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Collective Modes and Turbulence in Two-Dimensional Fermi Gases:

Collective modes are an essential instrument for the study of many-body systems
and provide access to many observables like for example the equation of state. In
this thesis we explore collective modes of a quasi-two-dimensional Fermi gas in
a harmonic confinement in general and from the viewpoint of turbulence in par-
ticular. Turbulence represents a field that has always been elusive to theoretical
descriptions and that to date relies primarily on experimental observations.
We have studied the interaction dependence of the monopole and quadrupole
modes with unprecedented accuracy and have been able to extend existing mea-
surements in this field to both lower temperatures and to the bosonic regime. We
present the first clear evidence for a previously unobserved quantum anomaly
predicted to occur in two dimensions. In addition we present the first measure-
ments of the quadrupole mode far in the hydrodynamic limit and compare them
to kinetic theory. To find evidence for turbulent dynamics we have studied the
collective modes in both real and momentum space and extracted different ob-
servables as for example the energy spectrum of the cloud. We came to the
conclusion that these lowest order collective modes are inapplicable for the ex-
citation of turbulence. At the end of this thesis an add-on to our experimental
apparatus is presented. This new setup provides us with experimental capabili-
ties that we will use to tailor time-dependent potentials and to excite turbulence
in our cloud in the future.

Kollektive Moden und Turbulenz in Zweidimensionalen Fermi Gasen:

Kollektive Moden sind ein unverzichtbares Mittel zur Untersuchung von Viel-
teilchensystemen und liefern Zugang zu vielen Observablen wie zum Beispiel der
Zustandsgleichung. In dieser Arbeit untersuchen wir kollektive Moden eines zwei-
dimensionalen Fermi Gases in einem harmonischen Potential im Allgemeinen und
im Hinblick auf Turbulenz. Wir haben die Abhängigkeit der Mono und Quadrupol
Mode von Wechselwirkungen mit beispielloser Präzession untersucht und konnten
die schon existierenden Messungen in diesem Feld hin zu niedrigeren Tempera-
turen sowie auch in den bosonischen Bereich erweitern. Wir präsentieren die
ersten deutlichen Anzeichen einer Quanten Anomalie, die in zwei Dimensionen
vorhergesagt wurde, aber bisher nicht beobachtet werden konnte. Zusätzlich
zeigen wir die ersten Messungen der Quadrupole Mode weit im hydrodynamis-
chen Bereich und vergleichen diese mit der kinetischen Gastheorie. Um Anzeichen
für Turbulenz zu finden haben wir die kollektiven Moden sowohl im Orts- als auch
im Impulsraum untersucht und Observablen wie das Energiespektrum extrahiert.
Wir schließen, dass diese kollektiven Moden niedrigster Ordnung für die Anregung
von Turbulenz ungeeignet sind. Am Ende dieser Arbeit wird eine Erweiterung
unseres experimentellen Aufbaus vorgestellt. Wir planen die Fähigkeiten zur
Erzeugung von zeitabhängigen Potentialen, die wir durch den Umbau erwerben,
in naher Zukunft für die Anregung von Turbulenz in unserem Gas zu nutzen.
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1 Introduction

1.1 Systems out of Equilibrium
The most common description of quantum many-body systems relies on statistical
ensembles and provides predictions about statistic properties like energy and particle
number in equilibrium or linear response functions. The dynamic evolution of such
systems far from equilibrium and how they eventually reach some equilibrium state is
far less well understood in general [Eis15]. Equilibrium states constitute only a tiny
amount of the available phase space for quantum many body systems. Therefore, it
is desirable to improve our general understanding of far from equilibrium dynamics.
Consequently, many of the topics that currently attract large attention in physics
are directly connected to non-thermalized systems. Examples include time crystals
[Cho17; Zha17], many body localization [Sch15; Smi16] or transport properties in
general.
A remarkable attribute of quantum systems very far from equilibrium is that

they often show universal scaling behaviour. The latter can be described in the
framework of so-called non-thermal fixed points. The time evolution of systems that
are excited close to such fixed points back to equilibrium shows a critical slow down
and correlations in the system follow universal scaling laws [Now13]. One particular
case that is ubiquitous in nature and where self-similar and universal dynamics are
generally observed very far from thermal equilibrium is turbulence in fluids.
In a classical picture hydrodynamic turbulence can be understood from the view-

point of symmetries [Fri95]. At low velocities the flow of a fluid is laminar and it
exhibits all the symmetries of the Hamiltonian. If the velocity of the fluid increases,
the flow becomes unstable at some point and the symmetries of the Hamiltonian are
broken. This regime represents one of the greatest remaining scientific challenges in
classical physics and as of yet no complete theories could be developed.
Finally, when increasing the flow velocity even further, the symmetries of the

Hamiltonian are restored in a statistical sense and a probabilistic theory becomes
applicable. There are currently no theories that can make reliable predictions about
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1.1. SYSTEMS OUT OF EQUILIBRIUM

the critical velocities at which the transitions from one to another regime of tur-
bulent flow occur. As a result, the field of turbulence relies on and is driven by
experimental observations to a very large extent.

The discovery of the superfluid phase of helium in 1938 has brought the whole new
field of quantum turbulence to life [All38; Kap38]. The most important difference
of superfluid and classical flow is that vorticity is always quantized in the former.
As a result, turbulence in superfluids can be pinned down to the presence of phase
defects in the form of vortices. For many years helium was the only experimentally
available superfluid in nature and most if not all of our current understanding of
quantum turbulence originates from helium experiments. This includes questions
like what mechanism for dissipation exists in superfluids and to what extent they
satisfy the correspondence principle. However, experiments in helium also come with
a few drawbacks like very small vortex cores that cannot be observed directly and
no control over interactions or the dimensionality. Therefore many open questions
in the field remain.
With the first experimental realization of a Bose-Einstein condensate (BEC) in a

cold atom gas and the subsequent proof of its superfluid character in 2005 a new ex-
citing era for the field of quantum turbulence has yet begun again [Dav95; Zwi05].
Experiments with cold gases provide a large amount of control over many of the
system parameters that are fixed in the case of superfluid helium. Thus they could
advance the field of turbulence by a significant amount. Very recently, the first
experimental efforts in this direction started and it has been shown that it is in fact
possible to excite turbulence in cold gases [Tsa15].

In this thesis we explore the feasibility of exciting quantum turbulence in our cur-
rent experimental setup in an ultracold two component Fermi gas that is confined
to two dimensions. Two component fermionic fluids are special from the viewpoint
of turbulence since they can undergo a phase transition into a superfluid with the
highest known vortex density. Additionally, the restriction to two dimensions has
important implications on the vortex dynamics as we will discuss at a later point. All
the turbulence experiments in cold atom clouds to date were performed with bosonic
particles while turbulence in ultracold Fermi gases is an experimentally completely
unexplored area as of yet. We hope that our efforts in this direction could lead to
the first experimental observation of turbulence in the two dimensional BEC-BCS
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CHAPTER 1. INTRODUCTION

crossover. One open question in this regime is, for example, whether the superfluid
BCS state can even survive a turbulent excitation.

All the measurements that were performed during the work for this thesis were
executed by exciting different collective modes in a two dimensional harmonic con-
finement. We explored to what degree these collective modes are useful for the
excitation of turbulent states in our cloud. To this end a very precise characterisa-
tion of the dynamics in both position and momentum space was performed. We were
not able to observe evidence for turbulence as of yet, however we are very confident
that building on this work the first observation of turbulence in our experiments is
imminent.

1.2 Outline
In the first chapter of this thesis we will provide an overview over the field of turbu-
lence in general. To this end, the most important results of classical turbulence are
recalled and sequentially compared to the situation in superfluids. For both cases
the most important regimes and scales of turbulence will be discussed. After this
general introduction, we focus on features that are important in the context of our
experiment, namely turbulence in reduced dimensions and in cold atom clouds. At
the end of the chapter we will present some of the experiments that were realised
within the cold atom community so far and discuss open questions in the field.
In chapter 3 we present the current state of our experimental setup and the most

important experimental tools that are used for preparing and detecting ultracold
atom clouds. Additionally, a brief derivation of the theoretical framework that is
needed to describe such experiments is given. This includes the most important
interaction and temperature scales for cold Fermi gases.
Afterwards, all the experimental results are presented in chapter 4. We will dis-

cuss the different excitation procedures that were used for the excitation of collec-
tive modes. A very precise characterization of the latter was performed and the
dependence of their dynamics on inter-particle interactions will be discussed. We
also present momentum distributions of the collective modes that were measured to
search for evidence of turbulent dynamics. At the end of chapter 4 we will present
some initially unexpected behaviour of the breathing mode in our trap that we
spotted in our experiment recently.
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1.2. OUTLINE

At the end of this thesis an outlook on the future plans for our experimental setup
is given. During the work for this thesis a large add-on to the experimental setup
was designed. The main components of this extension, namely a high resolution
objective, a new camera and a spatial light modulator, are presented at this point.
Our initial intention was to use the new experimental capabilities that we gain in
this way for the assembly of many-body states at extremely low entropy. With
respect to this thesis we will also explore how the add-on can be used for creating
and detecting turbulence in the near future.
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2 Introduction to Turbulence

2.1 Classical Turbulence
Turbulent behaviour is observed across all length scales in nature, starting from
everyday phenomena like the plume rising from a candle to weather phenomena in
the atmosphere and finally to the dynamics of interstellar gases on vast distances
(see Figure 2.1). Existing on all these length scales, turbulence has had a crucial
influence on forming the universe as we observe it today. It plays an important
role in the formation of galaxies [Kru05] and drives essential mechanisms for life on
earth, for example the distribution of seeds and pollen [Oku89].

A CB

Figure 2.1: A: The plume rising from a candle shows a transition from laminar to
turbulent flow at a fixed distance from the flame. The transition occurs
because the gas accelerates as it moves upwards. Taken from [Set09].
B: This picture taken by NASA’s Juno spacecraft shows large turbulent
storms in atmosphere at the south pole of Jupiter. Taken from [Nas17].
C: Polarization gradient measurement of interstellar gas reveal turbu-
lent motions on length scales ranging from 1000 km up to 100 parsecs
(1018 m). Taken from [Gae11].

This ubiquitous nature of turbulence brings up the question to what extent it is
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2.1. CLASSICAL TURBULENCE

already part of the fundamental laws of nature, i.e. in quantum mechanics. Cold
atom systems are especially suited to investigate this matter since they provide a
large degree of control over the system and direct access to the most important
observables such as the momentum distribution. Recently, several cold atom ex-
periments, some of which will be discussed at a later point, were able to observe
evidence for turbulent behaviour in degenerate bose and fermi gases [Hen09; Nee13;
Nav16].
Here, we focus on the special case of strongly correlated fermions in two dimen-

sions. This case is of special interest because the early universe consisted of a
strongly interacting quark gluon plasma with fluid dynamics that are possibly very
similar to those of fermionic cold atom systems [Ada12]. Understanding how turbu-
lence emerges in these strongly correlated systems could lead to a better understand-
ing of the dynamics in the early universe and in high energy collision experiments,
in the long run.
In order to search for evidence for turbulence in quantum degenerate systems, it

is first necessary to specify what we mean exactly by the term turbulence. After
defining the term, we will recall some results of classical hydrodynamics to be com-
pared with the quantum mechanical picture in the following section. Afterwards,
we focus on the effects that are special for two-dimensional systems. A thorough
derivation of the results, that are recalled in the following sections, can be found
in textbooks on hydrodynamics [Lan87; Fri95] or numerous reviews on the matter
[Kra80; Bof12].

2.1.1 Definition of Turbulence

In contrast to the order parameter of a phase transition, there is no single physical
quantity which determines whether a physical system is turbulent or not. As a
result, no consensus exists on how to define the term turbulence. Yet, the main
features of turbulence are agreed upon. We will follow the definition suggested by
Tsatsos et al. [Tsa15] here:

Turbulence is the time-dependent, space-dependent state of irregular mo-
tion, characterized by a huge number of degrees of freedom which interact
via the fundamental non-linearity of the Euler equation.

It is important to note that this definition does not limit turbulence to fluid motion
but also covers other systems like electromagnetic waves or neurons which can show
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CHAPTER 2. INTRODUCTION TO TURBULENCE

such a behaviour [Pao11]. The restriction to the non-linearity of the Euler-Equation
(i.e. of the form (v ·∇)v) keeps the definition from becoming too generic (otherwise
any nonlinear system with many degrees of freedom would be turbulent) [Tsa15].

2.1.2 Classical Description

Following Landau and Lifshitz [Lan87], under given steady boundary conditions a
steady solution of the equations of motion (here: Euler equation) must exist for any
hydrodynamic system. Yet, these solutions will only occur in nature if they are also
stable. Stability means that small perturbations of the flow ∆v decay quickly in
time. If, in contrast, these perturbations grow indefinitely with time, then the flow
solution is unstable and can not actually exist — the system will become turbulent
instead.
A mathematical derivation of stability is very difficult and still unsolved for many

important cases (for example the flow of a fluid around a finite sized obstacle).
Instead, the Reynolds number defined as

R = ρvd

η
, (2.1)

where ρ is the fluid density, v the flow velocity, η the viscosity and d the characteristic
length of the system (for example the obstacle size) is used to estimate if the flow is
turbulent. The Reynolds number is given by the ratio of the largest to the smallest
eddy currents in the fluid, approximately. In general, systems with large Reynolds
numbers tend to show turbulent flow, while low Reynolds numbers indicate that
stable laminar flow solutions exist. The critical value Rcrit where the system changes
its behaviour has to be determined for each class of systems empirically.
The next question arising immediately, is how one can describe a system once it

is in a state of so-called fully developed turbulence where R > Rcrit holds. Because
of the interplay between a large range of length scales and the chaotic character of
the motion, perturbative approaches break down [Pao11]. Since complete solutions
are not known to date either, there exists no quantitative theory of turbulence at
the moment [Lan87]. Nevertheless, a probabilistic description, which yields several
quantitative predictions of averaged quantities like the energy spectrum, has been
developed [Fri95].
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2.1. CLASSICAL TURBULENCE

2.1.3 Turbulent Cascades

Starting with the simplest case of an incompressible fluid in three dimensions and
following Nazarenko [Naz11], we define the energy spectrum as follows:

E3D (k) = 1
2

∫
R3

〈u (x) · u (x + r)〉 e−ik·r dr

(2π)3 , (2.2)

where u (x) is the local velocity of the fluid at position x. As a consequence E3D (k)
represents the kinetic energy density per unit mass in k-space. In the case of ho-
mogeneous and isotropic turbulence the x and direction of k-dependence drop out
(E3D (k) ≡ E3D (k)) and we get:

Ekin

m
=
∫
R3

E3D (k) dk =
∞∫
0

E1D (k) dk. (2.3)

Here, we defined the 1D energy spectrum E1D (k) as:

E1D := 4πk2E3D (k) . (2.4)

A general prediction on the dependence of this one dimensional energy spec-
trum on k was first made by Kolmogorov [Kol41] based on the cascade picture of
Richardson [Ric26]. Richardson tried to describe turbulence in the picture of locally
interacting eddy currents in the fluid (see Figure 2.2 A). In his picture eddy currents
at large length scales are created by some driving force which adds energy to the
system. These large eddy currents subsequently decay into smaller and smaller ones
until viscous dissipation kicks in at some small length scale (also known as Kolgo-
morov length scale η). This flow of energy from large to small length scales through
the decay of vortices in the system is known as Richardson- or direct cascade.
Based on the assumption that these eddy currents interact only locally in momen-

tum space, meaning they interact only with similar sized eddy currents, Kolmogorov
formulated his famous −5/3 law (also known as K41-law) [Kol41]. The main result
is quickly recovered by a dimensional analysis, presented in the following.
Since the interaction of eddy currents is local, the turbulence properties within the

inertial range l with ldrive � l � ηvisc (or accordingly in k-space kdrive < k < kvisc)
depend only on the energy cascade rate ε while the details of the drive and dissipation
dynamics do not matter. By this argument, the one dimensional kinetic energy
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CHAPTER 2. INTRODUCTION TO TURBULENCE

Inertial Range

A B
Excitation
scale ldrive

En
er

gy
 �

ux
 ε

Dissipative
scale ηvisc

lo
g(
E1D

(k
))

log(k)kdrive
kvisc

Excitation

Energy Cascade ~k -5/3

Dissipation

Figure 2.2: A: Richardsons picture of turbulence. Energy is injected into the system
at some lengthscale ldrive and moves down to smaller and smaller scales
until it is dissipated at some scale ηvisc.
B: Prediction of the energy density spectrum E1D(k) for a three di-
mensional incompressible fluid with fully developed turbulence by the
Kolmogorov law. In the inertial range between kdrive and kvisc the only
relevant scale is the energy cascade rate which leads to the fixed exponent
of −5/3.

density should only depend on k and ε as these are the only remaining quantities of
the system

E1D ∝ εαkβ. (2.5)

Comparing the dimensions on both sides of the equation, i.e.
[
E1D

]
= l3

t2
, [ε] = l2

t3

and [k] = 1
l
, we arrive at

E1D = C · ε3/2k−5/3 (2.6)

as only possible solution under the previous assumptions. The constant factor C of
order one is also known as Kolgomorov Constant. The general form of this energy
spectrum for an incompressible fluid in three dimensions is depicted in Figure 2.2 B.
Since Kolgomorov developed his theory in 1941, countless experiments have ver-

ified his energy cascade picture and often the k−5/3 dependence is observable over
many orders of magnitude (see Figure 2.3). As a result, power-law dependencies
in the momentum or energy density are now often interpreted as indication for
turbulent motion in the system [Zak92].

15



2.2. QUANTUM TURBULENCE
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Figure 2.3: Kolgomorovs power law prediction for the energy spectrum of turbulence
could be verified by various experiments, for example in wind tunnel
setups A [Ans84] or in the spectrum of the solar wind B [Gol15].

Nevertheless, many systems also show deviations from the simple Kolgomorov
spectrum. These can come from additional conserved quantities like the enstrophy
in two dimensions, discussed later, or from the so-called turbulent intermittency
phenomenon [Fri95]. In general, also quantum degenerate gases fall into the category
of systems where the simple Richardson cascade picture breaks down. This can be
understood easily because in the superfluid phase all the particles are described by
a single wavefunction and spatially extended vortices are not the correct language
to describe the system any more. In the next section we will take a closer look at
this special case of quantum turbulence.

2.2 Quantum Turbulence
Even though the definition of turbulence introduced above is applicable to arbitrary
quantum systems, the term quantum turbulence is usually associated with turbulence
of superfluids in particular. In 1955 Richard Feynman was among the first to realize
that despite of the absence of viscosity in a superfluid it can nevertheless show
turbulent behaviour through interaction of vortices [Fey55]. The reason why the
notion of quantum turbulence instead of superfluid turbulence has established itself, is
that, interestingly enough, the quantization and not the superfluidity is the relevant
feature of these systems, as will be discussed later [Tsa15].
We will begin this section by recalling some basics about vortices in superfluids.

