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Few ultracold fermions in a two-dimensional trap:

This master thesis concerns the development, design, installation, alignment and char-

acterization of a novel experimental setup, which was designed to explore the emergence

of many-body quantum e�ects of ultracold fermion gases in two dimensions starting

from the few-particle level. It mainly consists of a quasi-two-dimensional optical dipole

trap for a system of countable few fermionic 6Li atoms. The trap is created by two red-

detuned laser beams interfering in their crossing region and providing a strong vertical

con�nement by an optical standing wave pattern. An additional single focused beam

trap perpendicular to this light-sheet structure allows an independent control over the

radial restriction of the harmonic trapping potential. Furthermore, the setup enables

accurate control over the absolute number of particles in the trap as well as the inter-

particle interaction strength and spin-resolved single-atom detection, which has already

been demonstrated in a quasi-one-dimensional con�guration. It is expected that this

experimental simulator will allow to study the onset of quantum many-body physics in

two dimensions by mapping out correlations in position and momentum space.

Wenige ultrakalte Fermionen in einer zwei-dimensionalen Falle:

Diese Masterarbeit beschäftigt sich mit der Entwicklung, dem Design, der Installa-

tion, der Justage und der Charakterisierung eines neuen experimentellen Aufbaus,

der konstruiert wurde, um die Entstehung von Vielteilchen-Quantene�ekten mit ul-

trakalten fermionischen Gasen in zwei Dimensionen zu entdecken, beginnend von der

Wenigteilchen-Ebene. Er besteht hauptsächlich aus einer quasi-zweidimensionalen

optischen Dipolfalle für ein System aus abzählbar wenigen fermionischen 6Li-Atomen.

Die Falle wird durch zwei rot-verstimmte Laserstrahlen erzeugt, die in ihrem

Kreuzungsbereich interferieren und einen starken vertikalen Einschluss in Form einer

optischen stehenden Welle bereitstellen. Eine zusätzliche Falle aus einem einzelnen fok-

ussierten Strahl rechtwinklig zu dieser Lichtscheibenstruktur erlaubt die unabhängige

Kontrolle über die radiale Begrenzung des harmonischen Fallenpotenzials. Des Weit-

eren ermöglicht der Aufbau die genaue Kontrolle über die absolute Teilchenzahl in der

Falle, genauso wie über die Wechselwirkungsstärke zwischen den Teilchen und Spin-

aufgelöste Einzelatom-Erkennung, welche bereits für die quasi-eindimensionale Kon�g-

uration demonstriert worden ist. Es wird erwartet, dass dieser experimentelle Simulator

es erlaubt, das Einsetzen von Quanten-Vielteilchen-Physik zu studieren, indem Korrel-

ationen im Positions- und Impulsraum ausgemessen werden.
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1 Introduction

1.1 Quantum simulation

One of the key problems in physics is how to deal with the challenge of many-body com-
plexity on di�erent length scales. If one considers objects of the size of an atom, one can
describe them in terms of matter-waves in the context of quantum mechanics. Here the
state of an object, like the position, can be characterized by a probability amplitude func-
tion re�ecting the probability to �nd the particle at a certain position. The time evolution
of such a quantum mechanical state follows the Schrödinger equation. If one considers
the regime, where the wave-functions of interacting particles can overlap so strongly, that
they become indistinguishable, one can separate two types of particles: particles belong-
ing to systems described by a wave-function, which is symmetric under particle exchange,
are called bosons and particles belonging to a system described by a wave-function, which
is antisymmetric with respect to the exchange of two particles, are called fermions. The
ground state of bosons can be described by a single macroscopic wave-function and a
Bose-Einstein condensation occurs. In the case of fermions the essential consequence is
that each quantum state can be occupied by not more than a single fermion, known as
Pauli's exclusion principle. Here the ground state is di�erent, because each available en-
ergy level can be occupied by a single fermion of the same type. So starting with the lowest
energy levels the spectrum is successively �lled with fermions until a maximum energy
level, called the Fermi energy. However with increasing number of interacting particles it
becomes impossible to solve the Schrödinger equation explicitly even for a small number of
particles. Although in the context of statistical physics many fruitful methods to deal with
these challenges were developed by starting from the many-body limit, the bridge between
few-particle interactions and many-body phenomena is still under construction from both
sides. As even numerical e�orts for the solution of such many-particle systems are nearly
hopeless, because the Hilbert space of available states scales exponentially with particle
number, various physical systems have been investigated, which are able to mimic the
relevant quantum mechanical problems in an experimental system. Apart from photonic
systems ([15]) or trapped ions ([40]), one of the most prominent examples of such an
arti�cial quantum simulator are systems of ultracold atoms localized in arbitrarily shaped
traps, as for example optical lattices ([12]). The crucial advantages of this system, is that
one can investigate both categories of particles, bosons or fermions, and even mixtures
of them. Furthermore, one is able to tune the interaction between the particles by an
external magnetic �eld, via the so-called Feshbach resonances. On top of that, one also
can design the precise form of the localizing potentials by shaping the light intensity of
optical dipole potentials, which are proportional to the intensity, meaning the particles
are pulled to or repelled from the intensity maxima. These shallow traps allow to cool
particle ensembles to the nano-Kelvin regime, where the quantum nature of the particles
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dominates. In this way various trap shapes were realized and one is even able to select the
number of spatial dimensions in which the particles e�ectively can move. So apart from
three-dimensional traps, also quasi-one- and two-dimensional traps were constructed to
investigate new phenomena arising under extreme conditions ([42], [41], [17], [31], [21]).
In this row one can add the work of this thesis with a quasi-two-dimensional trap for few
ultracold fermions. In contrast to many other setups, this experimental simulator should
provide full single-particle resolution in position and momentum space. Some exemplary
reasons to investigate a quasi-two-dimensional system are that it leads to an energy shell
structure like that observed in atomic systems ([30]) and the layer structure is expected
to be a key property of high-TC superconductors ([14]).

1.2 Content of this thesis

This thesis contributes the construction, alignment, and characterization of a quasi-two-
dimensional trapping potential, after the development and the design were mainly �nished
during a Bachelor thesis. In the second chapter some basic information about ultracold
fermionic atoms is mentioned together with some exemplary phenomena occurring in
systems con�ned to two dimensions. The third chapter tries to summarize the main
experimental steps to create, control, and observe an ultracold sample of few fermions.
After this more general information, the thesis focusses on the creation of a tunable two-
dimensional trap from a theoretical perspective. In this context, the main ideas for the
conceptional development are formulated. For this purpose, the fourth chapter introduces
the basic knowledge which is necessary to understand the working principle of optical
dipole traps. On this basis, the tunable 2D Trap consisting of three Gaussian beams is
described theoretically in chapter 5. In this chapter the essential trap parameters are
presented and target values are selected to reach the desired trap properties. The �nal
part of the thesis concentrates on the realization of the target trap. Chapter 6 starts with
an overview to the opto-mechanical design of the full setup. Subsequently, the essential
steps for the installation and alignment of the opto-mechanical system are presented in
chapter 7. Chapter 8 analyses the characteristics of the realized quasi-two-dimensional
optical dipole trap, which enables the comparison of the real trap properties with the
target values. Against this background, in chapter 9 a �nal conclusion is drawn.
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Part I

Few ultracold fermions in two

dimensions
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2 Few ultracold fermions con�ned to two

dimensions

This chapter summarizes some basic knowledge about the quantum statistical behaviour
of bosons and fermions, introduces the basic system of interest consisting of a cluster
of particles with tunable interaction strength, and tries to collect some of the essential
phenomena, which can be observed in a Fermi gas con�ned to two-dimensions.

2.1 Quantum statistics

One possible approach to the many-particle problem is statistical physics, which describes
for example a classical gas of particles not by the position and velocity of all constitutes,
but for example by the so-called Maxwell-Boltzmann velocity distribution: ([7]).

fMB(v) = 4π

(
m

2πkBT

) 3
2

v2 exp

(
− mv2

2kBT

)
(2.1)

with the particle velocity v, the particle mass m, the temperature of the gas T , and the
Boltzmann-constant kB. In a classical description, particles appear usually as hard balls.
Here one can attach names to each particle even if they might collide with each other
in the case of a real gas. However, if one considers an atomic gas of the same species
the particles become indistinguishable when they are too close to each other, and it was
discovered that particles as small as atoms have to be described similar to photons as
matter waves with a characteristic de Broglie wavelength ([6], p. 92):

λdB =
h

p
=

h√
2mE

=
h√

3mkBT
(2.2)

with the Plank-constant h, the particle momentum p, the particle mass m, and the clas-
sical particle energy E. First of all, one can realize that the wavelength increases with
decreasing particle mass. If one inserts the thermal energy of a classical gas one can reach
a temperature dependence of the de Broglie wavelength. So also for decreasing temper-
ature, the de Broglie wavelength is increasing. This behaviour is important, because the
wave-nature of the particles only matters if the wavelength is large compared to the inter-
particle spacing and the particles might overlap with each other. In this regime, so for
small particle mass and for low temperatures, the particles really have to be described as
waves, which follow the rules of the theory of quantum mechanics. The central equation
in this context is of course the Schrödinger equation ([33]):

i~∂t|ψ(~x, t)〉 = Ĥ|ψ(~x, t)〉 (2.3)
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in which the energy operator Ĥ governs the temporal evolution of the state vector |ψ(~x, t)〉
and the state vector can be related to a probability amplitude of the matter wave. Unfor-
tunately this equation becomes very complex to solve for many of such quantum particles
described by a many-body wave-function Ψ = Ψ(~x1, ..., ~xN , t) of N particles. Furthermore
the indistinguishability of particles, which overlap strongly, has the consequence that all
observables have to be unchanged if one exchanges two of those particles with each other
([38] and [19]). Therefore, also the probability density of the many-body wave-function
has to be unchanged ([7]):

|PijΨ(..., ~xi, ..., ~xj, ...)|2 = |Ψ(..., ~xj, ..., ~xi, ...)|2 = | ±Ψ(..., ~xi, ..., ~xj, ...)|2 (2.4)

⇐⇒ PijΨ = ±Ψ (2.5)

Here the particle exchange operator is introduced as: Pij. From this relation one can
conclude, that one can distinguish two types of many-particle wave-functions, which are
either symmetric or anti-symmetric according to the exchange of two indistinguishable
particles. If the exchange of two particles leads to a plus sign, the particles described
by the many-body wave-function are called bosons, and if the exchange of two particles
causes a minus sign, the particles described by Ψ are called fermions. The antisymmetry
condition for the fermions leads to the fact, that each quantum state can be occupied by
not more than one fermion at a time. This circumstance is known as Pauli's exclusion
principle. The energy of the highest lying particle in the ground state con�guration
corresponds to the Fermi energy EF =

~2k2F
2m

, depending on the Fermi wave vector kF . In
contrast many bosons are able to occupy a single quantum state at the same time. This
causes a fundamentally di�erent behaviour near the ground state of a quantum system,
which is reached at low temperatures, as demonstrated in �gure 2.1.

Figure 2.1: On the left the ground state of a bosonic many-body state is shown, and on
the right the one of a fermionic many-body state is depicted. The �gure is
taken from [38].

It is not surprising that for this reason also the mean occupation number distribution
functions of fermions and bosons are di�erent. For bosons this has the form of the so-
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called Bose-Einstein distribution ([7]):

nB =
1

exp(β(ε− µ))− 1
(2.6)

with the factor β = 1
kBT

as the non-relativistic one-particle energy ε = p2

2m
and the chemical

potential µ, corresponding to the energy to add or remove one particle. For fermions the
mean occupation number can be expressed as([7]):

nF =
1

exp(β(ε− µ)) + 1
(2.7)

For T = 0 the so-called Fermi-Dirac distribution for fermions corresponds to a step-
function positioned at µ while the step is smoother for higher temperatures as depicted
in �gure 2.2.

Figure 2.2: The Fermi-Dirac-distribution nF for a chemical potential of µ = 10 kBT.

2.2 Tuning of interactions

The actual quantum problem is fully described by the Hamiltonian of the system, which
has in general for a trapped system of N particles the from of ([38]):

Ĥ =
N∑
i=1

T̂ (~̇xi) +
N∑
i=1

V̂trap(~xi) +
N∑
i=1

V̂int(~xi, ~xj) (2.8)

with the kinetic energy term T̂ (~pi) = p̂i
2

2mi
, the trapping potential term V̂trap(~xi), and the

interaction term V̂int(~xi, ~xj) between the particle i and j. The trapping potential might
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be for example a harmonic one: V̂trap(~xi) = 1
2
miω

2~̂x2. The interaction of the particles
can be treated in the context of quantum mechanical scattering where one can introduce
the scattering length a to characterize the scattering process ([28]). If the energy of the
interacting particles is small enough, such that their de Broglie wavelength is much larger
than the range of the interaction potential, the interaction potential can be e�ectively
described by a pseudo-potential with a point-like interaction([38]):

V (~x) = gδ(~x) (2.9)

with the interaction constant:

g =
4π~2a

2m
(2.10)

One strong advantage of ultracold atom experiments is that one can tune the interaction
between the particles via Feshbach resonances, described in the next chapter. This opens
the door to a phase diagram of interacting fermions. In this context one considers usually
a Fermi mixture of two di�erent spin states. The phase diagram for such an interacting
Fermi mixture is shown in �gure 2.3, where 1

kF a
re�ects the interaction strength. From high

to low temperatures, there appears a phase transition from the normal to the super�uid
state.

Figure 2.3: Phase diagram of interacting Fermi mixtures in a harmonic trap. The �gure
is taken from [18].

As depicted in �gure 2.4, there exist two limits along the interaction strength. For weak
repulsive interaction with 1

kF a
→ +∞, the two-component Fermi gas forms molecules of
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di�erent spin types, which behave e�ectively as bosons. For weak attractive interaction
with 1

kF a
→ −∞, the two-component Fermi gas forms very weakly bound long-range

Cooper pairs with opposite momenta or pairs in momentum space ([18]).

Figure 2.4: Schematic picture of the BEC-BCS-crossover. Left one can see the state of a
Bose-Einstein condensate with tightly bound molecules in the form of pairs
of opposite spin fermions. On the right the Bardeen�Cooper�Schrie�er state
is sketched with loosely bound Cooper pairs, meaning pairs of fermions with
opposite spin and momentum. In the centre, the crossover super�uid between
the two limits on the left and right is depicted. The �gure is taken from [18].

2.3 Phenomena with fermions con�ned to two

dimensions

There appear various di�erences in the behaviour of fermionic systems if one reduces the
dimensionality of the system to two dimensions. For example there exists a two-body
dimer at all interaction strengths in two dimensions and not only for positive scatter-
ing lengths as in three dimensions ([25]). Besides there exists also no unitary regime
in two dimensions as the scattering length does not diverge at the Feshbach resonance
([25]). But most importantly, in two dimensions it is not allowed that a BEC with
true long-range order can be created at �nite temperatures ([22]). However one can ob-
serve a phase transition from the normal to the super�uid phase, which is called the
Berenzinskii-Kosterlitz-Thouless (BKT) transition. Qualitatively this phase transition
can be understood as described in [25]: In the normal phase vortices as excitations with
quantized angular momentum prevent long range order in the phase. The transition to
the super�uid state occurs due to pairing of vortices with opposite rotation. In this way
their disturbing e�ect disappears.
The resulting behaviour of the system is characterized by the term of quasi-long range
order in the sense of an algebraic decay of the �rst order correlation function. In contrast
to that, in the normal phase one can register an exponential decay. This was observed in
our group and published in [23] with the central �gure 2.5.

8



Figure 2.5: Given in (a) is the �rst-order correlation function for di�erent temperatures.
The interaction parameter in the top graph is: ln(kFa2D) ∼ −0.5 and in the
bottom graph: ln(kFa2D) ∼ 0.5. In (b) the χ2 values for the power-law and
the exponential �t are shown. The �gure is taken from [23].

The phase diagram for a Fermi gas con�ned to two dimensions was measured in [29] and
is shown in �gure 2.6. It portrays the non-thermal fraction as function of temperature
and interaction strength. One can conclude that there appears a phase transition for all
interaction strengths.

A further topic discussed in [3] considers the Higgs mode in a Fermi gas from few to many
particles. The model Hamiltonian in this paper considers a fermion system in a balanced
mixture of two spin states in a two-dimensional harmonic trap and has the form ([3]):

Ĥ =
N∑
i=1

(
− ~2∇2

i

2m
+

1

2
mω2~r2

i

)
+ g

∑
k,l

δ(~rk − ~rl) with : g < 0 (2.11)

including the kinetic energy term with ∇2
i = ∂2

xi
+ ∂2

yi
, a harmonic potential term, and

a point-contact interaction potential term between particles of di�erent spin where ~ri =
(xi, yi) corresponds to the spatial coordinate of particle i. The energy spectrum of a two-
dimensional harmonic oscillator forms a shell structure depicted in �gure 2.7 ((a),(b),(c)),
meaning there are states of equal energy forming an energy shell. This can be easily seen
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Figure 2.6: Phase diagram of a Fermi gas in two dimensions with the non-thermal fraction
as function of interaction parameter ln(kFa) and temperature T normalized
to the Fermi temperature TF . The �gure is taken from [29].

from the single particle harmonic oscillator energy spectrum in two-dimensions:

E(nx, ny) = ~ωx
(
nx+

1

2

)
+~ωy

(
ny+

1

2

)
= ~ω(nx+ny+1) for : ωx = ωy = ω (2.12)

Here all states with the same value for the sum nx + ny have the same energy, although
the precise numbers for nx and ny might be di�erent.
Alternatively one can formulate the energy spectrum as ([3]):

E(n,m) = ~ω(n+|m|+1) with : n = 0, 1, 2, 3, ... and m = 0,±1,±2,±3, ... (2.13)

with the main quantum number n and angular momentum quantum number m. For a
closed shell con�guration of for example 3+3 particles (three spin-up particles and three
spin-down particles), there are various di�erent excitations possible in the case of the
lowest monopole excitation, with vanishing total angular momentum, as demonstrated in
�gure 2.7.
In �gure 2.7 (part (d)) the lowest monopole excitation is shown in red compared to the
second excitation state as function of interaction strength parametrized by the binding
energy εb = ~2

ma2
, which is normalized by the critical binding energy εc for the occurrence

of the Higgs mode in the many-particle limit.
The Higgs mode `corresponds to oscillations in the size of the order parameter for a given
broken symmetry' ([3]). One can see a qualitative di�erence between the �rst and second
excitation. The �rst excitation energy decreases �rst with interaction strength and then
increases from the critical interaction strength onwards. This can be interpreted as `the
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(d)

Figure 2.7: In part (a),(b) and (c) the energy level schema for the case of 3+3 fermions in
a two-dimensional harmonic oscillator potential is depicted. For the excitation
energy of 2~ω there are three di�erent excitation con�gurations possible, where
the total angular momentum vanishes. For (a) and (b) `time-reversed pairs'
are formed with (n,m, ↑)1 for one particle and (n,−m, ↓)2 for the other. In
part (d) the excitation energy spectrum as function of the binding energy εb
is shown, which depends on the interaction strength. The lowest monopole
excitation for 3+3 fermions of both spin states is shown as dashed red line and
for 6+6 fermions as solid red line. The second excited state for 3+3 fermions
is depicted as light blue dashed line together with grey solid lines representing
higher excited states for 3+3 fermions. The black line marks the `numerical
(analytical) many-body Higgs mode energy' as mentioned in [3]. The �gures
are taken from [3].

precursor of the Higgs mode in a Fermi gas' ([3]). In contrast to that, the second excited
state energy increases monotonously with interaction strength.
The minimum in the excitation energy spectrum can be explained according to [3] with the
fact that the two excited states in �gure 2.7 (a) and (b) can exploit di�erent con�gurations
in the empty shell to increase their overlap. The excited particle pair in �gure 2.7 (a) and
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(b) is called a `time-reversed pair' with the two sets of quantum numbers: (n,m, ↑) and
(n,−m, ↓). The paper suggests the experimental observation of this phenomenon.
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3 Creating and observing a system of few

ultracold fermions

This chapter describes the basic steps to create a well-controlled ultracold sample of few
fermions and how to detect its behaviour.

