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Versatile Platform for Cold Atom Physics with 6Li based on Hologra-
phic Potentials

This thesis reports on the implementation of a major upgrade to an experiment
of ultracold 6Li atoms to create low entropy systems in tailor-made optical po-
tentials. The core components of the add-on are a spatial light modulator (SLM),
a high resolution objective and an electron-multiplying CCD camera. The former
two provide the possibility to create almost arbitrary potentials projected onto
a plane with submicron precision whereas the new imaging setup is intended to
allow spin-resolved single-atom detection in free space in future. We present the
investigation of the simplest system possible with the new setup—a single micro-
trap. By recapturing the atoms in the magneto optical trap and collecting part of
their fluorescence single atoms can be detected with a fidelity of more than 99%.
We quantify that we can prepare a well-defined number of atoms with very high
fidelity in the ground state of our tunable system. Finally, we show first results
on coherent tunnelling dynamics in a double-well created by the SLM paving the
way to the investigation of strongly correlated systems in lattices shaped at will
such as Nagaoka ferromagnetism in a plaquette.

Vielseitge Plattform für Physik der kalten Gase mit 6Li basierend auf
holographischen Potentialen

Diese Arbeit beschreibt die Umsetzung einer weitreichenden Verbesserung eines
Experiments mit ultrakalten 6Li-Atomen, um Systeme niedriger Entropie in maß-
geschneiderten optischen Potentialen zu erzeugen. Die Kernbestandteile der Er-
weiterung sind ein Spatial Light Modulator (SLM), ein hochauflösendes Objektiv
und eine elektronenvervielfachende CCD-Kamera. Die beiden ersten ermöglichen
es, beinahe beliebige Potentiale auf eine Ebene mit Submikrometer-Präzision zu
projezieren, während der neue Aufbau zur Bildgebung in Zukunft dazu genutzt
werden soll, einzelne Atome im freien Raum spinaufgelöst zu detektieren. Wir
präsentieren die Untersuchung des einfachsten Systems, das wir mit dem neuen
Aufbau realisieren können – einer einzelnen Mikrofalle. Durch das Wiedereinfan-
gen der Atome in einer magneto-optischen Falle und die Messung eines Teils ihrer
Fluoreszenz können einzelne Atome mit einer Zuverlässigkeit von über 99% detek-
tiert werden. Wir quantifizieren, dass wir eine wohldefinierte Atomzahl mit einer
hohen Zuverlässigkeit im Grundzustand unseres einstellbaren Systems präparie-
ren können. Schließlich zeigen wir erste Ergebnisse kohärenter Tunneldynamik in
einem Doppeltopf, der mit dem SLM erzeugt wurde. Damit ist der Weg geebnet,
stark korrelierte Systeme in nach Belieben geformten Gittern zu untersuchen, wie
etwa Nagaoka-Ferromagnetismus in einer Plakette.
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1. Introduction
Tunable systems can provide access to intriguing regimes that are hard to in-
vestigate with a system restricted to a set of fixed parameters. An example for
the fertility of such systems was demonstrated recently in the field of novel con-
densed matter systems [Cao18]. The group of Pablo Jarillo-Herrero engineered a
highly tunable system composed of two sheets of graphene stacked on top of each
other with a variable twisting angle among the sheets. At an angle of 1.1° this
graphene superlattice has a perfectly flat band and appears to be in a correlated
insulating state at half filling. However, varying this angle slightly the material
turned out to be superconductive in the presence of a magnetic field. This is a
ground breaking discovery given the fact that monolayer graphene never exhibits
superconductivity.

An important experimental question is, can we engineer versatile systems that
allow to explore many-body phenomena in different scenarios? Especially the
strongly correlated regime is difficult to tackle with theoretical approaches and
simulations are restricted by limited computational resources. At a broad level,
such systems should provide high tunability of parameters as well as the ability to
measure key observables. Ultracold atoms have been found to be very promising in
this regard as a multitude of parameters can be controlled and detection is steadily
improving. Among those parameters are the interaction strength, the atomic
species or mixture going along with fermionic or bosonic quantum statistics, the
particle number, the density and the temperature.

Currently, most experiments are performed in traps of fixed geometry which
are loaded from a bulk gas. In this thesis we choose another direction which is
crucially different. With the implementation of a spatial light modulator (SLM)
we take a step further in the control of the system. The SLM allows us to create
almost arbitrary potential landscapes projected onto a two dimensional plane. For
lattices single site control seems well within reach. Initializing lattices based on
atom-by-atom assembly with optical tweezers has recently been demonstrated in
Rydberg experiments in one, two and three dimensions [End16; Kim17; Bar18].

The approach we want to take in order to seize control over the quantum state
is based on the deterministic preparation of single building blocks in the lowest
energy level which can be adiabatically merged to a correlated many-body ground
state. The smallest building block is the two-site Hubbard model at half filling
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1. Introduction

in the ground state. Adapting the preparation schemes presented in [Ser11b] and
[Mur15a] the smallest building block, the two-site Hubbard model at half filling,
can be prepared with over 90% fidelity in the ground state. With this technique
at hand we are in an optimal position to initialize lattices at very low entropy in
future. The degree of control over the quantum state is much higher with this
protocol than with the conventional scheme based on loading atoms from a cloud
into a standing-wave lattice. Consequently, our quantum system is a promising
candidate to study the phase diagram of the fermionic Hubbard model which
is not yet well understood. In particular this brings us into a position where
we can investigate phenomena that were never measured before like Nagaoka
ferromagnetism. Going beyond the Hubbard model we might be in a position
to come closer to the investigation of Majorana bound states in one-dimensional
p-wave superconducting chains whose observation in cold atoms was so far out of
reach.

For the proposed experiments the possibility to detect single atoms with spin
and spatial resolution would be a valuable tool. Recent developments in the field
of quantum gas microscopes show that they can be used to probe cold atom
experiments on the level of a single lattice sites and that they are crucial to map
out correlations of the system [Maz17; Bol16; Che16]. With the implementation
of a high resolution objective and an EMCCD camera we aim to adapt a free
space imaging technique introduced in [Ber18b].

This thesis is structured as follows. In chapter 2 we start with an introduction
of ultracold atoms as highly tunable systems. It is followed by a discussion of the
Hubbard model and an excursion about Majorana bound states, which are both
interesting theoretical concepts for our experiment (chapter 3). In chapter 4 we
introduce the experimental setup that served as a basis for the major extension
implemented during this thesis. The upgraded experiment is then presented in
chapter 5. First experimental results are shown in chapter 6.
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2. Conceptual Framework
Tunability combined with the ongoing development of state preparation and de-
tection schemes steadily opens new doors for researchers in the field of ultracold
atoms. A decisive step for the field to sprout was the development of advanced
cooling techniques that allow to enter the regime where quantum statistics mat-
ter. Among them is the optical dipole trap which plays a fundamental role in the
course of this thesis as we use this trapping scheme to tailor potential landscapes
with the newly implemented spatial light modulator (SLM).

In this chapter we want to present the cornerstones of tunability in our sys-
tem. Starting with the introduction to cooling and trapping schemes applied in
our experiment (tuning the temperature), we continue with a small excursion on
scattering theory (tuning interactions) and finally explain how to shape a beam
by phase modulation (tuning the external potential).

2.1. Cooling and Trapping Atomic Gases
The developments towards ultracold atom experiments was pushed with the in-
vention of cooling mechanisms based on radiation force. In the 1980s the first
magneto-optical trap (MOT) with which atoms can be cooled down to several
hundred micro Kelvin was realized [Raa87]. In a common MOT setup pairs of
counter-propagating near-resonant beams are installed along each spatial dimen-
sions. Additionally, a magnetic quadrupole field is provided by a pair of coils in
anti-Helmholtz configuration.

To understand the working principle of the MOT the optical contribution and
the magnetic contribution can be considered separately. The former contribu-
tion is based on the Doppler shift. A MOT works with red-detuned beams that
are close to resonance. Consequently, the probability that an atom absorbs light
from a beam that is propagating in the direction opposite to its own movement
is enhanced due to the Doppler effect whereas the probability to absorb a co-
propagating photon is reduced. If the atom goes back to the ground state via
spontaneous emission no momentum is transferred on average due to the random-
ness of the transmission direction. As a result the atom is effectively decelerated.
To additionally confine the atoms we need the magnetic quadrupole field. In its
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2. Conceptual Framework

Figure 2.1.: Confining atoms with a MOT. Atoms are confined to the centre of
the trap by exploiting the magnetic field dependence of the Zeeman levels. Due to
a small detuning of the laser beam atoms located right (left) from the trap centre
are more likely to get excited by the σ− (σ+) beam and therefore effectively pushed
to the trap centre.

presence the degeneracy of the Zeeman levels is lifted whereby the energy split-
ting depends on the magnetic field and consequently on the position as depicted
in figure 2.1. Choosing σ−- (σ+-)polarization for the red-detuned beam coming
from right (left) means that for an atom located right (left) from the centre a σ−-
(σ+-)transition is much closer to resonance and therefore more probable. As a
result the atoms are effectively pushed to the centre of the trap. Cooling with the
MOT is in general limited by the Doppler temperature which is in the regime of
hundreds of micro Kelvin.

To overcome the limitation set by the natural linewidth of the atoms and thus
further increase the phase-space density one can load the atoms from the MOT
into an optical dipole trap (ODT). It is based on the induction of a dipole moment
p(r, t) in the neutral atom. ODTs can be discussed in terms of a dressed atom
picture [Dal85; Dal89] but already a semi-classical oscillator model [Gri00], chosen
here, provides insight into the trapping mechanism. Let us call the resonance
frequency ω0 and the frequency of the external field ω. The light-induced potential
can be described as

Udip(r) ∼ −
(

Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r). (2.1)

Here Γ is the natural linewidth of the transition. In the experiment the external
field is provided by laser of wavelength λ = 1064 nm, which is far red-detuned
from the resonance at λ = 671 nm for 6Li. For these parameters the assumption
|∆| � ω0 with ∆ ≡ ω − ω0 is not very good but it is still educative to consider
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2.2. Tuning Interactions

this limiting case. The dipole potential reduces then to

Udip(r) ∼
Γ

∆
I(r). (2.2)

One can see that the interaction is attractive (repulsive) for negative (positive)
detuning. For the far red-detuned light which is chosen in our experiment the
atoms thus minimize their energy at intensity maxima. In the limit |∆| � ω0 the
scattering rate of photon absorption and re-emission is given by

Γscat ∼
(
Γ

∆

)2

I(r). (2.3)

In an optical dipole trap dissipative processes are not desired but deep trapping
potentials are favourable. Consequently, by comparing equation (2.2) and equa-
tion (2.3) one obtains that it is best to perform an ODT at high powers and large
detuning.

Quantum degeneracy can finally be reached by applying a forced evaporation
technique in the ODT. Reducing the trap depth allows the hottest atoms leave the
trap. Working in the interactive regime the system can constantly rethermalize via
scattering during the process since high scattering rates lead to fast thermalization
rates.

2.2. Tuning Interactions

The tunability of ultracold systems is also reflected in the possibility to vary
interaction strengths. We only want to give a very short overview of the underlying
physics here. For a detailed discussion of scattering theory see for example [Wal14].

In general, scattering processes of two particles are described best in their
centre-of-mass frame as the interaction potential only depends on the relative
distance r of the scatterers. To solve the Schrödinger equation in the far-field of
an elastic scattering process the usual ansatz for the wave function is to consider
a superposition of an incident plane wave ψ0(r) and an outgoing wave ψs(r),

ψ(r) = ψ0(r) + ψs(r), (2.4)

where the outgoing wave needs to describe a free process for r → ∞ and is
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2. Conceptual Framework

therefore given by a spherical wave

ψs(r) = f(θ)
exp ikr

r
, (2.5)

with amplitude f(θ), also called scattering amplitude, in this limit. The problem
can be solved by an expansion into partial waves. The presence of the scattering
potential manifests itself then in a phase shift δl compared to the free case where
l is the index of the expansion. The contribution to the lth term of the expansion
of the scattering amplitude is given by

fl =
1

k cot δl − ik
. (2.6)

In a gas of ultracold atoms the energies involved in the scattering process are
low and only pairwise interaction needs to be taken into account. The scattering
potential is of Lennard-Jones type which is strongly repulsive at short distance
and has a long-range attractive Van der Waals tail. For this potential one finds
for the lowest angular momenta l

f0 ≈
k→0

−a and f1 ≈
k→0

−a31
1

3
k2, (2.7)

where a (a1) denotes the so called s-wave (p-wave) scattering length. In gen-
eral, only the s-wave term contributes because for l > 0 an additional barrier,
called centrifugal barrier, is present in the interaction potential. Therefore, con-
tributions of higher angular momenta are only relevant for initial energies of the
scatterers that exceed the centrifugal barrier, which is for the ultracold gas of
6Li we use in experiments usually not given. The scattering length, introduced
in equation (2.7), is a measure for the interaction strength and can be consid-
ered as an effective hard-sphere diameter of the potential. For small momenta it
determines the cross section of the scattering process given by

lim
k→0

σ = 4πa2, (2.8)

which determines the ratio of the number of processes per time interval and the
current density of the particles.

So far all considerations were based on a single scattering potential between the
atoms. However, for real alkali atoms it is necessary to take the internal states
of the scatterers into account (see e.g. [Ket08]). For fermions, the s-wave scat-
tering channels for spin singlet and triplet configuration are different in energy
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2.2. Tuning Interactions

Figure 2.2.: Scattering of distinguishable fermions. a) The scattering length can
be resonantly enhanced by coupling an energetically accessible scattering chan-
nel (open channel) to a bound state of an inaccessible closed channel. b) The
scattering length can be controlled by tuning the magnetic offset field. c) Due to
the coupling of singlet and triplet state an avoided crossing the molecular states
(attractive branch) and free scattering states (repulsive branch) shows up. b) and
c) adapted from [Wen08].

(figure 2.2 a)). The triplet channel is energetically accessible and therefore called
“open”. In this channel the atoms can scatter in a continuum of states. In con-
trast scattering in the bound levels of the singlet potential is forbidden by energy
conservation. However, due to the hyperfine interaction there is some coupling
between triplet and singlet potential. If the energy with which the atoms enter
the triplet channel is close to a bound state of the singlet the interaction is reso-
nantly enhanced due to the coupling of open and closed channel. By this means
large positive or negative scattering length can be obtained close to resonance
depending on the sign of the energy difference of open and closed channel. As the
two channels differ in magnetic moment by ∆µ one can tune the energy difference
by applying a magnetic offset field B according to ∆E = ∆µB. The dependence
of the scattering length on the magnetic field is depicted in figure 2.2 b).

At negative energies and positive s-wave scattering length a two-particle bound
state exists for distinguishable fermions (figure 2.2 c)) with binding energy

EB =
~2

2ma2
. (2.9)

If the binding energy is larger than any other energy scale of the system and
temperatures are low the paired fermions form a molecule that is to be described
by Bose statistics.
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2. Conceptual Framework

2.3. Tuning the External Potential
In a MOT atoms are always trapped in a cloud. Differently, in a dipole trap various
trap geometries are possible. The simplest realization would be to use a Gaus-
sian beam which has an intensity distribution I(r, z) ∼ 1/w2(z) exp (−2r2/w2(z))
resulting in a cigar-shaped trap. Here w(z) denotes the waist of the beam de-
pending on z. Also the exploitation of interference effects can lead to useful trap
geometries such as square, honeycomb or kagome lattices or traps consisting of
a stack of light sheets often referred to as “pancake traps”. Trapping atoms in
a single one of these light sheets or with an tightly focused Gaussian beam (op-
tical tweezer) can lower the effective dimensionality of the system to two or one
dimension respectively. Both regimes are accessible with our current setup.

In this section we want to concentrate on the possibility to create tailored dipole
potentials by shaping light with spatial light modulators (SLMs). Originally used
for computer-controlled projectors, today SLMs enjoy a large popularity in science.
For instance, they are used for aberration correction in optical microscopy in
biology or to create optical tweezers that can hold atoms or nanoparticles in cold
atom physics and biophysics, respectively. SLMs are either based on amplitude
modulation or phase modulation of the incident beam. The former technique is
usually used for projectors whereas the latter one is favoured for applications in
science [Zha14] and also used in our experiment.

This section covers how an SLM works technically, basics on Fourier optics and
how to combine these concepts to shape a beam.

2.3.1. Working Principle of an SLM
The key component of spatial light modulators are liquid crystals which have
already been utilized in display applications such as those of calculators and digital
clocks for a few decades. Nowadays, they are dominating the industry of flat
screens.

The cigar-shaped liquid crystal molecules are in a fluid state of matter but as
the name already indicates they posses properties of a solid as well. Although
they exhibit different phases, we will be only concerned with the nematic phase
(figure 2.3 a)). In this phase the anisotropic molecules lack positional order com-
pletely, which is typical for a liquid, but at the same time they shows crystal-like
orientational order. An important feature of a liquid crystal molecule is its bire-
fringent nature, meaning that its refractive indices for the long axis ne (extraor-
dinary axis) and for the short axis no (ordinary axis) differ. Usually ne is bigger
than no (figure 2.3 a), inset). When being subject to force, the orientation of the
molecules changes. Therefore, a common method to prepare the liquid crystals
is to confine them within two polymeric alignment layers and subsequently rub
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2.3. Tuning the External Potential

Figure 2.3.: Phase modulation with liquid crystals. a) In the nematic phase they
tend to be parallel but lack positional order. LCs posses different refractive indices
for the two axis (inset). b) The molecules can be rubbed into parallel orientation
with two alignment layers (upper panel). In the presence of an electro-magnetic
field they tilt towards its direction (lower panel). c) Spatially dependent phase
modulation can be realized with an LCOS-SLM.

them mechanically into the desired direction. Parallel-aligned nematic (PAN) liq-
uid crystals can be used for phase modulation1 (figure 2.3 b), upper panel). Here,
the molecules are originally oriented parallel to each other and the alignment
layers. However, their angle can be controlled either by electro-optical means
with incoherent light or by applying an electro-magnetic field perpendicular to
the molecules. We are interested in the latter case. The presence of an electro-
magnetic field induces a dipole moment in the molecules and thus they tend to
line up with the external field (figure 2.3 b), lower panel). The angle θ of their tilt
depends on the applied voltage. As a result, the refractive index n(θ) is changed
for linearly polarized light with polarization direction in parallel to the molecule
alignment. It is modified according to [Sal91]

1

n2(θ)
=

cos2 θ

n2
e

+
sin2 θ

n2
o

. (2.10)

The refractive index perpendicular to the alignment direction no is unaltered by
the tilt2. As a result for an incident beam of wavelength λ with polarization along

1If the rubbing directions of the two alignment layers are perpendicular to each other the nematic
molecules end up in a twisted configuration. Combining this configuration with polarization
filters makes amplitude modulation of a beam possible.

2As a side remark, it is mentioned that for a wave with linear polarization with an angle
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2. Conceptual Framework

Figure 2.4.: a) A 2D picture can be decomposed into a sum of harmonic functions
each weighted with a factor F (νxi , νxi). b) Similarly any wave function can be
built out of plane waves. c) If a plane wave passes an optical element that alters
its phase by φ = 2πνx0x, its direction of propagation changes. This could be
realized by an SLM.

the zero-field of the nematics its phase changes by Φ = 2πn(θ)d/λ when passing
a layer of liquid crystals of thickness d. If the external electro-magnetic field can
be controlled position-dependently, for instance by using an array of electrodes,
the phase is spatially dependent as well and thus such a device can shape the
wavefront of a beam. This is the operating principle of an SLM. A discussion of
the effect of phase modulation of coherent light follows in the next paragraph.

Figure 2.3 c) shows a schematic picture of a spatial light modulator based on
liquid crystals on silicon (LCOS) technology. A thin layer of liquid crystals is
sandwiched between two alignment layers. The adjacent layers at the front are
a transparent electrode and a glass substrate. On the other side the alignment
layer is next to a layer of pixel electrodes which in turn is fixed on top of a silicon
substrate.

2.3.2. Fourier Optics
This section is based on the book of Saleh and Teich [Sal91]. The widely used
concept to decompose a time dependent function f(t) into a sum or integral

0 < α < π the described setting acts as a wave retarder, i.e. the polarization of the light is
changed.
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2.3. Tuning the External Potential

of harmonics with complex amplitudes F (ν)—called Fourier transform—is also
applicable to functions that depend on spatial coordinates x and y. This yields
the expansion

f(x, y) =

∞∫
−∞

∞∫
−∞

dνxdνy F (νx, νy) e−i2π(νxx+νyy). (2.11)

In analogue to the temporal frequencies, spatial frequencies are denoted by νx
and νy and express cycles per unit length. As an example, one can illustrate
the Fourier decomposition with a picture that is split up in a sum of harmonics
(figure 2.4 a)). Each term is weighted with a factor F (νxi , νyi). These factors
represent the Fourier transform.