Afterwards, the energy spectra for different cases of quantum turbulence are dis-
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CHAPTER 2. INTRODUCTION TO TURBULENCE

cussed. In the limit of many quanta one usually expects that the quantum systems
approximate their classical counterpart [Pao11] and we will discuss to what extent
this correspondence principle is realised in quantum turbulence. Finally, the exper-
imental progress to date and remaining open questions in the field are reviewed.
Excellent, in-depth reviews on quantum turbulence are found in [Skr11; Pao11;
Tsa15].

2.2.1 Vorticity in Superfluids

Superfluidity is usually explained in the context of Bose-Einstein condensation. At
some temperature TC , when the thermal de Broglie wavelength λth = h/

√
2πkBT

becomes of the order of the inter-particle spacing 1/ρ−1/3, a gas of interacting bosonic
particles exhibits a second-order phase transition into a condensed phase. This
transition is connected to a macroscopic occupation of the ground state and thus
the complete system can be approximated by a single wavefunction

Ψ (r, t) =
√
ρ(r, t)eiφ(r,t), (2.7)

where ρ is the normalized condensate density and φ the condensate phase. Using
this description we can derive the probability current j in the system as

j (r, t) := ~
2mi (Ψ∗∇Ψ−Ψ∇Ψ∗) = ρ(r, t) ~

m
∇φ(r, t). (2.8)

The probability current describes the flux of the probability density ρ = |Ψ|2 and
obeys the continuity equation:

∂ρ(r, t)
∂t

+∇ · j(r, t) = 0. (2.9)

Comparing this to the continuity equation of classical hydrodynamics (∂ρ/∂t +
div(ρv) = 0) motivates the definition of the superfluid velocity

vs(r, t) := j(r, t)
ρ

= ~
m
∇φ(r, t). (2.10)

It immediately follows that the velocity field of a superfluid has to be curl free, thus
confirming the statement above that extended eddies do not exist in quantum fluids,
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2.2. QUANTUM TURBULENCE

since

∇× vs = ∇×
(
~
m
∇φ

)
= 0. (2.11)

This statement is, however, only true as long as the phase φ is continuous in its first
two derivatives. Whereas a discontinuity of the phase at some point r in space is
only physically consistent if the superfluid density ρ is zero at that same point.
This observation together with the fact that the wavefunction Ψ has to be single

valued (a circulation along a closed path C has to leave Ψ invariant) lead Onsager
in 1949 [Ons49] to the observation that the circulation Γ in a superfluid has to be
quantized

Γ =
∮
C

vs dr =
∮
C

~
m
∇φ dr = ~

m
∆φ, (2.12)

with ∆φ = 2πn where n is an integer number and thus

Γ = 2π~
m

n, n ∈ Z. (2.13)

This term is also known as the Onsager-Feynman quantization condition.

To summarize the derivation above, we see that circulation in superfluids is quan-
tised and it can only be non-zero around so called quantum vortices with the geom-
etry of lines in three dimensions and points in two dimensions, respectively. At the
position of the vortex the velocity diverges, which is nevertheless fully consistent,
since the particle density at the vortex center is exactly zero (see Figure 2.4 A and
B). The size of these vortex cores with zero particle density is approximately given
by the healing length ξ of the system which describes the typical distance from a
local pertubation over which the wavefunction tends back towards its mean field
value.

2.2.2 Two Fluid Model

Up to now we assumed that all the particles of the superfluid contribute to the
condensed phase, i.e. ρs = ρges. This is only true at zero temperature T = 0.
Since any experiment can only be carried out at a finite temperature it is necessary
to consider the thermal contribution of the fluid, for example using the two-fluid
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CHAPTER 2. INTRODUCTION TO TURBULENCE
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Figure 2.4: Vortex lattices in a rotating BEC at slower (A) and faster (B) rotations.
Here, we emphasise the fact that vortex lattices are not turbulent (by
our definition above). Taken from [Sch07]. C: The two fluid model
describes fluids below TC as a mixture of two components ρs and ρn in
the condensed and normal phase respectively. Their ratio ρs/ρn strongly
depends on the temperature T of the fluid.

model, originally introduced by Tisza [Tis38]. He assumed that the system can be
described by a fully condensed part ρs with no entropy and all particles occupying
the same ground state and a thermal part ρn in the normal phase which carries all
the entropy of the system. The ratio of superfluid to normal density ρs/ρn with the
constraint ρs + ρn = ρges is then given by the temperature T of the fluid (see Figure
2.4 C).
The reason why we put such an emphasis on the presence of the normal compo-

nent is that it interacts with the superfluid component through scattering of thermal
quasiparticles with the vortex lines [Bar83]. Due to this coupling it is necessary to
distinguish different regimes of quantum turbulence [Bar14]:

1) The very low temperature regime T � TC where the presence of normal com-
ponent is negligible since ρn ≈ 0.
2) The high temperature regime TC/2 . T < TC where only the superfluid part is

in a turbulent state and dissipates its energy through friction with the normal fluid.
3) The high temperature regime where both components are in a turbulent state

and energy exchange is possible in both directions.

The implications of these different possible situations on the nature of turbulence
and the corresponding energy spectra are discussed in the next section.
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2.2. QUANTUM TURBULENCE

2.2.3 Phenomenology of Quantum Turbulence

As displayed in Figure 2.4 A and B, the mere presence of vortices in a superfluid can
not be identified with turbulent dynamics in the system. Naturally, the question
comes up whether there exists a corresponding quantity to the Reynolds number R
which, as a reminder, compares the size of the largest to the smallest eddy current
in the fluid. It is obvious that the classical Reynolds number itself is not defined in a
superfluid since vortices are discrete. However, intuitively R quantifies the available
length scale range (i.e. the number of degrees of freedom) for turbulence. As a result,
one can argue that the corresponding "number" in a superfluid is proportional to
the total length (number) of vortices in a three-(two-)dimensional fluid. How many
vortices in different systems are required in order to observe chaotic behaviour is
still an open question [Tsa15]. Analogous to the classical case we will now review
the statistical results for turbulent spectra for the case of fully developed turbulence.
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Figure 2.5: A: Liquid 4He driven by two counter-rotating discs, above (1), at (2) and
below (3) TC. The spectra clearly follow Kolgomorovs −5/3 law. The
experimental curves are shifted vertically to prevent overlapping. Taken
from [Mau98]. B: Numerical simulation of the energy spectrum for a tur-
bulent superfluid (black). Kolgomorov scaling emerges because several
vortex lines form parallelly aligned bundles which mimic the classical
behaviour in the coarse grained flow (compare with Figure 2.6). The red
line shows the energy spectra of these bundles alone, where randomly
aligned vortices were removed. Taken from [And12].

Remarkably, in many superfluid systems one observes the same Kolgomorov scal-
ing as in classical fluids (see Figure 2.5), for example when driving them mechanically
at large lengthscales. This is easily understood in the high temperature regime (3)
when the classical part of the fluid is turbulent as well and dominates the energy
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spectrum. However, also in low temperature fluids (1) or for a non-turbulent clas-
sical part (2) the same Kolgomorov scaling can be observed. All regimes, where
the Kolgomorov picture is valid, are referred to as quasiclassical or Kolgomorov
turbulence [Bar14].
Quasiclassical turbulence can be understood for example by using numerical sim-

ulations (see Figure 2.6). They reveal that a seemingly random vortex tangle of
the superfluid contains several bundles of parallelly aligned vortices. These bundles
mimic the classical, continuous vorticity on larger scales l � lvort, where lvort is the
mean distance in between vortices. This quasiclassical regime is the paragon of the
correspondence principle that was already mentioned above. In this sense the laws
of quantum mechanics already contain the foundation for classical turbulence.
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Figure 2.6: A: Numerical simulation of the vortex distribution for a turbulent three
dimensional superfluid. The vortices are colored according to the local
magnitude of the coarse grained vorticity. In B and C the distribution
is split into its polarized and random part, respectivly. Taken from
[And12].

As derived in the previous section on classical turbulence, the −5/3 scaling is
connected to a direct energy cascade from large to small lengthscales until dissipa-
tion occurs at some scale ηvisc through viscosity. Viscosity drops out as dissipative
mechanism for the inviscid superfluid and therefore a different process has to occur
when Kolgomorov scaling is observed. Again, at high temperatures the solution
is found quickly, since the superfluid interacts with its normal component where
subsequently the energy is dissipated classically. In the low temperature limit a
completely different dissipative mechanism through the dynamics of vortices has
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been found.
So far, we have just assumed that vortices are smooth lines that move in some

chaotic way (in the turbulent situation) through the three dimensional space (see
Figure 2.6 A). However, vortices also contain non-trivial dynamics by themselves
through so-called Kelvin waves. A Kelvin wave is a transverse, circularly polarized
displacement of a vortex line that is restored by the tension produced by the kinetic
energy along the vortex length [Pao11]. These waves are produced through vortex
reconnection (see Figure 2.7 A and B) and were recently observed directly in 4He
experiments [Fon14]. Kelvin waves are underamped and interact non-linearly in a
way that oscillations of higher and higher frequencies are produced until they become
high enough to emit phonons. These phonons are absorbed by the boundary and
thus provide a dissipative mechanism for Kolgomorov scaling at low temperatures
[Pao11].
This Kelvin-wave cascade happens on length scales l � lvort and thus the energy

spectrum of turbulent superfluids at low temperatures is believed to contain both
the Richardson at larger, and the Kelvin-wave cascade at smaller length scales (see
Figure 2.7 C). To what extend this two cascade picture actually holds in nature,
is yet still a debated topic in ongoing research. For example, the possibility of a
bottleneck in-between the two cascades, which would alter the spectrum is discussed
in literature [Tsa15].
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Figure 2.7: A: Numerical simulation of the reconnection of two vortex lines. B: After
reconnection the vortex lines quickly retract while emitting Kelvin waves.
This process was direcly observed in a recent experiment [Fon14]. Figure
adapted from [Sch85]. C: The dissipation through kelvin waves provides
the necessary dissipative mechanism for an energy cascade also at low
temperatures. As a result the energy spectrum for homogeneous and
isotropic quantum turbulence is believed to contain both the Richardson
as well as the Kelvin-wave cascade. Taken from [Tsu13].
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It is also possible to excite turbulence in superfluids such that no energy cascade
appears. These turbulent states have no classical counterpart and are therefore
purely quantum mechanical effects. This kind of turbulence is referred to as ultra-
quantum or Vinen turbulence [Bar16]. It can be excited by driving the system at
very short length scales ldrive < lvort. (for example thermally) such that the fluid is
missing energy at large length scales. In this state the vortex tangle is completely
random and contains no large scale eddy currents (or polarized vortex bundles).
Numerical simulations confirm that the energy spectrum shows the k−1 fall-off ex-
pected for smooth isolated vortices [Bag12].

Up to this point we considered turbulent behaviour of the flow or vorticity of the
(super-)fluid. However, there exists a form of turbulence of non-linearly interacting
waves in addition. Wave turbulence can develop in both classical and quantum
mechanical systems and since it was recently observed in a degenerate quantum gas
[Nav16], we provide a quick overview over the main results at this point.

2.2.4 Wave Turbulence

Wave turbulence is very similar to hydrodynamic turbulence in the sense that it
describes the chaotic dynamics of waves over many length and time scales. Even
though the degrees of freedom are now given by waves rather than vortices, most
results of the statistical description for hydrodynamic turbulence do still hold. Wave
turbulence is likewise described best by an energy flux through scales with spectra
similar to the Kolgomorov spectra. The exact form of these Kolgomorov-Zakharov
spectra is derived using dimensional arguments once more [Naz11]

E1D ∝ ε1/(N−1)ky, (2.14)

where

y = d− 6 + 2α + 5− d− 3α
N − 1 . (2.15)

Here α is defined by the dispersion relation of the waves ω ∝ kα, d is the dimension
and N is the smallest number of waves that interact non-linearly. For example, for
phonon turbulence (α = 1) in a three dimensional BEC (d = 3) and with three-wave
scattering (N = 3) we obtain E1D ∝ k−3/2.
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There is an important difference between hydrodynamic and wave turbulence in
the case of weak non-linearity, which is often assumed. Using the latter assumption
together with the dispersion relation ω(k) it is possible to obtain the energy spectra
from exact analytical solutions. Furthermore, wave turbulence for even-N systems
shows a dual cascade behaviour with the direct energy cascade exponent as in the
equation above and an inverse waveaction cascade with a different exponent [Naz11].

Wave turbulence is especially important if one generalises the discussion of incom-
pressible fluids above to compressible fluids. The most straightforward approach is
to separate the flow into an incompressible vi and a compressible vc contribution.
Accordingly, in the incompressible energy density spectrum Ei(k) all the different
hydrodynamic turbulence cascades discussed above can show up, while in the com-
pressible energy density spectrum Ec(k) wave turbulent cascades can emerge, for
example generated from sound waves (phonons) [Tsu08].

2.2.5 Length scales

To recap the foregoing results for the different classes of turbulence, it is useful to
compare some of the length scales involved in the different systems. We saw that
in the classical case the turbulent energy cascade is connected to a large separation
of the driven ldrive from the dissipate length scale ηvisc. The sizes of eddy currents
span many orders of magnitude within a single fluid (from 3/4 up to 12, see Figure
2.1).
In quantum mechanical turbulence all vorticity becomes discrete and not the size

but rather the amount of vortices becomes the important scale. From the total
vortex length per unit Volume L one obtains the mean inter-vortex distance as
lvort. = L−1/2. The latter length scale separates the regime where quasiclassical cas-
cades are observable in some coarse grained flow (l > lvort.) from the ultraquantum
regime l < lvort. without classical analogue. Which of the latter cases arises strongly
depends on the scale ldrive at which energy is fed to the system.
The spatial extend of the vortices is of the order of the healing length ξ given by:

ξ3D = ~√
2mg3Dρ3D

, (2.16)
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or, in two dimensions:

ξ2D = ~
√
mg2Dρ2D

, (2.17)

with coupling strength g, the particle mass m and density ρ. The available range
∆l for an energy cascade is thus ξ < l < D, where D is the total size of the system.
In typical helium experiments one gets ξ ≈ 10−8 m and D ≈ 10−1 m, implying
∆l = 107 [Tsa15]. The situation in cold bosonic atom experiments is quite different,
as ξ ≈ 10−6 while D ≈ 10−4 (i.e. ∆l ≈ 102). This small range for possible cascade
phenomena is currently one of the largest limitations for research in the field of
quantum turbulence with cold atom setups [Tsa15].

2.3 Turbulence in Two Dimensions
Initially, turbulence in two dimensions was introduced as a toy model for three di-
mensional turbulence with simpler dynamics (by just restricting the flow v to x-
and y- direction). Yet, it turned out that two dimensional turbulence approximates
many systems in nature very well. Examples include planetary or geophysical flow
(see Figure 2.8) [Fri95]. Along with the advances in the field of cold atoms ex-
periments, physics in reduced dimensions has attracted completely new attention,
because in these laboratory experiments it is possible to create systems where all
dynamics are completely constrained to one or two dimensions (see chapter 2).
We will begin this section by again taking a look at the implications of reducing

the dimensions for classical turbulence first [Kra80; Naz11]. Afterwards, we will
review how these differences translate to the quantum world [Tsa15].

2.3.1 Inverse Energy Cascade

As already remarked in Section 2.1, Kolgomorovs cascade picture has to be modified
as soon as energy is not the sole conserved quantity of motion in the system any
more. This occurs in two dimensions where the enstrophy defined as:

E =
∫
R2

(∇× v)2 dr =
∫
R2

ω2 dr, (2.18)
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BA

Figure 2.8: Many turbulent systems in nature behave two dimensional. The promi-
nent cases are weather phenomena in the atmosphere, for example cy-
clones here on earth (A) or the Great Red Spot of Jupiter (B). Source:
NASA.

is conserved in an incompressible, inviscid flow [Kra80]. Here, we inserted the defi-
nition of the vorticity ω := ∇× v.
The fact that the system has a second conserved quantity of motion leads to the

observation that steady turbulence requires now an equal rate of enstrophy injection
and dissipation (in line with injection and dissipation of energy for 3D turbulence).
Thus a second cascade of enstrophy from the driven ldrive to the dissipative length-
scale ldis emerges. The respective directions of energy and enstrophy cascade in
momentum space can be derived by some simple ad absurdum arguments following
Nazarenko [Naz11].
From Fourier transforming equation (2.18) and by comparing to equation (2.3)

we obtain:

E =
∞∫
0

k2E1D (k) dk. (2.19)

Therefore, the energy injection (dissipation) rate ε is related to the enstrophy injec-
tion (dissipation) rate κ through:

κ ∝ εk2
drive. (2.20)

A direct energy cascade implies that energy is dissipated at larger wavenumbers
kdis > kdrive with the injection rate ε. The rate of enstrophy dissipation is then
given by κdis ∼ εk2

dis � εk2
drive ∼ κdrive. The latter is a direct contradiction to
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the assumption of steadiness and as a result the only possible solution for steady
turbulence requires kdis < kdrive for the energy flow in two dimensions. This flow of
energy to larger length scales is named inverse energy cascade and in the picture of
Richardson it describes the merging of vortices to larger and larger structures. This
behaviour is clearly observed for the examples shown in Figure 2.8.
Repeating the argumentation above for the flow of enstrophy reveals that a steady

solution can only exist for kdis > kdrive, or in words a direct enstrophie cascade. The
energy spectra are obtained from a dimensional analysis, as before [Naz11]:

E1D
ε = Cε · ε2/3k−5/3

E1D
κ = Cκ · κ2/3k−3

(2.21)

To summarize, we see that the inverse energy cascade has the same Kolgomorov
spectrum as derived before while the direct enstrophy cascade has a different spec-
trum (the Kraichnan spectrum, see Figure 2.9).
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Figure 2.9: A: Expected dual cascade energy spectrum for steady turbulence in two
dimensions. The inverse energy cascade is accompanied by a direct en-
strophy cascade. B: Simulations of driven and decaying turbulence in a
BEC. With increasing drive time a clear dual cascade behaviour of the
energy spectrum develops. Inset: After stopping the drive the turbulent
state decays to equilibrium again (top to bottom show the spectra after
increasing times of decay). Taken from [Nee13].