3.1 Basic elements: 6Li-atoms

As basic elements to be trapped, 6Li-atoms were chosen. The following characteristics were
mainly extracted from [8] where one can also �nd more detailed information. Lithium
as an alkali atom provides many transitions which can be addressed by normal lasers.
Most importantly, 6Li behaves as a fermion because, as an alkali atom, it has a single
valance electron leading to a spin quantum number of S = 1/2. Besides the nuclear spin
of 6Li is I = 1 ([18]). The mass of the neutral atom 6Li is about: m(6Li) = 6.01512280
u [16]. The crucial line used for cooling and trapping is the D2-line with a wavelength
of λ(D2) = 670.977338 nm and a natural line width of Γ = 5.8724 MHz as published in
[8] and shown in the left part of �gure 3.1. In the experiment only the three lowermost
hyper�ne states are used whose energy spectrum as function of external magnetic �eld is
portrayed in the right part of �gure 3.1.

cooling

repumping

D2
D1

2

2

Figure 3.1: On the left: The energy level spectrum of 6Li. The �gure was taken from [27]
and is based on a graph in [8]. On the right: Lowest hyper�ne state energy
spectrum of 6Li as function of external magnetic �eld. The �gure was taken
from [28].
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3.2 Tuning interactions with Feshbach resonances

The concept of tuning the interaction strength via a Feshbach resonance can be understood
in the following way using �gure 3.2. The phenomenon of the Feshbach resonance, as
described in [5], appears during a scattering process of two particles with a small collision
energy E. In this context one has to consider two molecular potentials: At large inter-
particle distances, the background molecular potential describes the case of two free atoms
and therefore connects the free atoms case with the case of two bound atoms. This
potential represents the so-called open channel or entrance channel and describes the
actual scattering state. The second potential corresponds to the closed channel in the
scattering process and is able to evoke molecular bound states near the scattering state
of the open channel. Exactly if the molecular bound state of the closed channel in energy
space reaches the scattering continuum of the open channel a Feshbach resonance can
be observed and the scattering length increases. By tuning the energy di�erence ∆E

Δ𝐸

Figure 3.2: The principle of a Feshbach resonance: A molecular level of a closed channel
molecular potential Vc approaches the energy level of the scattering continuum
of the open channel molecular potential Vbg. The closed channel potential and
the open channel potential are separated by an energy ∆E, which can be
changed by an external magnetic �eld. The �gure is taken from [5] and was
slightly modi�ed.

between the two molecular potentials, one can tune the small energy di�erence between the
scattering state of the open channel and the molecular bound state of the closed channel.
In this way one is able to scan through the Feshbach resonance. The scattering length is
positive if the closed channel is energetically lower than the open channel and negative
if the closed channel has a larger energy than the open channel ([28]). Fortunately, the
energy di�erence ∆E can be controlled by an external magnetic �eld, exploiting the
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magnetic moment di�erence ∆µ between the two channels ([28]):

∆E = ∆µB (3.1)

The s-wave scattering length can be written as ([5]):

a(B) = abg

(
1− ∆

B −B0

)
(3.2)

including the background scattering length abg from the open channel potential, the Fesh-
bach resonance position in magnetic �eld space B0 and the resonance width ∆.

As published in [41], the Feshbach resonances for the three lowest hyper�ne states were
measured to have the form shown in �gure 3.3.

Figure 3.3: Measured Feshbach resonance spectra of the three possible hyper�ne state
mixtures (|1〉 − |2〉, |1〉 − |3〉, and |2〉 − |3〉) for the three lowest hyper�ne
states of 6Li.

In this way, one can scan the magnetic �eld through the BEC-BCS-crossover as demon-
strated in �gure 3.4.

3.3 Basic steps of cooling and trapping

The following chapter will summarize the essential steps to reach well controlled, isolated
and localized samples of trapped fermionic atoms.
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Figure 3.4: Sketch of the interaction parameter as function of magnetic �eld over the
Feshbach resonance. The �gure is exploited to demonstrate the three relevant
regions in the diagram: On the left the molecular BEC, one the right the BEC
regime of Cooper pairs and in the centre the regime of strong interactions
including the unitary limit. This �gure is taken from [38] and based on [13].

First of all, one has to mention that the experiment takes place in robust vacuum system
as shown in �gure 3.5 providing a good isolation by an internal pressure of poven ≈ 10−10

mbar in the oven section and even pexp ≈ 10−12 mbar in the experimental chamber ([35]).

In a �rst step, solid 6Li is heated to about 400 ◦C to produce hot and fast free atoms. The
free atoms can escape through a small aperture out of the oven and in this way form an
atomic beam towards the experimental chamber, consisting of a spherical octagon with 6
CF40 view ports and two CF100 �anges.
Figure 3.6 provides an overview to the basic elements, which will be introduced in the
following. The velocity of the atoms in the atomic beam is decreased by a Zeeman slower.
The Zeeman slower between the atomic oven and the experimental chamber consists of
a tube enfolded by a magnetic coil with decreasing diameter and number of windings
to produce a decreasing magnetic �eld along the propagation direction of the atoms.
The second essential element of the Zeeman slower is a red-detuned laser beam pointing
against the atomic beam. By a laser cooling mechanism in which the moving atoms
absorb photons of the laser beam taking its directional photon momentum and loosing
unidirectional momentum during a spontaneous emission process, the atoms are slowed
down towards the experimental chamber. The magnetic �eld gradient compensates the
Doppler shift of the moving atoms and guarantees that the moving atoms are always in
resonance with the counter-propagating laser beam. The Zeeman slower is designed such
that the atoms get out of resonance with respect to the laser frequency if they reach the
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Figure 3.5: View on the experimental apparatus including the parts of the vacuum infra-
structure (1,2,6), the Lithium oven (3), the Zeeman slower (4) which decreases
the velocity of the atomic beam from the Lithium oven, and the experimental
chamber (5) where the atoms are localized in di�erent kinds of traps. The
picture was taken from a Solid-works �le of [35].

centre of the experimental chamber where the magnetic �eld is zero. In this way the
atoms are slowed down from about 700 m/s to a few m/s ([35]).

As sketched in �gure 3.7, after the atoms are slow enough, they can be trapped via a
magneto-optical trap consisting of three pairs of opposite circular polarized laser light
beams in all three spatial dimensions together with a magnetic �eld produced by two
magnetic coils in anti-Helmholtz con�guration. The magnetic �eld corresponds to a linear
magnetic �eld gradient around the centre while in the centre the �eld vanishes. In this
way, the magnetic �eld causes a Zeeman splitting of the atomic levels, such that the
atoms always absorb photons of the right laser beam if they are on the right side and
absorb mainly photons from the left laser beam when they are displaced to the left side
because the two opposite laser beams have also opposite circular polarization and through
the Zeeman splitting the detuning to the two laser beams is therefore di�erent. This
mechanism holds for all three spatial dimensions and leads to a localizing potential in
which a cloud of few million atoms can be trapped. A more detailed description can be
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Figure 3.6: Schematic view on the experimental chamber including the di�erent laser
beams for cooling and trapping the atoms. The top part of the �gure provides
a side view on the experimental chamber, the lithium oven, and the Zeeman
slower connecting both with each other. From the Lithium oven, an atomic
beam, depicted in grey, points to the experimental chamber and is slowed
down by the Zeeman slower beam portrayed in dark red. The bottom part of
the �gure shows the top view on the setup. After slowing down the atoms, six
MOT-beams in red localize the atoms in the centre of the octagon. The atoms
can be transferred into the crossed optical dipole trap depicted in light blue.
Afterwards, a second transfer into the 2D trap, drawn in green, is possible.
Besides, there are three cameras detecting absorption and �uorescence signals
from the experimental chamber.

found for example in [37].

An exemplarily achieved loading result are up to ∼ 108 trapped atoms after two seconds
loading time with a temperature of about 400 µK ([1], p. 34). However the temperature
of the atoms trapped in the MOT lies at least above the so-called Doppler-limit of about
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140 µK caused by monotonously appearing absorption and spontaneous emission events
of resonant photons ([28], p. 35). To further cool the atomic sample, one can transfer
the atoms into a shallow optical dipole trap which consists for example as depicted in
�gure 3.7 of two crossed laser beams which produce a large attractive intensity maximum
in the overlapping region where the two single Gaussian beam foci with a minimal waist
of about W0 ≈ 40 µm meet each other under a crossing angle of about 15◦([36]). The
so-called optical dipole trap (ODT) provides, with a beam power of up to Pdip = 200 W, a
relatively deep optical trapping potential. According to [1] (p. 34) the transfer e�ciency
is about 1%. Furthermore, one can create a balanced mixture of the two lowest hyper�ne
states by a long radio frequency laser pulse between the two lowest hyper�ne levels. In
a next step, the temperature of the gas can be further cooled by evaporation, meaning
one waits until the hotter particles escape from the trap. For example the temperature of
the atomic gas is after 6 seconds of evaporation about T ∼ 250 nK and only a number of
about 6 · 104 atoms are remaining ([1]). In this way, a reservoir of cold atoms is created.
These atoms can be transferred into di�erently shaped optical dipole traps. For example
a quasi-one-dimensional cigar-shaped trap or quasi-two-dimensional pancake-like-shaped
trap can be used for the experimental investigation. In the context of this thesis the
creation of a tunable 2D Trap for this purpose will be discussed. Here one can populate
only one single layer of the 2D Trap by applying a magnetic �eld gradient and empty
the side layers. By overlapping a single focused beam trap, called a Microtrap, the radial
con�nement can be adjusted separately from the vertical con�nement given by the light
green sheet in �gure 3.7. This system results into a tunable 2D Trap.

3.4 Few-particle preparation

Especially for the experiments planned for the tunable 2D Trap, the preparation of a few-
particle system of about one to ten or maybe 100 trapped particles is relevant. After the
previously described production of a reservoir of cold atoms, one can create a deterministic
system of few particles in the way depicted in �gure 3.8. On the left side of �gure 3.8,
the fermionic occupation distribution is plotted. By overlapping a deep optical dipole
trap, like the Microtrap, one can locally increase the occupation probability inside that
Microtrap dramatically to about one. So after turning o� the reservoir, all available
energy levels of the Microtrap are occupied. In a second step, one can apply a magnetic
�eld gradient and empty the Microtrap partially by this so-called spilling process until
only the desired number of particles stays inside the trap. Finally, the magnetic �eld
gradient can be removed and only a few particles remain, occupying the lowest energy
levels of the trap with a ground state preparation �delity of about ∼ 90% ([1], p. 37).
This schema was �rst described in [34].

3.5 Imaging

Finally, the question arises how one can observe the trapped atomic sample. Here one
can refer to �gure 3.6, where the three available cameras are depicted. Camera C1 and
C2 are mainly used for absorption imaging, in which the shadow of the atoms is detected.
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3.5.1 `Spin-resolved single-atom imaging'

The third camera C3 can be used for �uorescence imaging, where the camera detects the
light emitted from the atoms after they have absorbed it from a resonant laser beam. As
described in detail in [2], the experimental setup allows spin-resolved single-atom imaging
in the following way: the atoms trapped for example in the Microtrap are excited to emit
�uorescent light by shining resonant laser light in horizontal direction on them as sketched
in �gure 3.9.
The laser light consists of two counter-propagating laser beams which are pulsed and
shifted against each other, such that only one of the two beams is reaching the atoms at
a time. In this way one can prevent the build-up of an optical trapping potential by a
laser cooling mechanism. The �uorescent light is collected by a high-numerical aperture
objective guiding the light to an EMCCD camera which is able to detect single photons.
As described in [2], for an exposer time of 20 µs, one detects about 20 photons per atom.
After an appropriate data analysis including a binarization and a low-pass �lter, one
can identify single atoms with a �delity of about (99.4 ± 0.3)%. One advantage of this
imaging technique is that it allows the detection of atoms without a trapping potential,
so also free space imaging is possible. In this way one can also detect atoms after time-
of-�ight experiments. It is mentioned in [2] that the setup allows also the detection
of the momentum distribution by imaging the atomic cloud after it was expanding in
a shallow trap for exactly a quarter of the trap period time T/4. The shallow trap
holds the atoms in the focal plane of the objective and after the expansion time T/4 the
momentum distribution is completely reproduced in the density distribution in position
space. Because of the di�usive motion of the atoms during the imaging process the position
error is about 4 µm. On top of that, one can detect di�erent spin states separately one after
the other by selecting di�erent optical transitions during the imaging process one after
the other, displaced by 50µs in time. This is possible, because the three lowest hyper�ne
states, which serve as pseudo-spin states, are separated at the relevant magnetic �eld of
about 80 MHz corresponding to about 12 times of the natural line width of the transitions
([2]).
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Figure 3.7: Demonstration of the basic steps for the cooling and trapping of atoms and
the trap shaping.
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Figure 3.8: Schema to deterministically prepare a few-particle system: Starting with the
overlap of a tight Microtrap with the atomic reservoir in the dipole trap, one
can locally increase the Fermi energy and guarantee that all states in the
Microtrap are occupied. After turning o� the dipole trap, leaving a fully
occupied Microtrap, the atoms in the upper energy levels can tunnel out if
one adds a magnetic �eld gradient to the potential. Finally, the magnetic �eld
gradient can be removed and only few particles in the ground state of the trap
are remaining. The �gure is based on �gures in [36] and [1].

Figure 3.9: Two pulsed laser beams from the left and from the right excite one after the
other the atoms in the centre to emit spontaneously photons in all directions.
Some of the photons are collected by a high-NA objective from the top. The
�gure is taken from [2].
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4 optical dipole traps

This chapter focusses on the conceptional working principle of optical dipole traps, which
represent a basic toolbox to form nearly arbitrarily shaped trapping potentials. The
chapter is adapted from [27].

4.1 Theoretical concept

In contrast to a magneto-optical trap with radiation pressure forces from resonant laser
beams, optical dipole traps provide much weaker trapping potentials due to an interaction
of far o�-resonant laser light with the dipole moment of the atoms and therefore lead
to much lower temperatures of the trapped atomic systems. As discussed in [10], the
working principle of optical dipole traps can be explained in the context of a simple
classical oscillator model. The external laser �eld drives the oscillation of the atomic
dipole moment. If the laser frequency ωL is smaller than the resonance frequency ω0 of
the atom, the dipole moment oscillates in phase with the external �eld and the interaction
is attractive. But if the laser frequency ωL is larger than the resonance frequency ω0 of the
atom, the dipole moment oscillates out of phase with the external �eld and the interaction
is repulsive ([28]). In the experiment the wavelength of the lasers which are used for optical
dipole traps is with λODT ≈ 1064 nm nearly about twice as large the resonance wavelength
λ0 ≈ 671 nm and therefore strongly red-detuned. The o�-resonance condition to the
laser light guarantees that the dipole force dominates over resonant radiation pressure.
To mention the classical oscillator model in a more formal way the laser light can be
introduced as a classical electric �eld in complex notation ([10]):

E(~x, ωL, t) = ~ε · E0(~x) exp(−iωLt) + ~ε · E?
0(~x) exp(+iωLt) (4.1)

which oscillates with the driving frequency ωL and amplitude E0(~x) in direction of the
polarization vector ~ε. The external electric �eld ~E induces a dipole moment ~d in the atomic
charge distribution which is overall neutral but can have local charges. In a classical
picture, one can imagine that the single valance electron of the 6Li atoms oscillates forced
by the external electric �eld. This leads to an induced dipole moment of the form:

d(~x, ωL, t) = α(ωL)E(~x, ωL, t) (4.2)

Here α corresponds to the complex polarizability of the atoms and quanti�es the interac-
tion strength of the atomic dipole with the electric �eld. By time averaging over the fast
oscillating terms, one can describe the interaction potential of the atomic dipole moment
~d in the external electric �eld ~E by the following expression:

Udip(~x) = −1

2
〈~d ~E〉t = −1

2
Re(α)〈|~ε|2(E2

0e
−2iωLt + |E0|2 + |E0|2 + (E?

0)2e+2iωLt)〉t (4.3)
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The time average is reasonable because the atomic motion is slow compared to the
oscillation frequency of the laser light, such that one can simplify the potential with
I(~x) = 2ε0c|E0(~x)|2 to:

Udip(~x) = −Re(α)|E0(~x)|2 = − 1

2ε0c
Re(α)I(~x) ∼ I(~x) (4.4)

The spatial dependency of this dipole potential is fully given by the intensity distribution
of the external laser light �eld. The actual form of the polarization has to be derived
explicitly, but here only the result should be given on which the following quantitative
results are based.
Under the boundary conditions of large detuning δ = ω0 − ωL and very small saturation
the optical dipole potential can be written as [10]:

Udip = −3πc3

2ω3
0

(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)
I(~x) = −a · I(~x) (4.5)

with the proportionality factor a ≡ 3πc3

2ω3
0

(
Γ

ω0−ωL
+ Γ

ω0+ωL

)
, depending on the speed of light

c and Γ as the natural line width of the resonance transition.

4.2 Trap con�gurations

Based on this concept of optical dipole traps, one can distinguish two types of trap con�g-
urations: For red-detuned traps, the laser frequency is smaller then the atomic resonance
frequency and the atoms are pulled to the intensity maximum. This case of negative
detuning leads to an attractive potential. In contrast to that, for blue-detuned traps, the
laser frequency is larger then the atomic resonance frequency and the atoms are pushed
away from the intensity maxima and pulled to its minimum. So the latter case of positive
detuning creates a repulsive potential which can trap atoms only between potential wells
around the preferred atom position. This behaviour is schematically portrayed in �gure
4.1.