One can connect this idea to wave optics. Here, we are only interested in the
position-dependent part U(r) of the wave function U(r, t) = U(r) exp(i2πνt). For
a plane wave, given by U(r) = A exp (−i(kxx+ kyy + kzz)), the wavelength λ is
connected to the wave vector k = (kx, ky, kz) ∈ R3 via 2π/λ =

√
k2x + k2y + k2z ; A

is a complex constant. Plane waves can be used as the building blocks of a wave of
arbitrary complexity (figure 2.4 b). Such a wave is, in general, a three-dimensional
object and would thus require a summation or integration over all dimensions
to Fourier transform it. However, monochromatic waves are constituted out of
a single frequency, which means |k| is constant. With this at hand and using
νx = kx/2π and νy = ky/2π, the z-component of the wave vector depends only
on the transverse spatial frequencies as kz(νx, νy) = ±

√
k2 − (2πνx)2 − (2πνy)2.

Therefore, a monochromatic wave can be expressed in terms of a two-dimensional
Fourier series

U(x, y, z) =

∞∫
−∞

∞∫
−∞

dνxdνy F (νx, νy) e−i2π(νxx+νyy) e−ikz(νx, νy)z. (2.12)

Let us now use this framework to investigate how a spatially dependent phase
shift can effect a plane wave. For this purpose we consider a scenario where a plane
wave travels along the z-direction and passes through a special thin optical element
at z = 0. This alters its wave function by a linear position-dependent phase factor
exp (−i2πνx0x) (figure 2.4 c)). Behind the element for z > 0 the wave function
therefore reads U(x, y, z) = F (0, 0) exp (−i2πνx0x) exp (−ikzz) with F (0, 0) being
a complex constant3. The angle enclosed by the k-vector of the wave and the

3It should be noted that an approximation is used here. In an exact consideration it is not
possible to express the effect of the optical element as a phase factor only depending on x and
y because |k| must be conserved.
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2. Conceptual Framework

z-axis is then given by θx0 = arcsin(kx0/k) = arcsin(λνx0). In a more general
setting with an initial plane wave

U(x, y, z) = F (νx1 , νy1) exp (−i2π(νx1x+ νy1y)) exp (−ikzz) (2.13)

the thin optical element shifts the frequencies for z > 0 as

U(x, y, z) = F (νx1 , νy1) e
−i2π

(
(νx1+νx0 )x+(νy1+νx0 )y

)
e−ikzz (2.14)

= F (νx1 , νy1) e
−i2π(ν̃xx+ν̃yy) e−ikzz (2.15)

with νx1 + νx0 ≡ ν̃x and νy1 + νy0 ≡ ν̃y. Thus F (νx1 , νy1) is now the complex
amplitude of a different harmonic function than before. An SLM can provide
the features of the optical element considered above if one applies a linear phase
pattern to it. Such a phase pattern modulo 2π is depicted in figure 2.4 c. This
simple example already demonstrates the working principle of the SLM. However,
the SLM can modulate the phase of the incoming wave in a far more general way
giving rise to an arbitrary phase shift that also depends on the spatial coordinates
as will be discussed in 2.3.3.

Going back to equation (2.12), one sees that a wave gathers a phase factor
exp(−ikz(νx, νy)z) for each νx, νy when it propagates through free space along z.
This frequency dependent phase factor is called the transfer function of free space
Hd(νx, νy); the index d refers to the distance over which the wave evolves. If one
considers a wave described by U(x, y, z1) ≡ f(x, y) at a plane at z = z1 that
travels over a distance d to a plane at z = z2 then the wave function at the latter
plane reads

U(x, y, z2) ≡ g(x, y) =

∞∫
−∞

∞∫
−∞

dνxdνy Hd(νx, νy) F (νx, νy) e
−i2π(νxx+νyy). (2.16)

Mathematically, this is a convolution given by a point-wise multiplicationG(νx, νy) =
Hd(νx, νy) F (νx, νy) in Fourier space. However, in real space it is expressed as

g(x, y) =

∞∫
−∞

∞∫
−∞

dx′dy′ f(x′, y′) hd(x− x′, y − y′). (2.17)

Here hd(x, y) is the Fourier transform of the transfer function called impulse-
response function. The concept of convolution is also useful to describe other
scenarios, for example if a wave passes an aperture.
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2.3. Tuning the External Potential

Looking at an imaging setup, the question might arise how a lens modifies a
wave. On a qualitative level, one can understand that a spherical thin lens maps
an ingoing wave described as U(x, y, z1) ≡ f(x, y) at a plane z = z1 to its Fourier
transform F (νx, νy) in the focal plane. To this end, consider a single plane wave
whose wave vector encloses a small angle θx0 = λνx0 , θy0 = λνy0 with the z-axis.
The lens converts the plane wave into a paraboloidal wave which is focused down
into a point of coordinates (θx0f, θy0f) in the focal plane at distance f from the
lens (figure 2.5 a)). The position of the focus can thus be connected to its complex
amplitude F (νx0 , νy0). According to equation (2.12) an arbitrary wave f(x, y) can
always be decomposed into a set of plane waves. Each of them is focused down
into a distinct point and thus the amplitude in the focal plane represents the
Fourier transform of f(x, y). A more rigorous explanation of the transformation
properties of a lens can be found in appendix C. One finds that a wave described
by f(x, y) in the plane at distance −f relative to the lens is related to the wave
g(x, y) at the focal plane by

g(x, y) =
i

λf
F

(
x

λf
,
y

λf

)
e−i4πf/λ (2.18)

where the spatial frequencies are identified as νx = x/(λf) and νy = y/(λf).
Consequently, the intensity distribution at the output plane is given by I(x, y) =
|g(x, y)|2 = 1/(λf)2|F (x/λf, y/λf) |2.

Figure 2.5.: Influence of optical elements on a plane wave. a) A lens focuses a
plane wave down to a point (θx0f, θy0f) in the focal plane. Figure b) visualizes how
a phase pattern φSLM(x, y) applied to the SLM can be decomposed into regions
of linear phase gradients by Taylor expanding φSLM(x, y) around different x0, y0.
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2. Conceptual Framework

2.3.3. Spatial Light Modulation
In section 2.3.2 we discussed a linear gradient, i.e. φSLM(x, y) = −2π(νx0x+ νy0y)
as a simple phase pattern that could be applied to the SLM. It changes the angle
enclosed by the z-axis and the k-vector of an incoming plane wave by shifting
its Fourier transform according to equation (2.14). One can imagine that it is
also possible to apply more complex, non-linear patterns to the SLM. The wave
front is in this case not bent homogeneously but it is altered depending on the
position (x0, y0) on the SLM. The linear terms of a Taylor expansion of such a
phase pattern

φSLM(x, y) = φ(x0, y0)+(x−x0)∂φ/∂x|x0,y0+(y−y0)∂φ/∂y|x0,y0+O(x2, y2) (2.19)

can be identified with the spatial frequencies νi0 = ∂φ/∂i|i0 for i = x, y that deter-
mine the angle of diffraction. Figure 2.5 b) conveys how the spacial dependence
of the SLM phase works conceptually.

For an incoming wave U(x, y, z) any phase pattern φSLM(x, y) applied to the
SLM changes the wave function. Denoting the position directly before the SLM
with zin and directly after the SLM with zout one obtains

U(x, y, zout) = U(x, y, zin) e
−iφSLM(x,y). (2.20)

Besides the SLM itself the subsequent lens-setup is crucial. In our experiment
it projects the wave function at the SLM-plane onto its Fourier plane, where the
atoms are prepared. The wave function in the atoms’ plane ztarget reads then

U(x, y, ztarget) =
i

λf
F [U(·, ·, zout)]

(
x

λf
,
y

λf

)
e−i4πf/λ (2.21)

=
i

λf
F
[
U(·, ·, zin) e

−iφSLM
]( x

λf
,
y

λf

)
e−i4πf/λ. (2.22)

As a result, the intensity distribution in the atoms’ plane is given by

Itarget(x, y) = 1/(λf)2|F
[
U(·, ·, zin) e

−iφSLM
]( x

λf
,
y

λf

)
|2. (2.23)

We can conclude that an SLM is a valuable tool to engineer dipole potential
landscapes. Assuming the required phase pattern is known it is possible to create
almost arbitrary intensity distributions with the SLM for a given incoming wave.
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3. Avenues and Vision

In this chapter we want to present two possible roads that are interesting for
our experiment. We start with an introduction to the Hubbard model. The
Hubbard model describes all kinds of lattice geometries that we can engineer
with the SLM. So far, we already realized the two-site Hubbard model with the
upgraded experiment. In the near future we want to extend the experiments to
four wells and investigate Nagaoka ferromagnetism. In the second part of this
chapter we give an introduction to Majorana bound states. They are a promising
candidate for an implementation of quantum computation. However, to engineer
these systems is highly non-trivial due to the required p-wave superconductivity.

3.1. The Hubbard Model at Half Filling and Beyond

Originally proposed in the 1960s as a simplified model to describe motion of con-
duction electrons interacting via Coulomb repulsion in a lattice of ions—or in
other words a metal—the Hubbard model has enjoyed a great popularity ever
since [Hub63; Kan63; Gut63]. Its simple Hamiltonian that consists of term de-
scribing neares-neighbour hopping and an on-site interaction gives rise to a very
rich phase diagram and is a promising candidate to provide insight into high
temperature superconductivity. With increasing experimental possibilities the in-
terest in realizing the Hubbard model was growing over the last decade in the field
of cold atoms. Although the Hubbard Hamiltonian has a simple form it is a math-
ematically hard problem to solve it for non-trivial parameters. As a consequence
the approach to simulate the Hubbard model with cold atoms attracts a lot of
attention. Realizations with both, fermions and bosons, are possible where their
description in terms of the Hubbard model is foverned by their different quantum
statistics. In 2002 a milestone in the investigation of the Bose Hubbard model
was marked when the transition from superfluid to Mott insulator was observed
[Gre02] which was recently followed by ground breaking results of a fermionic
antiferromagnet [Maz17].
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3. Avenues and Vision

3.1.1. Introduction to the Hubbard Model

There exist many versions of the Hubbard model. In the following we want to
focus on the most popular one which is describing particles in the lowest band of
a lattice. Only nearest-neighbour tunnelling of amplitude t is taken into account
which is a good approximation if the on-site wave functions are localized to a large
extend. Additionally an on-site interaction U is considered (figure 3.1). Although
the Coulomb interaction is long-range neglecting interactions among electrons
from different sites is a valid approximation for some metals due to screening
effects. The Hamiltonian of the Fermi Hubbard model therefore reads

Ĥ = −t
∑
〈i,j〉

∑
σ

ĉ†i,σ ĉj,σ + U
∑
i

ĉ†i,↓ĉi,↓ĉ
†
j,↑ĉj,↑ (3.1)

where the notation 〈i, j〉 indicates that only hopping to adjacent sites is allowed,
ĉ is the electron annihilation operator and σ denotes the spin orientation. In
ultracold quantum gases a pseudo-spin system can be realized by working with
two different hyperfine states of the atom.

Although the Fermi-Hubbard model gives rise to several distinct phases, which
are not yet completely understood, some intuition can be gained by the consid-
eration of the limiting cases U/t � 1 and U/t � 1 given repulsive interactions
(U > 0). For U/t � 1 and a filling factor smaller than one the system behaves
like the a metal. The filling factor is given by the number of atoms divided by
two times the number of lattice sites. In the limit of no tunnelling U/t → ∞
the sites decouple, density fluctuations are suppressed and a Mott gap ∆ = U
emerges in the excitation spectrum at half filling. Different spin configurations
are degenerate in this regime. However, for U/t� 1 but finite the spin configura-
tion matters for the energy of the system. At half filling, and small temperatures
a strongly correlated antiferromagnetic arrangement of the spins is favourable be-

Figure 3.1.: Fermions in a periodic potential described by the Hubbard model.
The two contributions to the model are tunnelling of the particles, which is con-
nected to the kinetic energy of the system, and an on-site interaction. Due to the
Pauli principle a single site can at most be doubly occupied.
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3.1. The Hubbard Model at Half Filling and Beyond

cause the system aims to minimize its energy by virtual tunnelling processes. Due
to the Pauli principle only super-exchange process of fermions with opposite spin
are possible. During this second order process both fermions temporarily occupy
the same site. The energy scale of the antiferromagnetic exchange is given by
J ≡ 4t2/U . In this limit the Hubbard Hamiltonian is equivalent to the Heisen-
berg spin Hamiltonian Ĥ = J

∑
i,j SiSj with S being the spin operator. This

Hamiltonian describes spin systems of immobile spins.

Cold atom experiments provide a promising tool for further investigations of
the Hubbard model in regimes that are not accessible by numerical methods. For
example they could be used to map out the ground state of the doped Fermi-
Hubbard model. State of the art imaging techniques allow to measure strong
correlations of the systems [Hal15; Edg15; Par16; Maz17; Ber18a]. Commonly,
lattices in cold atoms realized by interference of two Gaussian beams. In our
experiment we want to take a different approach by projecting 2D lattices onto
a plane with a spatial light modulator (SLM). By making use of the abilities of
the SLM we plan to obtain a high degree of control over the single lattice sites.
The relation of on-site interaction and tunnelling U/t can be tuned with Feshbach
resonances or the laser power. In our experiment we can in principle also work in
the molecular regime of bound atoms instead of free fermions which allows us to
investigate the Bose-Hubbard model as well.

3.1.2. Nagaoka Magnetism
Having learned that the ground state of the Fermi-Hubbard is antiferromagnetic
at half filling and U/t � 1 one question that might arise is how the system
behaves in the case of hole doping. In this scenario itinerant fermions—or, taking
another point of view, holes—might reduce the kinetic energy of the system by
moving in the lattice and delocalizing. However, for example, the movement of
a single hole destroys antiferromagnetic order. Consequently, the energy gain
by tunnelling is competing with the cost in energy due to incorrect bonds, i.e.
bonds that are not favourable in terms of superexchange energy. In 1966 Yosuke
Nagaoka presented rigorous proof of a ferromagnetic ground state in the Hubbard
model at infinite on-site repulsion for one fermion less than half filling [Nag66].
It is an open question if other filling fractions might support ferromagnetism as
well but exemplary calculations seem to suggest that this is not the case [Tak82].
The original Nagaoka theorem states that for one hole away from half filling,
U = ∞, and t < 0 and given certain connectivity conditions the ground state is
ferromagnetic [Nag66]. For bipartite lattices the last requirement has no impact
because for those lattices there exists a mapping between t > 0 and t < 0. Taking
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3. Avenues and Vision

Figure 3.2.: Low-energy excitation spectrum of three fermions in a plaquette
plotted against U/t. The energy of the states with S = 1/2 are presented in blue
and green. The dashed red line shows the S = 3/2 configuration that is lowest in
energy for U/t > 18.6 (inset). Adapted from [Ste10].

into account the connectivity condition1 a plaquette filled by three fermions is the
smallest non-trivial system that can fulfil all requirements [Tas98]. A proposal to
realize this system with cold atoms by von Stecher et al. [Ste10] quantifies the
energy spectra for its possible spin configurations (figure 3.2). Let us first consider
the limit of infinite on-site interactions. As predicted by Nagaoka in this regime
the ground state is given by a ferromagnetic arrangement of the fermions with spin
S = 3/2 at an energy of E = −2t. Configurations of spin S = 1/2, which form
a doublet, are higher in energy. However, going to weaker interactions a crossing
of the S = 1/2 and the S = 3/2 branch takes place (inset figure 3.2). The reason
for the crossing is the following. The energy of the ferromagnetic state does not
change with U as the Pauli exclusion principle always forbids double occupancy.
However, the spin doublet states decreases with decreasing U because admixtures
to the state from doubly occupied states start to play a role. As a result for
interactions U/t < 18.6 the ground state is given by an S = 1/2 state.

3.2. Majorana Bound States
It is a common feature of neutral bosons such as photons to be their own an-
tiparticle. This differs for fermions. In the 1930s Ettore Majorana proved that
potentially also neutral fermions being their own counterpart can exist but so
far experimental proof of a fundamental particle with these properties is missing.
However, in modern physics the concept of quasiparticles called Majorana bound
1To fulfil the connectivity condition each site of the lattice needs to be part of a loop that
consists at most of four lattice sites.
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3.2. Majorana Bound States

states—which are in some sense half of the well known Dirac fermions—attracted
a lot of attention. In this section we introduce what Majorana fermions are, how
they are connected to quasiparticles bound to defects in 1D condensed matter
systems and why those are especially interesting for quantum computation. At
the end of this section we discuss how to approach Majorana bound states exper-
imentally.

3.2.1. Ettore Majorana’s Discovery
In 1928 Paul Dirac presented an approach to overcome the limits of the purely
real Klein-Gordon equation [Dir28]. In contrast to the Schrödinger equation the
Klein-Gordon equation governs the relativistic regime but as it is a second order
differential equation it lacks the possibility to deduce the time evolution of the
wave function ψ, given ψ at a particular time because also ψ̇ at this time would be
needed as an initial condition. One would therefore aim for a first order differential
that respects also a symmetry between energy and momentum. Therefore Dirac’s
original equation reads

i~
∂ψ

∂t
=
[
c (α0p0 + α1p1 + α2p2 + α3p3) + βmc2

]
ψ. (3.2)

Here c is the speed of light, m is the mass, p0 is the energy divided by the speed
of light and p1, p2, p3 are the components of the momentum vector. The αi for
i = 0, 1, 2, 3 and β turn out to be operators that are independent of the pi and of
time and space coordinates. Furthermore consistency with Klein-Gordon equation
is demanded. Dirac found a set of complex 4 × 4 matrices meeting these condi-
tions. Then the Dirac equation 3.2 actually consists of four coupled equations.
The solutions describe spin-1/2 particles, i.e. the spin up and down components
for particles (for positive energy solutions) and antiparticles (for negative ones).
Dirac’s predictions of antiparticles having the same mass but opposite charge as
the particles turned out to be a great success as only a few years later experimen-
tal proof for the existence of the positron, the antiparticle of the electron, was
provided [And33].

A decade after Dirac published his famous equation Ettore Majorana found
out that there is also a possible choice of α’s and β that separates equation (3.2)
into two systems of pairs of coupled, real wave equations. The solutions of these
systems also describe spin-1/2 particles of the same mass. However, particles are
neutral and they are their own antiparticles [Maj37]. These particles are their
own counterpart, i.e. particle creation and particle annihilation is described by
the same operator γ̂ = γ̂†. Majorana concluded that the neutrino is a potential
candidate for such a particle which makes the concept of an anti-neutrino redun-

21



3. Avenues and Vision

dant. Up to today there is proof for many elementary particles that follow Dirac’s
predictions but not yet any for a Majorana fermion. This also explains why at his
time Majorana’s interpretation was in the shadow of the just experimentally de-
tected Dirac fermions. Today, however, Majorana’s ideas gain a lot of attraction.
In the field of high energy and particle physics researchers try to confirm whether
Majorana fermions can be found in nature by exploring the potential existence of
a neutrinoless double-beta-decay [Sch82; Ale96].

Nuclei that have an even number of protons and neutrons are mostly stable
against beta decay. However, a secondary process, called the two-neutrino double-
beta decay, is often possible

A
ZX → A

Z+2X + 2e− + 2ν̄e. (3.3)

Here X stands for the decaying element, A for the mass number, Z the atomic
number, e− denotes an electron and ν̄e an anti-neutrino. Yet, this is not the only
process under discussion to exist. The neutrinoless double-beta-decay

A
ZX → A

Z+2X + 2e− (3.4)

could also possibly occur. This process would then be a proof of neutrinos being
their own antiparticles but there lacks experimental testimony of such a process
and it is not even clear if it actually exists. Process (3.4) would not conserve the
Lepton number. As a far reaching implication this could even help to explain
the imbalance of matter and antimatter in the universe which is still a unsolved
problem [Dav08].

