. These describe the data very well and allow to
extract the FWHM of the averaged atomic distribution.

6Top left corner to bottom right corner
7In cylindrical coordinates.
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Figure 4.11: The images in (a) are averaged images of single atoms. They illustrate
the diffusion of the atomic distribution. The cloud is elongated along
the imaging beams (top left corner to bottom right corner). The graph
on the right shows a simulation of the evolution of the fluorescence on
the brightest pixel both along the imaging beam (green) and perpen-
dicular to it (brown). The black data points are the measured values
which we expect to be somewhere between the two simulations. The
data qualitatively agrees well with the simulation.

From the fits we get a FWHM after 19µs of 4.7 ± 0.5µm. From the simulation
above we expect a FWHM between 1.9µm (which is the FWHM perpendicular to
the imaging beam) and 3.8µm (which is the FWHM along the beam). Our mea-
sured value is 20% higher than the simulated value. This can be caused by e.g. a
badly focused imaging setup. In fact we will see in Chapter 6 that switching off
the imaging beam causes the atoms to delocalize very fast which also broadens the
atomic distribution. Hence we can try to counter this delocalization by keeping the
trap on during the imaging process.

Not only this delocalization but also the diffusion of the particles will later limit
the contrast in the multi-well potential. Hence we try to counter the diffusion by
moderately increasing the trapping potential. For this we ramp the laser power in
the trapping beams to 10mW which corresponds to a trap depth of 97.5µK in the
excited state. The recoil temperature of 6Li is Trec = 3.54µK. Hence the trap is
around 27.5Erec. So far we have not really understood what exactly happens to the
atom in the trap during the imaging process but the atom cannot leave the trap
before it gained at least 28Erec. For our typical scattering rate of 17.6µs−1, this
means that the atom should be trapped for at least 1.6µs.

Figure 4.13 shows averaged images for both cases. In the upper images, the trapping
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Figure 4.12: The first graph shows the measured radial average of averaged im-
ages for different imaging times. The second graph shows fitted Voigt-
profiles to determine the FWHM of the distribution.

Figure 4.13: The images show that the diffusion of the atom can be countered by
ramping deep the trapping potential. For this the laser power in the
trapping beams is ramped to 10mW and kept on during imaging. This
depth corresponds to 27.5Erec in the excited state. Two images that
belong to the same imaging time have the same color scale. The upper
images have a more pronounced peak. The reason for this is that as
long as the atoms are trapped, the fluorescence signal is focused on the
same pixel. Hence the difference of the signal on the central peak gives
us information about the time the atom was trapped.
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beam is kept on whereas in the lower images the trapping beam is switched off. The
scale of the images that belong to the same imaging time is always the same. In the
images one can see, that the upper images are much more peaked and have more
signal on the brightest pixel.
To compare these two cases, we plot again the signal on the brightest pixel, as was
done in Figure 4.11. This is shown in Figure 4.14. The red data points correspond
to the case where the trap was switched off before imaging and the cyan data points
to the case where we ramped the trap deep. As expected, when the trap is kept on
during the imaging process, more signal accumulates on the brightest pixel. As soon
as the atoms have enough energy to leave the trap, the signal starts to saturate.
The difference in the signal for imaging with and without trapping potential is the
signal that accumulates in the time while the atoms are trapped. We can therefore
try to estimate the time the atoms are trapped by comparing the initial slope of
the signal to the difference of the accumulated signal. The difference of the two
signals is ∆ = 0.61 ± 0.10 photons. This is an increase of more than 50%! With
the initial slope, we can estimate the number of additional scattering events when
the atom is trapped during the imaging event. For a lower bound, we choose the
larger initial slope of 0.37 photons/µs. Hence the trap keeps the atoms localized for
around τ = 0.61

0.37µs−1 = 1.65± 0.38µs. This is only a very rough estimation, but this
agrees with the estimation of the trap depth.
As was shown in this chapter, we are dealing with very few photons. Hence it is
necessary to detect them with a high fidelity. The next chapter describes how we
can detect single photons with an EMCCD camera and presents a model to analyze
the output of such a camera.
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Figure 4.14: The graph plots the signal on the brightest pixel with and without a
trapping potential during the imaging procedure. In the case where the
trapping beam is kept on, we collect more signal on the brightest pixel.
The increase in the signal on the brightest pixel can be used to estimate
the time how long the trap keeps the atoms localized. In this run, the
trap was ramped to a trap depth of around 27 Erec which agrees with
the increase in the signal.
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Our imaging approach is working in the regime of very few photons. As has been
estimated in the previous chapter, we only collect around 10-20 photons per atom.
To detect such low photon numbers down to a single photon resolution, we need
a high resolution objective and a camera with a high quantum efficiency to detect
as many photons as possible. Furthermore it is necessary that one photon creates
a signal above the noise level. For these reasons we use a CCD camera with EM-
mode (Electron Multiplying Charge-Coupled Device). This camera amplifies the
detected signal before reading it out so that single photons can be detected.
In this chapter, the setup for the detection and the counting of photons is described
and characterized. The first part deals with the working principle of an EMCCD-
camera and the technical difficulties that come along with it. The different sources
of noise are explained and analyzed. In the second part our camera is character-
ized by analyzing the gain and the different sources of noise. The results of these
measurements are compared to the values that are specified by Andor.

5.1 Properties of an EMCCD camera

A CCD-sensor is a device that produces electrical charges from incident photons and
converts them into a digital signal. It consists of a photoactive layer of silicon on
top of a capacitor array. Figure 5.1 illustrates the basic principle of a CCD-sensor.
During the imaging acquisition, the impinging photons create photoelectrons inside
the photoactive layer which are stored on the pixel by applying a voltage to the
capacitors. Each pixel/capacitor accumulates electrons proportional to the light
incident on that pixel. In contrast to CMOS-sensors, where each pixel has a separate
charge-to-voltage converter, the CCD-sensor first shifts the signal into the readout
register and then converts the charges with only one analog-to-digital converter (AD
converter). In order to read out the accumulated charges they get transported in
the ’vertical’ (vertical as shown in Figure 5.1) direction line by line. This is done
by transferring the charges of each pixel to its neighboring pixel. By this, in each
shift process the lowest line gets transfered into the horizontal readout register. In
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Figure 5.1: The images illustrate the working principle of a CCD-sensor. Imping-
ing photons create photo electrons inside the photoactive layer. During
the image acquisition, these electrons are captured on the pixel. To
read out the sensor, each row of the sensor gets shifted vertically and is
subsequently read out in the horizontal register.

this readout register, the pixels are shifted in the horizontal direction such that the
charge on each pixel is first amplified with a charge-amplifier and then converted
with an AD-converter into a digital signal.