4.3 Usual trap geometries for ultracold atom

experiments

One of the most common trap geometries realized with simple red-detuned and focused
Gaussian laser beams is shown in �gure 4.2. The Gaussian pro�le of the single beams
is portrayed in �gure 4.2 (a). An elongated, like a cigar, shaped trap geometry can be
produced by a single focused Gaussian laser beam as shown in 4.2 (c) and leads to a
quasi-one-dimensional trap con�guration. In this case, the trap shape is given by the
nature of the single Gaussian beam focus.
In contrast, two counter-propagating round Gaussian laser beams with parallel polariz-
ations form a stack of circular light sheets through their interference and in this way a

26



I(x) 

U(x) 

I(x) 

U(x) 

        red-detuned  

(eg.: Gaussian beam) 
               blue-detuned  

(eg.: Laguerre-Gaussian beam)  

x x 

0 

0 

Figure 4.1: Two categories of optical dipole traps: First, red-detuned intensity distribution
and optical dipole potential on the left side which traps atoms in regions of
intensity maxima. Second, blue-detuned intensity distribution and optical
dipole potential on the right side which traps atoms in regions of intensity
minima. The �gure was taken from [27] and inspired by [10].

quasi-two-dimensional trap geometry in each light sheet (�gure 4.2, (b)). Here, the radial
restriction by a Gaussian pro�le is given by the beam focusing while the axial con�nement
part is fully dominated by the interference pattern. The spacing between the light sheets
is d = λ/2.
Finally, for the last case discussed in this context, one can cross two Gaussian beams
under an angle χ = 2θ, as depicted in �gure 4.2 (d). If the polarizations are orthogonal,
one can create for orthogonal and equally round beams a deep spherical trap where the
two foci overlap. On the other hand, if the polarizations are parallel, the interference
pattern determines again the vertical con�nement and the radial restriction is given by
the beam focusing. However now, both con�nement shapes are depending on the crossing
angle and the light sheets are elliptical for circular Gaussian beams. Nevertheless, one
can produce circular light sheets if one chooses the ellipticity of the incoming Gaussian
beams in the right way. The spacing of the light sheets is now larger compared to case
(b) with d = λ

2 sin(θ)
. This last possibility will be exploited in this thesis in order to create
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Figure 4.2: Three possible trap geometries created by red-detuned and focused Gaussian
laser beams. (a) shows the Gaussian pro�le of a single beam. (b) shows
a con�guration of two counter-propagating laser beams creating a standing
wave interference pattern, which can be seen as a stack of light-sheets with
a quasi-two-dimensional geometry. (c) depicts a quasi-one-dimensional trap
con�guration produced by a single focused laser beam. (d) portrays a crossover
con�guration between the two former ones by two beams crossing each other
under an angle in their foci. For parallel polarization, (d) leads again to a
standing wave pattern along the vertical axis, as the vertical components of
the two beam correspond still to two counter-propagating beams. In contrast,
orthogonal polarizations result in an ellipsoidal trap. The sketch is based on
[4] and [10].

a quasi-two-dimensional trap.
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5 A tunable 2D Trap

In this chapter, the theoretical steps for the description of the target trap, a tunable 2D
Trap, are shown. The target trap consists of a 2D Trap formed by two Gaussian laser
beams interfering in their crossing point and leading to a stack of light sheets, together
with an additional single focused beam from the top which overlaps with the light sheet
structure and dominates the radial con�nement. This chapter is based on [27].

5.1 The 2D Trap

5.1.1 Two crossed Gaussian beams

As mentioned in the previews chapter, two focused Gaussian laser beams with parallel
polarizations crossing each other under a half-crossing angle of θ can produce a quasi-
two-dimensional potential through a stack of light sheets as depicted in �gure 4.2 (d).
In order to describe the potential distribution precisely, one has to consider the intensity
distribution of two crossing Gaussian beams. As described in [27] and based on [32], a
single Gaussian beam intensity distribution propagating along the z-axis has the formal
shape of:

I(r, z) =
2P

π ·W 2(z)
· exp

(
− 2r2

W 2(z)

)
with : r =

√
x2 + y2 (5.1)

with P as the beam power. The cross-section of the beam corresponds to a two-dimensional
Gaussian distribution, whereas along the axial direction one can see a Lorentzian max-
imum around the focus at z = 0. As demonstrated in �gure 5.1, the parameter W (z)
relates to the beam width along the propagation direction:

W (z) = W0 ·

√
1 +

(
z

LR

)2

(5.2)

where W0 = W (z = 0) is the minimal beam width and LR =
π·W 2

0

λ
is called the Rayleigh

length. The beam radius W (z) is de�ned as the distance from the central axis at which
the intensity of the Gaussian beam is decreased to 1

e2
of its maximum value in the centre:

I(r = W (z), z) = 1
e2
· Imax(r = 0, z). Besides, the beam width matches twice the usual

Gaussian standard deviation: W (z) = 2σ(z).
As already mentioned above, one needs Gaussian beams with an elliptically shaped cross-
section depending on the half-crossing angle for the creation of circular light sheets in the
interference pattern. Each elliptical-beam axis is parametrized by a corresponding beam
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Figure 5.1: Axial pro�le of a general Gaussian beam, parametrized by the beam width
W (z) and the radius curvatureR(z). On top of that, the focal depth b = 2zR =
2LR and the beam divergence θB can be used for further characterization. The
�gure was taken from [27].

width: Wx and Wy and the full intensity distribution of the elliptical Gaussian beam can
be expressed as ([27]):

Ielliptical(x, y, z) =
2P

π ·Wx(z)Wy(z)
· exp

(
− 2x2

W 2
x (z)

− 2y2

W 2
y (z)

)
(5.3)

Subsequently, two such elliptical Gaussian beams have to cross each other under an angle
of χ = 2 · θ in the zy-plane (�gure 5.2). So for each beam, one starts with a beam
propagating in y-direction:

I(x, y, z) =
2P

π ·Wx(y)Wz(y)
· exp

(
− 2x2

W 2
x (y)

− 2z2

W 2
z (y)

)
(5.4)

Then, one can rotate the beam around the x-axis about θ and −θ, respectively for each
beam. This can be executed by the application of the according rotation matrix:

Rx(θ) =

 1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (5.5)

The coordinate transformation has for the �rst beam the form:
y =⇒ cos(θ)y − sin(θ)z,
z =⇒ sin(θ)y + cos(θ)z.
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and for the second beam:
y =⇒ cos(−θ)y − sin(−θ)z = cos(θ)y + sin(θ)z,
z =⇒ sin(−θ)y + cos(−θ)z = − sin(θ)y + cos(θ)z.
The two individual intensity distributions can be written as ([27]):

I1(x, y, z) =
2P1

π ·Wx(l2)Wz(l2)
· exp

(
− 2x2

W 2
x (l2)

− 2

W 2
z (l2)

· (sin(θ)y + cos(θ)z)2

)
(5.6)

I2(x, y, z) =
2P2

π ·Wx(l1)Wz(l1)
·exp

(
− 2x2

W 2
x (l1)

− 2

W 2
z (l1)

· (− sin(θ)y + cos(θ)z)2

)
(5.7)

where l1 = cos(θ)y − sin(θ)z for the �rst beam and l2 = cos(θ)y + sin(θ)z for the second
beam are the distances to the focal points which lie on the crossing point of both beams.
However, the central characteristic interference can only be added to the description by
introducing the electric �elds connected with the two Gaussian beams:

~E(1,2)(~x, t) = ~ε(1,2) · E0(1,2)(x, y, z) · cos (~k(1,2) · ~x− ω(1,2)t+ φ(1,2)) (5.8)

with the space-dependent amplitude E0(1,2)(x, y, z) re�ecting the Gaussian beam shape
similar to the intensity distribution. The wave-vectors indicating the propagation direc-
tion of both beams are:

~k1 = k · (0, cos(θ),− sin(θ)) and ~k2 = k · (0, cos(θ), sin(θ)) (5.9)

where the wave-number k = 2π
λ

can be expressed by the wavelength λ, which in the
experiment is red-detuned to λ = 1064 nm. For perfect interference one has to choose the
polarization vectors parallel and linearly polarized, pointing both in x-direction:

~ε1 = ~ε2 = (1, 0, 0) (5.10)

The intensity can be calculated from the electric �eld with ([32], p.41):

I(~x) = 2〈 ~E(~x, t)2〉t (5.11)

Here the time average can be done over one period of light frequency, which is justi�ed,
because the light oscillates much faster than the atoms move. To simplify the calculation,
one can use the complex representation of the electric �elds ([32], p.42):

~̃E(1,2)(~x, t) = ~ε(1,2) · E0(1,2)(x, y, z) · exp (i(~k(1,2) · ~x− ωt+ φ(1,2))) (5.12)

with

~E(1,2)(~x, t) = Re( ~̃E(1,2)(~x, t)) (5.13)

This is an advantage because the intensity can just be calculated from ([32], p.42):

I(~x) = | ~̃E(~x, t)|2 (5.14)
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Figure 5.2: Two crossed Gaussian beams with a half-crossing angle θ interfering in the
crossing region like two counter-propagating beams, as depicted on the right,
but with a larger spacing depending on the half-crossing angle. The shape of
the single-beam pro�le can be characterized by two orthogonal beam widths
for the Gaussian beams in z- and x-direction as portrayed on the left. The
intensity pro�le in the intersection region in both horizontal directions cor-
responds to a Gaussian pro�le as shown at the bottom for the y-direction.
The size of the intersection region characterizes the size of the interference
pattern. The horizontal size of the intersection region is in the x-direction
just the beam radius W0x and in y-direction W0z

sin(θ)
. In vertical direction the

intersection region height is about W0z

cos(θ)
.

The total intensity is then:

Itot(x, y, z) = | ~̃E1 + ~̃E2|2 = ( ~̃E∗1 + ~̃E∗2) · ( ~̃E1 + ~̃E2) (5.15)

which leads to:

Itot(x, y, z) = | ~̃E1|2 + ~̃E∗1 · ~̃E2 + ~̃E1 · ~̃E∗2 + | ~̃E2|2 (5.16)

This expression can be simpli�ed further to the compartments of:

| ~̃E1,2|2 = |~ε(1,2)|2 · |E0(1,2)(x, y, z)|2 = 1 · |E0(1,2)(x, y, z)|2 = I1,2(x, y, z) (5.17)

and

~̃E∗1 · ~̃E2 = 1 · E∗0,1(x, y, z) · E0,2(x, y, z) · exp (i(~k2 · ~x+ φ2)− i(~k1 · ~x+ φ1)) (5.18)
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~̃E1 · ~̃E∗2 = 1 · E0,1(x, y, z) · E∗0,2(x, y, z) · exp (i(~k1 · ~x+ φ1)− i(~k2 · ~x+ φ2)) (5.19)

As the amplitudes are real: E∗0,(1,2)(x, y, z) = E0,(1,2)(x, y, z), the compartments of the

total intensity distribution can be rewritten with K ≡ ((~k1 · ~x+ φ1)− (~k2 · ~x+ φ2)) as:

~̃E∗1 · ~̃E2 + ~̃E1 · ~̃E∗2 = E0,1(x, y, z) · E0,2(x, y, z) ·
(

exp(−iK) + exp(+iK)
)

(5.20)

, which simpli�es to a real part:

~̃E∗1 · ~̃E2 + ~̃E1 · ~̃E∗2 = E0,1(x, y, z) · E0,2(x, y, z) · 2 cos(K) (5.21)

By exploiting the relation: E0,(1,2)(x, y, z) =
√
I(1,2)(x, y, z) the total intensity can be

brought to the form of:

Itot(~x) = I1(~x) + I2(~x) + 2 ·
√
I1(~x)

√
I2(~x) · cos((~k1 − ~k2) · ~x+ ∆φ) (5.22)

with the phase di�erence ∆φ = φ1 − φ2. Inserting the wave-vectors, one can �nd:

(~k1 − ~k2) · ~x = k(cos(θ)y + sin(θ)z)− k(cos(θ)y − sin(θ)z) = 2k · sin(θ)z (5.23)

Finally the total intensity distribution has the form of:

Itot(~x) = I1(~x) + I2(~x) + 2 ·
√
I1(~x)

√
I2(~x) · cos

(
4π

λ
· sin(θ)z + ∆φ

)
= I2D (5.24)

with the layer spacing:

d =
λ

2 sin(θ)
(5.25)

5.1.2 Harmonic approximation of the centre potential

Due to the low temperature of the trapped particles, they are localized near the central
minimum of the con�ning potential and it is useful and reasonable to characterize the
centre of the optical dipole trap within a harmonic approximation:

UHO(~x) = U0 +
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) ≈ U2D = −aI2D (5.26)

As shown in a detailed calculation in [27], the trap frequencies can be derived from a
second-order Taylor expansion of the total intensity distribution in each spatial dimension:

I2D(xi) ≈ I0 −
1

2
q · x2

i (5.27)
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with the relation:

UHO = −aI2D ⇐⇒ 1

2
mω2

i x
2
i = a · 1

2
q · x2

i ⇐⇒ ωi =

√
aq

m
(5.28)

leading to the following results:

ωx =

√
32aP1,2

πmW 3
0xW0z

(5.29)

ωy =

√
16aP1,2

πmW0xW0z

[
2 sin2(θ)

W 2
0z

+

(
λ cos(θ)

π

)2

·
(

1

W 4
0x

+
1

W 4
0z

)]
(5.30)

ωz =

√
16aP1,2

πmW0xW0z

[
2 cos2(θ)

W 2
0z

+

(
λ sin(θ)

π

)2

·
(

1

W 4
0x

+
1

W 4
0z

)
+

(
π

d

)2]
(5.31)

U0 = − 8aP1,2

πW0xW0z

(5.32)

An additional central quantity in this context is the harmonic oscillator length:

li =

√
~
mωi

with : i = x, y, z (5.33)

re�ecting the size of a ground-state wave-function in the harmonic oscillator potential. In
z-direction, the harmonic oscillator length should be much smaller than the layer spacing
d of the 2D Trap to prevent any tunnelling between the layers ([27]). In order to be able
to calculate also the trap parameters from measured trap properties, one can invert the
equations as shown in the appendix.

5.1.3 Quasi-two-dimensional

The term quasi-two-dimensional, which has to be ful�lled for the target trap, describes
quantum mechanically that the con�nement in one of the three trapping dimensions dom-
inates strongly over the other two ones. Figure 5.4 tries to illustrate this circumstance.

Any deep minimum can be approximated by a harmonic potential with equally spaced
quantum mechanical energy levels for a single trapped particle. The energy level spacing
depends on the curvature, namely the trapping frequency, of the harmonic potential in
the speci�c direction, such that the energy spectrum in each spatial direction has the form
[33]:

Ex,y,z(nx,y,z) =

(
nx,y,z +

1

2

)
~ωx,y,z with : ni ∈ N (5.34)
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Figure 5.3: Demonstration of the harmonic approximation (in blue) to the attractive po-
tential (black) which is proportional to the Gaussian intensity distribution
(green). Around the centre of the trap, this harmonic approximation can be
executed in all three spatial dimensions.

And this holds for each spatial dimension independently, leading to a total energy of:

E(nx, ny, nz) = Ex(nx) + Ey(ny) + Ey(ny) (5.35)

If for example the restriction in the vertical axis is much stronger than in the two horizontal
axes: ωz >> ωx,y, a cold trapped particle with small excitation energy of the order of ~ωx,y
stays always in the ground state of the vertical harmonic oscillator and only populates
excited levels in the two horizontal dimensions. In this way, a cold particle has e�ectively
a two-dimensional energy spectrum and behaves as if it moves in a two-dimensional po-
tential. An important quantity in this context is the absolute number of trapped particles
for which the trap behaves still quasi-two-dimensional. So the question is, how much
particles can be trapped such that the trap acts still as a quasi-two-dimensional trap.
The estimation of this number can be found for example in [4]. As the equidistant energy
spectrum of the harmonic oscillator is known with the form above, one can calculate the
number of possible states in the harmonic trap similar to the volume:

Ntot =
∏
i

ni = nx · ny · nz with : i = x, y, z (5.36)

Although this number is in principle in�nitely large as ni ∈ N, the real trap corresponds
to a Gaussian potential and it is preferred to occupy only states in the centre of the trap,
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Figure 5.4: Conceptional principle of quasi-two-dimensional traps: The trapping potential
can be approximated near the minimum by a harmonic oscillator potential.
In one dimension, for example the z-direction, the level spacing is much larger
than in the other two dimensions, such that for low energies only the lowest
harmonic oscillator level in z-direction is occupied. The dynamics of the sys-
tem happens for low energies only in excitations in the x- and y-directions.
So the system e�ectively behaves as a two-dimensional system.

where the harmonic oscillator approximation is still valid. So only a �nite number of
particles will be trapped in the potential. Furthermore the target con�guration is the
one where the vertical trap frequency is so large compared to the radial trap frequencies
that it holds nz = 0 for all trapped particle states. This condition limits the number of
particles which can be trapped and is equivalent to:

~ωx
(
nx +

1

2

)
+ ~ωy

(
ny +

1

2

)
+

1

2
~ωz <

3

2
~ωz (5.37)

The quasi-two-dimensional total number of particles is just:

Ntot,2D = nx · ny (5.38)

By considering the equality of the inequality above, one can estimate the maximal number
of atoms which can be trapped to recover the quasi-two-dimensional con�guration. The
equality of the above inequality is approximately reached in the case of:

nx,max =
ωz
2ωx

and ny,max =
ωz
2ωy

(5.39)
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From this fact one can conclude an approximation of the maximal number of trapped
particles which lie still in the quasi-two-dimensional regime:

Nmax,2D = nx,max · ny,max =
ω2
z

4ωxωy
(5.40)

5.1.4 2D Trap parameters and properties

The characteristic parameters for the two-dimensional trap are now the beam power P1,2,
the elliptical minimal beam waists W0x and W0z, the half-crossing angle θ, and the phase
di�erence ∆φ. Besides, the trap properties relevant for the trapped atoms in the centre
of the trap are the three spatial trap frequencies fx,y,z and the connected �atness ratio:
R2D = fz

fr
= fz

fx,y
together with the roundness ratio: Rxy = fx

fy
, and the potential depth U0.

5.1.5 Finding the target trap

Because the wavelength is �xed in the experiment to λ = 1064 nm, the total intensity
of the two crossed beams to reach the quasi-two-dimensional optical dipole potential
depends still on various parameters, even for identical beams, where P1 = P2 = P1,2,
W0x1 = W0x2 = W0x, W0z1 = W0z2 = W0z, and θ1 = θ2 = θ:

Itot(~x) = I2D(x, y, z, P1,2,W0x,W0z, θ,∆φ) (5.41)

Under ideal conditions the relative phase should vanish: ∆φ = φ1−φ2 = 0 and the beam
power P1,2 can be used as a tuning parameter.

Circular light sheet condition

The ellipticity E ≡ W0x

W0z
has to be chosen such that the layers are circular. The exact

circularity condition from the condition: fx = fy is after [27]:

1

E
=
W0z

W0x

=
πW0z

λ cos(θ)

√√√√
1−

√
1−

[
2

(
λ cos(θ) sin(θ)

πW0z

)2

+

(
λ cos(θ)

πW0z

)4]
(5.42)

A simpli�ed version which holds for large enough angles is:

W0x ≈
W0z

sin(θ)
⇔ E ≈ 1

sin(θ)
(5.43)

and follows just from �gure 5.2. Figure 5.5 illustrates the e�ect of elliptical beams. So, the
circular light sheet condition �xes the ellipticity of the single Gaussian beams depending
on the chosen half-crossing angle. In this way the parameter W0x can already be �xed
because one can express it in terms of the two free parameters W0z and θ.
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Figure 5.5: Visual demonstration of the e�ect of elliptical beams for the crossed beam
optical dipole trap. On the left top side, two green beams with circular pro�le
meet each other with an elliptical overlap region portrayed in red, which is
formed like a surf board. On the left bottom side the circular pro�le of the
Gaussian beams is shown. On the right side, two elliptical Gaussian beams
with an ellipticity of E ≈ 7.8 cross each other with a circular overlap region
so the elliptical beams allow the creation of circular shaped interference layers
in the overlap region.