3.2.2. Majorana Zero Modes in Condensed Matter Systems
In condensed matter systems Majorana fermions can emerge as quasiparticles that
describe collective excitations in topological superconductors. These so called
Majorana bound states or Majorana zero modes are an even hotter topic than
their nuclear physics eponym (detailed discussions on Majorana bound states can
be found in several reviews, e.g. [Ali12; Bee13; Sar15]). They inherit their name
from the fundamental Majorana particles because their creation operators turn
out to be hermitian as well. However, their core feature—which is their very
special exchange statistics—is not applying to fundamental Majorana fermions.
This property makes them potentially extremely useful for quantum computation.

Roughly spoken, the idea is to split up the fermion operators in the condensed
matter many-body system into a real and imaginary part. In general, this rewrit-
ing has of course no physical implication. Yet, it turns out to be useful under
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3.2. Majorana Bound States

certain conditions, when topological defects come into play as the underlying
physics of the system are then best described by these quasiparticles.

Topological Superconductors

Topological superconductors are of interest in this discussion their most intriguing
feature is that they can host Majorana zero modes. As we only give a short
insight into the topic the interested reader is referred to the reviews of Hasan et
al. [Has10], Qi et al. [Qi11] and Sato et al. [Sat17]. Conceptually, topological
superconductors are quite similar to topological insulators. The unique feature
of the latter is a fully insulating bulk gap and gapless edge or surface states
protected by time-reversal symmetry. Similarly, a topological superconductor has
a superconducting bulk with a pairing gap and gapless surface states consisting
of Majorana fermions. The topological structure of such systems is reflected in
the wave function. From the mathematical field of topology we know that, for
instance, a cup and a donut are topologically connected. We apply this idea now
to wave functions. Any many-body wave function that is adiabatically connected
to a combination of atomic wave functions is considered topologically trivial. For
a many-body wave function describing a topological state, there exists no such
connection.

The observation of the quantum Hall effect in 1980 proofed for the first time the
existence of topologically non-trivial states [Kli80; Tho82]. Soon it was discovered
that a whole group of many-body systems with a gap separating the (degenerate)
ground state from the excited states can posses topological properties. They can
be classified by finding integer numbers that represent their topology. The Chern
number is an example of a topological invariant that can express the topological
charge2 of the system. For our purposes spinless one- and two-dimensional systems
that exhibit superconducting p-wave pairing are especially useful. Let us stress
that the reduced dimensionality will be crucial. Under these conditions a pair of
quasiparticles being bound to a localized defect in the ordered state of the system
can be excited at zero energy cost. Such a localized defect can be a vortex [Rea00]
or a domain wall [Kit01], in two or one dimensions respectively. The binding gives
rise to the name Majorana bound states for these quasiparticles. Alternatively,
entitling them Majorana zero modes reflects that their creation costs zero-energy.
For a system that can host a pair of Majorana quasiparticles the ground state
would then be twofold degenerate3.

2The term topological charge and topological quantum number are used synonymously in this
thesis.

3It should be mentioned that there exist other systems as well that can host Majorana modes
such as ν = 5/2 fractional quantum Hall states.
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A system being in a topological phase goes along with the fact that the many-
body quasiparticle states exhibit very special exchange statistics. These so called
non-Abelian statistics are subject of the next chapter.

Non-Abelian Statistics and their Significance for Universal Quantum
Computation

The aim of this section is to show that lowering the dimensionality from three to
two gives rise to richer exchange statistics of identical particles.

As a starting point it is helpful to consider the adiabatic exchange of two in-
distinguishable particles in a three dimensional space. We assume that the parti-
cles are originally located at positions (r1(t1), r2(t1)) and move to final positions
(r′1(t2), r

′
2(t2)). Due to the fact that the particles are identical it is clear that

the final position cannot be distinguished from (r′2(t2), r
′
1(t2)). In the following it

is useful to express the example in terms of the centre of mass coordinates and
relative coordinates of the system. Only in the relative coordinates r = r1 − r2
we can possibly see an effect of exchanging the particles. If its absolute value is
fixed, the relative coordinates can be visualized as the surface of a sphere (see
figure 3.3 a)).

We consider the situation when particles are finally detected at the initial po-
sitions. Nothing special happens in the first scenario (I) where the particles just
move around and go back to their initial position

ψ1(r1)ψ2(r2) → ψ1(r1)ψ2(r2). (3.5)

But for an observer it looks also the same if they are getting exchanged (II). This
means r goes to −r, i.e.

ψ1(r1)ψ2(r2) → ψ2(r1)ψ1(r2). (3.6)

In the second case another exchange brings the particles back to their initial
position (III). Scenario III can be continuously deformed into the trivial first
scenario and thus is trivial as well4. A feature of these paths is that they can be
shrunk into a single point. The two fixed endpoints, which cannot be reduced to a
single point, distinguish path II. The physical implication is that the two-particle
wave function gathers a phase θ

ψ1(r1)ψ2(r2) = eiθψ1(r1)ψ2(r2). (3.7)

4The mathematical expression for the possibility of deforming them one into another is that
they are in the same (in this case trivial) homotopy class.
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3.2. Majorana Bound States

Figure 3.3.: Relative coordinates of two particles in three (a) and two (b) dimen-
sions. Some adiabatic movement contractible to a single point is not changing the
wave function (I). An adiabatic exchange of the particles, which moves the rela-
tive coordinate to the antipodal point, gives rise to a phase (II). Exchanging them
twice (III) can be traced back to case I in three dimensions but in two dimensions
multiplies a phase factor to the two-particle wave function.

Considering that two exchanges cancel the effect means θ can only take the values
0 and π referring to bosons and fermions, respectively.

This does not hold for a two dimensional system. The different topology, now
represented by a circle (figure 3.3 b)), prevents that the path describing a double
exchange of the particles is contractible to a single point because the space is
multiply instead of singly connected as in 3D. The wave functions gather a phase
but, of course, |ψ1(r1)ψ2(r2)|2 = |ψ2(r1)ψ1(r2)|2 still holds. However, the dif-
ference is that θ can now take in principal any value. Quasiparticles in a two
dimensional space owning these special exchange statistics go under the name of
anyons. For later use, let us denote the phase of a clockwise exchange of two
anyons a and b with θab.

From a mathematical point of view these adiabatic processes, which we have
just considered, belong to the braid group. The braid group BN provides a suitable
way to describe the trajectories of N indistinguishable particles that are moved
from an initial position at time t0 to a final position at time t1. The group is
represented by N − 1 generators. A better understanding of the braid group
can be obtained with an example, in our case we take four particles (figure 3.4).
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The three generators σ1, σ2 and σ3 correspond to the counterclockwise exchange5

of particle i and particle i + 1 (without loss of generality the particles can be
labelled in an arbitrary way). With the visualization in figure 3.4 one can see
how the connection with the word “braiding” came about. Exchanging particles
adiabatically fulfils the following conditions:

1. σiσj = σjσi for |i− j| > 2

2. σiσi+1σi = σi+1σiσi+1 for 1 6 i 6 N − 1.
(3.8)

For the example of four particles both relations can be shown (figure 3.4 b)
and d)). In spite of similarities the braid group needs to be distinguished from
the permutation group in two dimensions. Although they satisfy almost the same
relations, there is one fundamental difference: The permutation group addition-
ally demands σ2

i = 1. Therefore, the number of its elements are given by the N !
possibilities to permute N particles. In figure 3.3 we saw what happens if one
braids two particles twice. Whereas in three dimensions the braid group meets
the additional condition of the permutation group—they are equal—there is an
important difference between them in two dimensions. In contrast to the finite
permutation group, the braid group is infinite because the phase θ can take any
value.

The 2D system in figure 3.3 is a one-dimensional representation6 of the braid
group. These “1 × 1” matrices are basically just numbers and thus commute.
An example them are quasiparticles in fractional quantum Hall states. How-
ever, going to higher-dimensional representations of the braid group the exchange
statistics are even more exotic as we will see in the following. Braiding can is
this case even transfer a system into a completely different state. It is obvious
that higher dimensional representations (higher dimensional matrices), as a rule,
do not commute (see also figure 3.4). The corresponding quasiparticles are thus
called non-Abelian anyons.

To understand conceptually what makes non-Abelian so special and why they
are potentially of great use one first has to introduce the concept of fusion. When
two anyons are brought close to each other they can fuse into a third particle. For
our purposes particles can be classified into three different topological categories:
those with a trivial topology (i.e. they are topologically equivalent to the vac-
uum), those with a fermionic topology and those with an anyonic topology. For

5A clockwise exchange is described by the inverse of the operator σ−1
i .

6The existence of a n-dimensional representation of a group means that the group can be mapped
with a homomorphism to a system of n× n matrices.
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Figure 3.4.: Representation of the braid group B4. a) The group consists of three
generators. Figure (b) and (d) visualize the first and second braiding relation,
respectively (equation (3.8)). c) In general, the group is not commutative.

the fusion process only the topological type of the particles is of interest. Naively,
one would expect two particles, each with a certain topological charge, to fuse in a
deterministic way into a third state of defined topology. This is, however, not true
in a system with non-Abelian statistics. If here two anyons are combined they can
either fuse into the vacuum or a fermion. The phase gained by exchanging two
non-Abelian anyons a and b depends now also on the fusion output c, thus the
phase should be appropriately denoted by θcab. It is very important to emphasize
that non-Anyons are always connected to a degenerate ground state separated by
an energy gap. The property that the system has (at least) two states that both
minimize its energy makes it even possible that a pair of anyons can be created
with zero energy cost from the vacuum. More complex systems hosting more than
a pair of anyons are especially interesting because in certain configurations braid-
ing can even evolve the system from one ground state into the other. Adiabaticity
ensures that the system never leaves its subspace of degenerate ground states.
Majorana zero modes bound to a localized disturbance7, shortly introduced in
section 3.2.2, fulfil this condition.

7Importantly, the non-Abelian statistics only arise when a Majorana quasiparticle is bound to
a topological defect and are not connected to fundamental Majorana particles.
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Altogether these properties make non-Abelian anyons like Majorana bound
states very intriguing for quantum computation:

1. As the Majorana fermions are bound to topological defects they can be used
to store information in a highly non-local way. Therefore they are robust
against weak local perturbations.

2. The degenerate ground states are protected by an energy gap.

3. The existence of different fusion channels can be exploited in order to express
the two states |0〉 and |1〉 of a qubit.

4. Braiding and the existence of different fusion channels provide the basics
for unitary gate operations on a qubit system. The actual fusion process
can be used for measurement of the final state. A better understanding
of the encoding, the application of gate operations and the readout can be
obtained in appendix A or the reviews [Nay08; Lah17].

5. Braiding operations are fault tolerant because they depend only on the
topology of the process. In other words this means that they are robust
against wiggles in the braid path.

Though braiding operations are unitary and can be used to express most of the
gates required for universal quantum computation, they do not give a complete set
of gates [Kit03]. Different approaches try to implement the missing π/8 - phase
gate. One options would be the additional use of non-topological operations to
make the set of gates complete [Bra06]. The problem is that they are unprotected
and thus exhibit of course a source of error. However, together with additional
error correction schemes non-Abelian anyons are so far still the best approach for
the experimental implementation of universal quantum computation. Besides this
idea more challenging proposals try to work around the problem by coupling to
other qubit systems, e.g. [Sau10].

A few words should as well be spent on some weak points that should be consid-
ered in a real system. Systematic errors in topological quantum computing can,
for instance, occur due to uncontrolled coupling to the environment. Furthermore,
perfect degeneracy of the ground state can only be obtained for a system with
infinitely separated anyons. For a finite distance their wave functions overlap and
thus they interact. This interaction, which decays exponentially with increasing
distance between the particles, needs to be taken into account if the quasiparticles
are not kept far enough from each other (the important length scale is set by the
inverse of the gap parameter). Then states with different energies dephase with
time.
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The Kitaev Chain—A System that Hosts Non-Abelian Anyons

The fractional quantum Hall state at a filling factor of ν = 5/2, which was found
in GaAs quantum wells [Wil87], was the first finding of quasiparticles attributed
to non-Abelian statistics [Moo91].

A decade later in 2000 Read and Green came up with a model of a topological
p-wave superconductor in 2D where Majorana zero modes bind to vortex cores
[Rea00]. Shortly after Kitaev proposed Majorana bound states to appear on an
even simpler playground—a p-wave superconductive 1D wire [Kit01]. We will now
further investigate this model.

To create a quasiparticle that is its own antiparticle an obvious approach is to
create a superposition of an electron and a hole. This concept is quite reminiscent
of Boguliubov quasiparticles in superconductors. Usually Cooper pairs are in
a spin singlet configuration of an s-wave superconductor because this state is
energetically favourable. Thus a Boguliubov quasiparticle reads b̂ = uf̂ †

↑ + vf̂↓.
Here f̂σ with σ =↑, ↓ is the annihilation operator of a fermion, and u and v
denote complex numbers. This operator generating Boguliubov quasiparticles is,
however, not hermitian. An appropriate operator needs to be not only chargeless
but spinless as well. This condition is met by the construction γ̂ = uf̂ †

σ +u∗f̂σ for
which γ̂† = γ̂ holds. The spin part of the wave function is now in a triplet state
and thus symmetric which means the spatial part needs to be antisymmetric in
order to keep the antisymmetry of the overall wave function. This can be provided
by the rather exotic p-wave pairing but not by s-wave pairing of the fermions.

With this in mind, we look at the Kitaev model that describes N spinless
fermions in a one-dimensional p-wave superconducting chain with long-range or-
der8 and open boundary conditions

Ĥchain = −µ
N∑
x=1

(
f̂ †
xf̂x −

1

2

)
−

N−1∑
x=1

(
tf̂ †
xf̂x+1 + |∆|eiθf̂xf̂x+1 + h.c.

)
. (3.9)

TheN lattice sites can be unoccupied or occupied by applying the fermion creation
operator f̂ †, µ denotes the chemical potential, t the hopping amplitude and |∆|eiθ
the superconducting gap.

Now, formally, the fermion operator of each site can be rewritten such that it
is, roughly spoken, “split up” into a real and imaginary part

f̂x =
1

2
e−i

θ
2 (ĉB,x + iĉA,x). (3.10)

8The Kitaev chain is the lattice version of a spinless p-wave superconductor in a mean-field
description.
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Figure 3.5.: The Kitaev chain. a) Fermions in a 1D chain can either be ex-
pressed by the fermionic operators f̂x or by the Majorana operators ĉA, x and ĉB, x.
b) Under certain conditions Majorana operators of neighbouring sites pair up
to a fermionic operator. At the boundaries isolated Majorana modes remain.
c) Different chemical potentials create domain walls between topological and non-
topological regions. d) With the help of a T-junction braiding operations can be
performed with the 1D chain.

Inverting this equation

ĉA,x = −iei
θ
2 f̂x + ie−i

θ
2 f̂ †

x, ĉB,x = ei
θ
2 f̂x + e−i

θ
2 f̂ †

x, (3.11)

one sees at once that the Majorana operators ĉα,x with α = A,B are hermitian.
Besides, their commutation relation is given by {ĉα,x, ĉα′,x′} = 2δα,α′δx,x′ . The
Hamiltonian in this new basis

Ĥchain = −µ
2

N∑
x=1

(iĉB,xĉA,x + 1)− i

2

N−1∑
x=1

[(t+ |∆|) ĉB,xĉA,x+1 + (−t+ |∆|) ĉA,xĉB,x+1]

(3.12)
describes the original fermions in terms of pairs (figure 3.5 a)). The hopping term
gives rise to nearest neighbour hopping and third nearest neighbour hopping of
the quasiparticles in Majorana basis. Two cases can be easily discussed:

In the special case of |∆| = t = 0 and negative µ the system’s energy is mini-
mized when all lattice sites are unoccupied and any excitation costs a finite energy
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|µ|. This phase is topological trivial and the treatment in terms of Majorana op-
erators is not giving additional insight into the system’s properties9.

The second situation arises for µ = 0 and t = |∆| 6= 0. Then the Hamiltonian
reduces to

Ĥchain = −it
N−1∑
x=1

ĉB,xĉA,x+1. (3.13)

In this case Majorana fermions belonging to adjacent sites form a pair (fig-
ure 3.5 b)). This is even clearer if one rewrites d̂x = 1/2(ĉA,x+1 + iĉB,x) and
thus

Ĥchain = 2t
N−1∑
x=1

(
d̂†xd̂x −

1

2

)
. (3.14)

In the bulk one needs to pay an energy 2t to create a fermion dx with x ∈
{1, ..,N − 1}. But at the end of the chain there exist now Majorana modes ĉA,1
and ĉB,N that are decoupled from the Hamiltonian (figure 3.5 a)). To occupy them
by applying γ̂ = 1/2 (ĉA,1 + ĉB,N) costs no energy—thus the name Majorana zero
modes. From this follows that two different ground states are possible. The system
is now in the topological phase described in the previous chapter. For our choice
of boundary conditions the two Majorana bound states at the edges give rise to a
highly non-local fermion. If we had chosen periodic boundary conditions instead,
these two Majorana modes would just pair up to a normal fermion mode.

Of course the cases, we have looked at, were idealized. There is as well a regime
where a topological phase arises for µ 6= 0 and t 6= |∆| as long as 2t > |µ| holds.
Under these conditions a finite gap to protect the degenerate ground state still
exists but the bulk modes are partially occupied.

However, for this—from an experimental point of view more realistic case—the
wave functions of the two Majorana zero modes are exponentially localized at the
ends of the wire. For finite distances of the modes they overlap and the twofold
degeneracy is lifted as already mentioned at the end of the last paragraph. Under
the conditions that the two edge modes are much further apart from each other
than the inverse gap this effect can be neglected. Furthermore, as the Majorana
zero modes are bound to a defect, the system is robust against thermal fluctua-
tions because they cannot cause anyonic quasiparticle excitations by accident.

The aim is now to use the Majorana zero modes for quantum computational
purposes as introduced in section 3.2.2. It is easy to imagine a braiding process
in a two-dimensional system. In one dimension, however, braiding is ill-defined
9Alternatively, one could as well consider the case of positive µ. Then the energy is minimal for
a completely filled chain with Majorana fermions coupling to the original fermion lattice sites.
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as the only possibility to exchange two modes would mean to bring them close
to each other and thus to lift the degeneracy. The problem can be solved by
performing braiding operations in two dimensions with the help of a T-junction
(figure 3.5 d)). Additionally, with the T-junction it is possible to braid more
than the two Majorana bound of a single chain. As shown in figure 3.5 c) dif-
ferent chemical potentials along the T-junction can be exploited to create domain
walls between non-topological regions (µ > 2t) and topological ones (µ < 2t).
This is essential if one wants to express unitary operations on qubits within our
construction (appendix A). As discussed above (section 3.2.2) for Majorana modes
there exist two different fusion channels. Two of them can either annihilate to
vacuum or they fuse to an ordinary fermion. Also this process is not restricted
to Majorana fermions of the same topological domain but can also take place
between two different topological regions [Ali11].

3.2.3. Signatures of Majorana Fermions and how to Measure
them

As discussed in the previous chapter spinless p-wave superconductivity is a key
requirement in order to engineer a system that can host Majorana bound states.
Yet, they are extremely rare in nature. It is possible to overcome this limit with
induced superconductivity. Following the proposals of Lutchyn et al. [Lut10]
and Oreg et al. [Ore10] which are based on [Fu08] it is shown that the require-
ment of an effectively p-wave superconductive 1D chain can be complied with a
semi-conductive wire surrounded by an s-wave superconductor if strong spin-orbit
coupling and Zeeman splitting are present in the system. The underlying mech-
anism that inherits superconductivity is called superconductive proximity-effect
(see e.g. [Lut10]). In a spin-orbit coupled system the degenerate spin bands shift
with respect to each other (figure 3.6 a) and b)). In the presence of a magnetic field
the Zeeman splitting leads to an avoided crossing. If the chemical potential lies
within the gap that opens up and there is effectively only a single band involved
which only holds a single spin projection (figure 3.6 c)). For an adequate choice
of parameters the wire passes into the p-wave superconducting phase. Mourik et
al [Mou12] first reported on signatures that were likely to stem from Majorana
fermions in a InSb nanowire that was designed following the proposal presented
above. Measuring the differential conductance they discovered a peak at zero
bias voltage in their nanowire device that might be connected to the occupancy
of a Majorana edge mode of the wire. However, these results are still under de-
bate in the community [Sar15]. A conclusive measurement could be based on
braiding or by the measurement of the 4π fractional AC Josephson in topological
superconductors not discussed in this thesis [Rok12].