Electron Multiplying CCDs

Typical CCD cameras have a readout noise of around 5 to 10 electrons per pixel
which prohibits the detection of single photons. This readout noise is caused by
the AD-converter of the readout register. To overcome the read noise, an EMCCD
camera amplifies the signal on each pixel before reading it out with the AD-converter.
In doing so, even a single electron on the sensor can be amplified out of the readout
noise so that single photons can be detected. However, there are several things
that have to be taken into account for the evaluation of the data from an EMCCD
camera. In particular the noise that is generated by unwanted charges on the sensor
is limiting the performance of an EMCCD camera (see next section). The imaging
acquisition of an EMCCD camera works in the same way as for conventional CCD-
cameras. Instead of directly converting the charges on the sensor into a digital
image, the EMCCD camera features an additional gain register as illustrated in
Figure 5.2.
As shown in the image, the shift voltage in the gain register is so high that in each
shift process there is a certain probability that an initial charge creates another free
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Figure 5.2: The image illustrated the working principle of an CCD sensor both with
and without EM-mode. In the conventional mode, the pixels in the
readout register are directly converted into a digital signal with the
AD-converter. In the EM-mode, the electrons are shifted through an
additional gain register where the shift voltage is very high. An initial
electron creates an avalanche of electrons which is then read out with an
AD-converter. Figure taken and adapted from [39].

charge. The applied shift voltages are on the order of 40 V - 60V which causes
a multiplication per transfer of around ×1.01 to ×1.015. Although this sounds
very small, when applied 500 times, a single electron yields around 1.01500 = 145
to 1.015500 = 1710 secondary electrons. The gain can be controlled by adjusting
the shift voltage. Hence a single electron on a pixel causes an electron avalanche
through the gain register. This amplification process of course only starts if there
was at least one initial electron on the pixel. Since each primary electron creates
an avalanche of secondary electrons, each event can be amplified out of the readout
noise if the gain is sufficiently large.

The amplification of single electrons in the gain register is a statistical process.
Consequently, as will be analyzed in section 5.1.2, it is no longer possible to clearly
count multiple photons on the same pixel since the output distribution of the gain
register for one and two initial electrons overlap. Furthermore also charges on the
sensor that were not created by impinging photons (such as thermal charges) get
amplified out of the read noise. These background charges cannot be distinguished
from electrons that were created by photons coming from the atomic sample. There
are different sources of unwanted charges on the sensor which are summarized under
the term ’spurious charges’. These are analyzed in the next section.
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Figure 5.3: The diagram illustrates the different sources of noise and show where
they enter the image. The most important sources are the spurious
charges that are created on the detector array. Figure taken from [40]

5.1.1 Sources of noise

There are many different noise sources that influence both the output and the per-
formance of an EMCCD camera and that have to be considered when evaluating the
data. Figure 5.3 illustrates the different stages in the imaging process where noise
can enter the system. The first stage is independent of the camera. The emission
from the atomic source is a stochastic processes. The number of detected photons
that are collected by the imaging setup is shot-noise broadened and given by a
Poisson distribution of mean µ = n with n being the average number of photons.
Also the creation of photoelectrons inside the photoactive region of the camera is a
stochastic process which influences the detection efficiency. These two sources only
affect the number of detectable photons. The perfomance of the camera is most
limited by unwanted charges that are created on the detector array. These charges
are not created by photons and are called spurious charges. There are three main
contributions to the spurious charges.

• Thermal Charges: In the photoactive region, electrons can be spontaneously
excited from the valence band into the conduction band. The bandgap of
silicon is EG = 1.17 eV. Thermal electrons can be minimized by cooling the
sensor to temperatures of around −70 ◦, which corresponds to a thermal energy
of ET = kBT = 0.017 eV and thus EG

ET
= 68.8.

• Clock-Induced Charges(CICs): These charges are generated during the vertical
shift process, i.e. while the charges are shifted across the sensor. In each shift
process, there is a small probability that the applied shift voltage creates a
free charge. These charges can be minimized by adjusting the readout speed
of the camera. There are also new technologies that adapt the waveform of
the shift voltage during the readout process which significantly decreases the
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amount of clock induced charges [41].

• Dark Counts by Background Light: Background photons, e.g. from the trap-
ping laser or from ambient light sources can also create free charges on the
CCD-sensor. Background photons can almost be completely eliminated by
encasing the experiment and by using an appropriate filter in front of the
camera.

Spurious charges are of course also present in conventional mode but there they
disappear in the readout noise. In the EM-mode they are problematic since each
electron is amplified by the gain register so that spurious charges cannot be dis-
tinguished from charges created by photons from the atomic sample. Especially
clock-induced charges are limiting the performance of most EMCCD-cameras since
their appearance is more probable than the appearance of charges caused by the
other two noise sources.
Another source of noise is the gain register. As explained in the previous section,
the electron multiplication is a stochastic process. Hence the output of the gain
register cannot be attributed to a definitive number of initial electrons.
The last noise source is the electronics that converts the secondary charges from the
gain register into a digital image. This analog-to-digital conversion typically has a
noise of a few electrons. This read noise is the limiting noise for conventional CCD-
cameras. However, since the gain register produces hundreds of secondary electrons,
the read noise is very small compared to the signal and the SNR is very high.
All these noise sources will be characterized for our camera in section 5.2.

5.1.2 Stochastic model for EMCCD cameras

Fig 5.4(a) shows a typical dark image in EM-mode. The image contains a relatively
flat background and many bright pixels. The histogram next to it shows the distri-
bution of the output values of the gain register (ADU = Analog/Digital Unit), i.e.
the color bar in the left image corresponds to the x-axis of the histogram. Note that
the plot is done with a logarithmic y-axis.
The image and the histogram best illustrate the output and hence the working
principle of the EM-mode. In the following we imply the easiest description of the
output of the EM-mode, that is to separately consider pixels with a charge and
pixels without a charge. The pixels in the flat background correspond to pixels with
no charge. In the histogram they appear in the peak. If there is no charge on a pixel,
the electronics adds an offset to the pixel before converting it into a digital signal.
This offset (called baseline) corresponds to the peak position in the histogram at an
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Figure 5.4: (a) shows a typical dark image in EM-mode. It contains a relatively
flat background (pixels that do not contain a charge) and many bright
pixels (spurious charges). (b) shows a histogram of the pixel values from
the image in (a). The histogram is plotted with a logarithmic y-axis.
The peak is produced by the pixels without a charge. The tail at high
ADUs corresponds to the bright pixels that were amplified before going
through the readout electronics.