Experimental boundary conditions

The other free parameters W0z and θ have to be �xed by the design criteria under the
experimental boundary conditions. A detailed discussion of the experimental boundary
conditions for these two parameters can be found in [27]. In this context only the most
important steps should be summarized. The basic restriction is the size of the view port
to the experimental chamber depicted in �gure 5.6. To check if the two beams �t through
the view-port window, �rst one has to de�ne how to measure the size, so the radius, of
the beam. After [27] a useful choice is:

Wmainpower = 1.7 ·Wx,z (5.44)
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because this part of the beam radius includes 99.83% of the integrated beam power,
such that only a very small fraction of the beam power reaches the blind in front of the
view-port window. The blind should protect the window from heating damages.

vacuum chamber

D

Q

θmax

view-port

vacuum

chamber

Limits:

y

z 𝜃 = 0°; 𝑊𝑣𝑝, 𝑧
: max

𝜃: max; 𝑊𝑣𝑝, 𝑧
: min

𝜃

1

2

𝑊0𝑧: min

𝑊0𝑧: max

view-port blind

y

z

boundary condition:
0 ≤ θ ≤ θmax

→ W0z,min = W0z,min (θ, θmax)

𝑊𝑚𝑎𝑖𝑛 𝑝𝑜𝑤𝑒𝑟 ≈ 1.7
W

Figure 5.6: Experimental boundary conditions: Top left side shows the vacuum chamber
with the view port restricting the half-crossing angle of the 2D Trap. At
the same time, this restricts the beam width at the viewport to a maximal
value and the minimal beam width to a minimal value depending on the given
half-crossing angle. On the top right, there are two limits depicted: �rst the
half-crossing angle vanishes and the beam width at the window is maximal,
leading to a minimized minimal beam width in the focus of the Gaussian
beam. Second, the half-crossing angle is maximized and the beam width at
the view port minimal, such that the minimal beam width of the single beams
is maximal.

Now one can realize that there are two possible limits (�gure 5.6):
First one can minimize the half-crossing angle to zero and maximize the beam width at
the view port in vertical direction. As the minimal waist W0z of the beam decreases in
this case, this would maximize the vertical trap frequency fz ∼ 1√

W0z
. However, the ratio

R2D ≡ fz
fx,y

decreases linearly for decreasing minimal waist. For the second scenario, the
half-crossing angle can be maximized while the beam width at the blind for the view port is
minimized. This would maximize the minimal beam waist, leading to smaller vertical trap
frequency fz and larger �atness ratio R2D. To investigate the con�guration region between
these two limits, one can calculate the maximal possible beam width at the view-port blind
for any half-crossing angle between zero and the maximal possible angle θmax. From this
curve one can deduce the minimal possible minimal beam waist parameter W0z,min(θ) as
function of half-crossing angle. The precise calculation can be found in [27] and a short
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Choose 𝜽 ≈ 7.3° and 𝑾𝟎𝒛 ≈ 17 µm to reach 𝑹𝟐𝑫 ≈ 70 and 𝒇𝒛 ≈ 30 kHz

region of interest

available
configurations

available
configurations

R2D fz

inaccessable
configurations

Figure 5.7: Flatness ratio R2D and the vertical trap frequency fz in the parameter space
given by the half-crossing angle θ and the minimal beam width in vertical
direction W0z. The red line corresponds to the optimization curve given by
the experimental boundary conditions. Above the red line are the available
con�gurations and below are the inaccessible ones. To reach a quasi-two-
dimensional system, a region of interest around a �atness ratio of about R2D ≈
100 was chosen and �nally the precise trap parameters were selected to be:
θ ≈ 7.3◦ and W0z ≈ 17 µm to reach trap properties with the values: R2D ≈ 70
and fz ≈ 30 kHz.

version is given in the appendix. In �gure 5.6 this optimization curve is plotted as red line
in the full parameter space for the two relevant trap properties: fz and R2D. Above this
optimization curve lie the available con�gurations and below the forbidden con�gurations.
To select a reasonable parameter set for a quasi-two-dimensional trap, one can �x the
region of interest to an area around R2D ≈ 100. Finally the parameter set was chosen to
be: θ ≈ 7.3◦ =⇒ W0z ≥ 16.2 µm =⇒ W0z ≈ 17 µm. The corresponding trap
properties are: fz ≈ 30 kHz and R2D ≈ 70. So, the intensity distribution of the target
trap has now the shape portrayed in �gure 5.8.

5.2 New Microtrap

In order to be able to tune the radial con�nement of the 2D Trap independently from the
vertical con�nement, it is desired to overlap an additional trap. For this purpose, one just
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Figure 5.8: Four two-dimensional views on the three-dimensional intensity distribution
of the 2D Trap formed by two elliptically shaped Gaussian beams crossing
each other under an angle of θ = 7.3◦ and interfering in the crossing region.
The vertical minimal beam width of the single beams is W0z = 17 µm and
the horizontal minimal beam width is W0x ≈ 133 µm. The two-dimensional
cuts are placed through the centre of the intensity distribution: the top left
provides a front view, the top right a side view and the bottom left a top view
on the intensity distribution. The bottom right view allows to register the
interference pattern in detail.

has to choose a Gaussian beam from the top:

INMT (r, z) =
2P3

π ·W 2(z)
· exp

(
− 2r2

W 2(z)

)
with : r =

√
x2 + y2 (5.45)
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with P3 as the beam power and beam waist:

W (z) = W0 ·

√
1 +

(
z

LR

)2

(5.46)

The Rayleigh length is just: LR =
π·W 2

0

λ
and the laser wavelength is �xed to λ = 1064 nm.

So, the intensity distribution for the additional trap is just a function of two experimental
parameters:

INMT = INMT (r, z, P3,W0) (5.47)

Here again, the power can be tuned individually, but the minimal beam width W0 has to
be chosen appropriately.
Although there already exists such a single focused beam trap in the experiment, called a
Microtrap, its minimal waist of W0,MT = 1.0 µm ([20], p.33) is too small because it would
also dominate the vertical con�nement. Therefore an additional parallel new Microtrap
was planned and built during this thesis. By comparing the resulting trap frequencies, a
minimal waist of W0 = W0,NMT ≈ 10 µm was chosen.

𝑘3

𝜀3

𝑊0

x

y

z

Microtrap

P3

Figure 5.9: Sketch of the new Microtrap consisting of a single Gaussian beam from the top
with a chosen minimal beam width of about W0 ≈ 10 µm, such that the ver-
tical trap frequency is dominated by the 2D Trap and the radial con�nement
by the new Microtrap.
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The main trap property of the new Microtrap is its radial trap frequency:

fr =
1

2π

√
8aP3

πmW 4
0

(5.48)

derived from a second-order Taylor expansion of the intensity distribution similar to the
previously described procedure. Compared to this frequency, the vertical trap frequency
is much smaller:

fz =
1

2π

√
4aP3

πmW 2
0L

2
R

=
1

2π

√
4aP3λ2

π2mW 6
0

(5.49)

The central depth of the potential is:

U0 = −2aP3

πW 2
0

(5.50)

In order to avoid any interference between the Microtrap and the 2D Trap, both laser
frequencies are shifted against each other appropriately. Besides, one can invert the
equations above to calculate the trap parameters from the trap properties:

W0 =

(
8aP3

πm(2πfr)2

) 1
4

(5.51)

5.3 Combined tunable 2D Trap

Combining the described target 2D Trap with the chosen new Microtrap leads to a quasi-
two-dimensional trap with tunable trap properties. This means the vertical con�nement
characterized by the trap frequency fz ≈ fz,2D can be separately changed from the radial
restriction given by the trap frequency fr ≈ fr,NMT . This can be achieved by tuning the
left free parameters: the laser powers P1,2 = P1 = P2 and P3.
The reason for this circumstance can be identi�ed by comparing the trap frequencies
for reasonable powers P1,2 = 2 W and P3 = 0.2 W. The most important characteristic
quantities for this choice are summarized in table 5.11. Under this condition, in the
vertical direction the 2D Trap frequency dominates over the new Microtrap frequency as
already can be concluded from �gure 5.10: fz,NMT � fz,2D ∼

√
P1,2. In contrast to that,

in the radial direction the new Microtrap frequency plays the dominant role: fr,2D �
fr,MT ∼

√
P3. This observation from �gure 5.10 can be supported by the comparison

in table 5.11 where one can always see at least a factor of ten between the relevant
frequencies.
In order to give a more detailed perspective on the exact shape of the trap, �gure 5.12
shows the relevant slides through the three-dimensional intensity distribution.
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Figure 5.10: Di�erent views on the combined intensity distribution for the tunable 2D
Trap, consisting of the two elliptical Gaussian beams for the 2D Trap from
the side and the single focused Gaussian beam of the new Microtrap from
the top. On the top left one can see a two-dimensional graph of the tunable
2D trap as a side view through the centre of the distribution. On the top
right a one-dimensional graph through the centre of the distribution along
the vertical direction is depicted, demonstrating that the vertical direction is
dominated by the interference structure of the 2D Trap. The graph on the
bottom shows a one-dimensional cut through the intensity distribution along
the horizontal x-direction. Here one can clearly see that the new Microtrap
dominates in the radial con�nement. The trap parameters were chosen as
follows: P1,2 = 2 W, P3 = 0.2 W, W0z = 17 µm, W0z ≈ 133 µm, θ = 7.3◦,
W0 = 10 µm.
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Tunable 2D Trap 2D Trap New

Microtrap

Combined 

trap: 

Trap 

parameters
𝑷𝒔𝒊𝒏𝒈𝒍𝒆 𝒃𝒆𝒂𝒎 2 W 0.2 W

tune 

𝑷𝟏,𝟐/𝑷𝟑𝝀 1064 nm 1064 nm

𝜽 7.3 ° -

𝑾𝟎𝒛 17 µm -

𝑾𝟎𝒙 133 µm 10 µm

𝑬 ≡ 𝑾𝟎𝒙/𝑾𝟎𝒛 7.8 -

Trap 

properties
𝒅 =

𝝀

𝟐 sin 𝜃
4.19 µm - -

𝒇𝒛 29 kHz 99 Hz 29 kHz

𝒇𝒓 ≈ 𝒇𝒙 ≈ 𝒇𝒚 414 Hz 4.1 kHz 4.2 kHz

𝑹𝟐𝑫 ≡ 𝒇𝒛/𝒇𝒓 71 0.024 7,1

𝑹𝒙𝒚 ≡ 𝒇𝒙/𝒇𝒚 ≈ 1 1 1

𝑼𝟎 = −𝒂 ∙ 𝑰𝟎 -22 µK·kB -12 µK·kB -34 µK·kB

𝑵𝒎𝒂𝒙,𝟐𝑫 =
𝒇𝒛

𝟐

𝟒𝒇𝒙𝒇𝒚
~1200 - ~12

Figure 5.11: Table with the central target trap parameters and properties for the 2D Trap,
the new Microtrap, and the combined trap.
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Figure 5.12: Four two-dimensional views on the three-dimensional intensity distribution
of the tunable 2D Trap formed by two elliptically shaped Gaussian beams
crossing under an angle of θ = 7.3◦ and interfering in their crossing region
together with an additional new Microtrap beam from the top which does not
interfere with the other beams. The vertical minimal beam width for the two
2D trap beams is W0z = 17 µm and the horizontal minimal beam width is
W0x ≈ 133 µm. The minimal beam width of the newMicrotrap beam is about
W0 = 10 µm. The two-dimensional cuts are placed through the centre of the
intensity distribution: the top left cut provides a front view, the top right cut
a side view and the bottom left cut a top view on the intensity distribution.
The bottom right view allows to register the interference pattern in detail.
The beam powers were chosen to be: P1,2 = 2 W and P3 = 0.2 W.
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Part IV

Realization of the tunable 2D Trap
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6 Opto-mechenical design

As mentioned already in [27], but also during this thesis a compact opto-mechanical
system for the creation of the tunable 2D Trap was designed. In this context, the main
elements should be described in detail, but �rst one has the opportunity to gain a rough
overview.

6.1 Setup overview

The opto-mechanical setup depicted in �gure 6.1 which was built up during this thesis
can be separated into three parts. The �rst part consists of the setup which provides
power-controlled and clean polarized infrared laser light for the 2D Trap coupled into
a high-power �bre. In the second part, the infrared laser light is shaped elliptical and
is split in two identical parts such that it has the right properties to create the desired
trap when entering the experimental chamber. At the same time, other laser beams
for the magneto-optical trap and atom absorption imaging are integrated on the same
optical axis. The last part of the setup consists of an imaging setup which should be
able to image the trapped atoms as well as the intensity distribution of the trap itself for
diagnostic purposes.
After the infrared trapping beam is split into two identical parts, the beam path is covered
by a mechanically rigid box in the sense of a container, called a Trapping-Box, in order
to guaranty the phase stability of the created interference structure produced by the two
beams. The Imaging-Box in the third part of the setup is equally covered to provide the
same stability for the image of the 2D Trap. In this way, one should be able to observe the
actual trap stability of the real trap in the image of the trap. The following pictures: 6.2
and 6.3 show the parts of the setup which were designed with the CAD-program CATIA.
For clarity the project was integrated into the enclosing vacuum system. In this way, it
was also possible to check if all parts �t well into the enclosing apparatus.

6.2 Laser setup

The �rst part of the full setup is portrayed in �gure 6.5, and a legend of the optical
components can be found in �gure 6.4. The heart of the laser setup is of course an
infrared laser with a wavelength of λ = 1064 nm providing a laser power of up to P ≤ 50
W. The laser is speci�ed to produce a collimated beam with a minimal width of about
W0 ≈ 750 µm, but unfortunately the output beam reaches its minimal waist even after
about one and a half meter (∼ 1.4 m) and it has a di�erent value. Additionally one has to
remark that the beam pro�le corresponds not to a smooth Gaussian over along the �rst
meter. After that distance the shape gets smoother and seems more reliable. Therefore, a
short telescope is integrated directly after the laser output which is optimized to provide
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Opto-mechanical system:

IR laser-setup

Trap setup

Imaging setup

2D Trap

• IR-laser (Pmax ~ 50 W)
• Dynamic laser power control (AOM)
• Polarization cleaning (PBS)
• Beam pointing stabilization  and Gaussian 

beam mode selection (fiber)

• Power stabilization (PD3)
• Elliptical beam shaping
• Beam splitting and crossing in a closed box to 

stabilize the interference pattern
• Integration of MOT, Imaging and 2D Trap 

beams on one optical axis

• MOT retro-reflection
• Atom absorption imaging
• 2D Trap image for 

diagnostics

Figure 6.1: Overview to the opto-mechanical system, consisting of a laser setup, a trap
setup, and an imaging setup. The laser setup provides a pure polarization-
cleaned beam with a single Gaussian mode selected by a high-power �bre. The
beam power from the laser can be adjusted to up to Pmax ∼ 50 W and can be
dynamically controlled with an acousto-optical modulator (AOM). One has to
remark that the high-power �bre is only speci�ed for a beam power of P = 8
W, but it was observed to be possible to use even higher beam power for a
short time. Here the time scale of milliseconds should be realistic to recover a
high enough coupling e�ciency and prevent strong heating e�ects. The trap
setup produces two identical and elliptical shaped beams and focusses them
under a half-crossing angle of about θ ≈ 7.3◦ to the centre of the experimental
chamber. Besides an atom absorption imaging-beam and a beam for the
magneto-optical trap is integrated on the same optical axis as the 2D Trap
beams. Photodiodes are used for power stabilization and control. Finally the
imaging setup re�ects the MOT-beam back and creates an image of the atoms
and the 2D Trap which can be detected by a camera.

a collimated beam with the preferred beam size of about 1320 µm in diameter at about
one meter distance from the laser to couple into a �bre with a coupling lens of f = 8
mm. In this way, the coupling e�ciency into the high-power �bre at the end of the
optical path could be optimized to values of up to about 90%. The short telescope is
positioned about 24 cm after the laser output and consists of two spherical lenses with
a distance of about 20.6 mm. The �rst focal length is f1 = 75 mm, and the second
one is f2 = −50 mm. Just after the telescope a high-power polarizing beam splitter is
used to split the laser beam into two polarized beams. The λ/2-wave-plate in front of
the polarizing beam splitter cube can be used to distribute the beam power over the two
arms. The arm with the vertically polarized light is used for the 2D Trap, whereas the arm
with the horizontally polarized light can be used for future projects. So, the vertically
polarized light enters an acousto-optical modulator which can be used to control the
absolute amount of laser power provided for the 2D Trap beam. By tuning the rf-power,
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side view:

top view:

3d front view:

Figure 6.2: Picture from the CAD-model designed in CATIA: Integration of the Trapping-
Box and the Imaging-Box into the vacuum system. The path of the 2D Trap
beams is depicted as green line. The path of the MOT-beam is drawn as red
line and overlaps most of the time with the path of the imaging-beam shown
as yellow line.

the amplitude of the created sound wave in the AOM crystal is changed and therefore
the power fraction which is de�ected by the sound wave changes. For this purpose only
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Figure 6.3: Picture from the CAD-model designed in CATIA: the Trapping-Box with the
telescope plate together with the Imaging-Box. The path of the 2D Trap
beams is depicted as green line. The path of the MOT-beam is drawn as red
line and overlaps most of the time with the path of the imaging-beam shown
as yellow line.

the output of the �rst di�raction order is power-optimized by the alignment of the AOM.
However, it was realized that the polarization after the AOM is not very clean. For this
reason a λ/2-wave-plate is used to rotate the main polarization to a horizontal one and
a second high-power polarizing beam splitter cleans the polarization to pure horizontally
linear-polarized output light which can be coupled into a high-power �bre at Port 1 with
a lens of focal length f = 8 mm. In this way a single Gaussian mode can be selected
from the input laser beam which guarantees a pure single mode output beam from the
�bre. A beam dump is used to select only the �rst di�raction order from the AOM. One
has to remark that the λ/2-wave-plate WP3 is used to align the linear input polarization
accordingly to the internal axis of the high-power �bre as this was not �xed during the
fabrication process. On top of that, the �bre is speci�ed for a beam power of up to P = 8
W. It was observed that one can couple light at even much more power into the �bre,
meaning at least twice as much, but the coupling e�ciency decreases strongly during this
process on the second time scale, probably because of heating e�ects. So one can conclude,
that it should be possible to couple more than 8 W of power into the high-power �bre
for a shorter time in the range of milliseconds. In parallel, a small fraction of the beam
transmits through mirror M4 and is guided onto a photodiode to measure the laser power
in front of the �bre.
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M: mirror

(N)PBS: (non-) polarizing 
              beamsplitter

BS: beam sampler

DM: dichroic mirror

WP: λ/2- wave plate

WP: λ/4- wave plate

L: cylindrical lens

L: spherical lens

FC: fiber coupler

C: camera

PD: photo diode

AOM: acousto-optical modulator

iris

AF: absorptive neutral density filter

beam dump

vacuum chamber (octagon)

glass plate

Figure 6.4: Legend of optical elements used in the setup sketches.