32



3.2. Majorana Bound States

Figure 3.6.: Bandstructure. a) In the presence of no magnetic field and no
spin-orbit coupling the dispersion relation of spin up and spin down electrons is
identical. b) The two bands are displaced relative to each other in a strongly
spin-orbit coupled system. c) Applying additionally a magnetic field opens up a
band gap. If the chemical potential is placed within the gap the wire is effectively
spinless. Adapted from [Sar15].

The tunability and the high degree of control of cold atoms makes them an
interesting candidate for the search of Majorana bound states. However, the re-
quirement of p-wave superconductivity poses a serious challenge. p-wave resonant
gases suffer from very short lifetimes [Zha04; Gae07]. Although there exist propos-
als to work around the problem their complexity has prevented their realisation so
far. Among others they include a proposal to adapt the idea of engineering p-wave
superconductivity with the proximity-effect (see above) to cold atoms [Jia11].

We can conclude that although considerable efforts—especially in condensed
matter physics—have been made, the unambiguous detection of Majorana fermions
remains challenging.
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4. Realization of an Ultracold 2D
Fermi Gas

In this chapter we introduce the 2D setup which served as starting point for
the upgraded experiment. We start out by discussing relevant properties of 6Li,
followed by the description of the experimental sequence to create a quasi-2D gas.
Finally, we give a short summary of the experimental results obtained over the
last years with this setup. For details we refer to [Rie10] and [Nei17].

4.1. Properties of 6Li
In our experiment we work with the stable isotope of lithium 6Li. As it consists
of three protons, three neutrons and three electrons the composite element is un-
charged and fermionic. Its nuclear spin I = 1 and its electron spin S = 1/2 (6Li
has one electron in the outer shell) lead to a hyperfine splitting of the ground
state into F = 1/2 and F = 3/2 (figure 4.1 a)). The degeneracy of the Zeeman
levels can be lifted by applying a magnetic field. Already for a magnetic field of
30G (1G) for the 22S1/2 (22P3/2) branch J and I decouple and one enters the
Paschen-Back regime where the levels regroup according to the quantum number
mj. The six ground states are labelled from |1〉 to |6〉. All experiments are per-
formed with (mixtures of) state |1〉, |2〉 or |3〉. We can convert the population from
one state into another with a Landau-Zener passage by applying a radio frequency
pulse. Throughout this thesis we use a mixture of the two lowest states (|1〉 and
|2〉) which are separated by about 80MHz in frequency for magnetic fields above
100G. Interactions between two different species can be induced and controlled
by applying a homogeneous magnetic offset field. 6Li has an especially broad
s-wave Feshbach resonance (see section section 2.2 around 800G (figure 4.1 b)).
At the Feshbach resonance scattering is resonantly enhanced and the s-wave scat-
tering length diverges. Additionally, narrow p-wave resonances can be found at
around 180G for |1〉-|1〉, |1〉-|2〉 and |2〉-|2〉 mixtures. The two imaging techniques
used in our experiment, absorption and fluorescence imaging, both work with the
transition from transition from 22S1/2 to 22P3/2 (D2-line) at λ = 671 nm of 6Li.
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Figure 4.1.: a) Level structure of the lowest levels of 6Li. If a magnetic field
is applied the degeneracy of the Zeeman levels is lifted. In the experiment we
work with the three lowest hyperfine states of the ground state. Adapted from
[Ber17]. b) Dependence of the scattering length on the magnetic offset field. A
broad s-wave Feshbach resonance exists for all three possible mixtures [Nei17].

4.2. Experimental Sequence
To perform experiments in the regime of degeneracy a sophisticated preparation,
comprising several cooling stages, is indispensable. The working principle of a
magneto-optical trap (MOT), an optical dipole trap (ODT) and evaporative cool-
ing are explained in section 2.1. We only give a short overview of the different
steps here.

Working in the regime of 100 nK requires to shield the atom cloud as much as
possible from collisions with thermal atoms of the environment. Consequently,
we use ultra high vacuum achieved by combining titanium sublimators (position
A in figure 4.2) and two ion-pumps (B) together with a non-evaporable getter
coated experimental chamber. The main chamber (C) has an octagonal design
allowing optical access along three horizontal axes and from the vertical axis.
For the preparation of the sample an atomic vapour is produced from solid 6Li
in the oven at 350◦C (D). Atoms enter the Zeeman slower (E) where they are
decelerated to about 3% of their initial speed by exploiting absorption of a counter-
propagating resonant beam (F) and spontaneous emission. The atoms’ Doppler
shift is compensated by the coils of the tapered Zeeman slower. At the main
experimental chamber the speed of the atoms is sufficiently reduced to capture
about 108 atoms in a magneto optical trap. The MOT consists of three pairs
of counter-propagating, red-detuned, near-resonant beams and a pair of coils in

36



4.2. Experimental Sequence

Figure 4.2.: Vacuum setup. Titanium sublimators (A) and ion-pumps (B) es-
tablish ultra high vacuum in the main chamber (C). A vapour of 6Li is produced
in the oven (D) of which a part is transferred through the Zeeman slower (E).
During the transfer to the experimental chamber the atoms are cooled down with
a counter-propagating beam of resonant light (F). Adapted from [Rie10].

anti-Helmholtz configuration (red in figure 4.2) producing a quadrupole field . In
the MOT the atoms are cooled down to a few hundred microkelvin. To cool them
down further they are loaded into an optical dipole trap1. To load the atoms,
which are in a mixture of the lowest two hyperfine states, from the MOT into the
ODT the size of the cloud is reduced by decreasing the detuning and applying
a steeper magnetic field gradient 2. The ODT consists of two crossed beams of
perpendicular polarizations in the far red-detuned regime (λ ≈ 1064 nm).

Quantum degeneracy can then be achieved in the ODT by evaporative cooling.
As high collision rates are favourable for this cooling technique we work with dis-
tinguishable fermions and a magnetic offset field in the vicinity of their Feshbach
resonance. In this regime they are highly interacting. The offset field is produced
by a pair of magnetic field coils, called Feshbach coils. After the evaporation we
end up with about 105 atoms at a temperature of around 100 nK.

In the last step we want to load the degenerate sample from the cigar shaped
crossed beam ODT (aspect ratio 1/ωx : 1/ωy : 1/ωz ≈ 8.3 : 44 : 1) into the
quasi-2D trap. The latter trap is created by the interference pattern of a standing
wave dipole trap (SWT). To load from the cigar shaped trap into a single central
layer of the SWT it is important to reduce the axial extension of the ODT as far
as possible. The size of the trap can be effectively reduced during the loading
by creating a time-averaged potential in the horizontal plane with the help of an
acousto optic modulator (AOM) so that up to 90% of the atoms can be transferred

1As dipole traps have typically depths in the range below one millikelvin it is not possible to
load the atoms directly into the ODT.

2For this purpose we use another set of coils, in the following referred to as Feshbach coils, which
are closer to the atoms.
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to a single layer. The last step in the preparation is a further spilling process in
the SWT. Due to an applied magnetic field gradient during the evaporation the
atoms leave the trap very fast. This leaves us finally with about 35, 000 atoms
in a highly anisotropic potential at a temperature of about 70 nK. In units of the
Fermi temperature TF this corresponds to T/TF ≤ 0.2. The aspect ratio of the
SWT given by 1/ωx : 1/ωy : 1/ωz ≈ 330 : 330 : 1 shows that it is energetically
favourable for the system to populate a considerable amount of radial trap levels
before axial excitations are of advantage for the system. As the chemical potential
and the temperature are lower than the excitation energy in z-direction we can
therefore assume to work in a quasi-two-dimensional regime.

For imaging the 2D system at the end of the experimental sequence we rely
mainly on absorption imaging from top to bottom. Besides imaging in position
space we are also able to detect the momentum distribution of the sample by
taking an image after a certain time-of-flight. To this end the trapping potential
is switched off. If the atoms evolve in a harmonic potential their position after a
quarter of the trap period corresponds exactly to their momentum distribution.
We use the Feshbach coils to create the required weak harmonic confinement in
which we let the atoms expand [Mur14].

4.3. Previous Work on 2D Fermi Gases
The 2D experiment was initially designed to explore the crossover from a conden-
sate of tightly bound molecules to weakly paired fermions in the Bardeen-Cooper-
Schriffer (BCS) regime passing a strongly interacting regime (figure 4.3 a)). For a
system with dimension lower than three no Bose-Einstein condensation is possible.
However, in 2D a superfluid state in the form of a topological phase transition

Figure 4.3.: Working in a quasi-two-dimensional regime. a) Schematic phase
diagram for superfluid to BCS crossover. b) In situ density distribution and
momentum distribution in the Berenzinskii-Kosterlitz-Thouless phase.
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being connected to the binding of vortices (Berenzinskii-Kosterlitz-Thouless tran-
sition) still exists [Ber72; Kos73]. This phase transition was observed for the first
time by our group (figure 4.3 b)) [Rie15], followed by further investigations of
the condensate to BCS crossover [Mur15c] and the measurement of the thermo-
dynamic equation of state for the crossover [Boe16]. In the strongly interacting
regime, which is hard to approach theoretically, pairing was investigated in greater
detail [Mur18b]. Differently to the BCS regime where the formation of pairs and
their condensation happen simultaneously, it was discovered that in the strongly
interacting regime pairs already form much earlier still in the normal phase of the
gas. The most recent experiments on the 2D setup were focused on the observation
of the breathing mode of the quantum gas. For both observables, position and
pair momentum distribution of the superfluid, strong signatures for anomalous
breaking of scale invariance in the 2D system were found [Hol18; Mur18a].
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5. Experimental Extension
On the way beyond the capabilities of our group’s approved 2D system we added
a major extension to the setup in the course of this thesis. At its heart is the
possibility of spatial light modulation paving the way to create tailor-made optical
potentials projected onto a plane. One of the expectations regarding the new setup
is the possibility of highly controlled lattice experiments at very low entropy.
Another novel feature concerns the detection. The implementation of a high-
resolution objective together with an EMCCD camera shall allow us to perform
spin-resolved single-atom imaging in free space in future. These trapping and
imaging tools at hand we are in a perfect position to start the investigation of
strongly correlated many-body systems.

In this chapter we first explain how to identify phase patterns that lead to
a desired potential landscape. We continue with a detailed description of the
extension, followed by a overview of the implementation. We end with a separate
discussion of the objective and single atom imaging.

5.1. Creating Tailor-Made Potentials
The experimental add-on is designed to allow the realization of almost arbitrary
2D trapping potentials. We address this challenge with a spatial light modulator
(SLM) that modulates the phase of an incoming beam and therefore shapes a
coherent beam in the way we desire. The SLM used here was already subject of
different bachelor theses within our group [Hol14; Kug15; Cla16]. Beside SLMs,
which are based on liquid crystals, another established candidate for light shaping
are digital mirror devices which work with electro-mechanically controlled mi-
cromirrors. Depending on the application either one or the other device might be
more suitable [Tur17]. For our purposes the preferred choice is a phase-modulating
SLM since its higher diffraction efficiency is advantageous in order to create deep
trapping potentials. Furthermore, an SLM is better suited for the creation of
time-dependent patterns because it naturally changes in a continuous way be-
tween different potentials.
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According to equation (2.23) a given SLM phase pattern and input field U(x, y, zin)
translate into an intensity distribution in the atoms’ plane as

Itarget(x, y) = 1/(λf)2|F
[
U(·, ·, zin) e

−iφSLM
]( x

λf
,
y

λf

)
|2. (5.1)

An important question to ask with this knowledge is, how can we determine a
phase pattern that leads to a desired trapping potential Itarget(x, y)? It is easiest
to consider an incident plane wave. Its incident angles θx, θy result only in a shift
of the intensity pattern in the atoms’ plane. Therefore, for the sake of simplicity,
we can assume θx = θy = 0 and set U(x, y, zin) ≡

√
Ipw. In a more realistic

scenario one should consider a collimated Gaussian beam that has approximately
flat wavefronts in the SLM plane and the atoms’ plane and a Gaussian intensity
distribution. Given approximate knowledge of the form of the incident wave and
the constraints that we measure only intensities Itarget(x, y) in the Fourier plane
and only modify the phase φSLM(x, y) in the SLM plane one cannot apply a simple
Fourier transformation of the desired intensity pattern in the atom plane in order
to trace back how φSLM(x, y) needs to be chosen.

However, there exist several numerical methods to receive a possible approxi-
mated SLM-phase pattern. Within our group different approaches to determine
φSLM(x, y) for discrete and continuous targets were tested and evaluated [Hol14;
Hol17]. In order to create an intensity pattern in the atoms’ plane, such as an ar-
ray of single spots, it is important to use an algorithm that refracts light from the
whole SLM into each spot. Two different algorithms are predominantly applied
in our experiment: One method called mixed-region amplitude freedom (MRAF)
algorithm [Pas08] is based on an iterative Fourier transform algorithm where one
starts with an arbitrary phase guess φSLM(x, y) and then propagates the field back
and forth between SLM plane and atom plane with Fourier transforms until the
calculation converges to a phase pattern that yields the desired intensity distribu-
tion in the atom plane (figure 5.1 a) and b)). The second algorithm is known as
conjugate gradient descent (CGD) algorithm. The main idea here is to introduce
a suitable cost function that describes the deviation from the desired light pattern
and then to minimize this function gradually [Har14]. When comparing both al-
gorithms, the MRAF algorithm is faster and more reliable (tested in [Hol14]) but
has a lower light utilization efficiency than the CGD algorithm. For continuous
targets the MRAF algorithm diffracts light into a noise region which reduces the
light utilization efficiency of the SLM to about 40%. For discrete targets or when
the CGD algorithm is applied the efficiency is up to 90%.

The finite size of the SLM, which makes it act as an aperture, naturally leads
to a discrete description of the so called drawing area in the Fourier plane as
both planes are connected by a Fourier transformation. The smallest structure
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Figure 5.1.: Creation of trapping potentials. a) A phase pattern can be numeri-
cally calculated by the MRAF algorithm predicting the desired potential landscape
in the atoms’ plane (b). c) A zero-padding added around the phase pattern is nec-
essary to obtain the maximal resolution in the atoms’ plane. The black frame are
the pixels which are set to zero.

∆X×∆Y , denoted as focal unit according to [Bij13], the SLM itself can create in
the drawing area is set by the inverse of the SLM chip size Lx×Ly via ∆X×∆Y =
λf/Lx × λf/Ly. In our setup this would lead to ∆X ×∆Y = 729 nm × 960 nm
in the atoms’ plane1. However, this is finer than the smallest structures that the
objective can resolve as discussed in section 5.4. Still, the focal unit is a useful
concept to set the pixels of a desired phase pattern.

As explained the smallest structure the SLM can produce by itself after the
Fourier transformation is of the size of a focal unit or expressed in the language
of Fourier transformations this is the highest frequency component. Yet, the
Nyquist–Shannon sampling theorem [Sha49] states that in order to reconstruct a
signal correctly its sampling rate needs to be at least twice the highest frequency
component. For this reason the focal unit is not precise enough to make appro-
priate predictions of the intensity distribution for a given SLM phase pattern. We
can meet this requirement with the trick to assume for all calculations that Lx
and Ly are twice as long as the SLM chip but to set only the inner pixels with the
phase pattern that is actually applied to the SLM. All other pixels are set to zero
for the calculations (figure 5.1 c)). The technique is at the cost of computation
time and memory as the array to process is four times bigger now.

In a real setup one needs to compensate for aberrations in the optical system
as well as for imperfections in the response of the SLM itself. A very convenient

1Since we add an additional 4f-setup between SLM and objective, which projects the Fourier
pattern on the atoms’ plane, the the size of a focal unit is given by ∆X × ∆Y =
λf3fobjective/(Lxf2)× λf3fobjective/(Lyf2) according to figure 5.3.
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property of the SLM is that it can be used to correct these imperfections by ap-
plying an appropriate phase pattern to it. Therefore, the finally applied phase
pattern is a sum of different correction patterns and the numerically calculated
pattern of the desired potential [Hol14]. A correction pattern that takes care of
imperfections of the liquid crystal chip itself and the glass window of the SLM
is already provided by Hamamatsu. One can identify further aberrations in the
beam path by a Shack-Hartmann method [Bow10]. The underlying principle is
to scan over all positions (x0, y0) of the whole SLM chip and to deduce the wave-
front errors stemming from each position. The method was tested in [Hol14].
Most importantly the technique can be applied while trapping atoms allowing to
correct for aberrations even due to the vacuum window. Besides these correction
patterns, it is very useful to apply the pattern of a Fresnel lens to the SLM. This
allows to fine-tune the focus with respect to the atom plane. Finally, the total
phase pattern contains a linear gradient in addition to shift the applied phase
pattern away from the zeroth order of the SLM and a pattern derived with the
help of a CCD camera feedback. Their importance will be discussed in the next
section where the complete setup is explained.

5.2. Extensional Setup
This section gives an overview of the extension that was implemented in the course
of this thesis. The add-on is composed of three breadboards which host the SLM, a
high-resolution objective and an electron multiplying charge-coupled device (EM-
CCD). Figure 5.2 shows schematically how the new elements are integrated into
the experiment. Together, they add a further layer of optics to the experiment.
Far red-detuned trapping light is prepared on the breadboard that hosts the SLM
(A), it is then guided to an adjacent vertically mounted breadboard placed above
the main chamber (B). The high-resolution objective (C) attached to the latter
forms a 6f-setup together with the optical system after the SLM and it focuses the
light into the atoms’ plane. Single-atom imaging shall be enabled by the newly
implemented EMCCD camera which is mounted onto an additional breadboard
(D). Due to the modification this breadboard does now also include the outcou-
pler of a beam used for absorption imaging with a wide field of view that was
already part of the experiment before.

5.2.1. Optical Setup of the SLM
In our experiment we can now project tailor-made optical potentials onto the
atoms using the SLM-setup. We use an X10468-03 LCOS spatial light modulator
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Figure 5.2.: Schematic overview of the extension. In the foreground the arrange-
ment of the extension is shown. In the background the main chamber, Zeeman
slower and the vacuum pumps are depicted as an orientation. Breadboard A hosts
the SLM, the vertical B is placed above the vacuum chamber. Attached to it is
the objective (C). The new imaging setup is arranged at breadboard D.

from Hamamatsu. The device consists of an array of 792 × 600 pixels electrodes
each of which can be addressed separately. Phase shifts between 0 and 2π can
be tuned in 256 steps. The electrodes are driven with constant voltage with
alternating sign at 240Hz to prevent drifts of the molecules within the alignment
layer. Due to the high speed the orientation of the molecules is not affected—only
the polarization of each liquid crystals alternates. Further specifications of the
X10468-03 LCOS-SLM can be found in appendix B.

As explained in section 2.1 dipole traps in our experiment are created with far
red-detuned light. The SLM-trapping light is provided by the Mephisto-seedlaser
which is amplified by the NUFERN-fibre amplifier. In front of the high-power
fibre which directs the light to the SLM-breadboard an acousto-optic modulator
(AOM) is placed. It serves as a fast switch for the light and is used as a part in
the intensity feedback loop. The trap created by the SLM confines the atoms in
the x-y-plane and depending on the pattern also in the z-direction. Additional
z-confinement can be achieved with the 2D-trap introduced in chapter (chapter 4).

Figure 5.3 shows the optical setup containing the SLM that is used to prepare
the trapping light. At the outcoupler (A) the beam is collimated such that it has
a diameter of 1.7mm. It subsequently passes a λ/2-waveplate and a polarizing
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Figure 5.3.: The SLM board. Shown is the trapping beam coupled out (A) and
polarized before it reaches the SLM. It is subsequently guided to the objective via
a 4f-setup. Photo diodes and CCD camera serve for feedback purposes. Adapted
from [Hol17].

beam-splitter (PBS) to obtain linearly polarized light. The polarization is crucial
when it comes up to the diffraction efficiency of the SLM (defined by the light level
diffracted into the first order divided by the zeroth order) because, as explained
in the previous chapter, only light polarized in parallel to the untilted molecules
gathers a spatially dependent phase.

In the next step the light passes a acousto-optic deflector (AOD). This device is
used for spatial beam steering. By varying the frequency applied to the AOD the
diffraction angle can be manipulated. With a reaction time of about 300 ns one
can move the light pattern in the atoms’ plane much faster with the AOD than
with the SLM. The latter is limited by a refresh rate of only 120Hz. Additionally,
it is possible to apply a signal containing two different frequencies to the AOD.
In this case two incident beams hit the SLM-chip under slightly different angles
and therefore two copies of the same intensity pattern in the Fourier plane are
produced. For instance, one possibility is to prepare the atoms in a lattice created
by the SLM and adiabatically load it into a superlattice by turning on a second
frequency with the AOD (see also chapter 7). The centre frequency of the AOD
is around 80MHz.