ADU of around 100. The output of the gain register (before being read out by the
AD-converter) can be described by a δ-distribution

P0(x) = δ(x− b). (5.1)

In the readout process, the peak is then broadened due to the electronic noise of
typically around 5− 10 e−.
The bright pixels of the image correspond to a charge that has been amplified out
of the read noise. In the histogram these bright pixels are lying in the tail above
the ’no-charge’ peak. Since the image was taken with a closed shutter, all the bright
pixels here were caused by spurious charges.
If there are n initial charges on a pixel, the output of the gain register can be
described by a probability distribution [42] as

Pn(x) = xn−1 exp (−x/g)
gn(n− 1)! (5.2)

where g is the gain of the amplifier, n the number of primary electrons and x the
output/secondary electrons. Figure 5.5(a) shows a plot of the first 3 probability
density functions for a typical gain of g = 500 on a logarithmic and on a linear
scale. For the case of one initial photo electron on a pixel, the output probability
function is an exponentially decaying function with a 1/e-width of g. These plots
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5.1 Properties of an EMCCD camera

Figure 5.5: (a) shows plots of the output probability functions of the gain register on
both a logarithmic and a linear scale. The blot in (b) shows a histogram
of the output of the EM-mode and a fit with the function from 5.3. The
linear part of the fit in the right plot corresponds to the black plot in
the left graph.

illustrate why one can no longer clearly distinguish between one, two or three initial
electrons on a pixel. Measuring for example 700 secondary electrons could be caused
with almost equal probability from one, two or three initial electrons.
If we are in a regime where there is at most one charge on a pixel as is the case in
the histogram from Figure 5.5 and if we assume a gaussian read noise, the easiest
model for the output of an EMCCD camera is the convolution of the gaussian read
noise with the sum of P0(x) (for the pixels without a charge) and P1(x) (for the
pixel with one charge).

R(x) =
(
G(σread) ∗

[
p0δ + p1P1

])
(x− b) (5.3)

where G(σread) is a Gaussian with a width of the read noise σread. Figure 5.5 (b)
shows a histogram similar to Figure 5.4 but with more data and a fit corresponding
to equation 5.3.
With the fit we can determine the read noise as the standard deviation of the Gaus-
sian and the gain from the exponential tail that appears linear in the logarithmic
histogram. Although the readout peak and the amplified tail can well be described
by the fit, equation 5.3 is not a perfect description of the EMCCD camera. Espe-
cially the region right above the read noise is not well described by the fit. There
are more sophisticated methods to describe the output of an EMCCD camera as for
example [40, 43] which we do not need for our purposes.
From the fit, we can define a threshold above which we will identify a pixel as a

51



5 The Detection of Few Photons

charge. This threshold has to be chosen such that the probability to wrongly identify
an empty pixel as one with a charge is small and at the same time the probability
for a pixel with a charge to be identified as such to be maximum. For the empty
pixels we use the read noise σread and the baseline b as relevant parameters. If we
set the threshold to 3σread above the baseline, 0.135% of empty pixels would be
wrongly identified as charges. For a threshold of 5σread, only 2.85× 10−5% of empty
pixel would be identified as charges. Next we quantify how likely is it that one
charge produces an output in the gain register that is above the threshold. For this,
we integrate the output probability for one charge P1(x) from the threshold σth to
infinity. This gives us the probability D(σth) that one initial charge gets amplified
above the threshold.

D(σth) =
∫ ∞
σth

P1(x)dx = 1− 1
g

∫ σth

0
e−x/gdx = e−σth/g (5.4)

and plot this as a function of the parameter ξ = g
σth

in Figure 5.6 for σth

σread
= {3, 4, 5}.

This figure shows, that the detection efficiency of an EMCCD camera profits from
a higher gain. We will see in section 5.2.2, that we operate our camera in a regime,
where the the detection fidelity D(σth) of a charge on a pixel is almost 1.
With this procedure, we can identify the pixels that contain at least one charge
but we cannot count multiple charges on a pixel with high fidelity. Hence the
performance of an EMCCD camera is best in the regime where there is only one
charge per pixel since we can count them with very high fidelity. For this, one wants
to spread the signal over as many pixels as possible. However this also increases the
number of spurious charges within the region of interest.
Even though, it is not possible to count few photons on the same pixel, it is possible
to estimate the number of photons by dividing the output of the gain register by the
gain that was determined with the fit of Equation 5.3. Assume, we have n photons
on one pixel, then the expected output of the gain register is given by

〈X〉Pn =
∫ ∞

0
xPn(x)dx = (g(n−1)!)−1

∫ ∞
0

xnexp(−x/g)dx = g

(n− 1)!Γ(n+1) = ng.

(5.5)
To quantify the quality of the estimation of the photon number, we need to compute
the variance. For the variance we also need the second moment of the output
distribution

〈X2〉Pn =
∫ ∞

0
x2Pn(x)dx = g

(n− 1)!Γ(n+ 1) = (n+ 1)ng2. (5.6)
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5.1 Properties of an EMCCD camera

Figure 5.6: The plot shows the detection efficiency of a single charge on a pixel in
EM mode for different thresholds. The higher the threshold, the less
empty pixels are identified as charges. The higher the gain, the higher
is the detection probability of a single charge on a pixel. For very high
gains, the detection probability converges towards unity.

Thus the variance can be calculated to be

V ar(X) = 〈X2〉Pn − 〈X〉2Pn
= ng2 (5.7)

which gives a coefficient of variation

κ(X) =

√
V ar(X)
〈X〉Pn

= 1√
n
. (5.8)

Hence for many photons the coefficient of variation converges to zero which enables
to estimate the number of photons. This estimate becomes more accurate for a high
number of photons. This cannot only be applied to the signal on one single pixels,
but also to multiple pixels within a ROI.

53



5 The Detection of Few Photons

Active pixels 512× 512
Pixel size 16× 16µm

Readout rates 1, 3, 5, 10 MHz
Read noise through EM amplifier1 21.7, 32.6, 42.9, 49.2 e−

Read noise through conv amp (1MHz, 16bit) 8.3 e−
Quantum Efficiency at 671 nm and −20 ◦C ≈ 88%

Dark current at −70 ◦C 0.012 e−/pix/s
Dark current at −90 ◦C 0.0035 e−/pix/s

Amplified Background events2 0.005 e−/pix/s

Table 5.1: The table summarizes the specification of our camera as they are given
in the performance booklet.

5.2 Characterization of our detection setup

The EMCCD camera that we use for the detection of few photons is characterized
in this section. First we give an overview about camera specifications, then the gain
and the different noise sources are characterized.

5.2.1 Specifications of Andor iXon

For the detection of the fluorescence signal of the atoms, we use an ANDOR iXon
with a DV887 back illuminated CCD sensor with an AR coated window that has
been optimized for 670 nm. The CCD sensor has 512× 512 pixels with a pixel size
of 16µm. Table 5.1 summarizes the most important specifications of the camera as
specified by Andor. Most of the specifications given have been measured by us but
do not fully agree with our results. The following sections will present results of the
measurements and characterize the gain and noise.