2.3.2 2D Quantum Turbulence

The reduction to two dimensions has substantial effects on turbulent dynamics in
superfluid systems as well. The first observation is that vortices have the geometry
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of points instead of lines. These vortex points are characterised by their quan-
tised circulation alone without any additional distinguishing features (in contrast
to the infinite possibilities of aligning a vortex line in 3D-space). This purely two
dimensional effect has immediate consequences on the existing vortex dynamics and
interactions. What is most important is that Kelvin waves are completely absent
as degrees of freedom for these zero dimensional vortices. As a result, also the dis-
sipative mechanism through emittance of phonons at very high momenta is lost.
However, a new decay process becomes available since pair annihilation of reversely
rotating vortices is now possible [Tsa15].
Nevertheless, many of the concepts derived from the three dimensional model

can be transferred to the two dimensional world directly, among others the two-
fluid model and the respective high and low temperature regimes of turbulence.
The concepts of ultraquantum and quasiclassical turbulence are also still applicable.
One difference is that the quasiclassical large scale flow patterns are now created by
clusters of vortices with the same sign instead of polarized bundles of vortex lines.
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Figure 2.10: A: Numerical simulation of a Gross-Pitaevskii model for a two dimen-
sional forced BEC, damped by a stationary cloud. The spectrum shows
clear evidence for an inverse energy cascade. Taken from [Ree13].
B: Experimental (1-2) and numerical (3-4) investigation of turbulence
in an annularly trapped two dimensional compressible superfluid by
Neely et al. [Nee13]. Both the experimental (time of flight) and the
numerical (insitu) data reveal a clustering behaviour of vortices which
is interpreted as evidence for inverse energy transport.

Both experimental and numerical investigations of quantum turbulence in two di-
mensions show clear indications for the presence of an inverse energy flow (see Figure
2.10). Compared to classical turbulence we see that in the superfluid enstrophy is
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not well defined (ω ≡ 0) and the origin of the k−3 dependence at large momenta in
Figure 2.10 A is not a direct enstrophy cascade. Instead, as Bradley and Anderson
[Bra12] show, the k−3 dependence is just given by the vortex core structure in two
dimensions (analogue to the k−1 dependence for vortex lines in three dimensional
ultraquantum turbulence). Nevertheless, Reeves et al. [Ree17] were very recently
able to find the quantum mechanical analogue to the classical enstrophie cascade
using numerical simulations. They show that for special initial conditions of the
vortex distribution a k−3 spectrum emerges (not linked to the vortex core structure
in this case).

Most of the knowledge about quantum turbulence, that was presented to this
point, was acquired through numerical simulations and experiments in superfluid
3He and 4He. Only very recently cold atom experimentalists started accessing this
field. In the next section, we will present and discuss some of the current research
and explore open questions and see how they can be answered, especially by cold
atoms experiments.

2.4 Turbulence in Quantum Gases
The progress in experimentally creating and manipulating ultracold Bose and Fermi
gases has opened up a completely new playground for the study of quantum turbu-
lence. In contrast to experiments with helium, cold atoms offer a large amount of
control over most of the system parameters, such as interactions, external potentials
or dimensions (see chapter 3). Additionally, there exist very reliable approaches,
such as solving the Gross-Pitaevskii equation, for modelling these dilute gases theo-
retically. The different length scales compared to Helium (see section 2.2.5) make a
direct observation of vortices, the elementary building blocks of turbulence, possible.
As mentioned before, the biggest limitation of cold gases is the small range that is
available for energy cascades. Numerical and experimental results show that energy
cascades (direct or inverse) are nevertheless observable [All14; Nav16].
In this section, we explore the experimental progress with cold atoms to date.

First, some of the different methods of turbulence creation in these systems are
discussed. Next, we recall some of the available detection methods and finally, we
look at the decay of turbulence after the drive has stopped.
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2.4.1 Creating Turbulence

Several different schemes of taking a condensate out of equilibrium into a turbulent
state have been proposed or already implemented in experiments (see Figure 2.11).
Ideally, one would like to force the system at a controlled wavenumber kdrive with
a known energy injection rate ε. As discussed above, the exact driving scheme
determines which forms of turbulence will or can be observed. As a reminder,
rotating the condensate around one axis produces a stable lattice of parallely aligned
vortices lines which, by definition, is not turbulent (see Figure 2.4). All of the
excitation methods rely on the creation of time varying potentials for the atoms. In
most cases these potentials are realised using optical dipole traps which are discussed
in more detail in chapter 3.

A E

B D F

C

Figure 2.11: Different schemes of creating turbulent clouds of cold atoms.
A: Rotating in the complete cloud along two different axes or along one
axis with a barrier in the center. The latter was used in [Nee13]. B:
Stiring the cloud with a paddle pontential. Numerical study in [Whi12].
C: Sweeping a circular potential barrier through the cloud. Applied in
[Kwo14]. D: Moving a barrier through the cloud on a figure eight path.
Numerical study in [All14]. E: Periodic deformation of the cloud by
trap deformations. Applied in [Hen09]. F: Excitation of a dipole mode
in a box potential. Used in [Nav16].

The different excitation methods can be grouped in two categories, namely pro-
cedures that add angular momentum to the cloud (Figure 2.11 A and B) and oth-
ers that do not (C-F). This differentiation becomes especially important in two-
dimensional systems, where vortices can annihilate each other. If no angular mo-
mentum is added to the system, the created number of positive and negative signed
vortices is exactly equal.
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A different distinction can be made through the length scale on which energy
is added to the system. From the discussion in the previous chapter it becomes
clear that exciting the system on larger length scales makes the development of a
quasiclassical energy cascade in the spectrum more likely (Figure 2.11 A,B,E,F).
Using procedures that add energy on small length scales (C and D) the fluid is more
likely to enter the regime of ultraquantum turbulence.
Independent of the driving process, the number (or length) of vortices grows

with excitation time tdrive and the speed of the obstacle ωdrive (especially in the
low temperature superfluid). The vortex generation rate however, depends on the
exact scheme that is applied. As Allen et al. [All14] show, even the contour on
which a small obstacle is sweeped through the cloud has a large influence. In their
numerical study they observed that a figure eight path (D) generates vortices with
a much larger rate compared to when one stirs along a circle.
Finally, some of the driving processes are more likely to introduce also other

kinds of turbulence, i.e. non-hydrodynamic turbulence, to the system. Navon et al.
[Nav16] excite a dipole mode of the cloud in a box potential (F) and they observe
effects that they attribute to the presence of wave turbulence. This can be under-
stood easily, since the hard reflection of the box walls is likely to generate phonons
in the compressible part of their fluid.

At this point, we left out some important vortex generation processes like the
Kibble-Zurek mechanism. The latter describes the formation of topological defects
(i.e. vortices) when the system is quenched through the phase transition. Even
though these mechanisms introduce vortices to the system, they are less effective
than the procedures above [All14] and so far, no turbulence creation using these
additional methods has been reported.

2.4.2 Detecting Turbulence

To date, every experiment that reported observations of turbulence in atomic clouds
relied on time of flight (TOF) measurements. The idea is that at a certain point in
the experimental sequence, the confining potential is suddenly switched off and the
atoms start to expand freely. After some time tTOF, the resulting atom distribution
is then imaged (in general using absorption imaging). In our experiment, we employ
a sightly modified TOF scheme that we refer to as T/4-imaging. A detailed expla-
nation of the experimental implementation of TOF and T/4-imaging will be given
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in chapter 3, here we will only focus on those observables that can be obtained from
these imaging procedures.
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Figure 2.12: Different schemes of detecting turbulence in clouds of cold atoms.
A: In cold atom systems chaotic vortex tangles can be detected directly
by imaging after a short time of flight expansion (1). (2) is a schematic
diagram showing the extracted vortex tangle from image (1). Taken
from [Hen09]. B: A free expansion of a condensate in equilibrium in-
volves an aspect ratio inversion of the cloud (1, left; 2, red curve). Henn
et al. observed that when starting from a turbulent state, the aspect
ratio stays constant (1, right; 2, black curve). Taken from [Hen09]. C:
(1) shows the TOF images when starting from a condensate in a three
dimensional box trap in equilibrium (left) or a turbulent state (right).
Turbulence can be detected through the emergence of a direct energy
cascade, visible for example in the momentum distribution of the gas
(2). Taken from [Nav16].

Depending on the expansion time tTOF, different observables for turbulence can
be extracted out of the TOF images. For a short expansion time it is possible
to observe vortices in the cloud density profile directly. This is possible since the
healing length ξ (i.e. the vortex core size) is a few orders of magnitude larger in
cold atom clouds than in helium. The spatial momentum distribution close to the
vortex core (close particles have higher momenta) leads to a quick magnification of
the core during time of flight until it gets large enough to be resolved optically (see
Figure 2.12 A). A chaotic alignment of vortices as observed by [Hen09] is a direct
evidence for turbulence.
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A second indication for turbulence can be found when the cloud is observed over a
range of expansion times. It is well known that a condensate in equilibrium inverts its
aspect ratio during TOF. The reason for this is simply that for short flight times one
observes the spatial distributions of the condensed cloud in the trap while for long
times one observes its momentum distribution and these two quantities are Fourier
transforms of each other. Interestingly enough, this inversion is not observed any
more if the condensate is turbulent, the cloud retains its initial aspect ratio instead
(see Figure 2.12 B). This expansion of the cloud can be explained by considering
its coherence length that is reduced due to phase defects [Tsa15]. An important
observation is that a thermal cloud will converge towards an aspect ratio of one
during TOF since its momentum is distributed isotropic, thus this case is different
again.
Finally, as already noted, for very long expansion times the initial density dis-

tribution in the trap is negligible and one obtains the momentum distribution of
the fluid. From the one dimensional momentum distribution n1D(k) defined analo-
gously to the one dimensional energy distribution E1D(k) (see equation 2.4) one can
immediately extract the latter as

E1D(k) ∝ n1D(k)k2. (2.22)

In this way Navon et al. [Nav16] were able to detect a direct energy cascade caused
by wave turbulence in their BEC via the momentum distribution (see Figure 2.12
C). To strengthen their confidence, they performed a numerical analysis of their
experimental setup as well, which reproduced their measurement results with an
impressive accuracy.

The large drawback of TOF imaging is that it is by definition destructive. Thus
for each experimental configuration of vortex tangles only a single image is obtained.
In this way it is only possible to extract statistical information about the system
(such as mean vortex number or length over time). In order to observe the dynamic
processes connected to turbulence such as vortex reconnection or annihilation con-
tinuous non-destructive imaging is necessary. One method that could possibly allow
such measurements in the future is phase contrast imaging [Hen09].
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2.4.3 Decay of Turbulence

The observation of decaying turbulence, i.e. after the energy injection has been
stopped, is another important tool for the study of turbulent dynamics. For exam-
ple, in three dimensional systems one expects that the total vortex length L decays
as L ∝ t−3/2 when starting from quasiclassical turbulence and as L ∝ t−1 in the ul-
traquantum regime. Hence, the decay properties can provide important indications
about the initial state of the system before the driving has been stopped [All14].
In reference [Kwo14] Kwon et al. study turbulence in an oblate shaped condensate

in order to gain insight in the vortex annihilation dynamics in this system. They
identify two main causes for the decay in the form of a single body (vortices that
leave the condensate) and a two body (vortex annihilation) process.

2.5 Open Questions
Even though experiments with superfluid helium since the 1950th have already
brought significant progress to the field of quantum turbulence, many unsolved ques-
tions remain. After the first observation of quantum turbulence in a BEC by Henn
et al. [Hen09] the field has attracted more and more attention recently. This is due
to the fact that in the well controlled environment of cold atom systems some of the
long-time unsolved problems might become addressable soon. Here, we will give a
short overview over the most important open questions in the field in general and
with respect to fermionic systems in particular.

The first open question addresses the very core of turbulence, namely the defi-
nition itself. As mentioned in section 2.1, there exists no unanimous definition of
turbulence at the moment. In contrast to classical systems, where the identification
of an unambiguous signal for turbulence is difficult, in quantum mechanics vortices
are recognized as the sole root for hydrodynamic turbulence. At the moment, the
question if some given arrangement of vortices will become turbulent or not is still
unsolved in general. By addressing this issue, the discovery of an order parame-
ter which precisely defines the transition from stable to chaotic dynamics could be
possible [Tsu13].
Furthermore, as seen in the previous section, the technique of optical dipole traps

leads to countless possibilities of driving turbulence in cold gases. Superfluid Helium
can be driven either on rather large scales using mechanical obstacles or on very small
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scales through thermal excitation. In cold atoms, by using more elaborate laser
setups (see chapter 5), it is, in principle, possible to continuously scan a complete
range of driving length scales within a single experimental machine. This additional
freedom could, for example, lead to a better understanding of the crossover from
the Kolgomorov cascade to the ultraquantum regime.
Most cold atom experiments additionally offer the ability to tune the coupling

strength g via so-called Feshbach resonances. The interaction strength g is especially
important since it directly modifies the healing length ξ (see equation 2.16). In this
way and by changing the system size L one can directly modify the available length
scale range log(L/ξ) in cold atom systems [Tsa15]. Hence, the influence of this length
scale range on the turbulent behaviour is one more open question to be tackled by
cold atoms experiments.
A very general issue is the theoretical description of turbulence. Currently, the

Gross-Pitaevskii equation is applied successfully in many cases. However, as Tsatsos
et al. [Tsa15] point out, this approach must fail for very highly excited and correlated
systems since the system can not be described by a single coherent wavefunction
any more. Cold atom systems with the addition of non-destructive insitu imag-
ing methods could provide the necessary insight in order to model these systems
theoretically. A second application of insitu imaging could be to directly observe
the formation of a quasiclassical Richardson cascade on the level of single vortices
[Tsu13].

Finally, there are also many open questions concerning more complicated systems
like bosonic mixtures or spin turbulence that could be addressed experimentally
with cold quantum gases [Tsa15]. These are of lesser interest in the context of this
thesis and therefore we will now focus on the special case of fermionic gases instead.

2.5.1 Fermionic Systems

When we mentioned turbulence in fermionic quantum gases up to this point, we
always implied that the gas consists of at least two spin components. Due to the
Pauli exclusion principle, a single spin component Fermi gas is non-interacting at
low temperature and no superfluid transition is possible. The foundation for turbu-
lence in two component Fermi systems was laid by Zwierlein et al. [Zwi05] in 2005 by
directly observing vortices in a rotating gas at low temperatures across all interac-
tion strengths. This observation is interpreted as direct evidence for the superfluid
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character of the system and provides the prerequisites for quantum turbulence.
The correct microscopic description of this superfluid depends on the inter-particle

interactions. For weakly repulsive interactions tightly bound bosonic molecules form,
which subsequently condense into a BEC at low temperatures. The regime of weakly
attractive interactions is covered by the theory of Bardeen, Cooper and Schriefer
(BCS). Here, the particles form Cooper pairs in momentum space. These Cooper
pairs are rather weakly bound compared to the molecules in the BEC regime and
they are not localized in space. In cold quantum gases it is possible to continuously
tune the interactions from the BEC to the BCS regime by the means of Feshbach
resonances. This is known as the BEC-BCS crossover. Readers unfamiliar with this
crossover are asked to proceed to the next chapter where it is presented in more
detail.

The first question that comes up with regard to fermionic quantum turbulence is
directly connected to the BEC-BCS crossover. In the BEC regime of tightly bound
molecules the expectation is that the system closely resembles bosonic gases. In the
BCS limit it is less clear if the superfluid state can survive during the emergence of
turbulence or if it is destroyed by phase defects [Tsa15]. Assuming that quantum
turbulence is observable in the entire crossover, the next question is if the BEC
regime differs from the BCS side or if both show the same behaviour.
Additionally, the regime of strongest interactions, namely the unitary Fermi gas is

of great interest in the context of turbulence. This is because the strong interactions
lead to the highest vortex density of any known superfluid, being on the order of the
interparticle spacing [Wla15]. Besides the unitary Fermi gas is directly applicable
to describe neutron stars. In these stars, there exists a pinning mechanism of quan-
tized vortices to nuclei in the neutron star’s crust which is still lacking a complete
description. Cold atom experiments could provide new insight into this process of
vortex pinning [Bul16].
The unitary Fermi gas could also serve as a testbed for theoretical models. Since

its vortex density is extremely high, it is already possible to excite turbulent states
in very small systems that are still accessible by numerical simulations. Very small
systems are also interesting from the viewpoint of quasiclassical and ultraquantum
turbulence. A new regime of turbulence could be found, where (quasi-)classical tur-
bulence is suppressed since no large scale flows can form, but where ultraquantum
turbulence still persists [Bul16].
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Finally, two component fermi systems offer an enormous range of exotic phases
that could be studied from the viewpoint of turbulence. We recently observed that
pairing correlations persist in the normal phase of our two component fermi gas and
that in some regions of the phase diagram the pairing energy is strongly increased
by non-trivial (i.e. beyond mean field) many body effects [Mur17]. In spin polarized
systems Larkin-Ovchinnikov (LO) and Fulde-Ferrell (FF) phases, connected to a
pairing gap oscillating in space, were predicted. Studying the effects of these and
other phases on turbulent states opens up an entire new field of research for the
future of quantum turbulence [Bul16].

2.6 Collective Modes
In the last section of this chapter a short overview of collective excitations in the
harmonic trap of our system is given. The reason is that in our current experimental
setup these modes are the only means available to us when attempting to excite
turbulent motion. A detailed theoretical discussion of these modes together with
experimental data for two dimensional Fermi gases can for example be found in the
following references [Vog12; Bau13; Vog13].

2.6.1 Dipole Mode

The dipole mode can be excited by first displacing the atom cloud with respect to
the harmonic trap minimum and then releasing it. This leads to a classical harmonic
oscillation in the trap without any cloud deformations (see Figure 2.13 A). Since the
oscillation is completely independent of the equation of state (EOS) of the cloud, this
dipole mode provides a reliable method to calibrate the trap frequencies ωx,y,z in all
directions. In our cylindrically symmetric trap we define the radial trap frequency
as ωr = 1/2(ωx + ωy) ≈ ωx.
The dipole mode is completely unsuitable for the excitation of turbulent motion

as it does not even excite any dynamics within the cloud itself.