After the AOD the beam is passing a telescope (f1, f2). It is eight times
magnified such that the beam illuminates the whole SLM-chip. At the focus of
the first lens (f1) we cut the zeroth order of the AOD with a beam dump to which
a razor blade is attached (B). The SLM is illuminated under an angle of about
20◦ because otherwise the light utilization efficiency is considerably reduced.
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In the following the beam passes a 6f-setup (f3, f4 and the objective) until
it reaches the atoms’ plane. Although this makes the beam path long and thus
increases the probability of noise onto the beam there are two benefits. One
advantage is that the zeroth order of the SLM can be cut at the focus of f3
(C). The other more important aspect is that we want to use the full numerical
aperture of the objective to obtain the smallest possible spot size which is only
possible if the aperture of the objective limits the beam size. Only then maximal
resolution can be obtained with the objective. The additional telescope between
SLM and objective yields a magnification of about 1.9. Before the beam reaches
the objective we added a beam sampler (D) to the beam path that transmits
most of the light to the objective. The remaining part is reflected and is used for
diagnostic and feedback purposes. The diagnostic tools are a CCD camera and
two photodiodes (PDs)—one PD for small targets, such as few discrete lattice
points that require a power in the milliwatt regime and one for continuous targets
with powers of about a few hundred milliwatts. A small part of the reflected light
is split up with a glass plate (E) and focused down (f6) onto a InGasAs photodiode
by Thorlabs (PDA10CS-EC). This photodiode is meant for use at high powers.
The main part of the beam is focused down (f5) and subsequently split up into
two parts with another beam sampler (F). The transmitted part of the beam is
further focused down (f6) onto an InGaAs photodiode that is home made by the
institute’s electronic workshop. It is meant to be used for low powers. The few
percent of the beam that are reflected by the beam sampler are incident on a CCD
camera. The image of the intensity pattern on the CCD camera compared to the
pattern in the atoms’ plane is magnified by about a factor of 20 (f5 ≈ 20fobjective).
The PDs in combination with the AOM mentioned above are used to regulate the
total beam power with a PID feedback loop to keep the depth of the trapping
potentials constant. Former measurements within our group already revealed
intensity fluctuations of 480Hz due to the refreshing of the SLM [Cla16]. As the
tests showed that single spots of a phase pattern were fluctuating in phase with
each other it is possible to compensate for this effect at least to first order by
regulating the overall light intensity.

The camera is used for diagnostic and feedback purposes. Similar setups showed
that a closed-loop optimization is essential to take care of imperfections in the real
setup and thus improve the matching of theoretical distribution and real light dis-
tribution in the atoms’ plane [Bru11; Gau12; Nog14].

In the future we aim to use dynamic trapping potentials. As stated in this para-
graph it is straight forward to generate time-dependent potentials with the AOD.
However, the possibilities provided by the AOD are limited. Yet, the realization
of time-dependent potentials with the SLM is challenging for several reasons. One

47



5. Experimental Extension

would need to prepare a video composed of single images of the changing poten-
tial. To process such a movie in real time is hard because of the amount of data.
There are two options how to proceed: Either one aims for a frame rate with
less frames per second (fps) than the refresh rate, e.g. 40 fps, such that one can
make sure that the SLM displays every single image or one goes far a higher frame
rate, e.g. 240 fps, with deviations smaller than a focal unit between two sequent
frames. This means that it is not essential to display every single image on the
SLM. Provided one of these two procedures the time-dependent potentials would
nevertheless only be suitable for atom preparation or to separate traps before
readout, i.e. when precise timing of the movement relative to the complete se-
quence is not essential. Manipulating the atoms to observe fast dynamics requires
a sufficient precision of the trigger (about 1ms). This is so far out of reach for
dynamics with the SLM due to its refresh rate of 8ms which is also not synced to
the experiment. Therefore, it is difficult to obtain reproducible timings.

The long beam path and the huge beam diameter make the beam susceptible
to drifts caused by airflows and temperature gradients. To reduce these effects
we added several tubes into the beam path and designed a cover that shields the
system from the top. Additionally, it protects the optics from dust.

5.2.2. Optical Setup of the Objective and for Imaging
In the following paragraph the breadboard hosting the imaging optics and the
breadboard installed vertically above the vacuum chamber, to which the high res-
olution objective is attached, are described. The latter breadboard is designed to
meet the requirement of combining imaging light, SLM trapping beam a and the
vertical MOT beams.

After the trapping light (red beam in figure 5.4) leaves the SLM-breadboard
it is directed onto the objective with the help of three mirrors. As access to
the objective is required for several purposes the last mirror (A) is chosen to be
dichroic—it is high reflective for light of 1064 nm wavelength which is used for
trapping atoms and highly transmittive for resonant light (λ = 671 nm) used for
imaging and the MOT beams. The objective then focuses down the trapping
light onto the atoms’ plane at a distance of 23mm. A polarizing two inch cube
on the vertical breadboard allows to combine/separate the MOT beam and the
imaging beam on the vertical breadboard. In consequence of the implementation
of the objective it was necessary to change the setup of the vertical MOT beams.
The vertical MOT beam is now coupled out below the vacuum chamber and is
retroreflected above the vacuum chamber after being reflected by the polarizing
cube (figure 5.5 a)). Above (below) the upper (lower) λ/4 waveplate the imaging
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Figure 5.4.: Vertical breadboard positioned above the vacuum chamber. Light
prepared at the SLM breadboard for trapping (red beam) is focused on the atoms’
plane with the objective. Due to the use of a dichroic mirror (highly transmittive
for λ = 671 nm and highly reflective for λ = 1064 nm) access to the vacuum
chamber is also guaranteed for the MOT beams (green) and the imaging beams
(green). A PBS separates/combines the paths of the imaging light and the MOT
beam. The MOT beam coming from below the vacuum chamber is reflected to
the left by the PBS and subsequently retroreflected. Imaging light passes the cube
without being reflected. The propagation direction of the imaging light depends
on the imaging technique and the choice of the camera. A beam used to align
the objective is sketched in turquoise (for details see section 5.3 and appendix D).
Adapted from [Hol17].

beams have a linear polarization perpendicular to the MOT beam such that the
imaging light passes straight through the cube.

So far absorption imaging of the experiment was possible for two axes from
the side and from top-down. Additionally, fluorescence imaging from the side
was provided for diagnostic purposes. The implementation of the objective left
the imaging possibilities from the side unchanged but affected the vertical axis.
We were able to retain the top-down imaging, which has a low resolution but
a large field of view, by coupling out the light for the absorption imaging on
a separate breadboard (position A in figure 5.6). The beam is magnified twice
before it reaches the atoms as the objective needs to be taken into account (by
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Figure 5.5.: a) With the extension the vertical MOT beam is coupled out from
below the vacuum chamber with a f = 50mm lens. A 4f-setup (f1, f2) is added
between the outcoupler and the atoms. Behind the atoms the beam passes the
objective (f3) and a further combination of two lenses (f4, f5) before it is reflected
back. By combining these three lenses (f3, f4, f5 ) the size of the reflected beam
is adapted to the incoming beam. A λ/4 waveplate below and above the vacuum
chamber provide the circular polarization required for the MOT beams. The two
polarizing beam splitters are used to make sure that the MOT beam as well as the
imaging beams pass the atoms but that only the MOT beam is reflected back. b)
Optics for absorption imaging are partly placed below the vacuum chamber. For
down-up imaging the light is coupled out below the chamber, the flippable mirror
is swung in and the EMCCD (figure 5.6) is used for detection. If the flippable
mirror is swung out absorption imaging from top-down is possible. Lenses f2 f7
are used to image the atoms with a magnification of M ≈ 2.14 on a CCD camera.

M ≈ 41 with f1, f2 and by M ≈ 0.05 with f3 and the objective). The CCD
camera for detection is placed below the vacuum chamber (figure 5.5 b)). Very
importantly, we increase our imaging possibilities by the implementation of an
electron multiplying CCD (EMCCD) camera which is also placed on the imaging
board (figure 5.6). It can either be used for imaging single atoms by collecting
their fluorescence or for absorption imaging where the beam is coupled out below
the vacuum chamber (figure 5.5 b)). The latter imaging option provides a smaller
field of view but a higher resolution than the absorption imaging from top-down
described above. Depending on whether one wants to image a small cloud of
atoms or atoms in a single well with the EMCCD either lens f4 or f5 needs to be
flipped out.
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Figure 5.6.: Imaging breadboard. The beam coupled out at position A is used for
absorption imaging from top to down. The newly implemented EMCCD camera
allows high resolution absorption imaging from down-up or fluorescence imaging
with single particle sensitivity. Adapted from [Hol17].

The new EMCCD camera allows to perform fluorescence imaging with single-
atom resolution. Adapting the imaging technique developed in in our groups
second experiment the atoms can be imaged without any additional cooling scheme
such that spin-resolution of the atoms can be maintained [Ber18b]. This imaging
approach is described in detail in section 5.5.

To complete the usability of the extension a few further add-ons were needed.
A new MOSFET bank and a new power supply were implemented in order to
switch the direction of the current in the Feshbach coils. The option to invert
the magnetic field is needed to drive the D2 transition for absorption imaging as
imaging beams from top to down and down to top have opposite polarization in
the atoms’ frame. Additionally, this enables us to apply a magnetic field gradient
and an offset field at the same time.

We also put the experiment’s oven shutter into operation (figure 5.7). Previ-
ously, we did not need the oven shutter as only experiments with several thousand
atoms were performed. However, for the preparation of single atoms it is essential
to block the beam of atoms during the experimental sequence and the detection.
The shutter, which is connected to a rotary motion vacuum feedthrough (670000
-RotaryMotionFT, 1.33”Flg by MDC), was implemented in the experiment to-
gether with the vacuum chamber [Rie10]. Having coupled the feedthrough to a
stepper motor which is controlled by an Arduino the position of the shutter can
be changed during the experimental sequence.
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Figure 5.7.: The oven shutter (centre) can be used to block the beam of atoms
coming from the oven (right) to enter the Zeeman slower (left, red). Adapted
from [Rie10].

At the end of this section we present a photograph (figure 5.8) of the current
status of the experimental setup.

5.3. Implementation
The challenge in the design of the optical setup was to meet the requirements im-
posed by the optics around the SLM, the EMCCD camera and the objective while
taking into account the restrictions conditioned by the existing setup. The whole
extensional setup was assembled in a test lab. In the final stage of the prepara-
tions all three additional breadboards were set up and arranged in a configuration
identical to the one in the real setup. Different tests, including first checks of the
wavefront errors, the examination of the resolution and the acceptability of the
light pattern in the atoms’ plane, were carried out in this environment. We men-
tion shortly that the objective was cleaned thoroughly after these tests just before
its implementation in the real experiment which increased its performance2.

The test setup was also essential in order to determine how to align the objective
with respect to the vacuum window. That the alignment critically influences the
performance of the objective—such as the size of the focus—was shown in previous
tests [Ber13]. Importantly, the position of the objective needs to be adjusted with

2That the cleaning had an impact was observed with the up-down (absorption) imaging beam.
It was of very bad quality in the test lab but turned our to work reasonably good in the actual
setup.
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Figure 5.8.: Experimental setup including the extension: The top layer on the
left hand side is the SLM breadboard. On its right side the vertical breadboard
(black), which is hooked up above the vacuum chamber, can be identified from
the rear view. The imaging breadboard is not visible here as it is covered by the
SLM breadboard.

respect to the optical axis of its lens system which is not coinciding with the axis
of its tubing. Once the objective is put into the experiment it is almost impossible
to figure out the optical axis because the vacuum chamber restricts the access to
the focal plane of the objective. A more comfortable way is to work in a test
setup and establish an alignment procedure for a passive alignment to a reference
that one can follow once the objective is integrated in the real setup. In the test
setup we can simply mimic the vacuum window with a glass window of identical
specifications and thus retain good access to the focal plane. The required tilt
of the objective can be determined with the help of a gold grating placed in the
focus. It is illuminated and after the light passes the objective we focus it down
to a CCD camera with a f = 750mm lens. The recorded diffraction pattern
allows to draw conclusions whether the gold grating is placed exactly in the focal
plane. Once this position is found, the aberrations of the pattern are minimized
by adjusting the angle of the objective. This is possible as the objective is fixed
to the vertical breadboard with a mount which provides the required degrees of
freedom (Newport Lens Positioner LP-2A). Besides the option to adjust the tilt
around the x- and y-axis, it also allows for translations in x-, y- and z-direction.
We obtain a tilt of the tubing with respect to the the optical axis of 4mrad in x-
direction, and 12mrad in y-direction. The optimal angle of the objective’s tubing
can be recorded with the help of an alignment beam. The vacuum window or
the fake vacuum window serve as a reference for the angle, respectively. The
alignment protocol is presented in detail in appendix D.
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Figure 5.9.: Finding the focus. a) By directing a focused resonant beam onto the
atoms captured by a compressed MOT we were able to detect enhanced scattering
at the focus with fluorescence imaging from the side. b) Due to the high scattering
rate atoms are removed from the MOT. We see the depletion at the focus when
imaging with absorption imaging from the side.

The extension integrated into the experiment iteratively checking always the
functionality of the experiment. The first step was to invert the beam of the
vertical MOT axis within the existing setup such that the beam is coupled out
from below and reflected back from above the chamber (for the optical setup of
the MOT and the two absorption imaging setups from below the vacuum chamber
see figure 5.5 a) and b)).

Next, we moved the SLM breadboard attached to two long posts was placed it
above the vacuum chamber (figure 5.2). Before putting in the objective we made
sure that the MOT was still working. Fitting in the objective and finding its focus
turned out to be challenging as outer diameter of the objective’s tubing and inner
diameter of the re-entrant viewport only differ by 1.7mm (the objective was not
designed in the first place for this experiment). Eventually, it was successful to
first countersink the objective as much as possible into the re-entrant viewport
and subsequently fix its mount to the vertical breadboard. Afterwards it was
tilted to the required position as described in appendix D.

To find the focus we worked with a cloud of atoms captured in a compressed
MOT. Installing the imaging breadboard and removing lens f3 in (figure 5.6) we
were able to work with ad focused beam roughly resonant to the D2 transition of
6Li at an intensity about 106 times higher than the saturation intensity. Once the
beam hit the atoms this caused a high scattering rate at the focus which we were
able to observe with fluorescence imaging from the side (figure 5.9 a)). Due to
the enhanced scattering at the focus and the associated momentum kicks atoms
can be blown out from the trap with this technique. Therefore, we were also
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able to detect the focus with absorption imaging from the side from two different
axis (figure 5.9 b)). Being able to image the focus from three different horizon-
tal directions we were able to move it to the position of the magnetic saddle in
the centre of the trap using the translational degrees of freedom of the Newport
Lens Positioner. After these preparations, finally, we were able to switch to the
infrared light from the SLM setup. When applying no phase pattern to the SLM
together with the objective we obtain a tightly focused optical tweezer. Due to
its small waist we refer to it as microtrap. With the objective being aligned along
the horizontal axes we could load the microtrap from the ODT. By reinstalling
lens f3 in figure 5.6 we retained the up-down imaging as used before.

To conclude we were able to implement the extensional setup as planned. For
future experiments we recommend to consider critical dimensions carefully and to
try to work with absolute references when it comes up to the implementation of an
objective, for instance by mounting the objective directly to the vacuum chamber.
As a result the implementation of the objective would be highly facilitated and
roughly reproducible. This would be helpful for an objective that needs to be
aligned with the precision on the order of a micron. In our case this is not given
for which reason it was difficult to implement and align the objective. Whenever
we take out and in the objective in future we need to redo the whole alignment
procedure. In our experiment the vertical breadboard and the SLM breadboard
are coupled. It is not yet proved whether the coupling enhances or diminishes the
stability of the setup.

5.4. A High-Resolution Objective
A crucial part of the extension to our setup is the implementation of an objective
that has a very small waist of the focus which allows to trap atoms in effectively
one dimensional traps. Combined with the SLM it can be used to engineer poten-
tial structures of micrometer precision. A wide angle of aperture is also important
to obtain a high photon collection efficiency required for diffraction-limited high-
resolution imaging.

So far, our experiment was not reliant on a high resolution objective because ex-
periments were performed with an atomic two-dimensional cloud of about 35, 000
atoms. As the size of the 2D cloud in the standing wave trap is about 200 µm an
objective was neither for trapping nor for detection a crucial component. With
the ambition to trap and image single atoms an objective is needed. The one we
implemented recently in our experiment was designed within the course of the
thesis of [Ser11b] and an identical version of the objective is in use in the Jochim
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Figure 5.10.: The design of the high resolution objective. It corrects for the
6mm thick vacuum window. The beam is focused with the large asphere that
also reduces spherical aberrations. The large achromat takes care of chromatic
aberrations of the two employed wavelengths, the smaller achromat is added to the
design to optimize the numerical aperture of the beam. Adapted from [Ser11b].

group’s few-fermion experiment since 2013 [Ber13]. In the few-fermion experi-
ment the preparation in the ground state of a double-well could be achieved with
a fidelity of over 90% [Mur15a]. They also showed that the high photon collection
efficiency of about 10% enables imaging of of single atoms in free space [Ber18b].

The custom made re-entrant viewports of the lower and upper vacuum window
were chosen to have a high numerical aperture (NA) such that when adding an
objective outside of the chamber the imaging is not limited by the vacuum window.
The design of the objective takes care of the 6mm thick fused silica window
and corrects for it. When being aligned in parallel to the objective the distance
between vacuum window and objective is variable (as long as the window is closer
than the focus) because the window only induces a beam displacement. Therefore,
it is not critical that the vacuum window is further apart from the objective in
our experiment than in the other experiment of our group. Besides the constraint
imposed by the vacuum window, the design of the objective was determined by the
quest for a small focus, the requirement to correct for chromatic aberrations of two
wavelengths (1064 nm trapping light and 671 nm imaging light) as well as by the
need of a high NA. A schematic picture of the objective is given in figure 5.10. The
large aspheric lens focuses the beam. It reduces spherical aberrations and provides
diffraction limited performance, the large achromat corrects aberrations for the
two different wavelengths we use in the experiment (λ = 1064 nm, λ = 671 nm).
Additionally, a small achromat was added to the design to reduce the required
beam size of the ingoing beam and increase the numerical aperture of the objective.
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wavelength λ = 1064 nm λ = 671 nm
focal length 20.3mm
image distances ∞
diameter field of view 200 µm
max. diffraction limited NA 0.6
entrance aperture diameter at max. NA 24.4mm
resolution 1.08 µm 0.68 µm
waist of focus 0.72 µm 0.45 µm

Table 5.1.: The nominal design parameters of the custom-designed objective.
Adapted from [Ser11b].