5.2.2 Characterization of the EM-gain

The gain of the camera has been measured as described in section 5.1.2. For the
histogram, many dark images were used in order to get good statistics for the ex-
ponentially decaying tail. As described in the previous chapter and also shown by
Figure 5.6, not only a high gain is important but rather the ratio of gain and readout
noise. The gain strongly depends on the temperature. Figure 5.7 shows two graphs
of the temperature dependence of the gain. The left graph shows the actual gain

1Single Pixel read noise for a preamplifier gain of 5. The values correspond to the different readout
rates.

2EMgain 1000, 30ms exposure time, −70 ◦C
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5.2 Characterization of our detection setup

Figure 5.7: The left plot shows the gain as a function of temperature for the three
different settings of the pre-amplifier. The right plot shows the same
data but rescaled by the read noise. The gain strongly increases with
decreasing temperature. For the best gain to read noise-ratio, the highest
pre-amplifier gain should be used.

(in output electrons) as a function of the temperature. The right graph shows the
parameter ξ = g/σth ≡ g/(1×σread) also as a function of temperature. The gain in-
creases almost exponentially with decreasing temperature. If one compares the right
graph to Figure 5.6, it becomes clear, that the most efficient pre-amplifier gain is a
gain of 5 and also that a temperature around T = −70 ◦C provides a sufficiently high
gain such that almost all charges can be identified. For a threshold of σth = 1×σread,
we get a ξ1 = g/(1 × σread) ≈ 1500. This corresponds to ξ5 = g/(5 × σread) ≈ 300
when we use a threshold of σth = 5 × σread. Hence, according to Equation 5.4, the
detection probability for a single charge is D(5σread) = e−1/300 = 0.9967.
In the same measurement also the influence of other settings such as the vertical
or the horizontal shift speed on the gain were tested. Except for the temperature
and the adjusted software gain, the real gain is almost not influenced by other
parameters.

5.2.3 Spurious charges

The most unwanted noise of an EMCCD-camera stems from spurious charges, which
are unwanted charges on the sensor that are amplified out of the read out noise. They
have been introduced in section 5.1.1. These charges cannot be distinguished from
actual photon counts. There are three sources of spurious charges:

1. Thermal Charges
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Figure 5.8: The graph above shows shows the increase of thermal charges for longer
exposure times. From this increase, we can estimate the generation rate
of thermally excited charges on the sensor. This was done for temper-
atures of T = −50 ◦C (red) and T = −70 ◦C (green). The last point
of the red data points is already in the regime where it is very likely to
have more than one charge on a pixel. Due to our evaluation method,
we underestimate the number of charges for this case. Hence this point
is neglected for the linear fit.

2. Clock-Induced Charges

3. Dark Counts by Background Light

In this section all three sources are measured and (if they exist) compared to the
specifications from Andor.

Thermal charges

Thermally excited charges are expected to be negligible since the sensor is cooled
down to temperatures around −70 ◦C. In order to quantify them, we analyze the
increase of charges with increasing exposure time with closed shutter. The increase
for longer exposure times is only caused by thermal charges since the generation of
CICs is only caused by the shift process which is the same for all exposure times.
Since we are dealing with a very low number of charges, the images are taken in EM-
mode and then converted into binary images. By counting the number of photons
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5.2 Characterization of our detection setup

on the images for different exposure time, the generation rate of thermally excited
charges can be deduced. Figure 5.8 shows the data for two different temperatures.
The red data points were measured at a temperature of −50 ◦C and the green data
points where measured at −70 ◦C. As expected, the thermally excited charges in-
crease linearly in time. For very long times, one enters the regime, where it becomes
likely that one pixel carries more than one electron which are not correctly identified
by the method of converting the image into a binary image. However, we can fit
a linear function to the data points below 1 s to deduce the rate of generation for
thermal electrons. We find for the two different temperature

T−50 = (5.4± 0.3)× 10−2e−/px/s
T−70 = (5.4± 0.4)× 10−3e−/px/s (5.9)

The measured value for a temperature of −70 ◦C is even lower than the specifications
that are given by Andor of T Spec−70 = (1.2) × 10−2e−/px/s. In the experiment we
typically image for around 40µs which corresponds to 2.2× 10−7 thermal electrons
per pixel.

Clock-induced charges

Clock-induced charges (CIC) are unwanted charges that are created during the shift
process and can be considered as the detection limit of EMCCD-cameras. They also
occur in normal CCDs but are typically so low that they disappear in the read noise.
CIC can be minimized by configuring both the clock rate and the clock form of the
readout [41]. In the case of the Andor iXon only the vertical shift speed3 (VSS)
can be adjusted. The vertical shift speed is the time, the shift voltage is applied
between the pixels. The longer the shift voltage is applied to the pixels, the more
probable it is that a free charge is created. However if the shift voltage is applied for
a too short moment, the charges are not properly transported over the sensor. One
expects the amount of CIC to increase with both the VSS and with the distance
from the readout register. The more often the pixels have to be shifted, the more
probable it gets to create a charge. Hence the number of CICs should increase with
increasing distance from the readout register.
In order to determine the amount of clock-induced charges, the sensor is cooled
down to −74 ◦C and the shutter is closed. The exposure time is set to 40µs so that

3Although the parameter is called shift speed, it indicates the time, the shift voltage is applied.
The speed with which the charges are transported is determined by the horizontal shift speed
which is kept constant in the evaluation of the CICs.
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5 The Detection of Few Photons

Figure 5.9: The image on the upper left side is a raw image, taken with shutter
closed. This image is converted into a binary image, which is shown
below. In these images one can already see an increase in noise from
right to left. The plot on the right side shows the averaged percentage
of CICs per column for all different shift speeds.

both dark electrons and electrons created by background light do not influence the
measurement. The camera settings were set to

1. Horizontal Shift Speed = 1 MHz
2. Software Gain = 4090
3. Pre Amplifier Gain = 5
4. Temperature = −74 ◦C
5. Actual Gain ≈ 2870 e−

For each value of the VSS, around 70 images are taken and then converted into
binary images as described in Section 5.1.2 with a threshold of 5σread. All events
can be attributed to CICs. For each image, the CICs in each column are counted
and averaged over all 70 images. Figure 5.9(a) shows a typical dark image both
in raw and binary format and the plot in (b) the average number of clock induced
charges in each column of the 512× 512 pixel image for all possible shift speeds.
The sensor is read out on the right side of the image, so that the charges get
shifted to the right. As already explained, the CICs are produced during the shift
process. As expected, the amount of CICs increases with increasing distance from
the readout register and decreases with decreasing VSS. The lowest amount of CIC
is reached with a VSS of 0.3µs and amounts to approximately 0.007 CIC/px which
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Figure 5.10: The plot shows the averaged events per column with an open shutter
and with a closed shutter. The difference of them is also plotted which
enables to determine the charges that are produced by background
photons.

is comparable to the specifications given by Andor of 0.005 CIC/px. Unfortunately
when using a VSS of 0.3µs all the charges from the signal on the sensor get lost
so that this mode is not usable. Hence the lowest achievable value for CICs is
reached for a VSS of 0.5µs on the right side of the sensor. Like this we can reach a
value of around 0.02 CIC/px which is much higher than the specifications. This will
impair the detection fidelity of single atoms since it increases the lower threshold
for identifying an atom.