6.3 Trapping setup

In �gure 6.6 the second part of the setup is depicted. The infrared laser light from the laser
setup is coupled out of the �bre with a lens of f = 6.24 mm focal length and collimated
to a beam diameter of about 2W0 ≈ 1040 µm. The �bre out-coupler is mounted on a
z-axis-adjustable mount (Thorlabs: SM1Z) which itself is �xed on a two-angle-adjustable
tube mount (Thorlabs: KM100T) to get three degrees of freedom, if necessary. Again
a λ/2-wave-plate and a high-power polarizing cube are used to clean the polarization to
purely horizontally linear-polarized light and the fraction of the beam which transmits
through mirror M8 is collected on a second photodiode measuring the laser power out of
the �bre. In this way, the coupling e�ciency of the �bre can be measured simultaneously
during the experiment to be able to turn the laser power o� if the coupling e�ciency
becomes too small. This procedure helps to prevent damages of the high-power �bre. On
top of that, a beam sampler BS1 is used to distribute a small part of the beam power
to another parallel path. At the end of this parallel path follows a third, logarithmic
photodiode which is used to stabilize the laser power during the experiment. About 40
cm from the �bre out-coupler away the mechanically combined Trapping-Box setup starts
with the �rst cylindrical lens Lz which forms with Lxz and Lx a coupled telescope to
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Figure 6.5: Laser setup: The beam from the laser is collimated by a telescope formed by
L1 and L2 to optimize the coupling e�ciency of the �bre coupler FC1. PBS1

distributes polarized light over two arms ending with FC1 and FC2. The
relative amount of power in the two arms can be adjusted by the orientation
ofWP1. The AOM is used to control the power of the beam coupled into FC1

dynamically in time. Therefore the power output of the �rst di�raction order
is maximized. PBS2 cleans the polarization of the output beam from the
AOM and WP2 is used to maximize the clean polarization output. Finally,
WP3 is used to adjust the polarization axis such that it �ts to the polarization-
maintaining axis of the high-power �bre connected to FC1. A small fraction
of the light transmitting through M5 is collected on a photodiode to register
the amount of power which goes into the �bre.

create a large elliptical beam on the �nal focus lens LF1. Inside the Trapping-Box a
special high-power non-polarizing beam-splitter cube splits the laser beam into two equal
parts which are guided in parallel onto a two-inch Gradium lens LF1, after transmitting
through a dichroic mirror. The �nal lens focusses the two identical beams, which are
about 32 mm apart from each other, under a half-crossing angle of θ ≈ 7.3◦ to the centre
of the experimental chamber.
The dichroic mirror is used to integrate two additional beams with the resonance wavelength
of λ = 671 nm onto the same optical axis as the 2D Trap beams: the atom absorption
imaging-beam and one beam for the magneto-optical trap. Both beams are coupled out
of a �bre. If one assumes a mode �eld diameter in the �bres of MFD = 2WMF = 4.6 µm
at a wavelength of λ = 671 nm, the imaging-beam is collimated with a lens of focal length
f = 11 mm to a beam diameter of about 2W0 = 2.0 mm and the MOT-beam is collim-
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ated with a lens of focal length f = 50 mm to a beam diameter of about 2W0 = 9.3 mm.
This corresponds roughly to the observed beam diameters. Because the imaging-beam
has horizontal polarization in the lab frame and the MOT-beam vertical polarization, it
is possible to combine both beams by a thin-�lm polarizing cube beam splitter with very
clean polarization output to the same optical path. The lens L4 with a focal length of
f4 = 125 mm afterwards in the optical path forms together with the �nal focus lens LF1

whose focal length is F = 120 mm nearly a 1:1 telescope. In this way it is guaranteed
that the output beam to the experimental chamber is again collimated, which is import-
ant especially for the MOT-beam. Behind L4 both beams are re�ected at the dichroic
mirror and guided on the same optical axis as the 2D Trap beams. In contrast to the 2D
Trap beams, the imaging-beam and the MOT-beam travel through a small λ/4-wave-plate
with a diameter of 1/2 inch, such that the 2D Trap beams can bypass unchanged. The
wave-plate changes the polarization of the imaging-beam and the MOT-beam from linear
to circular, which is necessary for the MOT-beam.
Apart from the described beam paths there are paths which are caused by imperfect
properties of the used optical elements. Therefore, the other beam paths are mainly
blocked by beam dumps if it is possible. Table 6.1 shows the relevant properties for the
Trapping-Box in this context:

beam re�ection transmission
@ 1064 nm (p-pol): 2D Trap beams 0.52% 99.48%
@ 671 nm (p-pol): imaging-beam 99.23% 0.77%
@ 671 nm (s-pol): MOT-beam 99.67% 0.38%

Table 6.1: Relevant re�ection and transmission properties of the �rst dichroic mirror:
DM1.

6.3.1 Elliptical beam shaping

Apart from the module splitting the infrared 2D Trap beam into two identical ones and
guiding them under a half-crossing angle θ to the centre of the experimental chamber, the
trapping setup consists mainly of a coupled telescope which creates the right ellipticity to
create circular light sheets in the interference pattern. In order to reach pure circularity
the ellipticity of the beams has to be adjusted precisely. For the elliptical beam shaping
two coupled cylindrical telescopes are used. In this way one can supersede one lens in
comparison to two decoupled cylindrical telescopes because the spherical lens Lxz serves
for both telescopes. As depicted in �gure 6.7 for case 1, the two lenses Lz and Lxz
expand the vertical axis of the beam pro�le to a nearly collimated beam, whereas Lxz
and Lx compress the beam width in horizontal axis. The �nal lens LF1 focusses the large
beam to the crossing point while inverting the beam width ratio to the desired widths of
W0z ≈ 17.1 µm and W0x ≈ 133.5 µm.
The demonstrated beam pro�le in �gure 6.7 is calculated with an on-axis Gaussian beam
matrix calculation, which is conceptionally already described in [27]. The distances
between the lenses can be adjusted such that the foci in both elliptical beam axes meet
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Figure 6.6: Trap setup: In the beam path of the 2D Trap (green), PBS3 cleans the
polarization of the light out of the �bre connected to FC3, whereas WP4

maximizes the horizontal polarization output for the 2D Trap. Subsequently,
a small fraction of the light is collected on two photodiodes. PD1 should
measure the beam power out of the �bre to control the coupling e�ciency
into the �bre, and PD3 is used for the power stabilization. Afterwards, the
lens system consisting of Lz,Lxz and Lx shapes the beam elliptical. The 2D
Trap beam is split into two equal parts by NPBS1 and the two parallel beams
behindM14,15 are focused by LF1 such that they are crossing each other in the
centre of the experimental chamber. In the beam path of the MOT-beam and
the imaging-beam, FC4,5 creates both collimated output beams, and PBS4

connects both beam paths to one. L4 forms with LF1 nearly a one-to-one
telescope, such that the output beams after LF1 are again collimated beams,
and the dichroic mirror re�ects both beams on the same optical axis as the 2D
Trap beams are on. The polarization of the MOT-beam and the imaging-beam
is transformed to circular polarization by WP5.

each other at about 126 mm away from the �nal focus lens LF1, as portrayed in �gure 6.7
for case 2. Here the single minimal beam widths in the two elliptical beam axes are com-
parable to case 1 with: W0z ≈ 16.8 µm and W0x ≈ 131.5 µm. However for this case, the
geometrical crossing point of the two 2D trap beams after about 120 mm does not overlap
any more with the two single-beam foci. In this con�guration, one has to adjust the
incoming parallel beams to LF1 such that the parallelism of the beams and orthogonality
to LF1 are broken to overlap the single-beam foci with the crossing point. Unfortunately,
this procedure can cause spherical aberrations, and the beam quality su�ers.

Therefore, a better choice is the solution in �gure 6.7 (case 1), where the two foci of the
elliptical beam axis do not exactly match. However, the marks on the telescope board
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are made for the non-collimated version. The focus distance in z-direction approaches
nearly the geometric limit of the focal length of LF1, whereas the focus in x-direction is
more far apart. This fact does not lead to a problem because the beam in x-direction
is much broader than the beam in z-direction and changes its size much slower along
its propagation direction. This can be seen from the Rayleigh lengths: LRz ≈ 850 µm
and LRx ≈ 50 mm. The Rayleigh length corresponds to the distance at which the beam
width has increased to

√
2W0. From this perspective, only the position of the z-axis focus

matters, whereas the position di�erence of the x-axis focus to the focal length of LF1 is
still only a small fraction of the Rayleigh length.

6.3.2 Trapping-Box

As already described before, the individually designed mounting construction for the
optical components in the second setup part is used to prevent any disturbance of the
interference pattern, like mechanical vibrations, moving air, as well as heating e�ects. All
parts were designed with a CAD-software called CATIA. The project, visible in �gure
6.8, consists of a telescope plate on which the �rst two lenses of the coupled telescope
Lz and Lxz are mounted and a box, or container, for the part of the optical path where
the infrared beam is already split up into two similar parts. Both elements are directly
connected with each other. Apart from the mechanical stability, this allows also the
motion of the main part of the setup as a whole.
Starting with the beam path of the infrared beam depicted in green, the �rst lens Lz is
mounted in a cage system from Thorlabs. In this way, one can easily change the axial
position of the lens along the optical path. On top of that, the lens is glued on a rotatable
cage plate, such that the precise orientation of the elliptical beam axis can be adjusted
by rotating the cylindrical lens around the optical axis. The height of the lens has to
be adjusted once in the beginning with cylindrical plates because they are �xed from the
bottom. After two mirrors mounted on adjustable and stable kinematic mirror mounts
(POLARIS-K1S4), the lens Lxz follows in an adjustable lens tube. Also in this case, the
position of the lens along the optical axis can be changed by rotating the spherical lens
tube, and the height above the optical table has to be �xed once in the beginning by
choosing cylindrical plates of an appropriate thickness. All other optical elements for the
2D Trap beam are mounted on a vertical board inside the Trapping-Box. This board can
be moved in vertical direction by unlocking the �ve screws at the backside of the box
and turning the micrometer screw at the top of the box. One rotation corresponds to
250 µm. The lens Lx is �xed on a very small translation stage (Thorlabs: MS1/M) with
a total range of 6.4 mm. Nevertheless, one can also shift this lens position continuously
along the optical axis. A mirror glued in a �xed mirror mount (Polaris-B1G) re�ects the
beam upwards through a non-polarizing beam-splitter cube, which was glued directly on a
tower-like extension of the vertical board in the box. The two parts of the beam after the
beam splitter are re�ected at two small half-inch sized mirrors �xed in piezo mirror mounts
(Newport: AG-M050N with controller: AG-UC8) which can be adjusted automatically by
a computer program. This allows a very precise alignment of the two mirrors to guarantee
two parallel output beams hitting the �nal focus lens LF1 orthonormally and to allow the
�nal alignment of the beams on the atom cloud. Directly after the two piezo mirrors, it
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is possible to mount an alignment plate with two thin holes with a diameter of 1 mm.
This helps to align the beams appropriately but should only be �xed temporally for the
alignment procedure. In the beam path of the top beam, a thin glass plate is inserted
to be able to adjust the relative phase between the beams. Afterwards, the dichroic
mirror follow under an angle of 45◦ through which the infrared light just transmits. Still
connected to the vertical board is the mount for the �nal focusing lens LF1. This mount
also enables the motion of the lens along the optical axis to adjust the actual position of
the crossing point and the single-beam foci.
In parallel, one can consider the beam path for the resonant light shown in red. Here,
the starting point forms the lens L4, mounted in an adjustable lens tube to be able to
collimate the beam after LF1 separately from the infrared beam path. As can be seen
in �gure 6.8, one can connect the optical elements in the previous optical path of the
resonant light with a cage-system from Thorlabs to the cage plate in which the lens tube
of L4 is mounted. The cage plate is �xed at the entrance plate outside of the Trapping-
Box. The mirrors M16,17 are mounted in right-angle cage mirror mounts. In this way,
even a larger part of the trapping setup can be moved as a whole. Behind L4 follow just
a �xed mirror and the �xed dichroic mirror. Finally, the λ/4-wave-plate is inserted in a
rotation mount before the focusing lens LF1.

6.4 Imaging setup

In the last part of the full setup one has to follow the beam paths starting from the
focusing lens LF2 directly before the experimental chamber. As portrayed in �gure 6.9,
the two diverging 2D Trap beams in green are collimated to two parallel beams by LF2,
which has the same focal length as LF1. Subsequently, they pass a 2 inch sized λ/4-
wave-plate unchanged, which causes an axis dependent shift of λ for the infrared beams.
Finally, the main power of the 2D Trap beams is re�ected at the dichroic mirror DM2 to a
beam dump. However, a small part of about 1.83% transmits through the dichroic mirror
and also through the polarizing beam splitter PBS5, because it is horizontally polarized.
Afterwards two lenses L6 and L7 with focal lengths f6 = 150 mm and f7 = −40 mm act
as a single lens with an e�ective focal length depending on their relative distance. This
connection is described in the subsection below. In this way the lens system forms an
imaging system, which creates an image of the trap behind L7, where a camera can detect
it.
Besides, the collimated imaging-beam and the MOT-beam are focused by LF2 and the
λ/4-wave-plate acts for laser light with a wavelength of λ = 671 mm really as λ/4-wave-
plate and changes the circular polarized light into linearly polarized light. The horizontally
polarized imaging-beam transmits through the dichroic mirror as well as the polarizing
beam splitter cube and the imaging lenses behind create a magni�ed absorption image of
the atoms. The image of the atoms can be detected by moving the camera C2 along the
optical axis into the image plane. In contrast to that, the MOT-beam mainly transmits
through the dichroic mirror and is re�ected at the polarizing beam splitter into a vertical
tower. Here a lens L5 with focal length f5 = 100 mm collimates the MOT-beam again
and the beam is retro re�ected to the experimental chamber following its path backwards.
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Apart from the described beam paths, there are paths which are caused by imperfect
properties of the used optical elements. Therefore the other beam paths are mainly
blocked by beam dumps if it is possible. Table 6.2 and 6.3 show the relevant properties
for the Imaging-Box in this context: The main imperfection is caused by the re�ection

beam re�ection transmission
@ 1064 nm (p-pol): 2D Trap beams 98.17% 1.83%
@ 671 nm (p-pol): imaging-beam 1.01% 98.99%
@ 671 nm (s-pol): MOT-beam 4.33% 95.67%

Table 6.2: Relevant re�ection and transmission properties of the second dichroic mirror:
DM2.

beam re�ection transmission
@ 1064 nm (p-pol): 2D Trap beams ≈ 0.3% ≈ 99.7%
@ 671 nm (p-pol): imaging-beam 0.7% ≈ 99.3%
@ 671 nm (s-pol): MOT-beam ≈ 99.3% 0.7%

Table 6.3: Relevant re�ection and transmission properties of the �fth polarizing beam
splitter: PBS5.

of the MOT-beam at the dichroic mirror. Besides the internal re�ections of the infrared
beams in the dichroic mirror lead to higher order re�ections in the trap image direction.
As they have a large enough relative distance of about 4 mm, one can block them out
temporally with a beam dump between PBS5 and L6, while observing the trap image
and not the atoms.
One has to remark, that the reason to use two inch large optics in the main part of the
imaging setup is caused by the two parallel 2D Trap beams with a distance of about 32
mm away from each other. In addition to that the atom absorption imaging demands to
collect as much as possible light from the experimental chamber.

6.4.1 Imaging system

From fundamental geometrical optics follows ([11]):

1

feff
=

1

f1

+
1

f2

+
d12

f1f2

(6.1)

, where d12 is the distance between the two lenses. For example for d12 = 122 mm and
f1 = f6 as well as f2 = f7 the relation leads to feff = 500 mm and a magni�cation of
the lens system with LF2 of M =

feff
F

= 4.17. Figure 6.10 shows the dependence of the
e�ective focal length from the distance between the lenses: The desired magni�cation was
chosen such, that one can resolve the interference pattern of the 2D Trap in the image
plane with camera C2. The actual camera was exchanged during this thesis. Finally it
was inserted the camera: BFLY-PGE-23S6M-C with a pixel size of 5.86 × 5.86 µm. As
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the layer distance of the interference pattern is: d = λ
2 sin(θ≈7.3◦)

≈ 4.19 µm, the imaging
system is desired to have a magni�cation of 5 to 10. As demonstrated in �gure 6.10, this
magni�cation can be reached in a very small window from d12 ≈ 115 mm with feff ≈ 1200
mm to d12 ≈ 120 mm with feff ≈ 600 mm. Actually the camera was selected for the
purpose to detect at the same time not only the whole trap distribution, but also the atom
cloud. So the magni�cation has to be chosen such that both images �t on the CMOS
sensor of the camera with a size of: 1920× 1200 px = 11251.2× 7032 µm. The maximal
magni�cation to detect the whole atom cloud with the old camera, Stingray F-033, is
Mmax,old ≈ 4. The sensor size of the old camera is: 656(H) × 492(V) px together with
a pixel size of: 9.9 µm. The maximal magni�cation for the new one is therefore in the
horizontal axis:

Mmax,new,h =
new sensor size

old sensor size
Mmax,old =

1920 · 5.86

656 · 9.9
4 ≈ 6.93 (6.2)

and in the vertical axis:

Mmax,new,v =
new sensor size

old sensor size
Mmax,old =

1200 · 5.86

492 · 9.9
4 ≈ 5.77 (6.3)

So the vertical maximum of the magni�cation is the limiting one. If one wants to detect
the whole atom cloud with the camera, a magni�cation of 5.8 seems to be reasonable.
In order to avoid aberrations for the two lenses L6 and L7 with focal lengths f6 = 150
mm and f7 = −40 mm one has chosen high-quality achromatic doublets. Apart from
the tunable magni�cation, the main reason for the choice of this lens system is the much
shorter optical path as demonstrated by the comparison of the two described options in
�gure 6.11 from a ray trace calculation.
In the �rst con�guration of �gure 6.11, a single lens L6+7 with focal length of f6+7 = 700
mm is used to create the image with a magni�cation of M ≈ 5.83. The total optical
path length from the centre of the experimental chamber to the trap image is in this
case dtot,1 = 1440 mm. In comparison, the target imaging system as described above and
visible in the second con�guration of �gure 6.11 leads for d12 ≈ 118.57 mm and feff ≈ 700
mm to a total optical path length of only dtot,2 ≈ 655 mm. One possible choice for the
distances between the lenses can be seen in �gure 6.12.

6.4.2 Imaging-Box

As the imaging setup has to be able to monitor the stability of the interference pattern
of the 2D Trap, also the imaging setup has to be designed with a mechanically stable
construction together with a su�cient covering of the optical paths to avoid air motions.
Similar to the Trapping-Box, for the Imaging-Box which is shown in �gure 6.13 the main
optical components between LF2 and PBS4 are �xed on a vertical board whose height can
be adjusted with a micrometer-screw at the top of the box. The �rst lens LF2 seen from
the experimental chamber can be shifted along the optical axis separately in a lens tube
to be able to collimate the two 2D Trap beams. The λ/4-wave-plate for 671 nm laser light
is mounted in a rotatable mount such that its orientation can be appropriately adjusted.
The dichroic mirror is �xed under 45◦ in a mirror mount. Afterwards, the polarizing
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beam-splitter cube is �xed by a single screw from the top. A plastic plate between the
screw tip and the cube spreads the pressure of the screw over the cube head surface.
Nevertheless, the screw should not be tightened too strongly. Along the MOT-beam path
follows a �xed mirror which re�ects the beam to lens L5 in an adjustable lens tube used to
collimate the MOT-beam. Finally, the mirror M20 is mounted in an adjustable kinematic
mirror mount to guide the MOT-beam directly on its path backwards. The two lenses
L6 and L7 are mounted in a closed lens tube system together with mirror M21 in a right-
angle cage mirror mount. This should guarantee a stable interference pattern in the image
plane. Nevertheless, the positions of both lenses can be adjusted separately to optimize
the beam along its optical path.