2.6.2 Breathing Mode

The breathing mode corresponds to the oscillation of the cloud radius r (see Figure
2.13 B) and thus involves an alternating compression and expansion of the atom
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C

A

B

Figure 2.13: Variety of collective modes that can be excited in a harmonic trap.
The resonant frequencies ω of the different modes are in general not
equal. The white arrows indicate the velocity field of the cloud. The
dipole mode is just a collective oscillation of the whole cloud in the
harmonic trap (A), the breathing mode is an oscillation of the atom
cloud radius r (B) and the quadrupole mode is a transverse oscillation
of a cloud deformation without volume change (C).

cloud. As a result it depends on the compressibility and is thereby sensitive to
the equation of state ρ(µ, T, p) of the gas. The breathing mode is (up to technical
background heating) completely undamped since no shear forces arise during its
motion and the bulk viscosity ζ of our gas is zero [Vog12].
In order to obtain the frequencies ωB of the breathing mode we distinguish between

two limits. In the collisionless regime, where the collision rate is smaller than the
trap frequency, the atoms oscillate independently and one simply obtains

Collisionless Limit: ωB = 2ωr. (2.23)

Following Vogt [Vog13], in the opposite hydrodynamic limit, where the collision rate
is much larger than the trap frequency one obtains

Hydrodynamic Limit: ωB =
√

2γ + 2ωr. (2.24)
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Here, γ is defined by the relation between the pressure p to the density (or EOS) ρ

p ∝ ργ+1. (2.25)

From the fact that the breathing mode is completely undamped it inevitably
follows that it can not introduce any kind of turbulence into the system. The
energy that is injected into the breathing mode just remains at this large length
scale in the system.

2.6.3 Quadrupole Mode

The quadrupole mode is an oscillation of the cloud widths in x- and y-direction
with a respective phase shift of π to each other (see Figure 2.13 C). The volume of
the cloud remains constant during this oscillation and therefore it does not depend
on the EOS. However, in contrast to the breathing mode the quadrupole mode
obviously contains shear movement and thus probes the shear viscosity η of the gas.
The frequency ωQ of the mode can be derived for the two interaction limits as

Collisionless Limit: ωQ = 2ωr,

Hydrodynamic Limit: ωQ =
√

2ωr.
(2.26)

Since the quadrupole mode depends on the shear viscosity, which is only zero at zero
temperature, the oscillation is damped in this case. A universal relation between
damping rate ΓQ and frequency ωQ is given by [Bau13]

ΓQ =
√√

8(ωQωr)2 − 7ω4
r − ω2

r − ω2
Q. (2.27)

From the collective modes discussed, the quadrupole mode is the only one that
could possibly drive turbulent motion in the gas. It dissipates its energy on large
length scales (collective motion in the trap) through a mechanism existing on small
length scales (viscosity) and is a promising candidate for the observation of a direct
cascade.

2.6.4 Theoretical Formalism

Both the breathing or monopole and the quadrupole mode can be derived from
kinetic theory in a (semi-)classical picture. To this end one has to solve the equation
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of motion for the phase space distribution f(r,p, t) of the particles, which is given
by the Boltzmann equation[

∂

∂t
+ p

m
∇r + (∇rV (r))∇p

]
f(r,p, t) = −I[f ]. (2.28)

Here, V (r) is the harmonic potential and I[f ] is the collision integral for the scat-
tering process of two Fermions with different spin. The collective mode solutions
are found by linearising this equation for small deviations from equilibrium

δf(r,p, t) = feq(1− feq)Φ(r,p, t), (2.29)

where the additional f(1−f) factor is introduced for convenience [Bau13]. Following
Vogt [Vog13] the function Φ(r,p, t) can be approximated by expanding it into a
suitable set of bases φi that are also referred to as moments

Φ(r,p, t) =
n∑
0
ci(t)φi(r,p). (2.30)

One finds that the basis set

φ1 = ωR(x2 + y2), φ2 = ωR(xpx + ypy), φ3 = ωR(p2
x + p2

y), (2.31)

leads to a solution ΦB(r,p, t) = e−iωBtΦB(r,p) under the following mode frequency
equation

ωB − 4ω2
T = 0. (2.32)

The collision integral I[f ] is zero for all the moments of this solution and therefore
we recover the solution of the undamped breathing mode with ωB = 2ωR.

The solution for the quadrupole mode is found by using the following basis set
instead

φ4 = ωR(x2 − y2), φ5 = ωR(xpx − ypy), φ6 = ωR(p2
x − p2

y), (2.33)

where the last moment does lead to a non zero contribution from the collision integral
I[φ6] in this case. As a result, the mode frequency equation for the quadrupole
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solution ΦQ(r,p, t) does depend on the collision time τ as

(ω2
Q − 4ω2

R) + i

τωQ
(ω2

Q − 2ω2
R) = 0 (2.34)

In the collisionless (τω � 1) and hydrodynamic (τω � 1) regime we recover the
limiting frequencies as given above.
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3 Experimental Background

In this chapter we will recall some of the most important theoretical concepts that are
necessary for the experimental work with ultracold fermions. Additionally, some of
the techniques to create and probe the two dimensional Fermi gas in our experiment
are presented. We will focus only on those aspects that are important in the context
of turbulence and collective modes. A complete description of the experimental
apparatus is found in [Wen13], the theoretical concepts are reviewed in [Gio07].

3.1 Theoretical Framework
The reason for the continued attention experiments with cold atoms have received
for many years now, lies to a large extend in their simple theoretical description.
Compared to condensed matter experiments, where some Hamiltonian H describes a
substantially reduced system compared to the experiment, cold atoms can simulate
the dynamics of simple Hamiltonians very accurately. The root for the validity of
simple models lies in the low temperature limit where many physical details, like
the inner atom structure, are completely negligible. As a result, ultracold quantum
gases are perfectly suited to test our understanding of nature on a very fundamental
level.
The theoretical description of cold atom systems is mainly governed by three

important attributes of the particles: their quantum statistical behaviour, inter-
particle interactions and coupling to external potentials. Consequently, we begin this
section by reviewing the most important facts for each of these aspects. Afterwards,
we focus on many-body systems of Fermions in two dimensions and discuss their
low temperature phase diagram. Some details on the creation of external potentials
are found in the following section about the experimental preparation.
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3.1.1 Temperature Scales

At high temperatures both bosonic and fermionic gases behave alike and satisfy clas-
sical Maxwell-Boltzmann statistics (see Figure 3.1 A). Only after the particles are
cooled down and their de Broglie wavelength increases (B), their quantum mechani-
cal nature becomes important. Bosonic atoms, where the many-particle wavefuntion
is totally symmetric with respect to particle exchange, can all occupy the same state.
Their ground state in a harmonic potential is given when all particles are in the low-
est energy state (C). The wavefunction of a fermionic many-body system is totally
antisymmetric, which implies that two fermions can never occupy the same state.
As a result, the ground state of the fermionic system is given by the state where
each level up to some energy defined as Fermi energy EF is occupied by exactly one
atom (D).
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Figure 3.1: At high temperatures all particles behave point-like and the classical
description is valid (A). Only when the temperature is lowered or in
general the phase space density is increased (B), a description in terms
of quantum mechanical laws becomes necessary. In this quantum degen-
erate limit bosons tend to accumulate in the lowest state of the system
(C) while fermions fill up the levels with one particle each, starting at
the lowest energy (D).

The temperature scale at which this crossover from the classical limit (A,B) to
quantum degeneracy (C,D) occurs is given by the condensation temperature TC

for Bosons or by the Fermi temperature TF for Fermions respectively. The Fermi
temperature and the Fermi wave vector kF are defined as

TF := EF

kB
and (3.1)

kF :=
√

2mEF

~
. (3.2)
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The Fermi energy of N non-interacting Fermions in a three dimensional harmonic
potential with average trapping frequency ω̄ = (ωxωyωz)1/3 is given by EF =
(6N)1/3~ω̄. This EF describes single component Fermi gases at low temperatures
very well since short-range interactions are suppressed by the Pauli exclusion princi-
ple. For interacting systems and in order to relate experiments to theoretical models
or to nature it is often useful to apply a local density approximation (LDA). This
means that we assume that locally the gas in our trap behaves like a homogeneous
system with a chemical potential µ(r) = µ0− V (r) that is modified by the external
potential V (r). This approximation is valid as long as the potential varies slowly
over the correlation length of the system.
When applying an LDA it is more meaningful to compare the temperature T of

the gas to the Fermi temperature of a non-interacting homogeneous gas. The latter
is locally varying in a harmonic trap since it depends on the atom density ρ and is,
in two dimensions, given by

EF,2D ≡ kBTF,2D = ~2

2m4πρ2D. (3.3)

Despite the presence of interactions the non-interacting homogeneous Fermi temper-
ature TF,2D does still give the approximate temperature scale below which quantum
degeneracy is expected.

3.1.2 Interactions at low Temperatures

Alongside quantum statistics, also the inter-particle interactions have a crucial effect
on the dynamics of atoms at low temperatures. The description of interactions
is simplified a lot by the diluteness and low temperature of the gases. The low
atom density justifies neglecting all higher orders than two-body scattering in most
situations. Additionally, all atoms are in their electronic ground state and collisions
happen at momenta that are too low to excite any internal degrees of freedom. By
a transformation into the center-of-mass coordinate system the problem is reduced
to the issue of elastic scattering of a single particle wavefunction in a potential. The
latter is discussed in every standard textbook on quantum mechanics [Lan81] and
we restrict ourselves to recalling the most important results for ultracold gases here.
Starting in three dimensions, the stationary Schrödinger equation for the scatter-
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ing process in relative coordinates can be written as(
−~2∇2

2mr

+ Vint(r)
)

Ψk = EkΨk, (3.4)

wheremr is the reduced mass, r the relative coordinate, and the potential Vint(r) can
be approximated by a spherically symmetric Lennard-Jones potential as depicted in
Figure 3.2 A. In general, the only constraint on the form of the potential is that it
has a finite range, i.e. Vint(r) → 0 rapidly as |r| → ∞. Parallel to the solution of
the hydrogen problem, the spherical symmetry of the potential allows us to perform
a partial wave expansion of the wavefunction Ψ in terms of Legendre polynomials
Pl(cosθ) as

Ψ(r, θ) =
∞∑
l=0

AlPl(cosθ)Rkl(r). (3.5)

Accordingly, the radial wavefunction Rkl(r) has to satisfy the equation [Pet02]
[
∂2

∂r2 + 2
r

∂

∂r
+ k2 − l(l + 1)

r2 − 2mr

~2 Vint(r)
]
Rkl(r) = 0. (3.6)

The potential barrier El = −(l(l+ 1))/r2 is of crucial importance since it suppresses
all scattering processes with angular momentum quantum number l > 0 for low
relative particle momenta k. As a result, only s-wave scattering processes with
l = 0 contribute to the cross section σ in ultracold gases.
A solution is then obtained by approximating the radial wavefunction Rkl(r) for

r →∞ as

Rkl(r) '
1
kr

sin(kr − lπ/2 + δl). (3.7)

This term is equivalent to the observation that a finite ranged interaction potential
Vint(r) only adds a phase shift δl to each scattered spherical wave. At low temper-
atures all phase shifts δl with l > 0 are suppressed by the potential barrier and the
scattering process is described by the single parameter δ0. Finally, the form 3.7 of
the scattered wavefunction with restriction to l = 0 and the following definition of
the s-wave scattering length a

a = − lim
k→0

tanδ0

k
, (3.8)
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lead to the result for the total cross section

σtot = 4πa2

1 + k2a2 . (3.9)

One differentiates between two different limits of this equation. In the first case, if
ka� 1 one obtains

σtot = 4π
k2 . (3.10)

This is called the unitary regime. In this limit the dependence on the scattering
length a drops out and the only remaining scale of the system is its density. In the
second case, if ka� 1 one arrives at

σtot = 4πa2 (3.11)

In this limit the scattering process is independent of the momentum of the particles
and the scattering length a is the single scale that describes all interactions.
So far, we completely neglected the symmetry constraints for indistinguishable

particles on the wavefunction Ψ. When including these symmetry constraints one
obtains

Bosons : σtot = 8πa2

Distinguishable Particles : σtot = 4πa2

Fermions : σtot = 0

(3.12)

This confirms the statement above, that single component Fermi gases at low tem-
peratures are non-interacting.

In order to simplify the description of the inter-particle interactions further, the
realistic short ranged Lennard-Jones potential is replaced by an effective zero range
potential Vint = gδ(r) with coupling strength g. Using this simple form of the
potential, one can directly calculate dependence of the coupling strength g on the
scattering length a. This relation depends on the dimensionality of the sytem and
is given by [Wen13]

g1D = −2~2

ma1D
, g2D = −2π~2

m ln(ka2D) or g3D = 4π~2a3D
m

. (3.13)
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The two dimensional case is special since g does depend on the particle momentum
k. One can approximate the momentum dependence k by the typical momentum of
particles, which is given by the Fermi wavevector kF in two- and three-dimensional
fermionic systems. This motivates the utilization of the dimensionless scattering
parameter ln(kFa2D) to characterize the interactions in fermionic two-dimensional
cold atom systems. One feature of such experiments is that this scattering parameter
is not fixed but tunable over several orders of magnitude.
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Figure 3.2: Feshbach resonances are used as a tool to tune the s-wave scattering
length in atom collisions at low temperatures. A Feshbach resonance
occurs when the energy EB of a bound state of a closed channel coin-
cides with the energy of the scattering particles (A). The value of the
scattering length (B) can then be tuned by applying a magnetic offset
field B.

3.1.3 Feshbach Resonances

Many of the achievements of cold atom experiments, especially those using fermionic
species, rely on the control of inter-particle interactions via Feshbach resonances.
Feshbach resonances can be understood in a rather simple picture using interaction
channels [Chi10]. An interaction channel is given by a complete choice of quantum
numbers for all in- and outgoing particles that participate in a scattering process.
An open channel is a choice of quantum numbers where the total energy matches the
actual energy of the scattered particles. A closed channel has a different continuum
energy and is therefore energetically forbidden for the given set of particles (see
Figure 3.2 A).
A Feshbach resonance occurs if the closed channel possesses a bound state with

energy EB close to the continuum energy Econt of the scattered particles. This allows
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the incoming particles to scatter into an intermediate bound state in the closed
channel which decays back into the open channel sequentially. This intermediate
state has a large influence on the effective scattering length aeff of this process,
approximately given by [Pet02]

aeff ∝
1

Econt − EB
. (3.14)

In case the closed channel comes from a different internal hyperfine state of the atoms
it is possible to adjust the distance of the bound state EB to Econt by applying
a magnetic field offset B. The consequent shift of the scattering length can be
approximated by the following phenomenological relation [Chi10]

aeff(B) = a0

(
1− ∆

B −B0

)
, (3.15)

where a0 is the background scattering length at B →∞, B0 is the resonance position
where EB = Econt and ∆ is the width of the resonance (see Figure 3.2).

3.1.4 BEC-BCS Crossover

Now, that we introduced the relevant temperature and interactions scales for a two
component Fermi gas, we will take a brief look on the related phase diagram. Sur-
prisingly the fermionic system becomes superfluid at arbitrary interaction strengths
if the temperature is low enough. Currently, there exists no complete theoretical
description of the phase diagram, especially in the strongly interacting limit where
a small parameter for perturbation theories is absent [Ran14]. Nevertheless, the
two limiting mechanisms for superfluidity of weakly repulsive and weakly attractive
Fermions are well understood. Experiments have shown that the unitary Fermi gas
connects these two limiting cases smoothly. The strongly interacting regime, de-
spite lacking reliable theoretical description, has attracted a lot of interest due to its
remarkable properties, among them the highest known condensation temperature
at Tc ≈ 0.2/TF, a pairing pseudogap in the normal phase and minimal viscosity to
entropy ratio. The latter has recently been used to test a conjecture on the mini-
mum of this ratio that was derived using the anti-de Sitter/conformal field theory
correspondence [Cao11].
The mechanism of superfluidity is easily understood in the weakly repulsive regime

in three dimensions noting that there exists a bound state with energy EB =
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~2/(ma2) for a scattering length a > 0. As a result, more and more fermions will
form molecules when the gas is cooled. These tightly bound molecules are bosonic
and at some temperature Tc they will therefore form a superfluid by the usual mech-
anism of Bose-Einstein condensation. Consequently, the repulsive regime with a > 0
is named BEC-limit (see Figure 3.3 A).
In the opposite limit of weak attraction there exists no two-body bound state in

three dimensions and no tightly bound molecules can form. An alternative expla-
nation for superfluidity was provided by Bardeen, Cooper and Schrieffer [Bar57].
They could show that weakly attractive Fermions possess an instability towards
the formation of so-called Cooper pairs. In this way their BCS-theory provides the
required mechanism for condensation of the gas. Contrary to the BEC-limit the
Cooper pairing on the BCS-limit is a true many-body effect in the sense that it can
only occur in the presence of a Fermi surface. Furthermore, Cooper pairs form in
momentum space between particles with opposite momentum that are not localized
in position space.
The intermediate region of the unitary Fermi gas is less well understood. However,

through theoretical considerations in the zero temperature limit it is known that the
unitary Fermi gas provides a smooth crossover between the two limiting regimes.
As already mentioned, many experiments, for example from Zwierlein et al. [Zwi05],
could provide evidence for this BEC-BCS crossover also at finite temperatures. A
similar behaviour is observed in two dimensional Fermi gases (see Figure 3.3 B).
In this situation the theoretical description for condensation deviates once more
since true long range order is forbidden in two dimensions by the Mermin-Wagner-
Theorem [Mer66]. Instead, the system can show marginal behaviour which will be
discussed in the next section.

3.1.5 BKT Transition

The Mermin-Wagner-Theorem states that long-range order is impossible at non zero
temperature in all one and two dimensional systems with short-range interactions
and a continuous Hamiltonian symmetry. The underlying reason is that a broken
symmetry is restored by thermal fluctuations in two dimensions (so-called Gold-
stone modes). As a result the mechanism of spontaneous symmetry breaking fails to
explain the presence of the phase transition that is clearly observed in two dimen-
sions. Berezinskii, Kosterlitz and Thouless presented an alternative formulation in
the form of a topological phase transition in their celebrated work [Ber72; Kos73].

50



CHAPTER 3. EXPERIMENTAL BACKGROUND

BA

0.0

0.1

0.2

0.3

BEC

0.00

0.10

0.20

0.30

0.40

0.50

BCS

Nq/N

ln(kFa2D)
-8 -6 -4 -2 0 2 4

T/
T F

BEC Regime Unitary Limit BCS Regime

Figure 3.3: A: The phase diagram of a two component Fermi gas can be separated
into three different regimes. First, the BEC limit where particles form
tightly bound molecules which sequentially condense into the superfluid.
At the opposite end, the BCS-regime is described by the formation of
Cooper pairs in momentum space. In-between these limiting cases lies
the strongly interacting regime that lacks a simple description.
B: Measurement of the condensation temperature TC of a two component
Fermi gas in two dimensions. The colour scale shows the fraction of
condensed particles Nq/Ntot in the system. Taken from [Rie15b].