Dark counts by background light

Dark counts that are caused by ambient background light can almost be completely
eliminated by encasing the experiment and covering all light sources within the range
of the camera. Furthermore a one inch SM-tube with a band pass filter (Semrock
FF01-675/67-25) is used in order to further block stray light and to filter out the
1064 nm light from the trapping beams. In order to quantify the background events,
we can compare images with an open shutter to those with a closed shutter. For
this measurement, a typical experimental sequence was used but no atoms were pre-
pared. Hence we can analyze all the spurious light that impinges on the sensor. Due
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to the low photon number, the evaluation of the images is done exactly like in the
measurement for characterizing the CICs. Hence, the difference in charges is caused
by the ambient light. Again one expects a slight increase of charges with increasing
distance from the read out register since photons can still create charges during the
readout. Figure 5.10 shows a plot of the average number of events in each column of
the sensor. This plot was generated in the same way as the plots in Figure 5.9 but it
shows data with both open shutter (green) and closed shutter (purple). The purple
data points in the graph can be allocated to CICs. The green data points are the
averaged events for an open shutter. The plot also shows the difference between the
purple and green data points in red. This difference in counts can be allocated to
background photons. The images were taken with an exposure time of 40µs which is
a typical value for the imaging sequence. A linear fit to the linear part of the red data
points gives a slope of (−1.308±0.06)×10−5 events/column. These images were read
out with a horizontal shift speed of 1 MHz so that one shifted column corresponds
to a time interval of 1µs, thus giving (−1.308± 0.06)× 10−5 events/(px × µs). For
an image with an exposure time of 40µs and a ROI at a distance of around 20 lines
from the read out register, this corresponds to approximately 7.8× 10−5 e−/px.

For a typical image with an exposure time of 40µs at a temperature of T = −70 ◦C,
we collect

nCIC = 0.02 e−/px
nBG = 7.8× 10−5 e−/px

nthermal = 2.2× 10−7 e−/px (5.10)

This show, that the performance of the camera is limited by CICs. Hence we neglect
the other two noise sources. To identify a single atom, its signal has to overcome
the noise from CICs. The signal of the atom is distributed over several pixels, which
we call the region of interest (ROI). The probability to find n CICs in a ROI with
N pixels is given by

Pn events =
(
N

n

)
(1− p)n−Npn. (5.11)

The graph in Figure 5.11 shows these probabilities for n = 0, 1, 2, 3 as a function of
the size of the ROI with a probability of p = 0.02. Within a typical ROI with 10
pixels, there are at most 2 CICs. Hence, we need to detect around 10 photons per
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Figure 5.11: The graph shows the probability to find n = 0, 1, 2, 3 CICs within the
ROI as a function of the size of the ROI for a probability of p = 0.02.
For small ROI, there are at most 2 CICs within the ROI. This sets a
threshold for the detection of single photons.

atoms within the ROI to identify an atom. The next chapter shows that we collect
enough photons to identify single atoms.

Technical correction

We found that the noise gradient in the images as shown for example in Figure
5.9 is not primarily caused by the longer read out of pixels that are far away from
the gain register. When we record images with LabView, the cleaning cycle of the
camera always runs with a speed of around 3µs/line and is not adjusted to the
chosen vertical shift speed as is done when e.g. using the Andor software Solis.
Hence the cleaning cycle itself produces a high amount of CICs. Pixels close to the
readout register have been shifted over the whole CCD-chip by the cleaning cycle
and thus contain a lot of spurious charges. The further away a pixel is from the
readout register, the less CICs have been produced by the cleaning cycle since after
the image acquisition the pixels get shifted with a different VSS. This explains, why
all VSS give the same amount of CIC on the left side in Figure 5.9 and why the
offset of the different VSS settings is not the same. Hence the image is read out
to the left and the amount of CICs that is produced by the shift process can be
deduced from the offset on the right site in the graph in Figure 5.9. We do not know
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yet whether it is possible to adjust the cleaning cycle in LabView, but this would
decrease the spurious noise in our images.

62



6 Single Atom Detection

After we have gained a good understanding of the working principle of the EMCCD-
camera and on the dipole transitions of 6Li , we can apply this knowledge to image
and identify a single atom. Only state |3〉 has a completely closed optical transition,
so we will analyze only data from this state here. For this we prepare a single atom
in state |3〉 in the ground state of our microtrap.
For the preparation of this atom we start by preparing two atoms in states |1〉 and
|2〉 in the ground state of the microtrap as explained in Chapter 3. We remove the
atom in state |1〉 by ramping the magnetic offset field to 27G where the magnetic
moment of state |2〉 vanishes. By applying a magnetic field gradient at this offset
field and lowering the depth of the potential well, we only spill state |1〉, while the
atom in state |2〉 remains in the trap.
We then drive a passage from state |2〉 into |3〉. For this we apply a RF-pulse that
we sweep over the resonance frequency of the bare transition from |2〉 to |3〉. By
slowly sweeping the frequency of the RF-pulse across the resonance frequency, we
can adiabatically transfer the atom from |2〉 to |3〉.
We can check the preparation fidelity for a single atom by loading it into the micro-
MOT and by counting the atom number. The preparation and the detection of 2
atoms with the microMOT was done with 97± 1 %. This sets a lower bound to the
detection fidelity of a single atom with the microMOT. The preparation of an atom

Figure 6.1: The noisy background of the raw images in the EM-mode make the
identification of single atoms difficult. We therefore have to develop an
evaluation method that can identify single atoms with very high fidelity.
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in state |2〉 was done with a fidelity of around 95%. Due to technical difficulties in
the experiment, the transfer from |2〉 to |3〉 could only be realized with a fidelity of
around 90% so that the preparation fidelity for an atom in state |3〉 is only on the
order of 85± 5 %.
We now apply our new imaging technique by illuminating the single atom in state
|3〉 with pulses of resonant laser light as explained in Chapter 4 and capture the
fluorescence signal on the EMCCD-camera. Figure 6.1 shows a raw image taken in
EM-mode with an imaging time of 11µs of one atom in state 3. Due to the noisy
background it is often impossible to tell whether there was an atom by just looking
at the images. Hence we need a reliable evaluation method that identifies single
atoms. This chapter will apply the things that have been learned about the EM-
mode of the camera and present the development of different methods to extract as
many information from the data as possible.