60



L
z

L
xz

L
x

L
F

L
FC

DM view-port
window

NPBS
f
z
 = -75 mm

f
xz

 = 300 mm

f
x
 = -250 mm

f
FC

 = 6.24mm F = 120 mm

L
z

L
xz

L
x

f
z
 = -75 mm f

xz
 = 300 mm f

x
 = -250 mm

L
FC

f
FC

 = 6.24mm

L
F

F = 120 mm

z-telescope

x-telescope

main parts:

d
in
 

= 365 mm
d

z
 

= 222 mm
d

x
 

= 201 mm
d

F
 

= 216 mm
d

Fz
 = 121 mm

d
Fx

 = 127 mm

1

d
in
 

= 400 mm
d

z
 

= 190 mm
d

x
 

= 198 mm
d

F
 

= 216 mm
d

Fz
 = 126 mm

d
Fx

 = 126 mm

2

2D Trap

Figure 6.7: Optical path for the creation of elliptically shaped 2D Trap beams with a
nearly collimated beam in the z-axis before LF1 for case 1 and a non-collimated
beam in z-axis before LF1 for case 2. At the top, the sequence of considered
optical elements is shown. In the centre, the main optical components for
the beam shaping are depicted together with their relative distances. At the
bottom, the beam width of the two elliptical beam axes are shown, calculated
from an on-axis Gaussian beam ABCD-matrix propagation.
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Figure 6.8: Pictures from the CAD-model designed in CATIA: Trapping-Box together
with the telescope plate. The path of the 2D Trap beams is depicted as green
line. The path of the MOT-beam is drawn as red line and overlaps most of
the time with the path of the imaging-beam shown as yellow line.
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Figure 6.9: Imaging setup: Considering the 2D Trap beam path, the two 2D Trap beams
depicted in green are collimated by LF2 to two parallel beams. Most of the
beam power is re�ected at DM2 to a beam dump, and only a small fraction
transmits. The horizontally polarized 2D Trap beams pass PBS5 and are
focused by L6,7 on camera C2 to form there an enlarged image of the 2D Trap
intensity distribution. The collimated MOT-beam is focused by LF2, and
WP6 changes its polarization from circular to vertically linear polarization.
Subsequently, the MOT-beam is re�ected by PBS5 to a side path. Here,
the MOT-beam is again collimated by L5 and retro-re�ected by mirror M20.
The imaging-beam is also focused by LF2 and passes straight the polarizing
beam-splitter cube PBS5 because of its horizontally linear polarization after
WP6. The lens system L6,7 diverges the imaging-beam to create an enlarged
absorption image of the atoms on camera C2.
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Figure 6.10: E�ective focal length feff as function of distance d12 between the two com-
bined lenses which form one e�ective lens.

Figure 6.11: Ray trace of the two 2D Trap beams along the imaging system. The solid
line shows the �rst con�guration in which the imaging system is formed by
LF2 and one single lens L6+7 with focal length f6+7 = 700 mm. The total
optical path from the real trap to the trap image is for the �rst con�guration:
dtot,1 = 1440 mm. The dashed line shows the second con�guration in which
the imaging system is formed by LF2 and the two lenses L6,7 with an e�ective
focal length f(6,7) ≈ 700 mm. Here, the total optical path from the real trap
to the trap image is: dtot,2 ≈ 655 mm.
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Figure 6.12: Sketch of the imaging system consisting of LF2, L6, and L7 for the 2D Trap
beam path which is depicted as green lines. Below the expected relative
distances from the ray trace calculation are added.
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Figure 6.13: Pictures from the CAD-model designed in CATIA: three-dimensional front
view on the Imaging-Box. The path of the 2D Trap beams is depicted as
green line. The path of the MOT-beam is drawn as red line and overlaps
most of the time with the path of the imaging-beam shown as yellow line.
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7 Installation and alignment

This chapter considers the main steps to install and align the full setup described in the
last chapter until it is ready to be used.

7.1 Pre-alignment setup

In order to be able to check the trap parameters directly in the trap plane where later
the vacuum chamber was to be positioned, the whole setup was built up on a separate
optical table. After this pre-alignment step the rough position of all lenses: Lz,Lxz,Lx,
and LF could be �xed as they are all connected to the Trapping-Box, which later can
be transported as a whole. In this step the uncollimated version was chosen where the
distance of LF to the single-beam foci should be about 126 mm. As the single-beam foci
and the crossing point later have to be aligned on the atoms, the precise position especially
of LF could not be �xed. Besides, the height of the Trapping-Box and the height of the
Imaging-Box were adjusted such that the central optical axis was about 10.0 cm above the
optical table, which corresponds to the height of the centre of the experimental chamber
and therefore to the expected height of the atoms. An important remark concerning
the height adjustment: One has to unlock all �ve screw nuts for both boxes individually
before turning the micrometer screw at the top of each box. After changing the height,
the vertical boards have to be �xed by the �ve screw nuts again. To measure the height,
it is useful to focus on the edge of the cage-mount (Thorlabs: LCP08/M) in which the
lens tube for the lens LF1 and LF2 is �xed. Here one has to take care because the edges
are changed by the workshop. The distance from the top edge to the centre of the mount
is about: 30.0 mm.
One advantage of the pre-alignment con�guration is that the parallelism of the 2D Trap
beams can be adjusted while removing LF1 and observing the constant distance between
the beams of about 31.88 ≈ 32 mm in the far �eld about 1 m away. In this way, also the
mirrors M11,12,14,15 were roughly pre-aligned.
In addition, FC4,5,PBS4 and M16,17 are mounted on a �xed cage-system which could be
connected with the Trapping-Box via the lens tube mount for L4. All other elements were
built up but could not be transported as a whole to the �nal experimental setup.
The trap intensity distribution could directly be observed with a small pixel-size Rasp-
berry Pi camera (pixel size: 1.12 µm) which can be seen in �gure 7.1 compared to the
theoretical prediction in �gure 7.2 which matches qualitatively. However, the precise trap
parameters were only roughly adjusted with: W0z ≈ 22 µm and W0x ≈ 151 µm leading
to an ellipticity of: E ≈ 6.9. The beam widths can be extracted from �ts to the one-
dimensional intensity distributions which follow from a sum along each individual axis of
the image. Therefore, the image is rotated before the summation of about −0.6◦, such
that the interference pattern is clearly visible along the vertical axis of the image. One
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has to remark that, for the interpretation of the Raspberry Pi camera images, one has
to convert the Bayer RGGB-pixel-pattern into the usual RGB-pixel-pattern before �tting
the intensity distributions along each axis. Each RGB-element can be summarized to one
intensity value.

Figure 7.1: Measured intensity distribution of the 2D Trap in xz-plane in the pre-
alignment setup with W0z ≈ 22 µm and W0x ≈ 151 µm.

Figure 7.2: Theoretical prediction of the intensity distribution of the 2D Trap in xz-plane
for W0z = 17 µm, W0z ≈ 133 µm and θ = 7.3◦.

Furthermore, the MOT-beam can be collimated with a shearing plate at the �bre-coupler
output and the Trapping-Box output. The polarization of the MOT-beam can be adjusted
by the orientation of WP5. As reference, one can use the original orientation of the
polarization of the MOT-beam from the old �bre out-coupler in the experiment. One
can connect a polarizing foil on the back side of a 1/2-inch-sized rotation mount in which
a λ/4-wave-plate is �xed. The relative orientation between the two components has to
be �xed such that the output power of the MOT-beam behind is minimal for the right
polarization. With this tool, one can minimize the output power of the MOT-beam from
the Trapping-Box visible at its output behind LF1 by rotating WP5 appropriately. In the
Imaging-Box WP6 has to be rotated such that the MOT-beam is re�ected at PBS5 to
the side path.
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7.2 Laser setup

As the structure of the laser setup has already been described, the following description
should focus on the detailed alignment steps and successes. The main duty of the laser
setup is to provide a clean linearly polarized infrared laser beam with a single Gaussian
mode selected by a high-power �bre, together with a large laser power range. This is a
quite di�cult task because the alignment has to be done such that it is stable enough
over the whole, or at least a large, power range. Therefore, in a �rst step, the laser
was characterized over nearly the whole power range with a beam pro�ler. During this
measurement, the FC1 was not inserted into the setup to be able to observe the laser
beam in the far �eld up to 2.5 m away from the laser output. Also, the AOM and
polarization cleaning optics were still not set up. Besides, it was necessary to insert two
additional mirrors betweenM1 and L1. The �rst mirror re�ects most of the laser power to
a beam dump and the second one corrects the horizontal shift of the �rst one to produce an
unchanged beam with a much lower power, as sketched in �gure 7.3. The characterization
of the output beam was executed without the telescope including the lenses L1,2 and is
shown in �gure 7.4.
So, one can conclude that the infrared laser (ALS) is not collimated by itself as its focus
is not directly at its output but about 1.4 m away with a relatively small minimal beam
width of about 400 µm. Apart from that, one can observe that the beam pro�le shape
corresponds not to a pure Gaussian shape over about 1.3 metres starting from the laser
output. Afterwards, the beam pro�le shape gets better with increasing distance and the
shape gets also a little bit better with increasing power. In this context, one has to remark
that the input cable to the ALS-laser has to be less curved to minimize the e�ect of the
non-Gaussian shape of the output beam.
As the beam has to be collimated for the AOM and also for the coupling into the high-
power �bre, a telescope was setup to change the beam shape appropriately. To optimize
the coupling into the �bre, the telescope was chosen such that the minimal waist occurs
near the position of FC1 after about 1 metre from the laser output and with a minimal
waist of about 660 µm. This minimal waist corresponds to the expected output properties
of the �bre coupler with a mode �eld diameter of about 8.2 µm and a collimating lens of
focal length f = 8 mm. The expected output beam width was calculated with Gaussian
beam matrices. Fortunately, the beam waist stability after the modi�cation with the
telescope was observed to be quite stable also for di�erent powers. At a distance from
the laser of about 2.5 m the beam width was nearly constant for di�erent powers with
around: 2Wx ∼ 2050 µm and 2Wy ∼ 2200 µm compared to an expected beam size at this
distance of about 2W ∼ 2700 µm. The minimal beam width near FC3 was observed to
be 2W0 ∼ 1300 µm at a power of P ∼ 35 W.
Afterwards, the AOM was aligned such that the �rst di�raction order was optimized in
power. The AOM driver board setup was adjusted such that the output ampli�er for
the AOM had an amplitude of about V = 32.5 dBm = 1.78 W. This can be increased
to 33.5 − 34 dBm = 2.2 − 2.5 W in the future where the maximum of the di�raction
e�ciency occurs. However, one has to take care because, for higher input amplitudes,
a strong heating of the AOM was observed. The input frequency was adjusted to ν =
109.78 MHz near the speci�ed frequency of about 110 MHz. With this con�guration, the
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Figure 7.3: Laser alignment setup: Two additional mirrors after M1 are inserted which
distribute most of the beam power to a beam dump. The small fraction of the
beam transmitting through the mirrors can be analysed with a beam pro�ler.
The lens pair L1,2 acts as a telescope to collimate the laser beam. PBS1 splits
the beam into two arms. The arm ending with the beam pro�ler is used for
the 2D Trap setup.

observed di�raction e�ciency (DE) was at P = 0.12 W =⇒ DE ∼ 89% and for P = 10
W =⇒ DE ∼ 94.5%. Besides, one has to remark that there appear polarization drifts
for the output beam from the AOM which are probably caused by heating e�ects after
the AOM is turned on. The polarization drift slows down after the �rst hour when the
heating equilibrates. So, this e�ect can cause power �uctuations after the cleaning cube
PBS2. It is recommendable to wait at least 15 min after turning on the AOM before
starting with reliable and stable experiments.

Finally, one has to couple into the high-power �bre also at high powers of about P ∼ 10 W.
To do this, the λ/2-wave-plate can be orientated such that the laser power distributed to
port 1 is minimized and an absorptive �lter between PBS1, and M4 can further decrease
the power. In this way, the coupling e�ciency can be optimized also for di�erent beam
shapes at high beam powers, and the �bre is not damaged during the coupling schema.
One possible �bre coupling procedure can be executed as follows: Initially it follows the
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Figure 7.4: Measurement of the laser beam properties for di�erent laser powers without
the telescope consisting of L1,2. The beam focus position dfocus,(x,z) relative
to the laser output position is visible on the left. The minimal beam widths
W(0x,0z) at this focus position in both elliptical beam axis x and z are depicted
on the right.

usual pre-collimation of the two �bre couplers FC1,2. Afterwards one can couple a little
bit of light into the second port FC2 connected with the high-power �bre. Then one
can connect the other end of the �bre with port 1 at FC1. Here one has to take care
that the beam is not guided directly back to the laser. This can be reached by rotating
the polarization about 90◦ once in the �bre. So the �bre key is vertical at port 2 but
horizontal at port 1. This con�guration enables to overlap the ingoing and outgoing
beam at port 1 matching with the used �bre characteristics. On top of that, also the
collimation of the �bre coupling lens FC1 can be checked and optimized with this schema.
The coupling e�ciency (CE) at P ≈ 10 W was measured to be about CE ≈ 88%. An
additional remark has to be made concerning the �bre locking polarization key because
it was realized that it was not properly aligned during the fabrication. This leads to the
fact that the �bre is not polarization-maintaining while heating e�ects occur. This can
cause strong power �uctuations behind the cleaning cube PBS3. The problem can be
�xed by adjusting the λ/2-wave-plate (WP3) properly, such that the input polarization
matches the polarization-maintaining axis of the �bre when the �bre is locked in FC1.
This alignment can be executed by heating the �bre recursively with a warm human hand
and minimizing the power drift observed after PBS3.
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7.3 Trapping setup

To insert the trapping setup, �rst the old imaging-beam and MOT-beam out-coupler were
removed, and one of the posts holding the breadboard construction had to be carefully
moved to create enough space for the Trapping-Box. In a �rst step, the vacuum view-
port window was cleaned and the protection blind was �xed on the vacuum �ange for the
view-port window.
Everything which is directly connected to the Trapping-Box could be transported as a
whole from the pre-alignment setup to the �nal experimental setup, meaning all compon-
ents of the trapping setup beginning with Lz in the infrared beam path and starting with
FC4,5 in the resonant light path. Fortunately, the blind is constructed such that it o�ers
a large stopper surface at which the Trapping-Box can be pushed. The rough orientation
of the Trapping-Box in the xy-plane of the optical table could be found by the orientation
of the MOT-beam because in the pre-alignment setup the out-coupler FC5 was directly
connected to the Trapping-Box over the cage-system. The MOT-beam could be pointed
to the old MOT-out-coupler on the other side of the experimental chamber. In this way
the Trapping-Box was roughly aligned on the optical axis of the according view port.
Besides, in a next step, the two resonant light out-couplers FC4,5 were mounted on ad-
justable kinematic mounts separately from the cage system connected to the Trapping-Box
to be able to guide both beams optimally through the optical setup.
First of all, the MOT-beam was aligned to �t through the cage system, L4, and especially
through the small half-inch large λ/4-wave-plate, using the FC5-mount degrees of freedom
and those of the mirror mounts forM16,17. Here one has to take care that the large beam is
not cut by a mirror edge in the cage-system, such that at least the main part of the beam
stays untouched. One has to remark that it was not possible to guide the MOT-beam
optimally through the cage-system and centrally through L4 at the same time. Because
of this reason the MOT-beam was adjusted to travel a little bit o�-centred through L4.
In a second step, the imaging-beam was overlapped with the centre of the MOT-beam
only using the degrees of freedom of the adjustable mount for FC4.
In a next step, the other optical components of the trapping setup were built up. The
out-coupler FC3 was collimated to a beam diameter of about 2W ≈ 1020 µm at a distance
of 5 cm and a beam diameter of 2W ≈ 1660 µm at a distance of 1 m. The height of the
beam from the out-coupler was adjusted to be about 57.6 mm above the optical table
because this height corresponds to the height of an optimal beam entering the Trapping-
Box, assuming the optical axis for the output of the Trapping-Box is adjusted to 10.0 cm
above the optical table by the micrometer screw at its top. The orientations of the mirrors
M7 and M8 were used to guide the infrared beam at the right orientation into the already
�xed Trapping-Box setup starting with lens Lz. In this way, it was not necessary to change
the orientation of the other mirrors, �xed in the pre-alignment setup. The positions of
FC3 andM7,8 were chosen such that the distance between FC3 and Lz corresponds to the
target value of about 400 mm. One has to take care to hit all lenses centrally and also
especially the small 1/2-inch-sized mirrors M14,15. For a precise adjustment of the beam
into the Trapping-Box, one has to use the alignment plate with the two 1 mm large holes
at a distance of about 32 mm to reach a con�guration of two parallel beams between the
mirrors M14,15 and the dichroic mirror. One can use the two mirrors M7,8 to walk the
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input beam trough the two small holes until the output power is maximized. Finally, a
�rst rough alignment of the Trapping-Box is achieved after checking that the two infrared
trapping beams travel freely through the experimental chamber and exit on the other side
without touching the view-port �anges or the blind. The polarization of the MOT-beam
can be adjusted by the orientation of WP5. This was already done in the pre-alignment
setup but can be checked again with the described tool.

7.4 Imaging setup

Now, also the Imaging-Box has to be inserted into the setup. After removing also the
other old MOT-out-coupler, the whole Imaging-Box was moved towards the opposite view
port. Here, no protection blind was necessary. The distance of the Imaging-Box along
the optical axis from the experimental chamber was adjusted such that the two infrared
2D Trap beams are collimated to two parallel beams until about 1 m away till the wall
of the laboratory room. To guarantee the axial orientation of Trapping-Box in the xy-
plane of the optical table, the main part of the two trapping beams has to be re�ected
orthogonally from the dichroic mirror, and the imaging-beam has to travel unchanged
through the optical elements of the Imaging-Box. The overlap of the optical axis of the
Imaging-Box with the optical axis of the view port of the experimental chamber can
also be reached qualitatively by eye. One can add a mark on the bottom plate of the
Imaging-Box and bring this mark on the same line starting from one edge of the octagon
when watching to the view port. After the position of the Imaging-Box is �xed, the axial
position of LF2 can still be tuned such that the two infrared axial output beams from the
Imaging-Box are really parallel.
Afterwards one can adjust the position of lens L5 in a way, that the retro-re�ected MOT-
beam has the same size as the outgoing beam, visible between PBS5 and M19. After this
procedure the beam should be collimated at mirror M20, which can be checked by shortly
removing the mirror M20. The λ/4-wave-plate for resonant light can be oriented such
that the imaging-beam can pass straight along the view-port axis and the MOT-beam
is orthogonally re�ected at the polarizing beam splitter PBS5. For the alignment of the
retro-re�ected MOT-beam one has to adjust M20 to guide the beam through the small
λ/4-wave-plate mount WP5 in the Trapping-Box on the other side. Especially between
lens L4 and mirror M18 one can see the overlap of the ingoing and retro-re�ected MOT-
beam very precisely, because there lies a tight focus between L4 and LF1. This spot can
easily be exploited for the alignment procedure.
After the MOT-beam is aligned, one can start loading atoms into the magneto-optical trap
to test the precision of the adjustment. The MOT-cloud has to be moved to the expected
position of the crossed beam dipole trap. This can mainly be achieved by adjusting the
MOT coil currents such that the trapped atom number is maximized. Subsequently, the
transfer to the optical dipole trap can be optimized. Here one can carefully adjust also
the ingoing and the retro-re�ected MOT-beam by scanning all degrees of freedom of the
MOT-out-coupler and M20.
Finally, the imaging setup has to be completed by setting up L6,7, M21, and C2. First, the
imaging-beam is aligned on the Trapping-Box side using the adjusters at the out-coupler
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FC4. The imaging-beam has to go straight through the Imaging-Box at a constant height
of about 10.0 cm over the optical table. One can also check if the imaging-beam lies
directly in the centre between the two 2D trap beams behind the Imaging-Box as well as
the MOT-beam which can be guided temporally in this direction by rotating the λ/4-wave-
plate WP6. In a further step, the two lenses L6 and L7 can be added one after the other
at the right distances. One can check that the imaging-beam is unchanged and central on
the two lenses. For this purpose, the position of the imaging-beam can be marked in the
far �eld on the wall of the laboratory. To adjust the precise magni�cation of the imaging-
setup formed by L6,7, one has to change the axial position of L7 to reach an image of the
2D Trap within a reasonable distance at the camera position a few centimetres away. The
actual magni�cation can be measured by the comparison of the layer spacing in the trap
image dimage with the expected layer spacing in the real trap dreal ≈ 4.2 µm:

M =
dimage
dreal

(7.1)

7.5 Precise alignment of the imaging-beam

The imaging-beam is diverging after L7 to create a much enlarged absorption image of
the atoms (�gure 7.5). Therefore, it is challenging to align the image of the atoms on
the camera chip of C2. As a remark, one can �nd a quantitative estimation of the beam
width of the imaging-beam along the optical path in the appendix.