They predicted that one and two dimensional systems can show quasi-long-range
order or marginal behaviour at low temperatures where the correlations g in the
system decay algebraically with distance r as

g(r) ∝ r−η, (3.16)

with η = 1/4 for homogeneous systems. Consequently, we interpret the algebraic
decay of correlation functions that we observe in our two dimensional experiment
as evidence for the presence of a topological phase transition [Mur15b].
The topological phase transition can be understood in the picture of phase defects

[Had09]. Below the transition temperature Tc all vortices with opposite sign form
dipole pairs. The total circulation of a vortex dipole is zero and thus the phase
defects have no effect on the condensate phase at length scales larger than the healing
length ξ (see Figure 3.4 A). As a result quasi-long-range order persists despite the
presence of phase defects or fluctuations. If the temperature is raised, it is at some
point energetically favourable to break the vortex dipoles (see Figure 3.4 B). The
free vortices do not immediately cancel each other out any more and superfluidity
is destroyed.
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A B

Tc

Figure 3.4: Below the transition temperature the vortices form pairs and a quasi-
long-range order is restored (A). For temperatures above Tc the vortex
pairs break up and destroy superfluidity (B). Adapted from [Had09].

3.2 Preparation of a Degenerate Fermi Gas
In this section we will present the current status of the experimental setup. The
apparatus was initially set up to explore the BEC-BCS crossover in two dimensions.
As discussed above, quantum fluctuations are increased in these systems and ex-
periments in this regime are not only interesting from a theoretical viewpoint but
they also have connections to quasi two dimensional systems in nature like high-Tc
superconductors or graphene. As discussed in detail in chapter 2, two-dimensional
systems are special from the viewpoint of turbulence as well, due to their strongly
modified vortex dynamics.
In our experiment we are able to prepare the cloud in a highly anisotropic disc

shaped trap, such that excited states in one spatial direction are thermodynamically
inaccessible. As a result, we can go to a regime where all the dynamics of the sys-
tem are truly two-dimensional as required for the observation of the two-dimensional
BEC-BCS crossover. This requirement is a lot stricter than what is necessary to
observe two-dimensional turbulence as was shown by [Kwo14]. Their experiment, in
which they observed the relaxation of quantum turbulence, is performed in a trap
with an aspect ratio of ωr/ωz ≈ 20 in a cloud that was thermodynamically still three
dimensional. In this sense we can easily fulfil the requirements for two dimensional
turbulence and possibly even explore the crossover from two to three dimensional
systems.

All our experiments are conducted in an octagon experimental chamber in ultra-
high vacuum. This isolates our system from the environment while providing suf-
ficient optical access through ten high numerical aperture viewports. In our ex-

52



CHAPTER 3. EXPERIMENTAL BACKGROUND

periment we could already explore many aspects of the BEC-BCS-crossover in the
bulk gas successfully [Rie15b; Mur15b; Boe16; Mur17]. For these measurements a
rather low optical resolution and static trap geometry were sufficient and therefore
the apparatus was only slightly altered since it was built in 2009.
The next milestone we want to achieve now, is to set up experiments that also

have single atom resolution and tailor-made and time dependent optical potentials.
A large part of the work during the course of this thesis was put into the design,
construction and testing of an extension of the experimental machine which is going
to be added very soon. The new design includes a Spatial Light Modulator and
a very high resolution objective that are described in detail in chapter 5. In this
section we will limit ourselves to the current version of the experiment.

3.2.1 Hyperfine Structure of 6Li

For all our experiments we use the isotope lithium 6Li. The nucleus of 6Li contains
a total number of six protons and neutrons which leads, together with the three
electrons, to fermionic spin statics of the atom in total. As mentioned before, at low
temperatures all atoms are in their electronic 2S1/2 ground state. To produce an
interacting Fermi gas of at least two components, we make use of the lowest three
hyperfine levels of the ground state. We commonly label these states starting from
lowest energy level as states |1〉,|2〉 and |3〉 (see Figure 3.5 A). All of these states
are stable and we can convert different hyperfine populations into each other by
applying radio frequency pulses, for example in the form of a Landau-Zener sweep.
For each of the three possible two component mixtures exists a broad Feshbach

resonance that allows us to tune the interaction strength very precisely by applying
a magnetic offset field (see Figure 3.5 B). All the measurements that were done
for this thesis were performed in a spin balanced mixture of states |1〉 and |2〉 at
magnetic fields between 600 and 1400Gauss.

3.2.2 Experimental Setup

The two dimensional Fermi gas experiment is shown in Figure 3.6. As discussed
before, the octagon experiment chamber lies at the heart of the device. A complete
experimental cycle ends with the destructive imaging of the atoms and takes around
ten to fifteen seconds. The experiment itself lasts only between one and four seconds,
during the remaining time the gas is prepared. To this end, several cooling stages
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Figure 3.5: A: We use 6Li atoms in their lowest three hyperfine levels in our ex-
periment. At the magetic field we work at they are typically split by
∼ 80MHz.
B: All three possible mixtures have broad Feshbach resonances that al-
low us to accurately tune the interactions in the system.

were implemented in order to lower the temperature of the gas enough to cross the
transition into the superfuid state at T/TF . 0.2.
First, lithium vapour is produced in an oven at a temperature of T ≈ 600K

and enters the machine as a beam of atoms through a small nozzle. The gas beam
is cooled to a temperature of the order of one Kelvin by a Zeeman-Slower. The
Zeeman-slower ends in the experimental chamber where the atoms are loaded into
a magneto optical trap (MOT) which cools the gas down to temperatures of a
few hundred microkelvins. Next, quantum degeneracy is achieved by evaporative
cooling of the atoms in a high power crossed beam optical dipole trap down to
T ≈ 70 nK. Finally, the atoms are transferred from the crossed beam trap into a
highly anisotropic optical dipole trap where all dynamics in one dimension are frozen
out. The two optical dipole traps that are used in the final stages will be discussed
in the next section in more detail.
Two sets of water-cooled coils are embedded into the experimental chamber to

control magnetic fields. One set of coils (MOT-coils) is used in an anti-Helmholtz
configuration to produce the magnetic field gradient of the MOT, while the other set
of coils (Feshbach-coils) in a Helmholtz configuration produces a magnetic offset field.
Both coil sets are stabilized by PID loops and allow us to precisely set experimental
parameters like the scattering length.
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Figure 3.6: A: Overview over the experimental setup. Lithium is evaporated in
the oven (1) from where it enters the Zeeman-Slower (2). The latter
ends in the experimental chamber (3) where all the experiments are
performed. The ultra-high vacuum is maintained by ion pumps and
titanium sublimators (4). Taken from [Wen13]. B: Image of the present
state of the experiment taken from the same perspective .

3.2.3 Optical Dipole Traps

In this section we will take a close look at the two optical dipole traps (ODTs) that
are used in the final stages of the experiment. These traps will become useful for the
excitations of collective modes as shown in chapter 4. The concept of ODTs is also
important with regard to the spatial light modulator that we want to add to our
experiment soon and thus we will quickly review the most important results here.
ODTs can be fully understood with the help of a quasi classical picture. When

atoms are exposed to an oscillating light field E(t), a dipole moment D(t) is in-
duced. This dipole moment oscillates with the frequency ω of the driving field E(t)
and leads to a force of the light field on the atoms. Analogous to a driven har-
monic oscillator, a red detuned light field, with a driving frequency ω lower than the
resonance frequency ω0 of the atom leads to an oscillation in-phase with the drive.
Hence, the resulting force is attractive (see Figure 3.7 A). A blue detuned light field,
i.e. the oscillation is faster than the resonance frequency, leads to an out of phase
oscillation and a repulsive force. In this way it is possible to shape arbitrary poten-
tials for atoms by interfering laser beams in a clever way. The potential VODT(r) is
directly proportional to the intensity of the light field I(r) and is given by [Gri00]

VODT(r) ∝
( 1
ω0 − ω

+ 1
ω0 + ω

)
I(r). (3.17)

For these traps direct photon scattering is highly unwanted since it heats up the
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Figure 3.7: A: A simple optical dipole trap can be created by intersecting two laser
beams. If the beams are red detuned atoms will be attracted towards
regions of highest intensity (top). Blue detuned lasers create repulsive
potentials (bottom). B: The two dimensional confinement is created by
interfering two laser beams under a shallow angle. Taken from [Rie15b].

atoms. The background scattering rate Γsc is given by

Γsc ∝
1

ω − ω0
VODT, (3.18)

and therefore photon scattering can be suppressed by detuning the laser beams far
from the transition frequency ω0.

Currently, we make use of two different ODTs in our experiment. The crossed
beam ODT is created by crossing two laser beams with powers up to 200W and with
perpendicular polarization such that they do not interfere, as shown in Figure 3.7 A.
This creates a cigar shaped trap with an aspect ratio of about 10:1 (see Figure 3.8
A). The evaporative cooling stage is performed in this trap by gradually ramping
down the trap depth in a controlled way. To improve the transfer of atoms into the
following disc shaped ODT we can adjust the shape of the crossed beam ODT by
quickly modulating its center position using acousto optical modulators (see Figure
3.8 B).
The second and most important trap of the experiment is the ODT that creates

the two dimensional confinement of the atoms. This trap is created by two laser
beams that interfere under a small angle of 14◦ such that their interference pattern
contains several layers of highly anisotropic, disc shaped potentials (see Figure 3.7
B). We are able to load up to 95% of our atoms in one of these layers and measure
ratios of trapping frequencies on the order ωz/ωr ≈ 300 (see Figure 3.8 C). Here, z
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200µm 200µm 200µm

A B C
Martin PhD

Figure 3.8: Absorption images of atom clouds inside our two ODTs with different
geometries. Taken from [Rie15a].
A: The cigar shaped crossed beam ODT is used for evaporative cooling of
the atoms B: The shape of the crossed beam ODT can be adjusted by fast
modulation of the center position of the beams. C: Density distributions
of atoms inside a single layer of the two dimensional confinement.

points in the direction of the strong confinement and ωr = ωx ≈ ωy.
For atom numbers up to N ≈ 50000 per spin state we observe that all the atoms

are in the ground state of the confinement in z direction [Rie15a]. This confirms
the statement that all the dynamics in the system lie in just two dimensions. As
discussed in the beginning this is not a necessary requirement for the observation of
two dimensional turbulence and thus we can also work with higher atom numbers
in a thermodynamic three dimensional regime.

3.3 Detection Techniques
In cold atom experiments physical information is typically extracted by taking im-
ages of the atom cloud at the end of the experimental cycle. It is possible to
differentiate between destructive imaging methods like absorption or fluorescence
imaging and non-destructive methods like phase contrast imaging. The former rely
on resonant light scattering and therefore transfer momentum to the atom cloud. In
the current experimental setup we only employ absorption imaging yet, after having
installed the extension of the experiment we can also take fluorescence images.
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3.3.1 Absorption Imaging

The general idea behind absorption imaging is depicted in Figure 3.7. A resonant
beam of light is sent through the atom cloud along the z-direction in our experiment
and a camera image Iabs(r) is taken. The attenuation of the laser beam is then given
by the Lambert-Beer law. Therefore, we can extract the optical column density n(r)
of the cloud, after taking a second reference image Iref(r) without atoms and a third
image Ibg(r) without any light, as

n(r)σ0 = ln
(
Iabs(r)− Ibg(r)
Iref(r)− Ibg(r)

)
(3.19)

Here, σ0 is the scattering cross section. It is worth mentioning that this formula
is only accurate for laser intensities far below the saturation intensity Isat of the
transition. A detailed discussion of the corrections that need to be taken into account
at higher intensities in our system is found in reference [Nei17].
In Figure 3.8, several examples for atom density distributions obtained through

absorption imaging are shown. At the magnetic fields we work at, the typical dis-
tance of the hyperfine states of 6Li is about 80MHz with a transition linewidth of
around 5MHz. Therefore a single absorption image contains density distribution
of a single spin component only. However, we are able to take a second absorption
image that is resonant to the second hyperfine state in quick succession to obtain
the full density distribution. This ability, which we refer to as two state imaging,
enables us to measure spin correlations functions in our cloud.

3.3.2 Fluorescence Imaging

The biggest drawback of absorption imaging is the limited signal-to-noise ratio due
to the photon shot noise and the saturation of the optical transition. This makes it
very difficult to reach single atom resolution by taking absorption images. Instead,
the method of fluorescence imaging has to be applied. The idea is to image the
photons that are emitted by the atom cloud through the process of spontaneous
decay, while it is excited by a resonant laser for example. These photons are emitted
in random directions and have to be refocused on a camera by an objective. The
number of collected photons is proportional to the number of atoms and to the time
the cloud is imaged. This means that the signal-to-noise ratio can be reduced by
increasing the exposure time. With the help of very sensitive cameras it is then
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possible to achieve single atom resolution with as little as 100 scattered photons as
we will show in chapter 5.

3.3.3 T/4 Imaging

We already mentioned that it is possible to access the momentum distributions of
cold atom clouds by means of a time of flight (TOF) expansion. The most frequently
used procedure is to switch off all potentials to let the atoms spread out in free space
according to

x(tTOF) = xi + pi · tTOF, (3.20)

where xi and pi are initial position and momentum of the particles respectively.
After sufficiently long expansion time tTOF the contribution of the unknown ini-
tial position becomes negligible and pi is approximately given by x(tTOF). This
approximation becomes exact only at t→∞.
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Figure 3.9: A modified time of flight expansion that provides access to the initial
momentum distribution at finite times. Taken from [Mur14]. A: After a
quarter trap period in a harmonic potential the momentum distribution
is mapped onto positions and vice versa. B: In-situ picture of the cloud
below the transition temperature Tc for superfluidity. No clear signal
for superfluidity is observable. C: The Momentum distribution, as ob-
tained via T/4-imaging, of the same cloud clearly show a macroscopic
occupation of the ground state.

We implemented an improved version of this TOF expansion in our experiment.
Instead of letting the cloud expand in free space we leave a residual, weak harmonic
trapping potential switched on. Now, after a quarter of the trap period tTOF = T/4
the initial momentum distribution of the particles gets mapped exactly onto their
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final position x(tTOF) = pi (see Figure 3.9). One can easily verify this claim for a
particle in a classical harmonic oscillator and the result also holds in the quantum
mechanical picture [Mur14]. In this way we can measure the exact momentum dis-
tribution that would appear at infinite times for a standard TOF expansion and a
finite time tTOF = T/4, where T = 2π/ωharm.

The consideration above is only valid as long as the atoms do not interact during
the TOF expansion. To ensure that this is sufficiently well satisfied we quickly ramp
to a magnetic field where inter-particle interactions are small, before starting the
expansion. Additionally, the two dimensional confinement leads to a very fast initial
expansion of the cloud in the third direction such that the gas quickly becomes too
dilute to interact.
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4 Measurements

In this section all measurements performed during this thesis are presented. They
are based on the excitation of collective dipole, breathing and quadrupole modes
in our two dimensional confinement ODT. These modes provide access to different
hydrodynamical or equilibrium observables like the equation of state or the vis-
cosity of the gas. We characterized the dependence of the quadrupole frequency
and damping rate on inter-particle interactions with an unprecedented accuracy for
the two dimensional Fermi gas. In order to search evidence for turbulence in our
systems we extracted the momentum distribution of our atoms through TOF mea-
surements. Additionally, we looked for phase defects directly in images taken after
a short period of expansion of our gas. At the end of the chapter we will present
recent measurements of the breathing mode showing a frequency doubling effect in
the superfluid phase.

4.1 Trap Frequencies
In order to normalize the following measurements correctly a precise determination
of the harmonic frequencies of our trap is necessary. To this end, we load a single
spin component Fermi gas in our trap. As discussed before, a single spin component
gas at low temperature is non-interacting and thus the frequency of the breathing
mode ωB is exactly given by

ωB = 2ωR. (4.1)

We excite this monopole mode in our single component gas and measure the oscil-
lation of the cloud widths over time. The excitation procedure we use to this end
is discussed in section 4.3. As expected, we observe an undamped oscillation with
a single frequency and some background heating on top (see Figure 4.1 A). By fit-
ting a superposition of a sine and a linear gradient to this data we extract the trap
frequencies ωx,y in x- and y-direction. The latter vary with the magnetic offset field
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B since our Feshbach coils produce a magnetic quadrupole confinement in addition
to the ODT potential. By measuring the trap frequency at different magnetic fields
and fitting its expected dependence on B to this data, given by

ω(B) =
√
ω2

0 + aB, (4.2)

we obtain an accurate frequency calibration at arbitrary magnetic field strengths
(see Figure 4.1 B). Here, the fit parameters are the frequency ω0 of the potential
that is produced by the ODT alone and some coefficient a that depends, for example,
on the geometry of our trap and the magnetic dipole moment of our atoms.
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Figure 4.1: A: Oscillation of the trap width in x direction after exciting a breathing
mode in a single component Fermi gas. B: Measurements of the trap
frequencies at different magnetic fields B. The solid lines are least square
fits of equation 4.2 to this data with 1σ-confidence bands.

In the region we are interested in, we measure trap anisotropies |ωy/ωx − 1| from
0.5 % at 1250G up to a maximum of 2.5 % at 690G . This justifies neglecting these
small deviations completely and working with an averaged frequency

ωR = 1
2(ωx + ωy) (4.3)

instead. The same procedure is used while imaging the cloud along the x axis to
obtain the frequency ωz in the strongly confined direction. It is given by

ωz = (7.14± 0.09) kHz. (4.4)

With a mean radial frequency of approximately wR = 23Hz this leads to an anisotropy
of ωz/ωR ≈ 310 and restricts all the dynamics to two dimensions.
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4.2 Dipole Mode
The dipole mode is an oscillation of the center of mass of the atoms cloud that leaves
the density distribution unaltered otherwise. As a result it is completely insensitive
to the hydrodynamic properties and the equation of state of the system and we just
use it to verify our trap frequency calibration at this point.
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Figure 4.2: A: In a harmonic trap the dipole mode leaves the density distribution of
the cloud unaltered. Instead the whole cloud moves along an elliptical
path in the trap as indicated. B: Shift of the center of mass of the cloud
in x-direction as function of time. The blue line is a damped sine fit to
the data

The dipole mode is excited by adiabatically ramping on the current through the
MOT coils. This produces an additional magnetic field gradient that slowly displaces
the center position of our trap up to several hundred µm. By suddenly switching
the MOT coils off again, a harmonic oscillation of the cloud in both directions is
initiated sequentially (see Figure 4.2). A sine function to the center position leads
to the following frequencies for a single component Fermi gas at B = 800G

ωx = 2π × (22.22± 0.05)Hz,

ωy = 2π × (22.69± 0.17)Hz.
(4.5)

These measurements agree well with our breathing mode calibration of ωx =
22.08± 0.03Hz and ωy = 22.54± 0.03Hz at this magnetic field. The slightly higher
frequencies of the dipole mode can be explained by the anharmonicity of our trap.
Since our excitation procedure for the dipole mode creates oscillations of signifi-
cantly higher amplitudes than those we use for the breathing mode, the former is

63



4.3. BREATHING MODE

much more sensitive to higher order terms of the potential. The observation that
the damping rate of the dipole mode is more than a factor two larger than that
of the breathing mode strengthens this theory further. Indeed, a measurement at
even higher amplitudes shifts the frequencies of the dipole oscillations of the single
component Fermi gas even further to ωx = 22.27±0.03Hz and ωy = 22.86±0.03Hz.
This dependence of the frequency on the oscillation amplitude is the direct evidence
for a small anharmonicity of our potential.