An overview of the nominal design parameters of the objective can be found in
table 5.1. Checks on the performance of the objective were done in the theses of
[Kli12] and [Ber13] in a test setup where the vacuum window was mimicked by
a test window of the same thickness and material. To test the resolution of the
objective one can mimic a point source at the focus of the objective by illuminating
a small hole. Therefore the condition sin(θ1st min) > sin(θaperture objective) needs to
hold. With a refractive index of one this yields

1.22
λ

D
> NA. (5.2)

First tests on the objective used in the few-fermion experiment were performed
by [Kli12] with a pinhole of D = 800 nm diameter placed slightly out of focus
such that a magnified image of the expected pattern could be detected behind the
objective. Further tests with a gold grating were conducted by [Ber13]. The holes
of the grating have a diameter of 650 nm and are separated by 20 µm. Placing the
gold grating in the focal plane of the objective and shining light from behind onto
it, the grating acts as the desired point source. In the image plane of a lens—in our
case the objective—that cuts a part of the light one expects to see the pattern of
an Airy disc. Using the Rayleigh criterion the resolution is defined as the distance
from the central intensity maximum to the closest minimum reading

ρ = 1.22
λ

2NA
. (5.3)

Adding a further lens after the objective the image plane can be shifted from
infinity into the focal plane of this lens where the light pattern can be detected
with a camera. The two former tests showed significant deviations of the resolution
from the nominal values. Before we moved the SLM from the SLM test setup to
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wavelength nominal measurements by [Ber13] recent
values measurements

x-profile y-profile
1064 nm 1.08 µm (1.61± 0.10) µm (1.51± 0.10) µm
671 nm 0.68 µm (1.51± 0.10) µm (1.21± 0.10) µm (861± 8) nm

Table 5.2.: Comparison of nominal resolution with different measurement results.
Our recent measurement is significantly closer to the theoretical design value.

our experiment, we performed another test with the gold grating as described
above using imaging light (671 nm). We used a Thorlabs beam profiler (BC106-
VIS) to image the light pattern in the focal plane of a f = 750mm lens which
was placed behind the objective. From the image the resolution was determined
by fitting the expected diffraction pattern

I(x, y) = I0
2J1

(
1.22π
ρ

√
(x− x0)2 + (y − y0)2

)
1.22π
ρ

√
(x− x0)2 + (y − y0)2

+ Inoise. (5.4)

Here J1 denotes the Bessel function of the first kind. The fitting parameters I0, x0,
y0, Inoise and ρ denote the peak intensity, the shift along x- and y-direction of the
pattern, the background noise and the resolution. A single image of the camera
captures the diffraction patterns of several holes of the grating. After applying
a 2D fit to each spot we can therefore, in the end, take the average value of all
fit results3. For this procedure the error is determined by the standard deviation
of the mean. Length scales in the image can be determined very precisely as the
inter-spot distance of the grating is known. The result we yield with this 2D fit
are significantly closer to the nominal values than those of previous measurements
(figure 5.11). In general, deviations from the nominal values can be caused by an
imperfect alignment of the optics or because the objective itself is not perfectly
assembled. Thus our improved results could be due to a better alignment or a
better fitting procedure. A comparison of the obtained resolutions for the objec-
tive used in our experiment is given in table 5.2. In [Ber13] and [Kli12] further
tests were performed on the wavefront error with an Michelson interferometer and
on the focus of the trap by detecting a 40 times magnified image of it [Ber13].
The interference measurement showed that wavefront errors due to the objective
are smaller than λ/4. The size of the focus depends on the wavelength, the NA,
the illumination (in our case a Gaussian intensity distribution) and if the beam is

3For the result presented here, three different images with in total 15 diffraction patterns were
analysed.
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Figure 5.11.: Point-spread function measured in the SLM test-setup. The right
panel shows a cut through the centre.

clipped by an aperture on its radius. Measurements performed in [Ber13] showed
deviations of the size of the focus by more than 15% from its theoretical value.
In the SLM test setup we checked that the beam looks acceptable in the focus
by implementing a raspberry pi camera on a motorized stage (Sony IMX219PQ).
However, it was not possible to resolve the size of the focus of the SLM as the
camera has a pixel size of 1.1 µm. In general, it is advantageous to work with a
small focus because this makes the separation of the trap levels larger and there-
fore the preparation of a well-defined number of atoms becomes easier.

5.5. Single Atom Detection
Since we will work with small atom numbers in future detection schemes that
allow to measure single atoms are crucial. In our setup we plan to use two dif-
ferent techniques. One of the techniques is based on recapturing the atoms in the
MOT and collecting part of their fluorescence with a CCD camera placed in the
horizontal axis. About 2.5 × 105 counts are detected per atom for an exposure
time of 500ms. As shown by first experimental results this technique allows to
determine the number of atoms for small samples with over 99% fidelity (for details
see section 6.2). However, spin and spatial information of the atoms are lost during
imaging. The second imaging technique addresses this issue. By using the high
NA objective in combination with the new EMCCD camera we want to detect
single atoms in free space in future. Pulsing individual atoms for an exposure time
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Figure 5.12.: Single-atom detection. a) Two counter-propagating beams pulse
the atoms from the side. A part of the fluorescence is collected with the high NA
objective. b) Binarizing the data removes readout noise (data taken from few-
fermion experiment). c) Single atoms can be identified by applying a low-pass
filter. Adapted from [Ber17].

of 20ms with resonant light the detection of as few as 20 photons is sufficient to
identify an atom with very high probability. We want to adapt this imaging
scheme from our group’s second experiment, where it was recently developed.
Based on [Ber17; Ber18b] the technique will be discussed in this section. In
principle both imaging techniques mentioned here can be applied one after another
for the same run starting with the free space imaging. Complementary to the
possibility to resolve the atoms in free space the MOT-imaging can serve as a
cross-check on the total atom number.

A central element for the free space imaging is the new electron multiplying
charge-coupled device (EMCCD) from Nüvü (model HNü 512) which is ready to
be taken into operation. An EMCCD camera works with an ordinary CCD chip
that exploits the photo-electric effect. Additionally, in an EMCCD camera the
photoelectrons are passing a multiplication register that launches an avalanche
of several hundred secondary electrons before the charges are converted into a
voltage. In the photon counting mode EMCCD cameras are well suited to work
at low light levels due to their high quantum efficiency (around 90% for the model
we use) and their low dark current. The main source of noise are clock-induced
charges (CICs) which originate from the high shifting frequencies of the photoelec-
trons. In [Hol17] it was examined that an optimum point exists for the operation
at a detection efficiency of 78% and a CIC count of 0.002 per pixel.
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5.5. Single Atom Detection

Figure 5.13.: Separating the lattice spacing for in-situ imaging. As the atoms
perform a random walk during the imaging process they need to be well separated
before the imaging process in order to distinguish them. We plan to use the SLM
for increasing the lattice spacing before imaging.

Quantum gas microscopes are commonly used devices to resolve single lattice
sites [Nel07; Kar09; Bak09; She10; Che15; Hal15; Par15; Omr15; Edg15; Mir15;
Yam16]. However, they rely on sophisticated cooling schemes during the imaging
process to prevent atoms heated up from several thousand scattering processes
to leave the trap. As a consequence spin information is lost during the imaging
process. We want to take another approach that does not require additional
cooling techniques because we only image for a short time.

Working in the Paschen-Back regime at over 300G allows to differentiate the
hyperfine states that are separated by about 80MHz for large fields. Two opposing
beams vertical to the quantization axis are flashing the atom(s) alternately with
a pulse duration of 200 ns (figure 5.12 a)). The beams are polarized linearly
perpendicular to the magnetic field. The beam power needs to be chosen such
that the scattering rate is high but the power broadening is far from being on
the order of the splitting of the hyperfine states. As for the imaging technique
presented here the atoms are not pinned, they perform a random walk during the
exposure time. Both alternating pulses and a high scattering rate and therefore
the possibility of short exposure times are important to keep the random walk
of the atoms as minimal as possible. In our group’s few-fermion experiment the
parameters are chosen such that each individual atom experiences a few hundred
scattering events for an exposure time of 20ms. They can determine an atom’s
position up to a precision of about 4 µm and distinguish between two atoms with
a 90% probability if they are separated further than 32 µm. In our experiment we
plan to use the SLM to increase the lattice constant before imaging in in-situ in
order to increase the resolution (figure 5.13). Working with a confining harmonic
potential and letting the atoms expand for a quarter of a trap period it is also
possible to obtain the particles momentum distribution (see section 4.2). This is
a clear advantage of the free space imaging technique over a quantum microscope.

The high NA objective allows to collect approximately 10% of the fluorescence
signal. To reach a detection fidelity of over 99% it is enough to detect about 20
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5. Experimental Extension

Figure 5.14.: Preparation of light for imaging the atoms. Two transitions need
to be addressed (repumper and imaging laser). Their beams are overlapped and
subsequently divided into two for the probe beams from different sides. AOMs
allow to flash alternately.

photons. In the next step the data is binarized to remove readout noise (figure 5.12
b)). As the signal still suffers from CICs it is required to additionally apply a
Gaussian low-pass filter (figure 5.12 c)). Then, local maxima with high amplitude
can be identified with atoms; small amplitudes belong to CICs. In our experiment
it is probably possible to work with fewer scattering events because our EMCCD
camera has a lower CIC occurrence than the one used in the other experiment.

For imaging we drive the D2 transition of 6Li (see section 4.1). Preparing the
atoms in the lowest three hyperfine states one can drive a closed or almost closed
σ−-transition transition from mj = −1/2 to mj = −3/2. The σ+-transition is
detuned by over 1.1GHz at 300G and therefore strongly suppressed. For atoms
in state |3〉 = |mj = −1/2,mI = −1〉 the transition is closed. However, state |1〉
and |2〉 contain small admixtures from the mj = 1/2 manifold because I and j are
only completely decoupled in the limit of an infinite magnetic field. When their
excited states in the mj = 3/2 manifold decay they have a probability on the order
of a permille (for the range of the magnetic field we work with) to decay into the
mj = 1/2 manifold [Bec16]. To prevent dark states one can use an additional
laser that drives a σ+-transition from mj = 1/2 to mj = 3/2. One can distinguish
between the three lowest hyperfine states that are associated with different spin
species in the same measurement by driving their individual D2 transitions one
by one.

We prepare the light for the resonant pulses on a separate breadboard (fig-
ure 5.14). As explained above besides the imaging laser for the σ−-transition
from mj = −1/2 to mj = −3/2 imaging of states |1〉 and |2〉 requires a repumper
for the σ+-transition from mj = 1/2 to mj = 3/2. Both beams are overlapped
and then split to provide light for the two opposing flashing beams.
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6. First Experimental Results
Having completed the implementation of the extensional setup the first step has
been the optimisation and characterisation of the simplest system we can create
with the new setup—a single microtrap. The microtrap is the basic building
block for any mesoscopic system of discrete sites that we want to realize with the
SLM. This section describes how we deterministically load and probe atoms in
the microtrap.

6.1. Loading the Microtrap and Preparing Single
Atoms

To put the new setup into operation our first step has been to work with a single
microtrap which is created by a tightly focused far red-detuned laser beam. The
SLM is not needed to create such a trap but we apply a phase pattern to it that
corrects for aberrations of the objective and the lens system. For the preparation of
atoms in the microtrap the first cooling stages described in chapter 4 are adapted.
There exist different possible stages from which the microtrap can be loaded in the
experiment. One option is to load the microtrap from the optical dipole trap at the
end of the first evaporative cooling stage (section 2.1). In the past, the experiments
on the 2D setup have usually been performed in a regime where the particles form
bound states for all values of the particle interaction (attractive branch). This
regime offers a variety of intriguing phenomena to study, for instance, the BEC-
BCS crossover in two dimensions [Rie15; Mur15c; Boe16]. To prepare the atoms
in the attractive branch the evaporation and the loading into the 2D trap were
performed at positive scattering lengths close to the Feshbach resonance where
molecules are formed during evaporation. With the extension, however, we want
to realize experiments with free fermions—for example to investigate the Hubbard
model. In this case it is still advantageous to start the evaporation process in the
ODT at large positive scattering length close to the Feshbach resonance because
the high collision rate in this regime leads to fast thermalisation. However, it is
important to ramp to small positive scattering lengths before molecules start to
form.
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6. First Experimental Results

Another possibility, with the advantage of significantly shorter experimental
cycling times, is to load a non-degenerate gas from the ODT into the microtrap
(i.e. no or little evaporation in the ODT) and to cool the atoms evaporatively
in the microtrap itself. This is very efficient because the large density in the
microtrap leads to short thermalisation times. To transfer the atoms into the
microtrap the power of the ODT is reduced from 200W to 37W and the microtrap
is ramped within 200ms to a final power of 33.8mW at a magnetic field of 300G.
After the sample thermalized the attractively interacting atoms can be cooled
evaporatively (for the working principle of evaporative cooling section 2.1) in the
microtrap within 10ms. To this end, the ODT is switched off and a magnetic
field gradient B′ created by the MOT coils is ramped up to B′ = 59G/cm within
100ms. The interaction between the magnetic field gradient and the magnetic
moment of the atoms leads to a superposition of the microtrap with a linear
potential and therefore to an asymmetric potential V (z) of the form

V (z) = Voptical(z) + Vmagnetic(z) = V0

(
1 +

(
z

zR

)2
)

+ µB′, (6.1)

with zR being the Rayleigh length and V0 the depth of the microtrap. The asym-
metric shape of the potential is similar to the shape of the potential shown in
figure 6.1 b). Additionally to the linear gradient, the barrier hight is reduced
during evaporation by decreasing the power of the trapping beam to 1.5% of its
initial value. With this cooling process one ends up with a sample of 200 fermions
where the lowest trap levels are completely filled with a probability close to unity.
Due to the Pauli principle and since we work with two hyperfine states each of the
trap levels is occupied with two fermions. After the evaporation is finished the
magnetic field gradient is ramped back off and the original depth of the microtrap
is restored.

Small samples of even atom number can in the final stage of the preparation
be prepared deterministically by spilling fermions from the microtrap (figure 6.1).
This part of the experimental sequence has similarities with the evaporative cool-
ing sequence. However, the crucial difference is that during the spilling process
we work with non-interacting atoms at B = 527G and therefore no scattering and
rethermalisation processes take place as it is the case for the evaporation. As a re-
sult, only atoms in higher quantum states are getting unbound when the potential
is tilted (figure 6.1 b)) and leave the trap while lower lying states are unaffected1

To create an asymmetric potential the magnetic field gradient is ramped up to
B′ = 23.7G/cm on a timescale of 80ms. When the maximal gradient is reached

1Note that this statement is only true if the timescale of the spilling is small compared to the
timescale associated with the tunnelling through the barrier shown in figure 6.1 b).
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6.2. Single Atom Detection with MOT Imaging

Figure 6.1.: Spilling scheme. a) Degenerate fermions in the tight microtrap.
The lowest trap levels are fully occupied with an atom of each hyperfine state.
b) Atoms in higher trap levels are removed by applying a magnetic field gradient
and therefore creating an asymmetric potential. Fine-tuning of the atom number
is reached by decreasing the potential barrier. c) After the spilling process the
magnetic field gradient is removed again.

the power in the dimple is lowered to about 60 µW for 50ms. Fine-tuning of the
power can be used to control the barrier height and therefore the atom number in
the mictrotrap deterministically (see figure 6.1 b)). Subsequently, the power and
the magnetic field gradient are ramped to their initial values (figure 6.1 c)).

In general, it is also conceivable to load the microtrap directly from the MOT
or from the 2D trap. At first attempts of the former option only the preparation
of one or two atoms was possible. The problem might be that we are limited by
light assisted collisions at high densities when resonant light is present.

6.2. Single Atom Detection with MOT Imaging
One possibility to detect single atoms with a fidelity over 99% is by recaptur-
ing the atoms in the compressed MOT section 4.2 and collecting a part of their
fluorescence signal [Ser11a]. To create the compressed MOT we use the Fesh-
bach coils in the anti-Helmholtz configuration to apply magnetic field gradient
of roughly 260G/cm in addition MOT beams of a 1/e2-diameter of 11mm that
are red-detuned by about half a natural linewidth of the transition. The flu-
orescence of the captured atoms is collected on a CCD camera (Grasshopper3
GS3-U3-15S5M). In a first step, all the pixels in a region on the CCD chip where
we find a significant fluorescence signal above the background noise are summed
up. From the data a scaled background value is subtracted. The scaling is re-
quired because diffusive reflections of the resonant and unregulated MOT beams
lead to a large fluctuation of the number of background counts. The background

65



6. First Experimental Results

Figure 6.2.: Fluorescence signal normalized to atom number. For atom numbers
from zero to eleven well separated peaks indicate a well-defined atom number.
Due to low statistics the ochre region is not suitable to determine the detection
fidelity. The green data is assigned to different atoms numbers by determining the
crossing of the normalized Gaussian distributions of the peaks. They are indicated
with dotted lines. This leads to a detection fidelity of over 99.99%.

image is obtained by taking the mean of a set of five background images under the
same conditions as the actual data, the only difference being that no atoms are
recaptured in the MOT. To determine a base value of the background we sum over
the region of interest defined beforehand. The next step is to scale the base value.
To this end a frame around the region of interest is chosen. The scaling factor is
given by the ratio of the number of counts within this frame of the actual data
and the number of counts within the same region of the background image. When
choosing an exposure time of 500ms, which is significantly shorter than the 1/e-
lifetime of (11.6± 0.4) s of the atoms in the compressed MOT, we collect about
2.5× 105 counts per atom. Taking into account the numerical aperture of 0.15 of
the vacuum window and the quantum efficiency of 60% of the camera we estimate
to detect about 0.3% of the fluorescence signal on the CCD camera. With this
information one can estimate the scattering rate to be 4× 106 photons/s. The
results for the total fluorescence count after many experimental cycles with differ-
ent prepared atom numbers are binned into a histogram and the obtained peaks
can be fitted with a sum of Gaussians. For the interpeak distance one obtains
(2.3±0.1)×105 counts. This value is used to convert from counts to atom number.
Working with a fixed interpeak distance of the Gaussian distributions one obtains
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the fit presented in figure 6.2. The single peaks are clearly separated (separation
of 10 σ for two atoms, by 7 σ for six atoms). The presented measurement is not
suitable to determine the detection fidelity for atom numbers higher than four
atoms because of too little statistics which leads to a bad signal to noise ratio
(ochre regions in figure 6.2). To assign the other data to a concrete atom number
the Gaussian distributions of the single peaks are normalized and the intersection
points of adjacent peaks determined. All data within two borders is then mapped
to the corresponding atom number (green regions in figure 6.2). The detection
fidelity is given by f = 1− ε, where ε is the probability of incorrectly assigning a
value. Since the probability distributions connected to different atom numbers are
extremely well separated we obtain f ≥ 99.99%. This method does not take into
account errors due to the uncertainty of the fit. A drawback of the MOT-imaging
technique is, of course, the loss of spin information and spatial information of
the atoms. Once the EMCCD camera is put into operation this problem can be
tackled with the imaging technique presented in section 5.5.

6.3. State Preparation
To gain full control over the system the ability to prepare a well-defined number
of atoms deterministically in the ground state is crucial. The small waist in
the focus of our experiment’s microtrap setup makes it suitable for this purpose
because the smaller the beam waist, the larger the spacing between the levels
which in turn facilitates the number state preparation. To determine the waist
of the focus directly is not possible because such a measurement would require
a second imaging system vis-à-vis of the objective. However, we can measure
the trap frequencies in radial (ωrad) and axial (ωax) direction which are directly
connected to the waist. According to [Gri00] for a harmonic approximation of the
optical potential the trap frequencies can be expressed as

ωrad =

√
4U0

mw2
0

, ωax =

√
2U0

mz2r
, (6.2)

where w0 and zR are waist and Rayleigh range of the Gaussian beam, U0 describes
the trap depth and m the mass of 6Li. Furthermore, knowledge of the trap
frequencies allows us to estimate how localized the wave function is and therefore
also to determine the tunnelling parameters of the microtrap.

Frequency modulation spectroscopy is a technique that can be used to measure
the trap parameters. (For detailed descriptions of the method see also [Ser11b;
Zür12; Ber13]). The idea of the method is to map out the energy separation
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Figure 6.3.: Determination of the trap frequencies. a) At a power of
about 160 µW a depletion in the mean atom number indicates a resonance at
(9.83± 0.04) kHz. This corresponds to twice the axial trap frequency at this
power. b) At a power of 240 µW we observed a double dip at around 38 kHz. It
can be assigned to resonances corresponding to the radial trap frequencies. The
separation of about 0.34 kHz indicates a small anisotropy of the trap of about 1%.

of the lowest trap levels and from this infer the trap frequencies. Samples of
mostly two non-interacting fermions are prepared predominantly in the ground
state of the microtrap according to the procedure described in section 6.1. By
connecting a function generator to the AOM which is used to regulate the power
of the light on the SLM breadboard we can periodically modulate the depth of
the microtrap around a certain value. At the resonance the fermions are excited
motionally and they start to oscillate in the approximately harmonic trap. At
multiples of twice the trap frequency2 the atoms oscillate at resonance resulting
in a huge energy transfer. They can be excited into higher states and subsequently
removed from the trap by spilling a second time. Figure 6.3 shows examples of
the observed loss features for a fixed microtrap depth. Plotted are the mean
atom number of several shots and their statistical error against the modulation
frequency. At resonance, where the atoms are removed from the ground state,
the mean atom number is clearly reduced. In figure 6.3 a) the position of the
resonance is inferred with the help of a Lorentz fit to the data. By comparing
the obtained frequency with results from measurements in other regimes (beam
powers and modulation frequencies) it can be mapped to an excitation in axial
direction. In figure 6.4 a) the axial trap frequency is plotted against microtrap
beam power. Their dependence is given by a square root. Picture figure 6.3 b)
shows an example for excitations of radial trap levels. The splitted structure of
2The atoms are only excited at twice the trap frequency for symmetry reasons of the modulation.
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6.3. State Preparation

Figure 6.4.: Dependence of trap frequency on beam power. The trap frequencies
are connected by a square root to the beam power. a) and b) present the results
in axial and radial direction respectively. For figure b) the mean value of the
frequencies measured in figure 6.3 b) was used. For the second value at lower
beam power no splitted structure was observed.

the depletion, to which we fit a superposition of two Lorentzians, indicates an
anisotropy of the trap of about 1%. For the dependence on the beam power in
figure 6.4 b) the mean value of two radial trap frequencies is taken additionally to
another measurement which does not resolve the anisotropy. With the fit results
of figure 6.4 a) and b) the aspect ratio η = ωrad/ωax of the microtrap is given by
η = 3.0 ± 0.1. This value is significantly reduced compared to the aspect ratio
measured in our groups second experiment that has an aspect ratio of η ≈ 7 which
works with an identical objective but cannot correct for aberrations with an SLM
[Ber17].