6.1 Identification of single atoms

In order to test different evaluation methods, we always use the same set of data
and compare the outcomes. This set contains around 700 images. One half of these
images (called part P1) was taken after having prepared one atom in state |3〉.
The other half had no atoms prepared (called part P0). As explained above, the
preparation fidelity of an atom in state |3〉 was only on the order of 85± 5 % so that
part P1 also contains images without atoms. The atom was imaged for 11µs and
the trap was switched off for the imaging procedure.
Due to the finite preparation fidelity, even for a perfect detection fidelity, we should
only identify 85% of the images from P1 as an atom. We can use this to estimate
the detection fidelity of our setup. The probability Ptot to detect an atom in P1 is
given by

Ptot = pprep × pdetect = 0.85× pdetect. (6.1)

Hence the detection fidelity of the setup can be estimated by

pdetect = Ptot/pprep = Ptot/0.85. (6.2)

Without any knowledge of the EM-mode of the camera, one would most likely choose
a rectangular region of interest (ROI) around the signal of the atoms and directly
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Figure 6.2: The image is the average of all images and is used to chose the ROI. The
histogram shows the sum of the counts within the ROI for each image
from P1 and P0. The overlap between the two data sets is very large
such that it is impossible to detect a single atom with high fidelity.

sum up the counts of the camera within this ROI. To choose this ROI we average
all images to see how the signal is distributed on the chip of the camera.
Figure 6.2 shows the averaged image with an example for a rectangular ROI. In the
histogram next to it, the raw counts within the ROI are summed up for both data
sets P0 (red) and P1 (blue). The red and the blue data overlap very much such
that the identification of a single atom on a single image cannot be done with a high
fidelity. Hence we need a more sophisticated evaluation method.

Obviously the method above fails due to two reasons. On the one hand the ROI
is too large such that it contains a high number of pixels without signal. Second,
these pixels contribute with the read noise and spurious charges to the signal. To
improve this method we need to define an improved ROI and to get rid of the read
noise of the empty pixels.
In the first approach we will try to choose an optimized ROI and to eliminate the read
noise of the background pixels by applying the things that we have learned about the
EMCCD-mode. However, this method cannot get around spurious charges in the
ROI which will limit the detection fidelity of a single atom. In the second approach
we try to only sum up the pixels that contained signal from the atoms by searching
for clustered bright pixels in the processed images.

6.1.1 Counting (binary) events within an optimized region of
interest

In order to achieve the best signal-to-noise ratio, the ROI has to be as small as
possible but contain as much signal as possible. For this, again all images are
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Figure 6.3: The first image is the mean image of all images from P1. With a thresh-
old of Ith = 0.2Imax, we get a ROI with 10 pixels. The ROI is shown
in the second image. With this method, we can select a only the pixels
that contain a lot of signal.

Figure 6.4: By converting the raw image into a binary image, we can eliminate the
read noise. Each pixel below the threshold is set to zero so that they do
not contribute to the signal. All pixels above the threshold contain at
least one charge so that we set them to 1.

averaged but instead of choosing a rectangle around the signal, the ROI is chosen
such that it contains all pixels with a signal above a certain threshold. Figure 6.3
illustrates this procedure. The first image is the mean of all images from P1. With
a threshold of Ith = 0.2Imax we get a ROI with 10 pixels. For the evaluation of the
data, we will only sum up the pixels within this ROI. With this method we only
choose the pixels that collect the most signal.
Once the ROI is chosen, we apply the knowledge that we gained by analyzing the
EM-mode of the camera. As explained in Chapter 5, we can define a threshold above
which we identify a pixel as a charge. We chose a threshold of σth = 5× σread. All
pixels with less counts than the threshold did not contain a charge. Hence we set
each empty pixel to zero and each pixel above the threshold to 1.
Figure 6.4 shows an example of a raw image that is converted with this method into
a binary image. In the binary image, each yellow pixel contained at least one charge
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Figure 6.5: The histogram shows the data that was obtained by first converting the
images into binary images and then summing up the events within the
optimized ROI. The red data was fitted wit Equation 5.11 and yielded a
probability for spurious charges of p = 0.024± 0.003 e−/px. This agrees
with the values that have been measured in Chapter 5. The blue graph
is a Poisson distribution with mean µ = 5.3 which does not describe the
data very well.

and the blue pixels did not contain any. The chosen ROI is marked in red. For the
last image, all pixels outside the ROI were set to zero. With this method the single
images are processed and the events within the ROI are summed up. Figure 6.5
shows a histogram of the sum within the ROI. Again the red data corresponds to
P0 and the blue data to P1.
Let us first compare the red data to the characterization of the spurious charges
from Chapter 5.2. For this we fit the data with Equation 5.11 with N = 10. The
fit yields a result of p = 0.024 ± 0.003 e−/px. In the experiment, the signal of the
atoms was shifted to column 450 of the CCD-chip and imaged with a VSS of 0.5µs.
As was explained in Chapter 5 and shown in Figure 5.9, this number of spurious
charges agrees very well with the expected value.
This advantage of this evaluation method is that it sets a clear threshold that has
to be overcome to identify an atom. For the case that there was no atom prepared,
the probability to count more than one bright pixel in the ROI is only P1 = 2.4%
and to count more than 2 is only P2 = 0.16%. With a smaller ROI P1 and P2 can
be even further decreased.
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6 Single Atom Detection

Figure 6.6: For the data in the histogram, the raw counts within the ROI were
summed. By dividing by the gain of the EM-register, we can estimate
the number of photons. However in this method, it is hard to find a
threshold for the identification of single atoms.

The number of photons of P1 that are counted within the ROI should be well
described by a Poisson distribution. Hence we can try to fit such a distribution to
the blue data. As can be seen in the histogram, the data is not well described by
a Poisson distribution. The reason for this is that the method underestimates high
photon numbers. When there are e.g. 10 photons within a ROI of 10 pixels, the
probability that they are distributed over all pixels is very small. Hence there are
typically several pixels that contain more than one charge which we so far counted
as one.

To account for pixels with more than one charge, we can try to estimate the real
number of photons as described in section 5.1.2. For this we sum up the raw counts
on the bright pixels and divide the output by the gain. The images are processed
in the same way as above but instead of setting each pixel above the threshold to
1, we keep the pixel value from the raw image. For many photons, this gives a
more accurate estimation of the photon number. Figure 6.6 illustrates this method
and shows the histogram. The x-axis corresponds to the estimate of the photon
number. The blue line is a Poisson distribution with a mean of µ = 9.3. This graph
describes the data of higher photon number quite nicely. However with this method
it is hard to define a threshold to identify single atoms since the estimation of the
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6.1 Identification of single atoms

Figure 6.7: The three images show cases where an atom might have been prepared
but there was not enough signal within the ROI to identify it.

photon number becomes imprecise for a low number of photons which causes the
distributions from P0 and P1 to overlap in the histogram in Figure 6.6.