7.5.1 Alignment of the imaging-beam on camera C2

In a �rst step, one has to guide the imaging-beam onto the camera C2. Therefore, one
can check that the imaging-beam really travels centrally through each lens L6 and L7

individually at a constant height of about 10.0 cm above the optical table. The beam
orientation should not be disturbed by the lens system leading to a constant position of
the beam at the laboratory wall behind the Imaging-Box. One can use a round 2-inch-
sized piece of paper with central hole to �nd the central orientation of the beam to lens
L6. Afterwards the imaging-beam has to be guided withM21 onto the camera by scanning
both degrees of freedom of the mirror mount.

7.5.2 Alignment of the imaging-beam on the atoms

After loading atoms into the magneto-optical trap and later transferring them into the
dipole trap, the orientation of the MOT-beam can also be used to align the imaging-
beam on the trapped atoms. So one has to decrease the MOT-beam diameter with an
iris between M16 and M17 step-wise to gain increasing precision, such that one can still
observe atoms localized in the magneto-optical trap. Then, one has to align the imaging-
beam co-propagating with the MOT-beam. By rotating temporally the λ/4-wave-plate for
resonant light WP6, one can observe the MOT-beam and imaging-beam simultaneously
behind the Imaging-Box.
Now, one can check if the imaging-beam hits the atoms with the already aligned camera
C3 watching from the top. In the target con�guration, the imaging-beam shoots out
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Figure 7.5: Beam paths of the 2D Trap beams in green and the imaging-beam in red
through the imaging system created by LF2, L6, and L7. The imaging system
on the right side creates an enlarged image of the 2D Trap visible at the top
and an enlarged absorption image of the atoms shown at the bottom.

the atoms trapped in the dipole trap after evaporation. Therefore, one has to construct
a sequence in which the imaging-beam is pulsed on for variable temporal pulse length
after the evaporation. To hit the atoms in this sequence with the imaging-beam, the two
angular degrees of freedom and the height of the out-coupler mount for FC4 have to be
scanned. In each step, the remaining atom number has to be minimized after decreasing
the illumination time further. To increase the alignment precision further, also the total
intensity of the imaging-beam can be decreased. Finally, the atom number was minimized
for an illumination time of about 0.002 ms.

7.5.3 Alignment of the atom image on camera C2

After this step, one has to repeat the full alignment of the imaging-beam on the camera
C2. This means that one has to remove the two lenses L6 and L7, draw a new mark on
the laboratory wall behind the Imaging-Box, and optimize the alignment again.
It might be helpful to use the absorption image of the atoms in the Feshbach-MOT to
align the atom image on the camera. One probably needs some iterations of the alignment
on the atoms and the alignment of the atom image on the camera C2. Finally, one can
use the absorption image of the atoms in the dipole trap as orientation to move camera
C2 to the right axial position in order to image the atoms in their focal plane.
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7.6 Precise alignment of the 2D Trap beams

7.6.1 First alignment tests

As the camera C2 is now aligned on the atom image, one can use it as �rst hint for the
alignment of the 2D Trap beams on the atoms. In order to do that, one can use the two
mirrors M14,15 which are controlled via a computer software although this destroys the
pre-alignment. Channel 1 controls the bottom beam and Channel 2 the top beam. Axis
1 can be used for the vertical direction and axis 2 for the horizontal direction. In this
way, the 2D Trap beams can be moved on the position of the atom absorption image on
the camera chip. While observing the 2D Trap beams on the camera, one should add a
40 ND absorptive �lter before the camera to protect the camera chip from the focused
infrared beams. Besides, one has to take care that the 2D trap beams do not hit the
protection blind on the Trapping-Box side or the view-port �ange on the Imaging-Box
side and travel undisturbed to the camera chip. This �rst test allows to estimate how far
the alignment in the Trapping-Box is away from the ideal con�guration.

Now, one can start to align �rst one single beam on the atoms while the other beam
is shifted to the edge of the camera chip of C2. To �nd the atoms with the single 2D
Trap beam, one has to scan the region of the atom absorption image of the dipole trap
on camera C2. To simplify the search, one can let the atoms in the dipole trap expand
before turning on the 2D Trap beams. To �nd the right con�guration, one has to choose
a small enough step size resolution for the adjustment of the piezo mirror mounts with
about ≤ 10 and amplitude 35. The success of the alignment can be observed on the two
other cameras C1 and C3. C1 can be exploited for the alignment of the single beam in
vertical axis, and the perspective of C3 can be used for the alignment of the single beam
in the horizontal direction. To guarantee that the single-beam focus dominates over the
magnetic trap, the beam power of the infrared ALS-laser should be adjusted to P ≥ 5 W.
After the alignment of the �rst beam is completed, this beam can be blocked in front of
the experimental chamber and the second beam can be separately aligned on the atoms
in the same way. Finally both beams can be observed at the same time, crossing each
other at the atom position.

In addition, one can observe the position of the single-beam foci of both beams separately.
If the focus is o�-centred with respect to the atoms, one expects that the trapped atoms
oscillate along the beam. By measuring the oscillation frequency one gets an optimization
observable because the oscillation frequency has to increase if the atoms are trapped at
a smaller distance from the single-beam focus. To change the position of the single-beam
focus, one has to change the axial position of LF1. One rotation of the adjustable lens
tube corresponds to 0.625 mm. So for the scan, one should use a step size which is smaller
or equal to one rotation. If necessary, one might want to add or remove one or two of the
retaining rings in the lens tube which de�ne the actual distance of the lens LF1 from the
atoms.
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7.6.2 Optimized alignment procedure of the 2D trap beams on

the atoms

However, the alignment schema described above does not guarantee that the two 2D
Trap beams hit the lens LF1 parallel and orthonormal. If this was not the case, it was for
example observed that the two single-beam foci did not overlap and the foci itself were not
strong enough. For the shape of the beams, the image on camera C2 is a good observable.
On top of that, as previously described, in a lens position con�guration in which non-
collimated beams hit the lens LF1, the positions of the single-beam foci do not correspond
to the position of the crossing point although the beams hit the lens LF1 parallel and
orthonormal. So, in this scenario one is forced to guide the beams non-parallel on LF1

to overlap the single-beam foci with the crossing point. The non-orthonormality has to
be avoided because it can produce strong aberrations even for small alignment errors.
Therefore the following alignment procedure was developed to prevent these errors or at
least to minimize them. It was observed that an error of the Trapping-Box height can
have a huge e�ect on the beam quality after correcting the height error by guiding the
2D trap beams non-orthonormal on LF1 as sketched in �gure 7.6.
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Figure 7.6: Di�erent con�gurations of non-orthonormal 2D Trap beams in green at the
lens LF1. The atoms are depicted in red. Either the Trapping-Box with
LF1 is higher than the atoms as in the top con�guration or lower as in the
bottom con�guration. The non-orthonormality of the beams with respect to
LF1 can cause serious aberrations. The two drawn con�gurations correspond
only to estimated scenarios from reasonable expectations. The real beam
con�gurations could not be observed directly.

After the two 2D Trap beams are aligned parallel and orthonormal to LF1, one can directly
see by the distance of the beams with respect to the atoms if the Trapping-Box is too
high or too low as portrayed in �gure 7.7.

By a recursive procedure one can approach the optimal Trapping-Box height.
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Figure 7.7: Orthonormal 2D Trap beam con�guration with respect to LF1: the green 2D
trap beams hit the lens LF1 parallel and orthogonal after they are focused to
the crossing point. The single-beam focus might be displaced relative to the
crossing point by ∆dF and there is probably a height di�erence ∆h between
the Trapping-Box height and the height of the atom cloud.

Adjustment of the optimal Trapping-Box height and beam orientation to LF1

First of all, one has to align the 2D Trap beams parallel, orthonormally, and symmetrically
on the lens LF1. Therefore, one has to keep the position of camera C2 �xed in the plane of
the atom absorption image which will be used as a reference. On top of that, one should
remember or mark the position of the 2D Trap beams between the camera C2 and the
mirror M21 to simplify the alignment of the 2D trap beams on the camera C2 later. Now,
one has to walk the output beam of the infrared high-power �bre centrally through the
lenses Lz, Lxz, and Lx as well as through the beam splitter NPBS1 and on the mirrors
M14,15. To optimize the alignment further, one should use the adjustment plate with the
two small 1-mm-sized holes at the expected distance of the two beams of about 32 mm
behind the two mirrors M14,15. For this purpose, the glass plate GP1 has to be removed
or just inserted after the 2D Trap beam alignment is optimized. It is su�cient to �x the
adjustment plate on the vertical board in the Trapping-Box with a single screw in the top
screw hole. The laser power through each pin hole has to be maximized. On top of that,
one can use the two irises before and behind lens Lxz for the alignment. While closing the
iris, the elliptical beam has to be cut symmetrically at its vertical edges. Afterwards, one
has to mark or remember the axial position of LF1 in the lens tube. Subsequently, one
can carefully exchange LF1 by a 2-inch-sized mirror re�ecting infrared light. The mirror
should be �xed in an extra tube such that one has to exchange only the lens tube with
the tube of the mirror. This is recommendable, because the orientation of the lens in the
lens tube can change after �xing it. Besides, one has to take care during the replacement
because there is not so much space. Preferable, one should pull the lens tube downwards
out after turning it out of the cage plate. After the lens is replaced by the mirror, the two
beams can be walked backwards through the whole beam path till the polarizing beam-
splitter cube PBS3. To do so, the two mirrors M14,15 have to be used. The overlap of the
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beams can be checked with a camera at the beam splitter PBS3, as depicted in �gure 7.8.
The �rst overlapping steps in the Trapping-Box can be done with the alignment plate,
but for the alignment outside the Trapping-Box one has to remove the alignment plate,
and even for the alignment at Lx it is recommendable to remove the alignment plate. If
the re�ected beams are perfectly overlapping with the ingoing beams, one can replace the
mirror again by the lens LF1.
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Figure 7.8: Alignment setup to guide the 2D Trap beams orthonormal on LF1: The relev-
ant beam path is the one of the 2D Trap beams drawn in green and starting
at the �bre coupler FC3. The beam is guided through PBS3, BS1, Lz, Lxz,
and Lx and split up by NPBS1. The glass plate GP1 has to be removed
to provide space for the adjustment plate. Finally, the two 2D Trap beams
are retro-re�ected at mirror Mretro. The system has to be aligned such that
the two retro-re�ected beams overlap with the incoming beams perfectly until
their overlap can be checked with a camera in front of PBS3.

After this alignment procedure, one has reached the con�guration described in �gure 7.7.
So the two 2D Trap beams hit the lens LF1 parallel, orthonormal and symmetrically.
However, one most probably does not hit the atoms. This can be checked by observing
the distance of the 2D Trap beams on the camera C2 from the atom image position.
The horizontal distance can be corrected via the horizontal alignment of mirrorM12 if the
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distance is not too large. Otherwise, one has to walk with the mirrorsM11,12. Importantly,
the mirrorsM14,15 have to be untouched because their con�guration was already optimized
before. Besides, one most likely observes an error in the height of the beams with respect
to the atom position and also in vertical direction. By comparing the distance from each
beam to the atoms, one can �nd out if the Trapping-Box has to be lifted or lowered as it
is desired that the distances of both beams to the atom image on camera C2 are equal.
In this context, one has to remember the orientation of the beams along the optical path
where the beam positions in the image are inverted compared to the real trap. To check
the vertical distance of the two 2D Trap beams from the atom image on C2, one can use
the mirror M21 to guide each beam on the camera registering the distance by the number
of adjustment rotations to reach that con�guration. If the distance of the upper beam
to the atom cloud position on the camera C2 is larger compared to the lower beam, the
Trapping-Box height has to be increased. If the distance of the lower beam to the atom
cloud position on the camera C2 is larger compared to the upper beam, the Trapping-Box
height has to be decreased. The actual height of the Trapping-Box can be measured most
easily at the top edge of the cage plate in which the lens tube for LF1 is mounted. The
distance from the cage plate edge to the optical axis is 30.0 mm. For example during the
alignment procedure which was executed during this thesis, the Trapping-Box height was
adjusted to 101 mm above the optical table. So, one measures 131 mm to the cage plate
edge. Before turning the micrometer screw, one has to unlock the �ve screw nuts at the
backside of the Trapping-Box.

After the height was changed, one has to repeat the described alignment schema including
the exchange of the lens LF1 by a mirror recursively. If the height is still not optimal,
one has to change it again. This cyclic procedure has to be repeated until the height of
the optical axis of the Trapping-Box is su�ciently near the expected height of the atoms
in the experimental chamber. For the actual alignment achieved during this thesis, it is
expected that the Trapping-Box is still a little bit too high (about one rotation of the
micrometer screw: ∼ 250 µm).

As depicted in �gure 7.7, even if the Trapping-Box has the ideal height with respect to
the atoms, this does not mean that the 2D Trap beams hit the atoms although they hit
the lens LF1 perfectly. In this context one has two possibilities. First one can change the
axial position of lens LF1. In this way, one can shift the crossing point towards the atom
position. A second option for a slightly asymmetric con�guration is to use the mirrors
M14,15. Unfortunately, the last possibility breaks the described alignment success to the
degree the mirrors are moved, but this is defensible if the changes are small enough to
prevent the appearance of any strong aberrations. If the single-beam focus is not near the
crossing point, one has no other possibility then changing the orientation of the mirrors
M14,15 and the position of LF1, such that the beams cross near the single-beam foci and
on the atom position. If the described alignment procedure of the Trapping-Box height
was successful, at least the corrections of both beams with the mirrors M14,15 are equal.
So the single-beam foci appear at the same position along the beams.
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7.6.3 Precise alignment of the 2D Trap beams on the atoms

Finally, one needs to align the 2D Trap beams very precisely on the atoms. So �rst, the
position of LF1 can be used to move the single-beam foci as closely as possible towards the
atoms. It is most convenient to do this with each single beam separately while blocking the
other beam with a beam dump. In a second step one has to overlap the individual beams
in horizontal and vertical direction perfectly with the position of the dipole trap and later
also with the much smaller old and new Microtrap. Here again, one has to transfer atoms
into each single beam while blocking the other beam and taking pictures with absorption
or �uorescence imaging using the two cameras C1 for the vertical alignment and C3 for
the horizontal alignment. In order to do that adjustment, the orientations of the mirrors
M14,15 have to be changed. This is defensible because the changes for the alignment on the
atoms are very small and the piezo mirror mounts holding the two mirrors were inserted
exactly for this purpose. Here, one really can exploit the �ne adjustment resolution of
the mirror mounts.

7.6.4 Making the 2D Trap circular

There are several possibilities to make the actual trap circular. Theoretically, this should
be perfectly possible with the designed setup, but the possible aberration e�ects at lens
LF1 demand also an orthonormal alignment of the 2D Trap beams to LF1 which leads
to di�erent positions of the crossing point and the single-beam foci. It was observed
that after moving the mirrors from the orthonormal con�guration to overlap the crossing
point with the single-beam foci at the position of the atoms, the single-beam ellipticity
decreases. This clearly can be explained with aberration e�ects.
So, a �rst procedure to reach circular layers is to optimize the Trapping-Box height as
described above and stay with a lens position con�guration in which the elliptical single-
beam focus in z-direction is near the geometrical crossing point as described in �gure 6.7.
In this way, one can minimize the correction amount by the two mirrors M14,15.
A second schema is to slightly move the two beams apart in x-direction. This increases the
e�ective width of the interference layers in x-direction and increases therefore the e�ective
ellipticity near the crossing point. With this procedure, one can reach a con�guration in
which the two radial trap frequencies are equal fx = fy, but the total trap frequencies are
lowered. However, if the single-beam ellipticity is too large, meaning fx < fy, the method
is not applicable. The procedure is described in the appendix in more detail.
Thirdly, if there appears a di�erence of the single-beam focus distance between the two
beams, it is better if one aligns the two foci such that one is before the crossing point and
one is behind it by moving the lens LF1 appropriately. Compared to the con�guration
in which only one single-beam focus is overlapped with the crossing point perfectly and
the other one is far apart, the �rst con�guration is better in the sense of higher intensity
and therefore higher trap frequencies and probably higher ellipticity. This result can be
achieved by comparing the resulting trap frequencies or just the intensity distributions as
described in the appendix.
The three described techniques are illustrated in �gure 7.9.
To check if the alignment procedure is successful, one �rst can use the trap image on cam-
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Figure 7.9: Three optimization methods of the circularity of the 2D Trap light sheets: a)
minimize the distance between the single-beam foci and the crossing point.
b) if the trap frequency in x-direction is too high as it is the case for too
low ellipticity of the beams, one can displace the two 2D Trap beams a little
bit in x-direction to decrease the trapping frequency in this direction relative
to the trapping frequency in y-direction. c) If there occurs a di�erence in
the single-beam foci positions between the two 2D Trap beams one should
symmetrize their position around the crossing point to increase the intensity
(and the ellipticity) in the crossing region.

era C2 as reference, but �nally one has to compare the actual measured trap frequencies
of the real trap in the relevant directions.
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8 Characterisation

The following chapter summarizes the most important steps of identifying the character-
istic 2D Trap parameters and properties.

8.1 Trap parameters

8.1.1 Measuring the beam widths from the perspective of camera

C2

To measure the beam widths of the two 2D Trap beams, one can simply analyse the trap
images on camera C2, but one has to take care about interpretations because it is only
an image of the trap. Besides, one has to block the higher internal re�ection orders from
the dichroic mirror DM2 with a beam dump between PBS5 and L6. Unfortunately, there
appeared an additional interference pattern in the top beam which probably comes from
the glass plate GP1, but the origin could not be identi�ed exactly without intervening too
strongly into the setup. However this structure has not a very large e�ect on the �tting
procedure.
To identify the relevant parameters, there were taken three pictures: one for each single
beam and one with both beams at the same time. For each image the intensity was
summed along the image axis after optimizing the rotation angle for the image. The
optimal rotation angle can be found by minimizing the �tted beam width for the intens-
ity along the vertical direction as the beam width in the vertical direction is through
the ellipticity smaller than in horizontal x-direction. As �t-model, the function for the
full three-dimensional intensity distribution I2D(x, y, z, P1,2,W0x,W0z, θ,∆φ) was used as
origin.