When only the lowest trap levels of the microtrap are occupied the system can
be considered as quasi one-dimensional. With the measured aspect ratio it is
possible to calculate that only after the lowest five axial trap levels are filled it is
energetically favourable for the system to occupy trap levels in radial direction as
well. The aspect ratio together with equation (6.2) can also be used to determine
the waist of the focus for which we obtain w0 = (718± 24) nm.

For a deterministic preparation of a particular number of atoms the control
of the barrier hight while spilling is essential [Ser11a; Zür12]. Therefore, during
the spilling process we scan the depth of the microtrap over a certain range at a
given magnetic field gradient. The left panel in figure 6.5 shows the mean atom
number in dependence of the trap depth. For each trap parameter about 370 runs
are averaged. With increasing trap depth the mean number of atoms increases.
It is clearly visible that for even atom numbers plateaus build up. As each trap
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6. First Experimental Results

Figure 6.5.: Mean atom number against microtrap depth. The mean atom num-
ber of 370 runs is plotted against optical trap depth (left). The corresponding
standard deviations of the mean value σ are plotted next to it. With increas-
ing trap depth the number of trap levels occupied on average is growing. For
even atom numbers plateaus build up and the number fluctuation is notably sup-
pressed. These states are especially stable because each trap level can be filled
with one fermion per spin state.

level can be filled with one fermion of each spin state, it is possible to prepare
even atom numbers deterministically with this technique. This is also reflected by
the corresponding standard deviations of the mean atom numbers (right panel).
The number state fluctuations are strongly suppressed at the centre of a plateau.
For two atoms (six) atoms they are reduced to σ/ 〈N〉 = 0.11 (σ/ 〈N〉 = 0.07)
compared to fluctuations up to 25% for uneven atom numbers. To quantify the
preparation fidelity we prepare two atoms in the regime of minimal number fluc-
tuations. The data of 900 runs is plotted into a histogram (figure 6.6 a)). To map
out the fidelity with which two atoms can be prepared the data is binned accord-
ing to section 6.2. (Because the experimental parameters for the measurement
taken to map out the preparation fidelity differ from those used in section 6.2 the
latter results cannot be used for calibration here. Instead, the data was fitted with
a superposition of Gaussians to normalize the fluorescence signal.) The fidelity
to prepare two atoms is given for this measurement by 95.2%. As the detection
fidelity is very close to unity it does not influence the previous result.

It is possible that the detected two-atom state is not the ground state. The
sharp distribution of the atom numbers one, two and three with a probability
as low as 1.9% to prepare three atoms indicates that it is unlikely to prepare
atoms in trap levels higher than the first one initially and not to loose them
during the spilling process. However, it is also possible that atoms are excited
due to fluctuations of the trap depth or at the end of the spilling when the trap
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Figure 6.6.: Determination of the preparation fidelity. a) A histogram shows
the result of 900 measurements at favourable parameters for the preparation of
two atoms. We obtain a preparation fidelity of 95.2% for this state. b) It is
possible that atoms are excited into higher trap levels due to heating. To quantify
this effect one can perform a second spilling process. Taking into account the
redistribution from measurements with three atoms to the measurement of two
atoms after the second spilling process one obtains a probability of 91.7% to
prepare the two atoms in the ground state.

is ramped back to its initial depth. To quantify the probability of ending up
with an excited state after the state preparation we can perform a second spilling
process which removes atoms from higher trap levels. Taking into account that all
shots where three atoms were prepared after the first spilling process are ending
up in the two-atom-state after the second spilling one can estimate that with
(93.6%−1.9%) ≈ 91.7% fidelity one can prepare the two atom state in the ground
state.

6.4. Testing Different Trap Geometries
Having demonstrated that we can prepare and detect atoms with high fidelity in
the simplest trapping potential we can realize with the new setup in the last sec-
tions, now we want to show the capability of trapping atoms in different potential
structures. As described in section 5.1 with the help of the SLM almost arbi-
trary two-dimensional trapping potentials can be projected onto the focal plane
of the objective. A few examples of non-interacting fermions trapped in possible
trapping configurations are presented in figure 6.7. For each image the average
of about 20 absorption images is taken. We are not yet able to resolve single
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Figure 6.7.: Tailoring of the potential landscape with the SLM. Atoms can be
load into different trap geometries projected to the Fourier plane, e.g. a plaquette
(a), a square lattice (b), chains (c), a graphene structure (d). With the current
imaging setup only structures of several micrometer belonging to the signal of
over hundred atoms can be resolved spatially.

atoms spatially. (This will be possible with the fluorescence imaging procedure
described in section 5.5.) The dimensions of the structures presented here are
therefore chosen in the range of tenth of micrometers with each lattice site con-
taining a few hundred atoms. Consequently, the potentials presented here are not
suitable for tunnelling experiments where atoms of different lattice sites interact.
Yet, the measurements can be used for demonstration purposes. First results for
a tunnelling experiment with two distinguishable atoms in a double follow this
section (section 6.5). Once we are able to load single atoms into a lattice where
the distances between neighbouring sites are at the order of a micron it is possible
to create structures of more lattice sites as the examples shown here.

In summary we can show that it is in practice possible to shape the potential
landscape with the SLM and load atoms into these potentials. This possibility at
hand, the current experimental setup provides a promising platform to perform
physics of small and mesoscopic systems trapped in potentials shaped at will in
future. Especially, if we succeed to load lattices in the ground state, a great
diversity of physical questions of interest, can be investigated with our setup.
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6.5. Fermions in a Double-Well

The first step to increase the system of a single optical tweezer is the addition of a
second trap. Such a two lattice site system can already be considered as a minimal
realisation of the Hubbard model. Importantly, the double-well is the first step
towards engineering mesoscopic lattice experiments and needs to be investigated
in order to characterize the abilities of our experiments.

We want to apply the Hubbard model in the regime where it is restricted to
a single band. This means that the bandwidth needs to much smaller than the
band gap. A small bandwidth is obtained by well localized on-site wave functions.
These are provided in the experiment by adequate barriers between the wells.
This means basically that the tight-binding approximation holds. To obtain a
large band gap high excitation energies are required. In the experiment they are
achieved by engineering large trapping frequencies. Furthermore, if interactions
are included they must also be much smaller than the band gap in order to avoid
population in other bands.

A consistency check if the tight-binding approximation holds in our experiments
can be made by comparing the excitation energy to the tunnelling frequency as the
tunnelling t between the wells is governed by the overlap of the wave functions.
We analysed in section 6.3 that ωax/2π is on the order of a few kilohertz. For
the tunnelling frequencies in the double-well we measure ωtun = t/h ≈ 230Hz
which are well below the trap frequency. The corresponding measurements will
be presented in the course of this section.

Besides, the term connected to the tunnelling t which can be controlled by the
barrier hight between the two wells the other contribution to the Hubbard Hamil-
tonian is the on-site interaction U . In our experiment interactions among atoms
of different hyperfine state can be adjusted by means of the Feshbach resonance.
In addition to t and U we can tune a third parameter in our experiment which is
the relative depth ∆ between the wells. To make sure that excited states are not
contributing to the dynamics we assume U and ∆ to be small compared to the
excitation energy.

Let us start with the consideration of a single particle in the double-well and
denote its localized states by |L〉 and |R〉 for the particle being in the left or
right state respectively. The Hubbard Hamiltonian of this two level system in the
|L〉 − |R〉-basis then reads

Ĥ1ptcl =

(
+∆ −t
−t −∆

)
. (6.3)

For the balanced system ∆ = 0 the eigenstates of the diagonalized Hamiltonian
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Figure 6.8.: Eigenstates and the corresponding energies of a non-interacting
double-well. The plot shows the energy dependence on the potential tilt ∆/t in
the regime of no on-site interaction (U = 0) for the corresponding eigenstates
which are given in the basis of the diagonalized Hamiltonian in the table below.
The physical description of the limit U = 0 is equivalent to the single particle
case. Adapted from [Ber17]

are given by

|+〉 = 1√
2
(|L〉+ |R〉) and |−〉 = 1√

2
(|L〉 − |R〉) (6.4)

with energies E+ = −t and E− = +t.
If the complexity of the system is increased by adding a second particle of dif-

ferent (pseudo-)spin to the double-well the number of basis states is increased to
four. With the notation introduced above for a single particle in the double-well a
set of basis states is given by {|LL〉 , |LR〉 , |RL〉 , |RR〉} for which the Hamiltonian
reads

Ĥ2ptcl =


U + 2∆ −t −t 0

−t 0 0 −t
−t 0 0 −t
0 −t −t U − 2∆.

 . (6.5)

In the experiments presented in the following we restrict ourselves to the non-
interacting case U = 0 which is physically equivalent to the single particle sce-
nario. The eigenstates of the diagonalized Hamiltonian are presented in the table
in figure 6.8 for different regimes of ∆/t and the corresponding eigenvalues are
plotted above. At finite coupling t of the balanced wells a gap of 4t builds up at
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∆/t = 0 because in the presence of a second well |LL〉 and |RR〉 are no longer
eigenstates of the system.

In a cold atoms experiment a double-well can be realized with optical dipole
traps. However, different approaches are possible to do so. One option would
be to partly overlap two trapping beams that are obtained from the same far
red-detuned laser beam using an AOD [Mur15b]. By applying two different radio
frequencies to the AOD the frequency of the incoming beam can be shifted on the
order of a few megahertz (ω2 − ω1)/2π. Let us denote the electric fields of the
two beams by Ej(r) = E0j exp (i(kjr− ωjt+ θ) for j = 1, 2. Consequently, the
intensity distribution of the beams is described by

I(r) =
〈 ∣∣E(r)1 + E(r)2

∣∣ 2〉
=
〈 ∣∣E(r)1 ∣∣ 2〉+ 〈 ∣∣E(r)2 ∣∣ 2〉+ 〈E(r)1E(r)

∗
2〉+ 〈E(r)2E(r)

∗
1〉 . (6.6)

As tunnelling of the atoms takes place at the order of 100Hz the frequency shift in
the megahertz regime averages out the last two terms. Consequently, the intensity
distribution of the double-well can be simply approximated by I1(r)+I2(r). In this
scenario the barrier hight between the two wells is not given by the depth of a single

Figure 6.9.: Creation of a double-well (simulation). a) If a double-well is created
by partially overlapping two microtraps the barrier hight of the resulting intensity
pattern is governed by the overlap of the two beams. b) Contrary, if a double-well
is created by dividing the phase pattern applied to the SLM into two regions that
are phase-shifted by ∆Φ = π the intensity between the wells goes down to zero
and therefore, the barrier has maximal hight. The lower panels show cuts along
x through the centre of the corresponding intensity profiles.
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well but depends on the intensity of the single wells and the distance by which
they are separated (figure 6.9 a)). This approach is taken by our groups second
experiment in which tunnelling in a double-well has already been investigated in
great detail [Mur15a; Mur15b; Ber17; Kli18].

With an SLM, the approach that we take, the phase of the light in the focal
plane of the objective can be modulated but the frequency is unaltered. By
making use of interference the limits for the intensity distribution are therefore set
by I(r) = 〈 |E(r)1 ± E(r)2 | 2〉. For destructive interference one can consequently
work at much lower intensities compared to the method based on the AOD. An
easy method to create two wells separated by a cusp of the intensity pattern
that goes to zero is by dividing the SLM pattern at the centre of one axis into
two regions and ramp up a phase shift of ∆Φ = π in one of the halfs. By this
means one obtains theoretically a perfectly balanced double-well with maximized
barrier hight (figure 6.9 b)). In our experiment the two wells are theoretically
about 1.2 µm apart from each other. Next to the main wells side minima appear.
However, their depth is at most 20% of the peak intensity and consequently it
is not necessary to take them into account in our considerations. This technique
allows to work at laser powers almost two orders of magnitude lower as if an AOD
is used assuming to work in the same experimental regime.

In reality the two wells are not exactly balanced at ∆Φ = π. A possibility to
determine the value ∆Φ for a balanced double-well is to prepare two fermions
of different hyperfine state in the ground state of a single well (∆Φ = 0) and to
adiabatically ramp up the second well such that one ends up in the ground state of
the combined wells (see state |a〉 in figure 6.8). Pictorially we follow the blue curve
in figure 6.8. Starting in the regime of a single well ∆/t → −∞ in the ground
state |LL〉 the system evolves to the ground state of the balanced well (∆/t = 0)
for which the mean occupation of a single well goes to one. The route we take
in the experiment is depicted in figure 6.10 from left to right. The upper panels
show the applied SLM pattern and the second line the corresponding predicted
intensity distribution. The lower panels are obtained by a cut along x through the
centre of the intensity distribution. Plotted is the potential seen by the atoms.
We proceed in the following way. We start with two atoms in a single well, for
which a uniform phase pattern is applied to the SLM3 (I). We slowly ramp up a
second well by splitting the SLM phase pattern into two halves and successively
increasing the phase shift between the regions4 (II) until there is approximately
no energy shift between the wells (III). The barrier hight between the wells is
low enough to have a coupled system of finite t. In the next step we increase

3Aberrations of the lens system are always corrected by adding a correction pattern to the SLM
display.

4For phases between π and 2π the roles of the left and right well are exchanged.
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6.5. Fermions in a Double-Well

Figure 6.10.: Balancing of double-well created by the SLM. To create a double-
well a phase shift ∆Φ is ramped up on the SLM display (upper row). As a result
the predicted intensity pattern in the Fourier plane transforms from a single well
(∆Φ = 0) to a double-well at ∆Φ ≈ π (second row). A cut through the predicted
intensity distribution is shown in lower panels. To balance the system two atoms
are prepared in the ground state of a single well (I), a second well is adiabatically
ramped up (II & III) such that the atoms are still in the ground state of the system
when the wells are approximately balanced (∆Φ ≈ π). For symmetric double-wells
we expect to find in average one atom per well. To measure the population of a
single well both wells are diabatically ramped deeper and subsequently the second
well is ramped back such that particles from the right well tunnel to exited states
of the left well during the process (IV). These atoms that are not in the ground
state of the remaining microtrap can be removed by spilling them before the
atom number is measured (V). Scanning ∆Φ around π and checking the mean
atom number allow to find out for which ∆Φ the wells are symmetric.

the depth of both wells with a fast non-adiabatic ramp by a factor 5 to 10. As a
result the states are frozen as tunnelling is suppressed. Ramping back the second
well atoms tunnel from the right well into higher trap levels of the left well (IV).
Finally, atoms are spilled from excited states of the remaining trap (for spilling
see section 6.1). By scanning the phase around ∆Φ ≈ π and measuring the mean
atom number we find the ∆Φ for which the wells are balanced.

Technically, the time evolution of the double-well is realized by playing different
short video tracks on the SLM each consisting of 128 pictures. Each video track
consists of 128 pictures that are displayed at a 500Hz. As the refresh rate of
the SLM is 120Hz it is not entirely deterministic how the pictures are displayed
by the SLM. However, the phase increments between the pictures are sufficiently
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small that it does not matter if pictures are skipped.

Figure 6.11.: Resonant tunnelling in a double-well. Two distinguishable fermions
are prepared in the ground state of a deep microtrap (I). The second well is ramped
up using the SLM (II & III). Then, we suddenly reduce the total power by 80%
such that the atoms, still prepared in state |LL〉 start to tunnel (IV). As this is
not a ground state of the system it evolves in time. To probe the system the
depth of the wells is increased again after a variable hold time (V). The right well
is ramped back (VI) such that the atoms tunnel from it into excited states of the
left well (VI) and can be removed with a spilling process (VII). As a result we can
measure the atom number in the ground state of the left well (VIII).

Being able to balance the double-well we can study the time evolution of res-
onantly tunnelling fermions (figure 6.11). As mentioned above all tunnelling ex-
periments documented in this thesis are performed at U = 0. Again we start
with the preparation of two fermions of two different hyperfine states in a single
well (I) and ramp up a second well with the SLM (II). However, the wells are
too deep to allow tunnelling between them (III). We quench the power of the
trapping beam to a regime, where tunnelling is possible (IV). The time scale of
the quench is much faster than the timescale of the tunnelling but slow enough
not to excite atoms into higher trap levels. As a result the atoms stay in the state
|LL〉. Yet the state is no longer an eigenstate of the Hamiltonian for t 6= 0 but
can be expressed as a superposition of the set of eigenstates {|a〉 , |b〉 , |c〉 , |d〉} and
therefore the state starts to evolve in time. After a defined hold time the trap
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6.5. Fermions in a Double-Well

Figure 6.12.: Tunnelling in the non-interacting double-well. We are able to
create double-wells along two axes depending on the axis of the SLM pattern on
which we divide it into two. a) (b)) belongs to division along y (x). Plotted is
the mean atom number in a single well against hold time. Several oscillations
of the atoms can be detected leading to a tunnelling frequency of about 230Hz
for both orientations of the double-well. The oscillation is decaying with a rate
Γ = 9.85 s−1 = 0.042 t/h which is to be interpreted as dephasing of the states and
indicates noise in the regime of the tunnelling frequency.

depth is suddenly increased again (V). In the next step atoms from the right well
are moved to exited states of the left well by reducing the depth of the second
well such that tunnelling to higher trap levels is possible (VI). Those atoms can
be removed by spilling them (VII). Finally the atoms in the ground state of the
remaining microtrap can be imaged. In figure 6.12 the time evolution of the state
|LL〉 is plotted. As a double-well can be created by dividing the SLM screen ei-
ther along y or x into two parts we present results for both directions in a) and b)
respectively. Plotted is the mean atom number in the left well against hold time.
As a fit function a sinus with an exponential envelope is used to which a linear
gradient is added. We obtain tunnelling frequencies t/h ≈ around 230Hz for both
measurements. As the atom number over a cycle is nearly constant, there seems
to be no significant heating to higher trap levels (which can occur due to noise of
frequencies at the order of the trap frequencies). Due to the small possibility to
prepare only one atom initially we expect the mean atom number to be smaller
than one. For a hold time of 25ms for the double-well along y-direction one sees
a small decay in the amplitude of the oscillation, i.e. dephasing takes place. The
decay rate is fitted to be Γ = 9.85 s−1 = 0.042 t/h. This becomes more evident
in the measurement presented in figure 6.12 b) where the maximal hold time is
five times longer. The dephasing is an indicator for noise at the order of the tun-
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Figure 6.13.: Creating a plaquette with the SLM. a) By dividing the SLM screen
into four region between which the phase is altered by π the intensity distribution
for a two times two lattice sites Hubbard model can be created (b)).

nelling frequencies. A possible origin of the noise are instabilities of the relative
depths of the wells. The dephasing is worse for the wells aligned along y which
is likely to be linked to the technical background of how the SLM changes from
one phase pattern to the other. It updates row by row of the pixels along the
y direction of the screen. When the SLM is cut into halves along this axis the
phase applied to the two regions flickers with respect to each other. With a re-
fresh rate of the SLM of 120Hz it is in the same regime as the tunnelling frequency.

With the possibility to prepare the double-well the way we desire with two pos-
sible spatial orientations the next step we want to take is to create a plaquette with
the SLM. The plaquette can also be obtained by applying different phase shifts
to the SLM. For the configuration shown in figure 6.13 a) the predicted trapping
potentials can be described by the Hubbard model for four wells (figure 6.13 b).