These methods already allow to identify single atoms with a good fidelity. This
fidelity even increases for longer imaging times. However as one can already guess
from the second picture in Figure 6.4, the fixed ROI does not always capture all
photons. Furthermore, the number of events below the threshold (in Figure 6.5) is
on the order of almost 30% which does not agree with the expected preparation
fidelity of 85 %. Taking a closer look at the single images shows that in some cases
there was an atom but the signal was not focused into the ROI. The three images in
Figure 6.7 illustrate three examples where there might have been an atom but it was
not detected. To improve the detection fidelity we keep the trapping potential on
during the imaging procedure to better localize the fluorescence signal of the atom.

6.1.2 Pinning the atoms to their initial position

Figure 6.7 shows three example images where an atom might have been prepared
but not identified due to a wrong position of the ROI. In order to better localize the
atoms, we tried keep the trapping potential on during imaging and even ramping it
a little bit deeper.
For this we repeated the measurement from above with exactly the same experi-
mental parameters but we ramped the trap to 10mW which corresponds to a trap
depth of 27 Erec in the excited state.
Figure 6.8 shows two histograms that were obtained with the two methods above.
They look almost similar to the histograms from Figures 6.5 and 6.6 which we expect
since the average photon number should be exactly identical. However, the number
of events below a threshold is lower than it is in the case where we switched off the
trap.
If we set the threshold for identifying an atom to N = 2 for the binary histogram,
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6 Single Atom Detection

Figure 6.8: The two histograms present the data that was taken when we ramped
the trapping potential to around 27 Erec. The left histogram shows the
data when the images are converted into a binary image. The right
histogram shows the second evaluation, where the number of photons
is estimated. When we keep the trap on during imaging, the number
of detected atoms is always higher than in the case where the trap is
switched off.

we get with our dataset

N1atom/Ntot = 74 % Without Trapping Potential
N1atom/Ntot = 82 % With Trapping Potential (6.3)

With equation 6.2 we can estimate the detection fidelity

pdetect = 87± 4 % Without Trapping Potential
pdetect = 96± 5 % With Trapping Potential (6.4)

if we assume an error of 5% on the preparation fidelity.
Also in other runs we saw, that the number of detected atoms is always higher
when the trapping potential is kept on during imaging. Furthermore the number of
detected atoms for this method always almost agrees with the preparation fidelity
that we measured with our other imaging setup.

Also when the trapping potential is kept on during imaging, a fixed ROI always
has the disadvantage that it contains empty pixels: Especially when no atom was
prepared it contains spurious charges that set a relatively high threshold. To further
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6.1 Identification of single atoms

Figure 6.9: Spurious charges are randomly distributed over the CCD-camera. Hence
the probability to find connected bright pixels is very low. With MatLAB
we can locate these clusters. The histogram on the right side shows that
bright pixels appear alone in 85.5%. Is is very unlikely to find clusters
with more than 3 pixels.

improve the ROI there is another approach. Instead of fixing a ROI for each image,
we search for clusters in the binary images. This approach is explained in the next
section.

6.1.3 Searching for clustered bright pixels

Another method to evaluate the images is to look for clustered bright pixels. For
this, the image is first converted into a binary image as explained in the previous
section. If there are only spurious charges on the sensor, it is very unlikely to find
large clusters of bright pixels. Instead, there should only be clusters of 2-4 bright
pixels.
This evaluation method more effective for longer imaging times where the signal of
the atoms is spread over many pixels. Hence here we analyze data that was imaged
for 23µs. The remaining parameters were the same as for the data in the previous
section.
As a reference we start to analyze images without atoms, i.e. data set P0. Figure 6.9
shows an example of a binary image without an atom. All clusters of bright pixels
are identified with MatLAB. As illustrated in the figure, both direct and diagonal
neighbors are taken into account.
The data of P0 gives us again a threshold that needs to be overcome by the data
from P1. For this we characterize the clusters in empty images with a histogram.
The normalized histogram is also shown in Figure 6.9. The histogram shows that
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6 Single Atom Detection

Figure 6.10: Neglecting all clusters with a cluster size below 5, we sum up the number
of bright pixels in the processed images. The left histogram shows the
size of the clusters. By summing up the raw counts of these clusters
and dividing the outcome by the gain, we can estimate the number of
photons in the same way as was explained in the previous section. This
is shown in the right histogram.

most of the bright pixels (85.5%) are not clustered and appear alone. Furthermore
it is very unlikely to have clusters with more than 3 pixels and that there is never a
cluster with more than 5 bright pixels.
To ensure that we only sum up signal that is coming from an atom, we use a threshold
of 5 pixels for P1. All clusters below that size are neglected and all clusters with 5 or
more pixels are attributed to an atom. Figure 6.10 shows a histogram of the cluster
size of P1. We cannot directly compare this evaluation method to the method
described in the previous section since we used a different set of images. However
by counting the number of images that produce a signal above the threshold, we get

N1atom/Ntot = 79%, (6.5)

which corresponds to a detection fidelity of

pdetect = 93± 5%. (6.6)

Also for this method we can get a more accurate estimation of the total photon
number, by summing up the raw counts and dividing the outcome by the gain. The
result is shown in the second histogram of Figure 6.10.
Another nice feature of this method is that it provides a good way to subtract the
spurious-noise background from an image. For this, all clusters with a size below a
threshold of 5 are removed from the image. Figure 6.11 shows this procedure applied
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6.2 Counting atoms

Figure 6.11: The cluster analysis provides a tool to remove the noisy background of
an averaged image. For this all clusters with a size below the threshold
are removed. Hence only the signal from the atoms is retained. Aver-
aging the corrected images result in an image with a flat background
since both the read noise and the spurious charges were removed.

to a single raw image. By averaging the corrected images, both the read noise of
the background and the noise caused by spurious charges gets eliminated.

6.2 Counting atoms

Another aim of the imaging setup is the ability to count identical atoms on the same
site. The detection of two distinguishable atoms on one site is reduced to identifying
single atoms since the two different spin states are imaged on two separate pictures.
However, if two indistinguishable atoms are occupying the same site, we need more
photons such that the signal from one atom and from two atoms clearly separate.
If we detect n photons per atom on average, the distribution of detected photons
is a Poisson distribution with mean n, P(n). Hence the signal of two atoms is a
Poisson distribution with mean 2n, P(2n). In order to clearly separate the signal
of one and two atoms, the photon number per atom n must be so high, that P(n)
and P(2n) separate. The first graph in Figure 6.12 shows plots of the function
P(n) + P(2n) for different n.
In this graph one can see that we need at least around 30− 40 photons per atom in
order to clearly distinguish 2 atoms from 1. For an average number of 35 photons per
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6 Single Atom Detection

Figure 6.12: The left graph shows plots of the function P(n)+P(2n) for different n.
To distinguish 1 atom from 2 atoms, we need at least 30-40 photons per
atom. The right graph shows the a histogram for a measurement where
we prepared one and two atoms in a singe well and imaged over 23µs.
The measured distribution is broader than the plotted Poisson distri-
bution with a mean of µ = 35 due to a broadening by the stochastic
amplification process within the gain register of the EMCCD-camera.