In conclusion, the frequency measurements of the dipole oscillation strengthen
our confidence in our trap frequency calibration. We observe the same anisotropy
between x- and y-axis of our trap. Additionally, we see that for higher amplitudes
the dipole mode damps out more quickly and its frequency shifts by up to 0.5Hz.
If we extrapolate this data to the zero amplitude limit we see a perfect agreement
with the breathing mode measurements at very low amplitudes.

4.3 Breathing Mode
The breathing mode is not only useful for a calibration of the trap frequency it is also
relevant from a theoretical viewpoint since it is connected to an SO(2,1) symmetry
of the system [Pit97]. It is predicted that in two dimensions this symmetry is broken
by a quantum anomaly [Ols10]. This quantum anomaly has not yet been observed
experimentally so far. Therefore, we repeated the study of the breathing mode,
initially reported by Vogt et al. [Vog12], in our experiment.

75µm
BA

x
y

C

Figure 4.3: Insitu images of the cloud 68, 72 and 80µs (A-C) after exciting a breath-
ing mode oscillation. These images have been produced by modulating
the inter-particle interactions via the magnetic offset field.
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4.3.1 Excitation Procedure

In order to excite the breathing mode, several different techniques can be applied
in our experiment. The simplest method is to gradually lower the depth of the two
dimensional confinement as far as possible without losing atoms. The weakened
confinement leads to an expansion of the cloud in the trap. A sudden ramp of the
trap depth back to its original value initiates a breathing mode oscillation of the
cloud sequentially. This method works for both single and two component gases and
leads to an oscillation of the cloud radius with rather small amplitude, independent
of the magnetic field (see Figure 4.4). For this reason we use it for both the trap
frequency calibration and the interaction dependence measurements in this section.
A second possibility is a quench or sinusoidal modulation of the magnetic offset

field B which allows us to manipulate the inter-particle interactions and the local
chemical potential µ(r) of the cloud. For example, a modulation of the magnetic
field for ten periods with a sine function at twice the trap frequency ωdrive = 2ωR

produces a breathing mode with a very large amplitude (see Figure 4.3). The initial
amplitude does depend on the offset field B in this case and thus this procedure is
less suited for precise measurements. On the other hand, we can excite a lot higher
amplitudes in this way which leads to some interesting observations like a frequency
doubling in the superfluid phase that will be discussed later.
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Figure 4.4: Time dependence of the cloud widths in x- and y-direction (A, B) after
adiabatically lowering the ODT potential and suddenly switching it back
on at t = 0.
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4.3.2 Measurements

To extract the dependence of the frequency and damping rate of the breathing mode
on the interactions we excite it at different magnetic fields and take insitu images
after different hold times t. We sum these images along one axis and fit a Gaussian
function to this data to extract the cloud widths σx and σy respectively. In Figure
4.5 we show both the sum and the difference of σx and σy for one particular magnetic
field over a time of 400ms or approximately 20 oscillations periods.
The sum of σx and σy shows very clear breathing mode oscillation without contri-

butions from any higher collective modes up to our measurement accuracy. This is
also observed in the difference of the cloud widths, which is consistent with zero for
all measured magnetic fields even at very large times. This is expected in the high
field regime where the anisotropy of our potential goes to zero. At lower magnetic
fields where the anisotropy of 2.5 % is not negligible for non-interacting systems this
is a first hint that we enter the hydrodynamic regime of the cloud. In this regime
the interactions lock the frequency in x- and y- direction [Vog12].
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Figure 4.5: A: The difference of the cloud widths in x- and y-direction shows no
time dependence and stays at zero for all measured times. B: The sum
σx + σy shows a clear sinusoidal oscillation of the breathing mode. We
fit a damped sine function to this data (blue line).

In order to extract the frequency ωB and damping rate ΓB of our breathing mode
we fit the following damped sine function to the sum of the cloud widths

W (t) = Ae−ΓBt sin(ωBt+ φ0) + h · t+W0. (4.6)

We introduced the second term to account for a technically induced heating of the
cloud during the hold time. All the measurements have been performed at the lowest
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temperatures we reach in our experiment. All the data with ln(kFa2D) . 3 has
therefore been taken below the transition temperature Tc to a superfluid [Rie15b].
We extract the Fermi wavevector kF of the system by averaging over the density
profile of the cloud and over several oscillations of the breathing mode.
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Figure 4.6: A: Measured frequency shift of the breathing mode oscillation in depen-
dence of interactions. We compare our data to a theoretical zero tem-
perature prediction by Hofmann [Hof12] (blue line, inset). The errorbars
are given by the statistical uncertainties of our fits. B: As expected, we
measure only very small damping rates that are close to the limit of a
non interacting single component gas.

Figure 4.6 shows the measured dependency of the oscillation frequency ωB and of
the damping rate ΓB on the inter-particle interactions. As expected, we observe that
the breathing mode is only very weakly damped at arbitrary interaction strengths
and that its frequency shows only very small deviations from 2ωR. We postpone the
detailed discussion of the results to the next section and focus now on the momentum
distribution measurements instead.
The momentum distributions have been obtained by our modified TOF procedure

that was discussed in chapter 3. We have studied the dynamics in the momentum
distribution both on small time scales during a single period of the oscillation and on
long time scales after many periods. The momentum distribution clearly shows the
macroscopic occupation of low momentum modes that is expected for the superfluid
phase. On short time-scales we see the oscillation of this condensate peak with the
breathing mode frequency ωB ≈ 2ωR (see Figure 4.7 A). For very large oscillation
amplitudes we observe a doubling of that frequency to ωB = 4ωR that we examine
closer at the end of this chapter.
On long time scales we see no change in the momentum distribution apart from

a slow decay due to residual background heating (see Figure 4.7 B). From the view-
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point of turbulence it follows that it is not possible to excite turbulent dynamics
by using the breathing mode. Energy is not transported in momentum space at all
since the breathing mode does not contain shear movements.
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Figure 4.7: A: On short time-scales we observe the breathing oscillation of the con-
densate peak in momentum space. Momentum distributions for different
times between one oscillation maximum at hold time t = 94ms and the
following minimum at t = 106ms are plotted. B: On long time-scales
the breathing mode has no effect at all on the momentum distribution of
the cloud. Several curves between t = 100ms and t = 500ms are plotted
that have been measured at the same phase of the oscillation.

4.3.3 Discussion

The behaviour of the breathing mode is best understood from the viewpoint of
symmetries. The δ(r) potential in the Hamiltonian that is used to describe the
interactions of cold atoms leads to a scale invariance of the system. This means
that under the transformation r → λr the potential and kinetic energy terms in the
Hamiltonian scale the same, i.e. H(r)→ H(r)/λ2. An additional harmonic potential
V ∝ r2 obviously breaks this scale invariance. It is replaced by a SU(2,1) symmetry
in this case. The SU(2,1) group can be represented by the group of rotations in a
2+1 dimensional space-time. Pitaevskii and Rosch [Pit97] were able to show that
a trapped gas that inherits this symmetry has a breathing mode with the exact
frequency ωB = 2ωR independent of the interaction strength.
In line with the previous obervations from [Vog12], our measurements confirm this

prediction with deviations from 2ωR to a few percent level. From the measurements
of the quadrupole mode that are presented in the next section we know that for a
range of −3 . ln(kFa2D) . 3 we are close to the hydrodynamic limit. At this limit
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the equation ωB =
√

2γ + 2ωR holds and it follows that the EOS is polytropic with
a polytropic index γ = 1.

We notice that even though our data agrees on qualitative level with the 2ωR

prediction, there is also a significant offset to larger frequencies. This can be ex-
plained by a quantum anomaly that has been predicted to occur in two dimensions.
The term quantum anomaly has been introduced in the framework of quantum field
theories and describes situations where a symmetry of the classical action is broken
by its corresponding regularized quantized theory. In the case of the Fermi gas in a
two dimensional harmonic confinement the regularization of the delta potential by a
short range cut-off leads to breaking of scale invariance [Tay12]. Different analytical
consideration and Monte-Carlo simulations have predicted interaction dependent
shifts of the monopole frequency ωB/ωR = 2 by this anomaly on scales from one
1 % to 20 % [Ols10; Tay12; Hof12; Gao12]. The predictions agree on the observation
that the breathing mode frequency is shifted to larger values.
We compare our data to the zero temperature calculation from Hofmann [Hof12]

(see Figure 4.6). We observe the predicted trend to higher frequencies in the right
interaction range on a qualitative level, however our deviation is only of the order
of 5 %. This could arise from temperature fluctuations since our gas has a non-zero
temperature of T/TF ≈ 0.1 or from a coupling to the quadrupole mode. Both lead
to a shift to lower frequencies since the quadrupole has a frequency of ωQ =

√
2ωR at

these interactions. A weak coupling of quadrupole and breathing mode is for exam-
ple induced by the small anisotropy of our potential. The temperature dependence
of this effect could also explain why Vogt et al. [Vog12] were not able to observe
the predicted trend to higher frequencies in the expected regime at temperatures of
T/TF ≈ 0.4.

In conclusion, we believe that we see an effect of the quantum anomaly on the
exact scale that is expected for non zero temperatures in our cold atom cloud. How-
ever, the effect is rather small and thus is it necessary to be aware of all the possible
systematic error sources to not mistake some of them for the quantum anomaly.
Most of these effects like trap anisotropy and temperature lead to a shift to lower
frequencies and can therefore not explain our measurements. The largest remaining
sources for errors are the calibration of our trap frequency ωR and possible anhar-
monicities. In order to obtain a lower limit for the observed effect we have compared
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our data to the larger of our two slightly different trap frequencies ωy instead of the
average ωR. This data shows the same trend to frequencies above 2ωR with a maxi-
mum of 2.025ωR. This further increases our confidence in the presence of a real effect.

The damping rates we observe for the breathing modes are very small, close to
the non-interacting limit of a single component gas. We observe a sharp feature
around ln(kFa2D) = 1 that we do not fully understand as of yet. The peak in the
damping rate could for example be explained by a coupling to the quadrupole mode
due to the anisotropic trap. The quadrupole mode has a larger damping rate at all
measured interactions and would thus lead to an increased damping here. This does
however not explain why the damping rate drops again for ln(kFa2D) < 1, since the
trap anisotropy increases monotonously with lower interaction parameters. Another
option could be that this peak is somehow connected to the transition into the
superfluid that occurs roughly at this point when coming from larger interaction
parameters ln(kFa2D) > 1.

4.3.4 Outlook

There are several measurements we could perform in the future to improve our
confidence in the observation of the quantum anomaly. Firstly, we could vary some
of the trap parameters like its frequency or its anisotropy to check what effect these
parameters have on our observations. A second option is to prepare a different two
component mixture. All the measurements that are presented here were carried
out in the |1〉-|2〉 mixture. By preparing a gas of the two ground states |1〉 and |3〉
instead, we obtain a system that feels the same trap potentials at different interaction
parameters ln(kFa2D). If this leads to a shift of our measured curves in dependence of
ln(kFa2D) we know that our observation has been created by systematic errors and is
not an effect of the quantum anomaly. Finally, it would be interesting to take curves
at different temperatures, especially in order to get a better understanding of the
sharp feature in the damping rate ΓB and to be able to compare our measurements
to the data from [Vog12] directly.
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4.4 Quadrupole Mode
In contrast to the breathing mode, the quadrupole mode is a pure surface mode
that does contain shear movements and it can therefore be used to probe the shear
viscosity of the fluid. A detailed study of the quadrupole mode in a two dimensional
Fermi gas was already reported by Vogt et al. [Vog12] in 2012. In this work they
observed a very good qualitative agreement of the quadrupole mode frequency and
its damping rate with predictions they obtained from kinetic theory. However, due
to technical limitations and higher temperatures of their atoms they did measure
significantly higher damping rates than the ones predicted. Consequently, they were
not able to observe the quadrupole mode very far in the hydrodynamic limit where
ωQ =

√
2ωR. For these reasons we repeated the characterization of the quadrupole

mode at lower temperatures just above the transition to a superfluid in our systems.
We are able to reach the hydrodynamic frequency limit in this way and find a perfect
agreement with the theory in addition.

120µmBA

x
y

C

Figure 4.8: Insitu images of the cloud at 0, 4 and 12µs (A-C) after exciting a
quadrupole mode oscillation. A comparison of Figures A and C reveals
a significant compression of the cloud along with the surface mode.

4.4.1 Excitation

To excite the quadrupole mode of our cloud we resort to our second crossed beam
ODT (see Figure 3.8 A). While our atoms are trapped inside the two dimensional
confinement we gradually ramp on this trap in addition. This leads to a redis-
tributions of the atom density in our trap such that the cloud becomes elongated
along the axis of the crossed beam trap (see Figure 4.8 A). By switching the sec-
ond potential off again, we initiate a quadrupole motion (see Figure 4.8 B and C).
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This technique leads to some additional compression of the cloud while both poten-
tials are superimposed and as a result we observe a substantial contribution from
the breathing mode to the oscillations (see Figure 4.9). We note that even at the
lowest currently available power setting the ODT laser already excites oscillations
with rather high amplitude. Thus, all the measurements that are presented in the
following were taken at rather large relative amplitudes of ∼ 25 %.
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Figure 4.9: Time dependence of the cloud widths in x- and y-direction (A, B) after
slowly ramping on the crossed beam ODT and suddenly switching it
back off at t = 0.

4.4.2 Measurements

To extract the frequency and damping rate of the quadrupole mode we proceed just
like we did when investigating the breathing mode. We excite the oscillation at many
different magnetic fields and extract the quadrupole and breathing contribution
by taking the difference and sum of the cloud widths σx and σy at different hold
times t (see Figure 4.10). We observe similar amplitudes for both breathing and
quadrupole and no, or only negligible contribution of higher order collective modes.
This separation into quadrupole and breathing mode is only valid in the limit of an
isotropic trap since any isotropy leads to a coupling of the modes. We neglected
any residual coupling in this work since our average trap anisotropy is given by only
1 %.
Figure 4.11 A shows measurements at several different magnetic fields. We use the

same equation 4.6 as for the breathing mode to extract damping rate and frequency
from this data. Evaluated qualitatively, we observe that the damping rate and the
breathing mode are connected through the universal relation given in equation 2.27
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Figure 4.10: A: The difference of the cloud widths clearly reveals that we excite
a quadrupole mode with the ODT ramping technique discussed in the
text. B: The sum of the cloud width shows a contribution of a breathing
mode of around 50 % to the oscillation. The dashed blue lines are sine
fits to the data.

(see Figure 4.11 B). This confirms that we do actually observe the quadrupole mode
in the observable σx−σy and that it is decoupled well from the breathing mode. The
small deviation of measurement at ln(kFa2D) > 0 for low frequencies can be explained
by the small anharmonicity of our trap. The calibration of the trap frequency ωR
has been performed for low amplitudes only and it becomes less accurate in this
large amplitude regime. From our measurements of the dipole mode we know that
this leads to a systematic error of one or two percent, i.e. on the same scale as the
deviations we observe here. For the regime with ln(kFa2D) < 0 other effects like, for
example, a larger background heating rate lead to additional shifts. Nevertheless,
our data agrees with the universal relation overall and deviations are on the few
percent level only. Additionally, we observe that we reach the hydrodynamic limit of
ωQ/ωR =

√
2 over a large range of interactions. These are the first measurements of

the quadrupole mode of the two dimensional Fermi gas this far in the hydrodynamic
limit.
The measured dependence of the quadrupole frequency ωQ and its damping rate

ΓQ on the interaction parameter ln(kFa2D) are shown in Figure 4.12 together with
a theoretical calculation for a classical gas at T/TF = 0.2. We estimate the average
temperature of our cloud by fitting a Boltzmann EOS to the wing of the measured
insitu density distribution [Boe16]. By averaging over several quadrupole oscillations
this leads to T/TF = 0.22± 0.05 which is just above the transition temperature to a
superfluid [Rie15b]. The results show again that we are in the hydrodynamic limit
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Figure 4.11: A: Quadrupole oscillations at different magnetic fields. In contrast to
the breathing mode we observe a strong interaction dependence.
B: Damping rate versus frequency of the quadrupole mode. The solid
line shows the universal relation that is expected between these two
quantities.

for a large range of interactions. We see the onset of the transition to the collisionless
regime around ln(kFa2D) ≈ 2, however we are not able to follow the curve up to
the limit of ωQ = 2ω since for the broad Feshbach resonance of lithium this would
require larger magnetic fields than we can currently reach in our experiment.
To confirm that our gas shows the correct behaviour in the connectionless limit

nevertheless we have taken one additional measurement with a single component
gas. The latter corresponds to a two component gas at ln(kFa2D) → ∞. We
measure a frequency of ωQ/ωR = 1.99 ± 0.01 and a very low damping rate of
ΓQωR = 0.035± 0.002. We postpone a detailed discussion of the theoretical models
and expectations to the next section and concentrate on the momentum space mea-
surements now.

We have tested several different driving schemes at different magnetic fields in
order to study how the quadrupole mode affects the momentum distribution of the
gas and whether we can excite turbulent motion in some way. For all the different
excitation procedures, among them, for example, a continuous excitation scheme
through sinusoidal modulation of the crossed-beam ODT, we qualitatively observe
the same behaviour (see Figure 4.13 A). The decay of the quadrupole mode leads
to a very quick increase of the temperature of the gas and thus to an increase of
the atom number at large momenta. This shift of energy from large to small length
scales does not occur locally in momentum space however. Instead the large scale
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Figure 4.12: A: At low temperatures just above the superfluid transition we ob-
serve that we stay far in the hydrodynamic regime for a large range of
interactions strengths. A theoretical calculation for a classical gas at
T/TF = 0.2 (blue line, inset) shows a remarkable agreement with our
data. B: We measure very low damping rates, in line with the same
theoretical prediction. The single outlier at B = 690G can be explained
by the larger heating rates through three body losses we observe at that
field.

motion of the quadrupole mode can dissipate its energy on small scales directly. As a
result, the requirement of a purely local interaction of length scales is not given and
no turbulent cascade can form. This consideration is confirmed by measurements
of equilibrium momentum distributions at different temperatures. By heating the
fluid by just leaving it in the trap for some time before the TOF measurement, we
are able to reproduce all of the different momentum distributions that we observe
in the quadrupole mode also in equilibrium (see Figure 4.13 B).
In summary, we observe that the quadrupole mode always dissipates its energy

by directly heating the gas. Thus it is not suited for the creation of turbulent
motion even though it is, in contrast to the breathing mode, directly connected to a
dissipative mechanism. We draw the conclusion that all the lowest order collective
modes that we can excite in our harmonic trap are inapplicable to the task of creating
turbulence. Nevertheless, we do not plan to abandon our search for turbulence in
the two dimensional Fermi gas. The extension that will be added to our experiment,
will hopefully allow us to observe turbulence in the near future.
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Figure 4.13: A: The decay of the quadrupole mode has a strong effect on the momen-
tum distribution. It dissipates its energy through viscous flow which
leads to a fast growth of the particle number at high momenta.
B: The same effect can be observed through background heating effects
by leaving the atoms in the trap for a long time instead.