This is the minimal system in which Nagaoka ferromagnetism can be possibly
observed (section 3.1.2). Therefore, we aim to prepare initially three fermions in
their ground state in a single well and subsequently ramp up the three other wells
adiabatically. To prepare an imbalanced system with high fidelity one can prepare
first a balanced system—in our case four fermions—and then exploit the magnetic
field dependence of the magnetic moment of the atoms, which are prepared in two
different hyperfine states. At a magnetic offset field of around 30G the magnetic
moment of atoms in hyperfine state |2〉 goes to zero. As a result the performance
of a second spilling process at this field allows to only address state |2〉 during the
spilling while state |1〉 is not experiencing a tilted potential. For details see for
example [Zür12].

The plaquette created by the adiabatic ramp is in the state S = 1/2. Applying
a magnetic field gradient one can couple the S = 1/2 state to the S = 3/2
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6.5. Fermions in a Double-Well

state which results in an avoided crossing of the S = 3/2 and S = 1/2 branch
at U/t = 18.6 [Ste10]. By tuning the interactions with a Feshbach resonance
one can adiabatically connect the initial S = 1/2 state with the S = 3/2 state
(compare figure 3.2) and therefore end in the ferromagnetic ground state predicted
by Nagaoka. To probe the system one could diabatically increase the trap depth
and enlarge the lattice spacing as described in section 5.5 and use the spin-resolved
imaging technique described in the same section.
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7. Conclusion and Outlook
In this thesis we presented the implementation of a significant extension to our
experiment. The new configuration of the setup allows the creation of holographic
potentials on a plane within a region of at most diameter 200 microns. Almost
arbitrary structures can be realized with submicron precision. The optical poten-
tials are projected using a spatial light modulator and a high-resolution objective.
Along with the enhanced trapping setup goes a new imaging setup. Its core
component is an EMCCD camera which is ready to be taken into operation.

We started by examining the most basic potential that can be created with the
improved setup: a single optical tweezer. The tightly focused Gaussian beam has
a waist below a micrometer. It allows to prepare small numbers of fermions in the
ground state for the radial trap direction and only populating excited states in the
axial direction. Our current single atom imaging method relies on recapturing the
atoms at the end of the experimental sequence in the MOT and collecting part
of their fluorescence on a CCD camera. By calibrating the number of measured
counts we could deduce the atom number. With this scheme we reached a detec-
tion fidelity of 99.99%. A closer examination of the preparation procedure showed
that we could prepare precisely two atoms in the system with a probability of more
than 95%. The fidelity to prepare two atoms in the ground state was over 91%.

The next important step is the commissioning of the EMCCD camera. Although
the current detection scheme allows us to deduce small atom numbers with very
high precision any spin and spatial information gets lost with this technique. Once
the EMCCD camera is taken into operation we can obtain these information by
adapting the new imaging technique presented in [Ber18b]. This method allows
to localize an atom in free space by capturing as few as 20 fluorescence photons
with the high NA objective. It is possible to apply both single atom imaging
techniques, first the free space imaging and subsequently the MOT imaging. The
advantage to still keep the MOT imaging is that thereby the detection fidelity of
the total atom number can be increased. Another important technical project for
the near future is the development of methods to control the SLM dynamically.
Increasing the lattice spacing is, for example, required to image lattices in real
space with the EMCCD camera. On the long run additional features such as
the implementation of a DMD to shoot out atoms from single lattice sites or the
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exchange of the AOD on the SLM board by a 2D-AOD could further increase the
possibilities of our experiment.

In this thesis we also showed that we can prepare two atoms in a double-well
and observed their tunnelling dynamics. This two-site system represents already
the most basic realisation of the Hubbard model. We demonstrated that we can
create a double-well along both main axes of the focal plane by introducing a phase
shift of π with the SLM. With this scheme one can engineer the same barrier hight
between the wells with significantly less power than for a double-well created with
partially overlapping Gaussian beams. Altogether, we are now in a position to
gain full benefit from the add-on and to investigate larger lattices starting with
a plaquette. This system offers already rich physics to discover [Par08; Ste10].
We want to use it as a starting point to explore Nagaoka ferromagnetism which
is predicted to exist for half filling with a single hole but so far has never been
observed. In the next step, we can enlarge the system even further up to about
10× 10 lattice sites. Increasing the lattice size iteratively offers the possibility to
investigate the crossover from few to many particles and to address the issue how
and for which particle numbers a many-body state emerges.

Figure 7.1.: Our vision is to individually prepare double-wells in the ground state
of the Hubbard model at half filling. By adiabatically merging them we want to
obtain a many-body state at very low entropy.

To initialize low entropy many-body systems in a lattice our idea is to separately
prepare small building blocks which are subsequently adiabatically merged to a
many-body state (figure 7.1). Double-wells serving as these building blocks could
be created with the AOD which is placed in front of the SLM. To merge the wells
with the AOD is more handy as it is faster and easier to handle than if one uses
the SLM for the same purpose. With the approach explained here the control over
the state preparation is much higher and states of much lower entropies can be
reached compared to the common procedure where atoms are loaded into a lattice
directly from a bulk gas. This puts us into an optimal position to investigate the
rich phase diagram of the Fermi-Hubbard model. Due to the presence of strong
correlations the regime is not well understood and reliable theoretical predictions
lack. The imaging technique described above can be used to detect the atoms in
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Figure 7.2.: Shaping 2D lattices. The square lattice (a) and the honeycomb
lattice (b) can be created with double-wells as building blocks. c) For the kagome
lattice a different approach is required. a) and b) adapted from [Hol17].

real space and momentum space making it a suitable tool for the investigation of
correlations [Ber18a].

The double-well is not only suitable as building block for square lattices, includ-
ing superlattices, but for any lattice geometry that can be mapped to a two-atomic
basis such as spin ladders, chains of discrete lattice points or the honeycomb lat-
tice. For other geometries, like the kagome lattice, the AOD does not represent a
helpful tool (figure 7.2).

The increased flexibility to shape trapping geometries might also help to take
a step towards the investigation of Majorana bound states in a 1D chain. Due
to their non-Abelian braiding statistics they are considered a very promising can-
didate for the implementation of quantum computation. However, the major
obstacle towards their realisation within our experiment is the need of p-wave su-
perconductivity. The question if a stable p-wave superconductor can be engineered
in our system needs to be addressed first.
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A. Quantum Computation

In this chapter we give more details on braiding and fusing non-Abelian anyons
and on the idea how these processes could come into play in universal quantum
computation.

A.1. Fusion Rules and Topological Charge
Measurements

The model of non-Abelian anyons pursued in the course of this thesis is that of
Ising anyons. In this model three different classes of particles exist: a topologically
trivial type denoted by 1, and two non-trivial kinds with topological charges called
σ (for anyonic nature) and ψ (for the fermionic case). It is not possible to convert
particles of different topological charge into one another by local operations. But
if they are brought close to each other they can fuse to a single quasiparticle or
annihilate each other. The possible fusion processes are

ψ × ψ = 1, σ × ψ = σ, σ × σ = 1+ ψ. (A.1)

The first rule means that bringing two fermions close together is from a topological
point of view equivalent to the case of having no particles. This can be easily
understood if one thinks of the ground state of Cooper pairs in a superconductor.
The second rule states that a fermion and an anyon cannot be distinguished from
a single anyon. The last fusion rule is of special interest because here particles
can fuse into two different channels—two combined anyons behave either like a
fermion or vacuum. A projective measurement

Fp = −iĉpĉp+1 (A.2)

can be used to quantify the fusion process of two adjacent anyons at position p and
p+1. The operators ĉi denote the Majorana operators. They can be expressed in
terms of Pauli matrices [Bra06]. The possible eigenvalues +1 and −1 correspond
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to a trivial particle and one of fermionic nature, respectively. The parity operator

Q = (−i)nĉ1ĉ2...ĉ2n (A.3)

extends this concept to 2n particles. It reflects that the topological charge is a
conserved number that it cannot change by any local operation [Bra06].

A.2. Unitary Operations and Qubits in the Fusion
Space

The space we work on in order to encode a qubit is called the fusion space. For
Abelian anyons, which only gain a phase θ due to braiding, the fusion space is
one-dimensional. For non-Abelian anyons it is multi-dimensional and depends
on the chosen order for the particles to fuse. In a system consisting only of two
non-Abelian anyons it is not possible to associate the two fusion channels with
the basis states |0〉 and |1〉 of a single qubit because the two fusion outcomes have
different topological charge (or in other words belong to different parity sectors).
Since the topological charge needs to be preserved it is not possible to create states
that are a superposition of |0〉 and |1〉. To overcome this n qubits must be encoded
in more than 2n anyons. That this is useful can be illustrated by an example.
A system consisting of three anyons σ × σ × σ always has global topological 2σ
but there are different fusion diagrams that lead to this result. For instance, one
could first braid the first two quasiparticles (two different processes are possible)
and then fuse the resulting particle with the third constituent (outcome is always
2σ). This provides a possible basis fusion space

{|(σσ)σ → 1σ → σ〉 , |(σσ)σ → ψσ → σ〉} (A.4)

of the fusion space. Arrows indicate the passage of the different stages of the
fusion process. The two states of the fusion space can now perfectly express
the two states of a qubit and superpositions of the states necessarily conserve the
topological charge. On an equal footing it is possible to consider the fusion process
where 2nd and 3rd particles fuse first. Equally to our previous considerations this
provides us as well with a basis of the fusion space

{|σ(σσ) → σ1 → σ〉 , |σ(σσ) → σψ → σ〉}. (A.5)
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A change from one basis into the other can be performed by applying a so called
F -matrix. For our example it can be expressed by

F σ
σσσ =

1√
2

(
1 1
1 −1

)
. (A.6)

The three lowered σ denote the three internal anyons, the upper one refers to the
final output after all particles are fused. For the reader familiar with quantum
gates, the correspondence with the Hadamard gate is seen at once. Besides,
making a basis change in the fusion space it is also possible to braid the particles.
This is done by applying R-matrices which change the phase. In general, a braid
in clockwise direction of two of two particles with topological quantum number
a and b, which can potentially fuse into a particle of topology c, is expressed by
Rc
ab = exp(iθcab). Consider as an example the clockwise exchange of the left-most

σ anyons

R =

(
R1
σσ 0
0 Rψ

σσ

)
=

(
e−iπ/8 0
0 ei3π/8

)
. (A.7)

On the diagonal are the two different options for a braiding process of two σ
anyons1. With these tools, now also other braiding scenarios can be realized if
the particles are braided in a different order.

To create now a system with more than one qubit exactly the same methods
we have just gotten to know can be used. For example, two qubits can be created
with six anyons. Their total topological charge is always 1, i.e. trivial. Now a
basis is again chosen by deciding on a fusing order. Counting the fusion channels
for this “path” gives four eigenstates–each of them can be assigned to one of the
two-qubit states |00〉, |01〉, |10〉 and |11〉. Single-qubit transformations, as in the
example above, can be implemented by only acting on a subspace (see [Lah17] for
details).

Clifford operations together with a π/8-phase gate are a possibility to give a
complete set of gates for universal quantum computation. As already indicated
in the main text and as we saw here, this cannot be achieved with the F - and
R-matrices. The π/8-phase gate needs to be introduced in another way, e.g. non-
topologically by bringing the two anyons close to each other for a certain time
and exploiting the fact that they dephase.

We conclude with a short summary of basic steps to engineer quantum compu-
tation in an experiment:
1The missing R-matrices not introduced yet are given by R1

ψψ = −1 and Rσσψ = i
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1. The system can be initialized by creating the required number of pairs of
anyons from the vacuum and fixing their position.

2. B- and F -matrices can be used for the computational process.

3. A projective measurement can be performed on the final state. This can be
done by bringing the particles close to each other and measuring the energy.
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B. Fourier Transforming with a
Thin Lens

In section 2.3.2 it was already explained on a qualitative level how a spherical thin
lens transforms an ingoing wave into its Fourier transformation. This chapter pro-
vides a more substantial demonstration of the transformation properties of a lens1.

We consider the scenario where a plane wave that can be described as f(x, y) =
U(x, y, 0) at the plane z = 0 travels towards a thin lens of thickness ∆ positioned at
z = d. The focal plane of the lens is at a distance f from the lens (figure B.1). For
later use it is helpful to introduce the transfer function in Fresnel approximation2

Hd(νx, νy) = Hd e
iπλd(ν2x+ν

2
y), with Hd = e−ikd. (B.1)

Fourier transforming this expression gives the impulse response function

hd(x, y) = hd e−ik
x2+y2

2d , with hd =
i

λd
e−ikd. (B.2)

To examine the transformation properties of a thin lens let us start with a single
plane wave U(x, y, 0) ≡ f(x, y) = F (νx, νy) exp (−i2π(νxx+ νyy)) that travels
under a small angle θx = λνx and θy = λνy. The wave passes three different
stages subsequently. First it propagates in free space over a distance d, next it
passes a thin lens of thickness ∆ and finally, it propagates in free space to the focal
plane at distance f . Comparing with equation (2.16) one sees that for the free
space propagation of a single plane wave the integration can be omitted. Crossing
the lens in the next step multiplies the lens phase factor exp (iπ(x2 + y2)/(λf))

1An optical Fourier transform can also be obtained in the far field without using a lens if the
Fraunhofer approximation is applicable [Sal91].

2In the Fresnel approximation is applicable for a wave that travels close to the axis of propaga-
tion. Provided this axis is the z-axis this condition can be expressed as ν2x+ν2y � 1/λ2. Under
this constraint a Tailor expansion of the ray travelling close to the z-axis is possible.
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Figure B.1.: An incoming plane wave is focused down to a point in the focal
plane by a lens. The position of this point depends on the angle the ingoing wave
has with respect to the lens.

to the wave function3. At position d+∆ it reads

U(x, y, d+∆) = U(x, y, 0)︸ ︷︷ ︸
initial wave

Hd(νx, νy)︸ ︷︷ ︸
propagation for d

eiπ
(x2+y2)

(λf)︸ ︷︷ ︸
lens phase factor

. (B.3)

As U(x, y, d + ∆) is now a spherical wave one needs to perform a convolution
(equation (2.17)) in order to express the subsequent free space propagation over
the distance f

g(x, y) ≡ U(x, y, d+∆+f) =

∞∫
−∞

∞∫
−∞

dx′dy′U(x′, y′, d+∆)hf (x−x′, y−y′). (B.4)

To evaluate g(x,y) the transfer function and impulse response function in Fresnel
approximation (equations B.1,B.2) are used [Sal91]. This yields

g(x, y) = Hdhfe
iπ

(x2+y2)(d−f)

(λf2) F

(
x

λf
,
y

λf

)
(B.5)

in the focal plane with νx = x/(λf) and νy = y/(λf). For d = f the phase factor
can be omitted and the equation simplifies further to

g(x, y) = HfhfF
(
x

λf
,
y

λf

)
. (B.6)

Equation (B.6) shows that a lens can be used to apply a Fourier transform to a
wave function.

3The phase factor exp(−ik∆) is neglected.
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C. Technical Details of the LCOS
Spatial Light Modulator by
Hamamatsu

In our experiment we use a phase modulating liquid crystal on silicon spatial
light Modulator (LCOS-SLM) by Hamamatsu [Ham]. The X10468-03 SLM that
is implemented in our experiment model uses a dielectric multilayer mirror that
is specified for (1050± 50) nm and has a light utilization efficiency of up to 95 %.
The following list gives further device specifications.

• chip size: 15.8mm × 12.0mm

• resolution: 792× 600

• pixel size: 20 µm

• number of input levels: 256 levels (8 bits)

• input signal: Digital Video Interface (DVI-D)

• refresh rate: 120Hz

• liquid crystal drive cycle: 240Hz (AC)

• rise time: 20ms

• fall time: 80ms

• maximal incident laser power: ∼ 5W

The SLM has its own controller unit which is connected to the graphics card of
a computer. The SLM can then be controlled with a LabVIEW program that
is designed in a modular style. It is used to control the SLM, calculate phase
patterns and read out different cameras.
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D. Alignment Protocol for the
Objective

As stated in the main text it is important to align the optical axis of the objective
perpendicular to the vacuum window in order to attain a good performance. Re-
producibility of the objective’s alignment is achieved by using an alignment beam
(beam of wavelength λ = 532 nm, green in figure D.1). It reaches the breadboard
at outcoupler A and is subsequently split up by a cube. One part, we call it refer-
ence beam, is focused down with a f = 100mm lens to a CCD camera (Pointgrey
Flea FL2G-13S2M-C). The other part, referred to as alignment beam, is directed
to the vacuum window. To determine the optical axis of the objective we work
with a test setup and imitate the vacuum window with a test window. In the
first step the objective is taken out of the setup. Without passing the objective
the alignment beam hits the surface of the test window and a part of the light is
reflected at its surface. We make sure that the alignment beam is perpendicular
to the test window by checking that some of the reflected light is coupled back
into the fibre. (In the test setup one can overlap the two beams simply by turning
the test window.) Now, the reference beam is aligned to the back reflected beam
(mirror 1) such that the position of the two beams coincide on the CCD camera.
The position of the back reflected beam on the camera is sensitive to the angle
of the objective and thus, in the following, we can use it to record the tilt of the
tubing of the objective with respect to the optical axis, which is required to be
parallel to the back reflection from the vacuum window. We proceed by taking
back the objective and placing a mirror on top of it. As a starting position we tilt
the objective such that the beam that is reflected back from the mirror impinges
at the reference position on the CCD camera. To adjust the tilt around the x-
and y-axis the mount of the objective provides two screws. Next, the mirror is
removed and a gold grating attached to a x-, y-, z-stage is placed roughly in the
focus of the objective. Its holes have a diameter of 650 nm and are separated by
20 µm. The gold grating is illuminated from below (position B in figure D.1) with
red light (λ = 671 nm), after the light passed the objective it is focused down with
a f = 750mm lens to another CCD camera (Thorlabs beam profiler BC106-VIS).
One can observe a diffraction pattern that depends on the z-position of the grat-
ing called Talbot effect. Only when the grating is placed perfectly in the focal
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Figure D.1.: A gold grating placed in the focus of the objective is used as a
tool to find the optical axis of the objective (beampath of red beam). The green
alignment beam is used to attain a reference of this position. Adapted from
[Hol17].

plane we see a clear image of it. This way the grating can be placed in focus with
a very high precision. However, the pattern still shows aberrations. They can be
reduced by tilting the objective around the x- and y-axis with the corresponding
screws. The least aberrations are obtained when the optical axis of the objective
is vertical to the vacuum window. It is important to make sure that this tilt is
maintained after locking the tilting screws. This part is critical because the mount
is designed for lighter optics which results in the effect that the tilt is coupled to
the locking. If now the mirror is again placed on top of the objective. The spot
of the reference position and of the back reflected beam on the alignment camera
are separated by a distance ∆x and ∆y in x- and y-direction, respectively. The
tilt of the tubing can be be calculated according to

θi =
∆i

f
for i = x, y (D.1)
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D. Alignment Protocol for the Objective

with f = 100mm being the focal length of the lens placed before the camera. One
obtains θx = 4mrad and θy = 12mrad.

Once the vertical breadboard is implemented in the experiment the alignment
beam is aligned central (mirror 2) and perpendicular (mirror 3) to the vacuum
window. (The beam is perpendicular if the spot of back reflection on the CCD
camera coincides with the one of the reference beam.) We check if some light is
coupled back to the fibre to make sure that the incident and back reflected beam
overlap. The next step is to implement the objective. Due to the fact that the
diameter of the re-entrant viewport in our experiment is smaller than the one in
the experiment the objective was designed for in the first place (40mm compared
to 44mm) the objective fits only with millimetre precision. Additionally, there
is only one orientation to fit in the objective because the re-entrant viewport is
partly occupied by pipes for water cooling of the Feshbach coils and small iron
blocks that are placed there to move the magnetic saddle of their magnetic field
when used in Helmholtz configuration1. Once being installed in the experiment
the objective is aligned passively: The mirror is placed on top of it and by looking
at the CCD camera its tilt is adjusted to the one determined in the test setup.

Additionally, we use the alignment beam to align the infrared beam that stems
form the SLM breadboard. Therefore, the mirror is again placed on top of the
objective. A part of the beam is reflected at the dichroic at position 5 in figure D.1.
With the help of mirror 6 we can align the green beam to the infrared beam at
the focus of the latter (position C in figure 5.3). Mirror 7 can be used to align
the beam to the centre of the objective’s entrance.

1During the implementation procedure we needed to change the position of these magnetizable
blocks to free enough space for the objective. It was taken care that the position of the zero-
crossing of the coils in anti-Helmholtz configuration was identical to the one of the magnetic
saddle.
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