atom, the two Poisson distribution overlap by less than 1%. Assuming a detection
rate of 1.6 photons/µs as was measured in section 4.5, we need an imaging time of
around 22µs for this. As explained, such a long imaging time will later limit the
site resolution in a multiwell potential due to the diffusion of the particle.
However, in order to count atoms in a single well, we prepared either one or two
atoms in state |3〉 and imaged them for 23µs. Since in this regime, we are dealing
with relatively many photons, we determined the bright pixels with the cluster
method. In order to also take multiple charges per pixel into account, the photon
number is estimated by summing up the raw counts and dividing by the gain as was
explained in the Section 6.1.1. Figure 6.12(b) shows a histogram of the experimental
data and also a plot of the aforementioned function P(n) + P(2n) with n = 35.
In the experimental data one can clearly see a dip between the data of one and
two atoms but the contrast is not very high. The data is also not well described
by the Poisson plot but is much broader. The reason for this is that due to the
stochastic amplification in the EM-mode, the estimation of the photon number with
the described method has a certain width as was also analyzed in Chapter 4. Hence
our estimation is the convolution of the Poisson (for the number of collected photons)
and the transfer function of the gain register of the EMCCD camera. This broadens
the outcome so that even higher photon numbers are required for counting two
atoms on one well. As was analyzed in Chapter 4, state |3〉 has a completely closed
optical transition so that we can further increase the photon number by imaging for
longer times.
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7 Conclusion and Outlook

This thesis reports on the implementation of a setup for fluorescence imaging with
single atom resolution. Unlike other methods, we image the atom for only a few mi-
croseconds to collect few photons on a single-photon sensitive camera. This makes
the pinning of atoms in a deep potential unnecessary. In the course of this thesis,
we could demonstrate a detection fidelity of a single atom of 96± 5 %.

For the single atom detection, we illuminate the atom on the D2 line with two
counterpropagating imaging beams. We focus the fluorescence signal in the perpen-
dicular direction with a high-resolution objective onto an EMCCD camera. By using
horizontally polarized imaging light, which is perpendicular to the magnetic field,
the atoms experience both σ+ and σ− polarized light. Due to the large splitting of
the different fine structure states in the excited states, we can tune the frequency of
our laser such that only the σ− transition is the relevant imaging transition. It was
analyzed and measured that we can almost close the optical transition of the two
lowest hyperfine states |1〉 and |2〉 of the ground state by increasing the magnetic
field to values over 900G. State |3〉 features a completely closed optical transition.

Even though the number of collected photons is enhanced by the dipole radiation
pattern as was shown in 4.3, the short imaging times only give rise to few photons
on the camera. Within an imaging time of 11µs we detect around 15 photons on
the camera. For this we have to employ a CCD camera with EM-mode which was
explained and analyzed in Chapter 5. A model for the output of the gain register
was presented and used to determine the most relevant properties of the camera
such as the gain and the read noise. It was shown that the most dominant noise
source for EMCCD cameras are clock-induced charges, which can be influenced by
adjusting the vertical shift speed of the camera. For the best settings we measured
a probability of around 0.02 e−/px. Other contributions to spurious noise can be
neglected.
After we have gained a good understanding of the dipole transitions and the EM-
mode of the camera, Chapter 6 applies this knowledge to identify single atoms.
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7 Conclusion and Outlook

Figure 7.1: The image shows many atoms in a double-well potential. The two wells
are separated by about 10µm. Our next step is to prepare single atoms
in this potential to realize a single atom, site-resolved imaging setup.

Different methods are developed and applied to the experimental data. With the
different developed methods, we can identify single atoms with a fidelity of 96±5 %.
We were able to increase the detection fidelity by ramping the trapping potential to
27Erec before imaging. This countered the diffusion of the atom during the imaging
process so that more signal could be accumulated within a smaller region of interest.

7.1 Outlook

Our simple method will allow us to detect atoms with spin and site resolution.
For obtaining site-resolution, the diffusion length of the atom during the imaging
process must be much smaller than the separation of two neighboring wells. We can
already expand our system to a double-well potential with a separation of around
10µm between the two wells. Figure 7.1 shows an image of many atoms in a such
a potential, recorded with the new imaging technique. We will try to image single
atoms in the potential very soon. For this we still need to understand the diffusion
of the atom within the trapping potential.
Furthermore we will expand our setup to simultaneously image two spin states. For
this we exploit that we can close the optical transition of each spin state by ramping
the magnetic field to values over 900G. In this regime, the hyperfine states of the
ground state of 6Li are separated by approximately 80MHz so that we can address
each spin state separately. For simultaneous imaging we will operate our camera in
fast kinetics mode which allows us to take two images within a few microseconds.
We record an image of one spin state, then we jump with the laser frequency [44]

76



7.1 Outlook

by approximately 80MHz to become resonant to the other spin state which we can
image on a second imaging flash.
With these expansions to the imaging setup, we can reconstruct the full quantum
state of the atomic system to study spin ordering and measure entanglement in a few-
body system. Our imaging method will also be applicable to larger lattice systems
when the lattice spacing can be increased to become larger than the diffusion length
e.g. by using a spatial light modulator [45].

77





Bibliography

[1] Karl D Nelson, Xiao Li, and David S Weiss. Imaging single atoms in a three-
dimensional array. Nature Physics, 3(8):556–560, 2007.

[2] Richard P Feynman. Simulating physics with computers. International journal
of theoretical physics, 21(6):467–488, 1982.

[3] J Ignacio Cirac and Peter Zoller. Goals and opportunities in quantum simula-
tion. Nature Physics, 8(4):264–266, 2012.

[4] Rudolf Grimm, Matthias Weidemüller, and Yurii B Ovchinnikov. Optical dipole
traps for neutral atoms. arXiv preprint physics/9902072, 1999.

[5] Takeshi Fukuhara, Adrian Kantian, Manuel Endres, Marc Cheneau, Peter
Schauß, Sebastian Hild, David Bellem, Ulrich Schollwöck, Thierry Giamarchi,
Christian Gross, et al. Quantum dynamics of a mobile spin impurity. Nature
Physics, 9(4):235–241, 2013.

[6] Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman
Esslinger. Creating, moving and merging dirac points with a fermi gas in a
tunable honeycomb lattice. Nature, 483(7389):302–305, 2012.

[7] Alexander L Gaunt, Tobias F Schmidutz, Igor Gotlibovych, Robert P Smith,
and Zoran Hadzibabic. Bose-einstein condensation of atoms in a uniform po-
tential. Physical Review Letters, 110(20):200406, 2013.

[8] A Celi, P Massignan, J Ruseckas, N Goldman, IB Spielman, G Juzeliūnas, and
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