4.4.3 Discussion

As derived in section 2.6.4, in the framework of kinetic theory the problem of finding
the dependence of the quadrupole frequency and damping rate on interactions is
reduced to a computation of the scattering time τ . To this end Baur et al. [Bau13]
take different levels of effects into account. The scattering time of gas in the classical
limit is proportional to the particle density and is given by

τcl = R′(a2D, T )
EF

= R(a2D, T ) T

Nω2
R

(4.7)

in the harmonic trap, where R is some interaction and temperature dependent co-
efficient, N is the particle number and T the temperature of the gas. If we consider
the case of a quantum degenerate Fermi gas additional effects come into play. Pauli
blocking reduces the scattering rate significantly when the temperature is lowered.
At the same time, medium effects like the presence of a pairing gap lead to an in-
crease of the scattering rate. It has been found that both effects more or less cancel
each other out even at very low temperatures T just above the superfluid transition
[Rie08]. Nevertheless, Baur et al. [Bau13] included both effects in their numerical
evaluation of the collision integral I[f ].

The comparison of this model to the experimental data of Vogt et al. [Vog12]
shows a very good qualitative agreement of both the measured frequency ωQ and
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the damping rate ΓQ with the theoretical predictions. However, in this experi-
ment they have not been able to observe frequencies in the hydrodynamic limit
ωQ =

√
2ωR, and they have measured a significantly higher damping rate than what

is expected in this regime. A significant theoretical effort has been made to explain
this increased damping rate. Approches include a detailed study of medium effects
[Ens12], a numerical solution of the Boltzmann equation [Wu12] or the inclusion of
higher order moments and trap anharmonicity and anisotropy [Chi13]. However, no
final picture to explain the increased damping rate could be obtained. Furthermore,
due to experimental limitations for smaller magnetic fields, the theoretical expecta-
tions for the two dimensional Fermi gas have only been verified on the right hand
side of the crossover for ln(kFa2D) > 0.

We compare our results to the expected values obtained from the simple classi-
cal approach while taking a slightly reduced scattering rate through Pauli blocking
into account. We got the theoretical results from a theory group we work together
with. We observe an impressive agreement of the classical prediction with our mea-
surements just above the superfluid transition at T/TF ≈ 0.2. This applies also to
the previously unexplored regime of ln(kFa2D) < 0 and confirms that the classical
model does indeed lead to an accurate description of collective modes even very far
in the degenerate regime. In contrast to Vogt et al. [Vog12] we see no significant
deviation of the damping rate ΓQ. Therefore, we conclude that their measurement
has to be explained either by systematic errors or by a temperature effect. Since
the theoretical model already uses a classical picture, the latter seems unlikely.
The small deviations of our data points from the theoretical prediction can be

explained by systematic effects. The errorbars in Figure 4.12 do solely contain the
statistical errors of the sine fits. Systematic uncertainties in our temperature de-
termination, for example, have a rather strong effect on the theoretically expected
scattering rate. The small growth of the frequency towards the BEC regime could
also be explained by the trap anisotropy that leads to a coupling to the breathing
mode at 2ωR. This anisotropy does increase for lower values of ln(kFa2D) as our
measurements show. The significantly higher damping rate for our single data point
at ln(kFa2D) = −7 can be explained by the three-body losses we observe at that field.

In conclusion, we observe an almost perfect agreement with classical theory. This
confirms that effects due to the quantum degeneracy do cancel each other out to the
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largest extend. In both the BEC and BCS limit we observe the transition away from
the hydrodynamic regime at the predicted interaction strength. Additionally, our
measurements show the characteristic asymmetry of these limits that is expected in
the classical picture due to the higher boson density in the BEC limit.

4.4.4 Outlook

In this work we were able to show that classical kinetic theory is sufficient to describe
the collective modes of a degenerate Fermi gas in two dimensions even on a quan-
titative level. However, apart from a single measurement of the single component
Fermi gas, we have not been able to reach the collisionless limit due to experimental
limitations. In line with the breathing mode we plan to extend our present dataset
up to ln(kFa2D) ≈ 8 by switchting to a |1〉-|3〉 mixture in the future. Furthermore,
by an additional measurement of the temperature dependence of the damping rate
we could extract the dependence of the viscosity of the latter. The same measure-
ment was already performed by Vogt et al. [Vog12] at higher temperatures and we
could check to what extend we are able to reproduce their findings.

4.5 Additional Observations

4.5.1 Short TOF Measurements

In chapter 2 we presented different observables to reveal the presence of a turbulent
state. Up to this point we have only discussed one of them, namely the momentum
distribution of the gas. Since our trap is nearly isotropic we are not able to observe
an inversion of the aspect ratio of the superfluid cloud when we let our gas expand
from the trap. Consequentially, we are not able to distinguish a possible expansion
with constant aspect ratio, as expected for a turbulence cloud, from the gas in
equilibrium either. We can, however, try to observe phase defects directly by letting
the gas expand for a very short time before imaging.
To this end we apply the same technique that was already described in reference

[Wen13]. In contrast to our usual TOF imaging sequence, we gradually ramp down
the two dimensional confinement on a time scale of 100 to 200µs and take an image
after about 4ms. This prevents the cloud from expanding too quickly in z-direction
and becoming too dilute as a result. Single images of the atom cloud we obtained
in this way are shown in Figure 4.14.
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Figure 4.14: Single, i.e. non averaged, images of the atom cloud after a short TOF.
Even in equilibrium, at the coldest temperatures we can reach, we ob-
serve large density fluctuations (A). The damped quadrupole transfers
a large amount of heat to the cloud. Thus we cannot observe any phase
coherence in this case (B). As expected, the breathing mode shows the
same density fluctuations we see in equilibrium (C).

All our measurement below the superfluid transition show large density fluctua-
tions in the cloud. These originate from phase defects and become visible through
interference of the atom cloud with itself. These phase defects are, however, not
effects of turbulence but can be observed even in an equilibrium state. Their origin
is the inherent property that phase fluctuations are increased in the two dimensional
superfluid as discussed in context with the BKT theory in chapter 3. We are not
able to observe single vortices in either the quadrupole or breathing mode on the
level of our current imaging resolution.

4.5.2 Large Amplitude Breathing Mode

One feature of the breathing mode oscillation we have observed recently in our
experiment is a doubling of its oscillation frequency in momentum space. We observe
this effect only at very large amplitudes after exciting the breathing mode by a
modulation of the magnetic offset field B. Surprisingly, the frequency doubling
occurs only in the superfluid phase and it is only visible in momentum space. The
evaluation of insitu images shows an oscillation with a small asymmetry between
the rising and falling edge of the sine like curve, but with the expected frequency
ωB = 2ωR (see Figure 4.15).
As we observe this effect only in the superfluid phase, our initial approach was

to check whether one can already understand it in the framework of Bose-Einstein
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Figure 4.15: A: For small amplitudes we observe an oscillation with the expected
frequency ωB = 2ωR in momentum space (green dashed line). If the
amplitude is increased, the peaks of the oscillation become sharper
and split such that the oscillation frequency is effectively doubled (blue
line). The plot shows the height of the condensate peak in momentum
space or, equivalently, the density of atoms with k = 0. In the oscilla-
tions of the insitu cloud width we do not observe the same frequency
doubling but we measure a significant deviation of the oscillation from
a sine function (dotted line). B: The Fourier spectrum of the sharp
peaks shows significant contributions from very high frequencies up to
≈ 20ω/ωR.

condensation. To this end, we use a time-dependent variational ansatz for solving
the Gross–Pitaevskii equation for a T = 0 condensate that is confined by a har-
monic potential. Following Perez-Garcia et al. [Per96], the proper form of the trial
wavefunction for our condensate is given by

Ψ(x, y, z, t) = A(t)
∏

η=x,y,z
exp

[
η − η0(t)

2w2
η

+ iηαη(t) + iη2βη(t)
]
. (4.8)

This function describes a Gaussian distribution with time dependent center (x0, y0, z0),
amplitude A, width wη, slope αη and curvature β−2

η . By inserting this equation into
the Lagrangian corresponding to the Gross–Pitaevskii equation and minimizing the
action with respect to each of these parameters one arrives at a coupled non-linear
evolution equation for each parameter [Per96]. We got the numerical solutions of
these equations of motion for initial conditions close to our experiment from a theory
group we work with. The preliminary results for the breathing mode are shown in
Figure 4.16.
We conclude that we are able to explain the effect we observe, at least qualitatively,
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Figure 4.16: A: For a weak non-linearity in the Gross–Pitaevskii equation we observe
the expected sinusoidal oscillation in momentum space with ω = 2ωR
for small amplitudes (green line). If the amplitude is increased the
peaks become sharper due to the non-linearity in the equations of
motion and an additional small second peak becomes visible (blue
line). B: For strong non-linearities we observe frequency doubling to
ω = 4ωR even at low amplitudes (green) and the same behaviour but
with sharper peaks at larger amplitudes (blue). The y-axes of the plots
are rescaled and shifted in order to show them in a single figure.

by this bosonic theory at zero temperature. In the regime of large amplitudes and
strong non-linearity, or equivalently large interactions, we find the same frequency
doubling and sharpening of the peaks we observe in our Fermi gas. Furthermore,
the variational solution leads to the following prediction for the relationship between
the condensate momentum peak nk=0 and its insitu width w

nk=0 = w√
ẇ2w2 + 1

. (4.9)

The dependence of nk=0 on the derivative of w explains why even a small deviation
from a sinusoidal oscillation of the insitu width can lead to strong effect in momen-
tum space, in line with our observations in Figure 4.15.

To summarize, our first theoretical attempt to understand the breathing mode at
high amplitudes does already explain most of the effects we observe. Since these are
already covered by a bosonic ansatz, the fermionic nature of our lithium atoms does
not seem to play a major role here. It is not clear yet why we observe the effect
of strong non-linearity only at large amplitudes. To solve this question we want to
carry out further measurements with weaker interactions in the near future. In this
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way we should be able to observe a sharpening of the peaks in momentum space
without frequency doubling as predicted by our theory (see Figure 4.16 A). This
exceptional behaviour of the breathing mode has not been mentioned in literature
at all by now. This is probably due to the fact that it occurs only for very large
amplitudes, opposite to the regime where the breathing mode is most frequently
studied.
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5 Outlook

In this chapter we will give an overview over the reconstruction of the experimental
setup that was planned, built and tested during the work on this thesis. The add-on
has been designed around three main components: a spatial light modulator (SLM)
to tailor arbitrary and time dependent potentials for our atoms, a high resolution
objective to both manipulate and probe the cloud on length scales down to one
micrometer and an extremely sensitive electron multiplying camera (EMCCD) with
single photon counting capability. Equipped with the new objective, the camera will
allow us to get single atom resolution even when scattering only very few photons
per atom.
Together, these components provide us with new tools to significantly extend our

experimental capabilities. We will discuss some of their applications at the end
of this chapter, among them our plan to assemble many body systems on lattices
from small building blocks at extremely low entropy. Single atom resolution and
time of flight measurements enable us to measure arbitrary correlation functions in
these systems at very low temperature. Finally, we will also explore how these new
capabilities can help us to create and detect turbulent states in the two dimensional
Fermi gas.

5.1 Spatial Light Modulator
In section 3.2.3 we explained how detuned laser beams can be used to create po-
tentials for neutral atoms that are proportional to the light intensity. It follows
that if one is able to shape some arbitrary light intensity distribution, that same
distribution forms a potential landscape for the atoms. Many experimentalists have
made use of this fact and built various elaborate laser setups like, for example, our
two dimensional confinement ODT. Usually, large efforts have to be made to find
and set up the correct optical alignment to achieve a desired potential shape.
An idea circulating in the cold atom community for several years now, is to shape

the intensity distribution of the light into arbitrary potential by using adaptive
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optics that allow to create many different potentials within a single optical setup.
Spatial light modulators (SLMs) based on liquid crystals and digital micromirror
devices (DMDs) in particular have been chosen and used for this purpose. We have
decided to implement a phase modulating SLM in our setup for arbitrary potential
creation. SLMs in contrast to DMDs switch between two potentials in a continuous
way naturally and are thus more suited for the creation of time dependent potentials.
In this section we will provide some background knowledge about potential cre-

ation with SLMs and we will present the optical setup that we designed for this
purpose. A detailed discussion of spatial light modulators in the context of cold
atom experiments is, for example, found in reference [Bij13].

5.1.1 Phase Modulation

A phase modulating SLM is able to imprint an arbitrary phase pattern on the wave
front of an incident light field. This is achieved by applying an electric field to cells
that contain parallelly aligned liquid crystals (PAN-LC) such that the directions of
the birefringent molecules change (see Figure 5.1 A and B). In this way our SLM is
able to set the phase of the light field from 0 to 2π in 256 steps independently on
an array of 800× 600 pixels.

f fA B

Transparent electrodes Alignment Layers

CE=0 E>0

ESLM EAtom= F( ESLM )

Figure 5.1: Working principle of an SLM. A: If no electric field is applied, the rod-
like liquid crystal molecules align to the alignment layers and the light
beam passes unaltered. B: If an electric field is applied, the molecules
are polarized and their direction changes. This slows the passing light
down and its phase gets shifted compared to the previous case. C: In
order to use phase modulation to create arbitrary intensity distributions
one has to project the Fourier field of the SLM plane onto the atoms.
According to Fourier optics this can be achieved by arranging a single
lens in a 2f -setup.

In order to use the phase modulation of the electric light field in the SLM plane
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ESLM to create arbitrary intensity patterns in the atom plane one has to resort to
Fourier optics. A lens at the focal distance of the SLM will produce a light field that
is the Fourier transform of ESLM at its focus (see Figure 5.1 C). Since the intensity
distribution after the Fourier transformation is dominated by the wave front of the
incident light field this allows us to shape arbitrary two dimensional potentials in
the focal plane of the lens. The confinement in the third direction is provided by
the same disc shaped ODT we introduced in chapter 3.

5.1.2 Phase Retrieval

Finding the correct phase pattern to obtain a desired trapping configuration, i.e. the
process of so-called phase-retrieval, is in general an unsolved problem. However there
exist several numerical algorithms that are able to closly approximate some target.
We mainly rely on the so called mixed-region amplitude freedom iterative Fourier
transform algorithm (MRAF-IFTA) [Pas08] and a conjugate gradient descent (CGD)
search method [Har14]. We recently implemented graphics card acceleration for both
of these algorithms. The latter allows us to stabilize relative intensities of the SLM
potentials on time-scales up to the refresh rate of 120Hz of the SLM in addition to
a total intensity stabilisation achieved with acousto optical modulators.

A B C D

Figure 5.2: Camera images of optical potentials created by the SLM. When using
the MRAF algorithm, continuous traps (A,B) have a lower light uti-
lization efficiency of around 40 % because a lot of light is distributed
in so-called noise regions on the outside of the trap. When using the
gradient minimization approach instead, or in the case of discrete con-
figurations (C,D), we reach efficiencies up to 90%.

Some examples of created optical potentials are shown in Figure 5.2. In order
to shape high quality potentials it is absolutely essential to use a camera feedback
loop to factor in optical aberrations in the real-world setup [Bru15]. One outstand-
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ing ability of the SLM is that it can be used to both detect and correct optical
aberrations of the wavefront [Bij13].

5.1.3 Optical Setup

We built the optical setup for the SLM that is shown in Figure 5.3 with several
design goals in mind. First of all, the efficiency of the SLM is highly dependent on
the polarization of the incident light. Therefore, we use a polarising beam splitter
(PBS) together with a λ/4-plate to obtain a defined polarization behind the fiber
out-coupler (A). Next comes a telescope (f1 and f2) to increase the beam diameter,
such that we illuminate the whole chip of the SLM. It is important to illuminate
the SLM under an angle of less then 20◦ since its light utilization efficiency severely
decreases otherwise.

AOD

PD

PD

SL
M

CC
D

λ/4 PBS

ObjectiveB

A

C

f1

f2

f3

f4

f5

Figure 5.3: Sketch of the optical setup that was build for the SLM.

The final Fourier image of the light in the atom plane is produced by a high
resolution objective which is not shown in this figure. The most important goal
was to make use of the full aperture of this objective to reach the highest possible
resolution. In order to achieve this gaol we had to replace the simple 2f-setup
discussed in the previous section by a 6f-setup. To this end we added a telescope
between SLM and objective that magnifies the beam to the size of the objective.
This telescope is composed of the lenses f4 and f3 in the figure. When choosing
these lenses one has to keep in mind that the total distance of the SLM to the atom
plane d has to be approximately given by d = 2f3 + 2f4 + 2fobj. Otherwise the
approximations of Fourier optics break down.
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One major advantage of the 6f-setup is that it allows us to remove unwanted light
in the first Fourier plane at position (B), using an aperture. Unmodulated stray
light is for example always produced by the SLM itself due to its limited efficiency.

In order to regulate the total laser intensity and to be able to implement a camera
feedback loop we additionally added a beam sampler at position (C) directly before
the beam enters the objective. After being partially reflected by this splitter, the
beam is divided again until it is finally incident on two photodiodes and a camera.
Two separate photodiodes are necessary because we want to work in very differ-
ent optical power regimes with the SLM. If we produce very small structures small
laser powers (� 1mW) are sufficient and we need a larger fraction of light on the
photodiode for power regulation. If we want to produce large lattices or continuous
traps more power, i.e. up to several watts may be required and the second photo-
diode has to be used for regulation. The camera is used both for diagnostics and
feedback purposes. Here, the lens f5 that images the light on the camera has to be
chosen such that a sufficient magnification factor with respect to the objective is
given (here: f5/fobj ≈ 20).

The last modification we added to our setup is an acousto optical deflector (AOD)
at position (A). The AOD allows us to split the beam into several parts with dif-
ferent outgoing angles that sequentially fall on the SLM. This produces multiple
copies of the same light distribution in the atom plane which are shifted in posi-
tion. We could, for example, split a usual regular lattice into a super lattice. The
advantage of using the AOD to additionally modify potentials is that it is much
more straightforward to implement time dependent potentials and that the AOD
is much faster than the SLM. The latter is always limited by its refresh rate of 120Hz.

This optical setup is already built and aligned and we were able to produce high
quality trapping potentials on the diagnostics camera. We were also able to create a
second copy of the trapping potential with the AOD, where we could control both the
relative intensity and position of the two copies as a function of time. Summarized,
the SLM is fully operational and can be added into the experimental setup soon.
At a later stage we plan to add an additional power regulation circuit to control the
relative power of the different beams that the AOD creates.

87



5.2. HIGH RESOLUTION OBJECTIVE

5.2 High Resolution Objective
The high resolution objective has been designed by our group in order to achieve
the best possible resolution for the constraints that were given by our experimen-
tal setup [Ser11a]. First, since the objective had to be placed outside the vacuum
chamber a rather large focal length of fobj = 20.3mm was required and the effect of
the vacuum window on the light path had to be taken into account. Furthermore,
the objective had to be diffraction limited at both wavelengths of λ = 1064 nm and
λ = 671 nm. The former is used for the ODTs that are created by the SLM while
the latter is used for imaging of the 6Li atoms.

The objective that has been developed and extensively tested in our group fulfils
all of these requirements with a theoretical numerical aperture of NA = 0.6. A
simulation of the light path has been used in order to correct for any effect of the
vacuum window. As a consequence of this correction a precise alignment of the
objective with respect to the viewport proved to be essential. Additionally, the
components have been chosen such that chromatic aberrations are minimized and
the resolution limit is reached for both wavelengths. The objective has a field of view
of 200µm with a resolution of 1.08µm at λ = 1064 nm and 0.68µm at λ = 671 nm.

5.2.1 Optical Setup

The objective is aligned along the z-axis in our experiment since we want to image
in the plane of our two dimensional confinement. This immediately complicates
the optical setup, since all the beams passing through the viewport on top of the
vacuum chamber have to pass the objective in addition. A complete list of all the
implemented beams is given in the following. The colors listed in the brackets are
the colors used in Figure 5.4 for the respective beams.

SLM-Beam (1064 nm, red)
The objective has to image the light coming from the SLM onto the atoms. It
acts as the final lens of the 6f -setup as discussed previously.

Alignment beam (531 nm, blue)
We implemented an auxiliary alignment beam that is reflected by the vacuum
window. This allows us to precisely align the objective to the window. We
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have seen that their relative angle has to be accurate to a few milliradians in
order to achieve the best resolution.

Fluorescence Light (671 nm, green)
The light that is emitted by the atoms through spontaneous emission is colli-
mated by the objective. We set up a path for this light to the camera where
it is imaged.

Down-Top Absorption (671 nm, green)
We want to produce absorption images with the objective as well. Therefore,
we added resonant collimated laser beam that is coming from below the cham-
ber and passing trough the objective. Sequentially this beam will take the
same route to the camera as the fluorescence light.

Top-Down Absorption (671 nm, green)
In our current experiment we use a low resolution absorption imaging path
below the chamber which yields images with a larger field of view than the high
resolution objective. To keep this imaging path intact, a second absorption
beam coming from a source above is required. The objective then collimates
the beam in the atom plane.

MOT-Beams (671 nm, green)
Our MOT requires trapping beams coming from six different directions. Cur-
rently we create the MOT by sending in a beam from above onto a mirror
below the chamber where it gets reflected. This setup will be inverted such
that the MOT beam will start below the chamber, pass the objective and get
reflected sequentially.

Our design of the setup containing all of these beams is presented in Figure 5.4.
The complete setup is aligned vertically on breadboards above and below the vacuum
chamber.
Starting at the top (A), we implemented a narrow green alignment laser. Its

beam is split by a 50 : 50-Beamsplitter such that one path is focused on a camera
while the second beam travels through the objective. Some part of this light is
reflected by the vacuum window and comes back to the camera. By comparing the
position of this beam on the camera with a reflection from the objective we are able
to align the objective to the window with an accuracy much better than one millirad.
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Figure 5.4: Beam paths around the high resolution objective.

The light coming from the SLM (red) is responsible for the quality of our poten-
tials. It is highly sensitive to optical aberrations and in an effort to minimize the
latter we inserted the SLM light as close to the objective as possible. The light is
coming directly from the SLM board shown in Figure 5.3. To combine it with the
671 nm imaging beams we use a dichroic mirror that only reflects infra-red light.

On the lower breadboard, the lens f1 is used for absorption imaging in the current
experimental setup. It is aligned to the atom plane and focuses the absorption beam
coming from above onto a camera below the setup (B). We added a PBS to this
beam path such that the MOT-light can be inserted below the chamber (C). This
MOT light is collimated by the same lens f1 used for imaging and passes through
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the objective sequentially. Having passed the objective, the MOT and imaging light
are separated by a second PBS. A mirror reflects the MOT beam and a lens ensures
that the light is collimated when passing the atoms a second time (D).

In order to switch between absorption imaging below the chamber with low res-
olution and a large field of view and absorption imaging above the chamber with
high resolution and small field of view we inserted a flippable mirror at position E.
When the mirror is flipped out we get back to the exact imaging setup we use cur-
rently. When the mirror is flipped in, a resonant absorption beam shines through
the chamber and onto the camera at the top. We are going to use a motorized
mirror to automate this switching process. It should be noted that switching is only
required for absorption imaging, while fluorescence images can always be taken with
both cameras simultaneously.

In conclusion, we designed an optical setup that adds the technology of high-
resolution and single atom imaging to our current imaging procedures while not
giving up any experimental capabilities we have at the moment. These will become
very helpful when we align all the new optical components, since we can take images
of the atom cloud with our old setup at any stage of the modification process.
Furthermore, the setup does not depend on any moveable parts, with the exception
of one mirror that has to be switched only rarely. This makes the setup very stable
and fail-safe once it is properly aligned. The setup even allows us to take fluorescence
images in a MOT after the complete experimental cycle. This procedure can be used
to measure the atom number very accurately [Ser11b].

5.3 Electron Multiplying Camera
The last device that we will add to the experiment is the EMCDD. An EMCCD
camera consists of an ordinary CCD chip with an additional gain register placed
between the shift register and the output amplifier. This register amplifies primary
electrons that were produced by photons hitting the chip in an avalanche method
similar to that of electron multiplier tubes. As a result EMCCD’s are able to detect
single photons with very high efficiencies up to 90%. The only limitations are so-
called clock induced charges (CICs). CIC are background electrons that are produced
by the shifting procedure of the CCD chip and cannot be differentiated from real
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photons. We measured both the CIC count as well as photon detection efficiency
of our new HNü 512 camera from NüVü as a function of gain. We found a possible
sweet spot for operating the EMCCD (see Figure 5.5 A). At this point we measure
a detection efficiency of 78 % while maintaining a low CIC count of only 0.002 per
pixel. Using this configuration we expect to at least match if not improve what is
currently possible with the other EMCCD from Andor in our second experiment
(see Figure 5.5 B). In this experiment atom detection probabilities of above 99 %
are achieved with a total of only 300 scattered photons per atom.
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Figure 5.5: A: Probability of a CIC per pixel as function of the photon detec-
tion probability of the camera. The detection probability increases
monotonously with the voltage of the gain register. The dark blue spots
show the total CIC number, primary and secondary CICs are created on
the chip and in the gain register respectively. B: Image of a single atom
that was taken with a similar EMCCD in the second experiment of our
group. As little as 15 detected photons are enough to clearly identify a
single atom. The upper image shows the raw data while the lower image
is low-pass filtered. Adapted from [Ber17].

5.3.1 Optical Setup

The camera is mounted on a third horizontally aligned imaging breadboard (see
Figure 5.6 A). The goal of the imaging setup is to make as much use as possible of the
high camera sensitivity. Therefore, we tried to minimize the amount of components
that can cause photon losses on the way to the camera. In the beam path we use 3
mirrors, one high quality PBS, one lens and one beam sampler. This should lead to
a sufficient collection rate of around 90 % of the photons that leave the objective.
In order to always work in the optimal regime of the EMCCD, where less than
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one photon is detected per pixel, we use two flippable lenses in the beam path (B).
This allows us to adjust the magnification quickly. In case we want to work at very
different magnifications at a later stage we can also move the whole camera bread-
board vertically to adjust its distance from the objective.

The second beam that we placed on the same breadboard is the top down imaging
beam (C). In its current version the optical setup produces a resonant collimated
beam in the atom plane that is used for absorption imaging on the camera below
the chamber. Later we plan to add a flippable lens at position D and possibly a
DMD or an AOD at position E or F. This will give us the ability to send focused
resonant light into the atom plane at a precisely controlled position. As a result, we
would, for example, be able to remove atoms of a chosen spin state at a single site
of a lattice we created with the SLM and create arbitrarily doped systems.
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Figure 5.6: Optical setup for imaging on the EMCCD.
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Figure 5.7: The complete optical setup of our extension to the experiment.
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5.3.2 Complete Setup

Figure 5.7 shows the complete add-on to the experiment. The two breadboards in
the center are mounted vertically, while the SLM and Camera boards are kept hor-
izontally. The latter will be placed above the current experimental setup on large
steel posts that are already visible in Figure 3.6 B. The upgrade of the experiment
will be carried out in an incremental manner, such that we can verify the function-
ality of the experiment after each iteration. Along with the optical setups also new
software has been developed. The modular program has been written in LabVIEW
and in an object oriented style and allows to control both the SLM and multiple
cameras.

5.4 Quantum State Assembler
The vision of a Quantum State Assembler (QSTA) came up after recent break-
throughs in preparing and detecting few fermion systems in the second, few fermion
experiment of our group. In this machine we are able to prepare two fermions in
a desired state of a double well with fidelities above 90 % [Mur15a]. To this end,
the double well potential is created and manipulated by placing an acousto optical
modulator in a red-detuned beam that is sequentially focused onto the atoms by the
same high-resolution objective that we will add to our experiment. The quantum
state of the system can be extracted by measuring the correlations between the two
atoms. This is achieved by a TOF measurement where the positions of both atoms
are detected in free space after switching off all confinements [Ber17].

A B

→→
C

Figure 5.8: The idea of the QSTA is based on the ability to deterministically prepare
two atom in a double well (A). In the first step many building blocks are
prepared separately (B). Sequentially a many-body system at very low
entropy is created by merging these building blocks adiabatically (C).

The underlying idea of the QSTA is to extend these abilities to larger systems
which means that in contrast to the most common procedure, a many body potential
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is not loaded directly from a bulk gas but assembled from many small building blocks
(see Figure 5.8). The latter are preprepared independently in advance. The simple
building block of a double well is already enough to create many different interesting
many body systems like chains, ladders and hexagonal or regular lattices (see Figure
5.9).

A CB D

Figure 5.9: Different lattice geometries that can be created from double wells. First
the atoms have to placed in some configuration such that tunnelling
between different double wells is suppressed (A, C). In the next step the
AOD is used to adjust the position of one of the two wells slightly and
to connect the small blocks to a large many-body system (B, D).

The quantum state of many separated blocks is not necessarily connected adia-
batically to the ground state of the many-body system. Only if this condition holds
and there is, in addition, a gap between the ground and excited states that is large
enough, it is possible to assemble many-body systems at very low entropy. Other-
wise excitations are produced at arbitrarily slow merging rates. Optimizing trapping
geometries and finding the best merging procedures will be the first challenges we
have to face with the QSTA. An analytical study of four atoms in four wells was
performed in our group, confirming that the ground state of this system is in fact
adiabatically connected to the ground state of two double wells. Thus this system
provides a basis from which we can test and expand the assembly process.

To realize this vision of a QSTA in our experiment we tried to stay as close as
possible to the original few fermion setup discussed above, while adding the required
tools for multiplying and assembling building blocks at the same time. To this end
we use the same combination of an AOD and an objective to create the double wells
(see Figure 5.7).
The AOD provides us with the technology to directly control the position and
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depth of each of the two created wells via regulated radio frequency signals. The
parallelization of the deterministic preparation will be achieved using our SLM which
is able to create exact copies of the double well at arbitrary positions in the atom
plane (see Figure 5.9). We plan to realize the dynamic merging process using the
AOD, since it is not limited by refresh rates, and time dependent potentials are
readily implemented using radio frequency ramps.

To detect the final quantum state of our system a whole list of techniques is at our
disposal. As discussed before, all of these rely on either absorption or fluorescence
imaging of the atoms. Our high resolution objective allows us to image the system in
the merged many-body state directly, after separating the double well state suddenly
or after separating the double wells adiabatically. The latter can be used to test the
adiabatic of the merging process.
To get access to correlation functions and the momentum distribution of our

quantum systems we want to apply the same TOF imaging procedure that has been
developed in the second experiment of our group. This technique relies on the detec-
tion of two atoms during TOF with a very small amount of scattered photons. By
increasing the imaged region of interest, this procedure is immediately extendable
to larger atom numbers. By letting our cloud expand from the lattice into our two
dimensional confinement ODT we will be able to determine the momentum of every
single atom of the systems of possibly up to hundreds of atoms. Together with two
state imaging this enables us to extract arbitrary momentum correlations.

There is a whole landscape of systems where the QSTA could lead to significant
improvement in our understanding of strongly correlated fermion systems. Exam-
ples include the Fermi Hubbard model on various lattice geometries, for example
graphene like hexagonal systems or spin ladders. In all of these systems the QSTA
naturally allows us to study the transition from few to many body physics. Whether
the assembly can be executed successfully relies on very precise control and noise
regulation of all the devices that are involved. These are the requirements to be ful-
filled to reach many-body states at very low entropy. We expect that it will take us
a considerable amount of time to get all devices under control well enough to work
with real atoms. In the meantime, quantum turbulence, being a lot less susceptible
to imperfect and noisy potentials, could allow us to acquire a large amount of the
necessary capabilities for the QSTA. As already discussed in detail, it is an area that
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is more or less completely unexplored for the case of fermionic cold atoms systems.

5.5 Applications for Quantum Turbulence
The essential requirement for the excitation of turbulent cold gases is the creation
of a time dependent Hamiltonian that takes the system out of equilibrium. In our
current setup we can only vary the overall potential depth and the magnetic offset
field to this end. Our add-on introduces both the SLM and the AOD as additional
tools to create time dependent potentials. Different approaches for the creation of
turbulence become available consequent, enabling us to implement most if not all
of the excitation schemes discussed in section 2.4.1.
Using the AOD alone, we can sweep potential wells of the size of our resolution

limit of 1um along straight lines through our cloud at arbitrary velocities. This
excites the superfluid on rather small length scales and is therefore most likely to
excite ultraquantum turbulence. The SLM can be used to rotate the cloud on large
length scales, for example, with a paddle-like potential. In contrast to the AOD the
SLM is not able however to reach arbitrary rotation speed since its frame rate is
limited. If we want to use at least 30 distinct phase patterns per rotation we estimate
that this excites approximately 25 vortices in our superfluid. This is well above the
number of vortices that have been observed in the turbulent BEC experiments we
discussed in chapter 2.
Finally, we could also combine SLM and AOD to excite the cloud at arbitrary

length scales. The most promising method is to first create some potential with a
characteristic length scale, for example a lattice, with the SLM. The AOD is then
able to sweep this potential through the two dimensional cloud at arbitrary speeds
and to excite turbulence at a well defined length scale.

In addition to the excitation procedures, the add-on also provides us with new
technologies to detect the presence of turbulence. Our current imaging resolution
improves by a factor of four from ∼ 4µm to ∼ 1µm. This allows us to characterize
phase defects in our cloud after short TOF much more precisely. We estimated that
the healing length ξ of our system is on the order of 0.1 to 1µm, depending on
the interaction strength, which is close to the resolution of our new objective. As a
result the observation of single vortices after very short expansion becomes possible.
By creating anisotropic potentials using the SLM and studying TOF measurements
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afterwards we can also access an expansion with constant aspect ratio as additional
observable for turbulence.

In summary, we believe that the add-on provides us with all the required technolo-
gies to make an observation of turbulence in our cloud feasible in the near future. On
a longer term we plan to study turbulence in potentials different from our harmonic
confinement as well, for example in boxes and ring traps or between two connected
reservoirs.

5.6 Conclusion
In this thesis we have studied collective modes of a two dimensional Fermi gas in
a harmonic confinement from the perspective of turbulence. To this end we have
measured the effect of these modes on the momentum distributions of the gas. We
have seen that all of the lowest order collective modes are not applicable for the ex-
citation of turbulence. Nevertheless, we plan to further pursue the goal of exciting
turbulence in our cloud after the experimental add-on we set up is built in.

In addition to the momentum space measurements we have also repeated the
insitu study of the dependence of the breathing and the quadrupole mode on the
inter-particle interactions that were initally reported by Vogt et al. [Vog12]. We
were able to reproduce their results in general and could extend their data in the
low temperature regime.
Considering the breathing mode, we see strong evidence for the presence of a

previously unobserved quantum anomaly that has been predicted for the two di-
mensional Fermi gas. We plan to increase our confidence in this observation by
cautiously characterising all systematic errors in our system.
Our data of the quadrupole mode extends previous measurements to both the low

temperature limit just above the superfluid transition and to the BEC regime. In
contrast to reference [Bau13], we measure no significantly increased damping rate
and we are able reach the hydrodynamic limit. Our data shows excellent agreement
with the predictions from classical kinetic theory, also in the previously unexplored
regime where ln(kFa2D) < 0.
In measurements of the momentum distribution of the breathing mode we found a

frequency doubling effect that has not been discussed in literature so far. We explain
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this observation in the picture of an oscillating condensate with strong non-linearities
in its equations of motion. We obtained these equations through a variational ansatz
for the solution of the Gross–Pitaevskii equation.
We want to extend our dataset on collective modes with measurements in the |1〉-
|3〉 mixture in the future. In addition, the SLM will enable us to study arbitrary
higher order collective modes by redistribution of the initial atom density in our two
dimensional confinement before it is switched off. This could also be used to take
measurements of the quadrupole oscillation at lower amplitudes.

At the moment we also explore completely different ideas apart from quantum
state assembly and turbulence we can use our experiment for after it has been re-
constructed. We find possible applications for the SLM in many fields, among them
many-body localization or measurements of transport properties using connected
reservoirs. Many of these require very precisely controlled potentials, just like the
QSTA. Turbulence represents a field with many open questions where small devi-
ations in the potentials used for excitation play no major role. Thus it enables
us to become familiar with our new experimental setup while studying unexplored
regimes in physics at the same time. In the long run we will then try to achieve the
milestone of realizing the quantum state assembler.

Figure 5.10: Picture of the complete add-on.
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