Both beams

In the case of detecting both beams on the camera C2, the horizontal �t-model has the
form:

Itot,x = I2D(x = x− x0, y = 0, z = 0, P1,2,W0x,W0z = c1, θ = c2,∆φ = 0) (8.1)

with ci > 0 for an arbitrary positive value because the �tted beam power is not of any
relevance and the vertical �t-model can be identi�ed as:

Itot,z = I2D(x = 0, y = 0, z = z − z0, P1,2,W0x = c3,W0z, θ,∆φ) (8.2)

One can assume an additional o�set in both cases, but this was not necessary for the
analysed data set and the �t-model above lead to an even more reliable �t result. As
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Figure 8.1: Optimization curve of the rotation angle for the measured intensity distribu-
tion of the 2D Trap image in xz-plane. The graph shows the �t-results to the
beam width in z-direction as function of rotation angle. The curve is �tted
by a parabola to identify the optimal rotation angle where the beam width in
z-direction is minimal.

Figure 8.2: Measured intensity distribution of the 2D Trap image in xz-plane rotated by
the optimal angle of about α = −2.4◦.
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depicted in �gure 8.1, the optimal rotation angle for the image is α = −2.4◦ leading to
�gure 8.2, after cutting and rotating the original image.
Afterwards one can sum the two-dimensional array of the image along the two axes in-
dividually and �t the two intensity distributions with the described �t-models to the
one-dimensional data sets. On top of that, one can insert a pixel size of the camera C2 of
5.86× 5.86 µm. The resulting �ts are shown in graph 8.3.

Figure 8.3: Fits to the one-dimensional intensity distributions which can be deduced from
�gure 8.2 by summing along the vertical and horizontal axes respectively. On
the left, the intensity distribution in x-direction is �tted by a Gaussian �t-
model extracted from the three-dimensional theoretical model of the intensity
distribution. On the right, the intensity distribution in z-direction is �tted by
a standing wave with a Gaussian envelope which is also extracted from the
three-dimensional theoretical model of the intensity distribution.

From the spacing of the interference pattern in the vertical direction of the intensity
distribution one can conclude the magni�cation M of the imaging system, assuming that
the half-crossing angle of the real 2D Trap is known to be θreal = 7.3◦:

M =
dimage
dreal

=
sin(θreal)

sin(θimage)
(8.3)

with an error of

dM =
sin(θreal)

sin2(θimage)
cos(θimage)dθimage (8.4)

As from the �t follows: θimage = (1.0933± 0.0004)◦,
the magni�cation is: M = (6.659± 0.003).
The beam widths of the image are:
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W0x,image = (752± 3) µm and
W0z,image = (199.1± 1.0) µm.
The real trap beam widths can be concluded by considering the magni�cation:

W(0x,0z) =
W(0x,0z),image

M
(8.5)

with an error:

dW(0x,0z) =

√(
dW(0x,0z),image

M

)2

+

(
W(0x,0z),image · dM

M2

)2

(8.6)

which leads to the result of:
W0x = (113.0± 0.5) µm and
W0z = (29.89± 0.16) µm.

Bottom and top beam

In the case of single beams the �t-model changes to the expression in horizontal direction
of:

Isingle,x = I1(x, y = 0, z = 0, P1,image,W0x,image,W0z,image = c1, θimage = c2) (8.7)

with ci > 0 for an arbitrary positive value because the �tted beam power is not of any
relevance, and in vertical direction:

Isingle,z = I1(x = 0, y = 0, z, P1,image,W0x,image = c3,W0z,image, θimage = 1.0933◦) (8.8)

Also for these two �t-models one could add an o�set, but it was not necessary for the
analysed data set.
Figure 8.4 and 8.5 show the top and bottom beam after the two images were cut and
rotated by the optimal angle. The optimal rotation angle of the top beam is about
αtop = −2.4◦ and the one of the bottom beam is about αbottom = −1.0◦. Afterwards,
the intensity can again be summed up along each axis individually to perform the one-
dimensional �ts.

For the top beam, one can extract the following beam widths for the real trap by normal-
izing the beam widths of the image beam with the magni�cation:
W0x = (123.8± 0.6) µm and
W0z = (30.04± 0.20) µm.

For the bottom beam, one can extract the beam widths for the real trap similarly by
normalizing the beam widths of the image beam with the magni�cation:
W0x = (115.3± 0.5) µm and
W0z = (33.48± 0.20) µm.

86



Figure 8.4: Single-beam image of the top beam intensity distribution of the 2D Trap,
after rotating the image by the optimal rotation angle of α = −2.4◦ which
minimizes the vertical beam width. There seems to be a small disturbing
defect in the optical system which creates an unwanted interference pattern
on the single-beam intensity distribution.

Figure 8.5: Single-beam image of the bottom beam intensity distribution of the 2D Trap,
after rotating the image by the optimal rotation angle of α = −1.0◦ which
minimizes the vertical beam width.

Mean values of the real beam widths determined from the trap image

The mean values over the results from all three images are for the real trap considering
the magni�cation:
W0x = (117.4± 0.3) µm and
W0z = (31.14± 0.11) µm.
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8.1.2 Estimating the crossing angle from the perspective of

camera C1

Measurement of the crossing angle

Another important trap parameter is the half-crossing angle θ. Although it is not so
simple to measure the angle of the beams directly, one possible estimation is shown in the
following section. After trapping atoms in one of the single 2D Trap beams, its angle can
be observed on camera C1 in an absorption image.
To analyse the image, one has to calculate the column density ([25]):

ncd = − ln

(
Iabs − Ibg
Iref − Ibg

)
(8.9)

with the absorption intensity Iabs, the background intensity Ibg, and the reference intensity
Iref . The absorption intensity includes the intensity of the imaging-beam together with the
shadow from the absorbing atoms. The background intensity includes only the background
signal without the imaging-beam, and the reference intensity includes only the intensity
from the imaging-beam, but not the shadow from the absorbing atoms. Subsequently one
needs a two-dimensional �t-model for the two beams:

Itop = I1(x = 0, y = y − y0, z = z − z0, P1,W0x = c1,W0z, θ̃1) (8.10)

Ibottom = I2(x = 0, y = y − y0, z = z − z0, P2,W0x = c1,W0z, θ̃2) (8.11)

with arbitrary positive values ci. One could also add an o�set for these two �t-models,
but this was not necessary for the analysed data set. The two-dimensional �ts for the top
and bottom beam are portrayed in �gure 8.6 and �gure 8.7.

Figure 8.6: On the left, the measured column density is shown if one loads atoms only
in the top beam and the bottom beam is blocked. On the right, the two-
dimensional Gaussian �t to the left image is shown which is used to extract
the angle of the top beam.
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Figure 8.7: On the left, the measured column density is shown if one loads atoms only
in the bottom beam and the top beam is blocked. On the right, the two-
dimensional Gaussian �t to the left image is shown which is used to extract
the angle of the bottom beam.

The �t-results from the two-dimensional �t-model are:
θ̃1 = (8.82± 0.08)◦ and
θ̃2 = (−11.82± 0.08)◦.
To con�rm that the two-dimensional �t was successful, one can also perform a one-
dimensional Gaussian �t with an o�set after summing the two-dimensional image along
the horizontal y-direction. If one plots the width of the appearing maximum in the z-
direction as function of rotation angle of the image, there appears a minimum at the
angle of the beam. This method of angle determination is shown in �gure 8.8 for the
bottom beam. The width was determined by a Gaussian �t-model and the minimum
with a parabolic �t-model.
Indeed, the results from the second �t-method veri�es the results from the �rst method
with:
θ̃1 = (8.745± 0.004)◦ and
θ̃2 = (−11.754± 0.003)◦.

Interpretation of the measured crossing angle

However, the resulting angles seem to be far away from the expected ones. But one
has to take care about their interpretations because the absolute values depend on the
perspective of camera C1 on the beams. To approach the values of the actual angles, one
has to consider at least that camera C1 sees the two beams under an angle of α = 45◦.
The according calculation is shown in the appendix. For rotation angles: α = 45◦ around
the z-axis and β = −1.5◦ around the y-axis follows:
θ1 = (7.31± 0.06)◦,
θ2 = (−7.38± 0.06)◦ and
χ = |θ1|+ |θ2| = (14.69± 0.08)◦.
So it seems to be reasonable to assume the the camera C1 is tilted about the two angles
α = 45◦ and β = −1.5◦ with respect to the two 2D Trap beams. From the total crossing
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Figure 8.8: Second method to extract the angle of the single 2D Trap beams, here shown
for the bottom beam. The measured column density distribution is rotated
by a varying rotation angle, summed along the horizontal axis and �tted by a
Gaussian to extract the width of the distribution. On the left, one of such �tted
distributions is shown. On the right, one can see the beam width �t results as
function of rotation angle. By �tting a parabola to the extracted beam width
�t data one can identify the angle of the bottom beam. It corresponds to the
angle where the �tted beam width is minimal.

angle one can deduce an expectation value of the mean half cross angle of:
θ = (7.35± 0.04)◦.

8.2 Trap properties

8.2.1 Vertical trap frequency of the 2D Trap

The vertical trap frequency of the 2D Trap can be measured by modulating the trap
curvature in vertical direction. This can be reached by periodical modulation of the laser
power. If the modulation frequency reaches twice the value of the vertical trap frequency,
the number of atoms which are excited to higher levels by this parametric heating process
is maximal. After a spilling sequence, the number of removed atoms from the excited
ones is maximal in the described case. So one can �nd a dip in the intensity which is
proportional to the atom number in the trap while scanning the modulation frequency.
The interaction of the two-component mixture is set by the magnetic �eld of about 800
G to weak interaction. In the left part of �gure 8.9, one can see exemplarily one of such
spectra in the case of a mean power corresponding to 4 V of measured photodiode voltage
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or 52 mW. To identify the centre frequency of each dip a Gaussian �t-model was used:

G(f, f0, σ, A, c) =
A√
2πσ2

exp

(
− (f − f0)2

2σ2

)
+ c (8.12)

Figure 8.9: Measurement of the vertical trap frequency: On the left, the intensity sum
which is proportional to the trapped atom number is plotted as function of
modulation frequency. There occurs a minimum in the intensity sum if the
modulation frequency corresponds to twice the vertical trap frequency. The
mean power for the measurement corresponds to 4 V measured at the power-
controlling photodiode. The error bars correspond to the standard deviation
of each data point. On the right, a �t to the extracted trap frequency data for
di�erent mean powers is shown to identify the behaviour of the trap frequency
as function of power in general.

The actual vertical trap frequency corresponds to half of the extracted centre frequency:

fz(P ) =
f0(P )

2
(8.13)

To be able to extrapolate the trap frequencies also for other power values reliably, this
measurement was done for di�erent mean power values and the vertical trap frequencies
are plotted in the right part of �gure 8.9. The conversion factor to translate photodiode
voltage for the power measurement into Watts was measured to be: vw ≈ 13.02 mW/V.
The vertical trap frequency as function of power can be �tted with a simple square-root-�t:

fz(P,Az) = Az ·
√
P (8.14)

leading to: Az = (866±14) Hz. Here, P corresponds to the total beam power: P = P1+P2.
If one extrapolates the �t-result to a total beam power of P = 4 W, the vertical trap
frequency is: fz(P = 4 W) = (54.8± 0.9) kHz.
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8.2.2 Radial trap frequencies of the 2D Trap

The radial trap frequencies can be measured by exciting the trapped atoms to oscillate
in radial direction. The known lowest two possible oscillation modes are the centre-of-
mass mode and the breathing mode. The centre-of-mass corresponds to a motion of the
whole atom cloud in the trap, while the Gaussian centre position of the cloud oscillates
exactly with the trap frequency. In the case of the breathing mode, the width of the
cloud oscillates with twice the trap frequency. For the measurement a one-component
atomic gas sample without interaction is prepared in the 2D Trap. For the excitation of
the breathing mode which was executed here the 2D Trap power is changed step-wise.
The atomic cloud was detected by camera C3. After rotating the image appropriately, the
two one-dimensional axes of the image can be extracted by summing up along the two
axes individually. The one-dimensional intensity distributions can be �tted by a Gaussian
�t-model to identify the centre position and the width in each axis:

Gx =
Ax√
2πσ2

x

exp

(
− (x− x0)2

2σ2
x

)
+ cx (8.15)

and analogue in y-direction. Subsequently, the results of all images can be plotted along
time leading to an oscillating curve for the two centre positions x0, y0 and widths σx,y. As
�t-model for each of the four quantities a single damped harmonic oscillator model can
be used:

HO(t, ω, φ, δ, A, c) = A · sin(ωt+ φ) · exp(−δ · t) + c (8.16)

For example in �gure 8.10, the �t to a breathing mode excitation is shown at a power
corresponding to 4 V of photodiode voltage or 52 mW. The resulting trap frequencies can
be calculated from the �t results as:

fx,y =
1

2

ωbreathing,(x,y)

2π
(8.17)

leading to: fx = (73.4± 1.2) Hz and fy = (69.7± 1.1) Hz.
Figure 8.11 depicts a breathing mode excitation at a power corresponding to 2 V of
photodiode voltage.
Here the results are: fx = (45.9±1.0) Hz and fy = (42.0±3.5) Hz. Again, one can invest-
igate the power dependency also for the radial trap frequencies to be able to extrapolate
the results for di�erent laser powers with the �t-model:

fx,y(P,A) = Ax,y ·
√
P (8.18)

The results are plotted in �gure 8.12 with the �t-parameters: Ax = (9.68 ± 0.41) Hz
and Ay = (9.59 ± 0.21) Hz. So, the extrapolated trap frequencies for a total power of
P = P1 + P2 = 4 W are:
fx(P ) = (612± 26) Hz and fy(P ) = (607± 14) Hz.
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Figure 8.10: Measurement of the radial trap frequency in a breathing mode experiment:
On the left, the oscillation of the width of the atom cloud in x-direction is
given, whereas on the right the oscillation of the width of the atom cloud in
y-direction is plotted. The error bars correspond to the standard deviation
of each data point. By �tting a damped harmonic oscillation to the data,
one can identify the oscillation frequencies which correspond to twice the re-
spective trap frequencies in the two orthogonal directions. The measurement
was executed with a total beam power corresponding to 4 V of photodiode
voltage.

8.2.3 Radial trap frequency of the new Microtrap

To measure the radial trap frequency of the new Microtrap, the trap frequency can again
be modulated by the power to reach a maximal atom loss at twice the actual trap fre-
quency. The interaction of the two-component mixture is set by the magnetic �eld of
about 800 G to weak interaction. In �gure 8.13 one example is plotted for a mean power
corresponding to 2.5 V on the photodiode monitoring the beam power. The resulting
radial trap frequency in this case was determined by a Gaussian �t to be:

fr =
f0

2
= (572± 4) Hz (8.19)

Considering the right part of �gure 8.13, the square-root �t:

fr(P,Ar) = Ar ·
√
P (8.20)

to the radial trap frequency as function of beam power leads to: Ar = (174.7 ± 1.2) Hz.
Here, the conversion factor from photodiode voltage to actual laser power is: vwMT ≈ 4.29
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Figure 8.11: Measurement of the radial trap frequency in a breathing mode experiment:
On the left, the oscillation of the width of the atom cloud in x-direction is
given, whereas on the right the oscillation of the width of the atom cloud in
y-direction is plotted. The error bars correspond to the standard deviation
of each data point. By �tting a damped harmonic oscillation to the data,
one can identify the oscillation frequencies which correspond to twice the re-
spective trap frequencies in the two orthogonal directions. The measurement
was executed with a total beam power corresponding to 2 V of photodiode
voltage.

mW/V. The radial trap frequency for P3 = 0.2 W can be identi�ed as: fr = (2.471±0.017)
kHz. This corresponds to a beam width of: W0 = (12.95± 0.04) µm with:

W0 =

(
8aP3

πm(2πfr)2

) 1
4

(8.21)

and

dW0 =

(
8aP3

πm(2π)2

) 1
4 1

2

dfr

f
3
2
r

(8.22)

8.3 Tomography

8.3.1 Conceptional working principle of tomography

The technique of tomography is based on the following mechanism as described in [24]:
One can apply a magnetic �eld gradient along the vertical direction in which the layer
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Figure 8.12: Fit of the two radial trap frequency data as function of total beam power.
On the left, the �t to the data for the x-component fx is presented and on
the right the �t to the y-component fy.

Figure 8.13: On the left: Intensity sum, which is proportional to the atom number as func-
tion of modulation frequency in radial direction. If the modulation frequency
corresponds to twice the trap frequency in radial direction the trapped atom
number is minimal. The error bars correspond to the standard deviation of
each data point. The �gure includes a Gaussian �t to the intensity sum data
to identify the precise value of the radial trap frequency. On the right: Fit
to data of radial trap frequency of the new Microtrap as function of power.
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structure of the interference pattern from the 2D Trap appears. In this way, the hyper�ne
levels of the atoms are shifted depending on the position along the layer structure. By
using a radio-frequency pulse, one can excite only atoms at a certain position in the
interference pattern. To exploit this behaviour, one can prepare all atoms �rst for example
in state |2〉 and subsequently excite only atoms at one position in the layer structure in
state |3〉. Finally, the population in the excited state can be detected. After scanning the
rf-frequency, one can get the atom number at each position in the interference pattern. If
the line width of the radio-frequency pulse is smaller than the actual width of a 2D Trap
layer, one can resolve the interference pattern with this technique.

8.3.2 Measurement results

In this way it is possible to resolve atoms populating the di�erent individual layers of
the 2D Trap. After averaging over several runs one gets spectra as shown in �gure 8.14
where the intensity sum is proportional to the atom number. The left result corresponds
to a tomography after weak spilling, such that apart from the central layer also the other
layers are populated. In the right part of �gure 8.14, the tomography was done after
strong spilling and the population of the central layer is dominant.

Figure 8.14: Fitted tomography data: left after weak spilling and right after strong spill-
ing. The errors correspond to errors of the mean value.

To interpret the tomography results further, the spectrum can be �tted by a �t-model
with the same shape as the vertical axis of the 2D Trap intensity distribution:

I(x, x0, σx, A,B,∆φ) =
A√
2πσ2

x

· exp

(
− (x− x0)2

2σ2
x

)(
1 + cos(B(x−x0) + ∆φ)

)
(8.23)

By integrating over the according regions, one can �nd the contribution of atoms in the
central layer with respect to the total number of trapped atoms. In the case of weak
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spilling this ratio is:
Nrel,weak =

Ncentre,weak

Ntot,weak
≈ 42.9%

and for the strong spilling case the ratio is:
Nrel,strong = Ncentre,strong

Ntot,strong
≈ 95.0%

So, one can conclude that the spilling technique is very successful in leading to a major
population of the central layer.
Furthermore, one can analyse the width of the tomography spectrum in the case of weak
spilling in order to compare this with the expected width of trap intensity distribution.
The width in units of lattice spacing δ is:

W0z,atoms

δ
=

B

2π
2σz (8.24)

Assuming an ideal lattice spacing of d = λ
2 sin(7.3◦)

the width of the atom layer distribution

is: W0z,atoms

δ
d ≈ 7.26 µm compared to the expected width of the trap of at aboutW0z ≈ 17

µm. So, also the weak spilling leads to an atom layer distribution which is much narrower
than the trap layer distribution.
Similarly the tomography after spilling was executed for the combined trap where the 2D
Trap is overlapped with the new Microtrap (�gure 8.15). In the case of the left spilling

Figure 8.15: Tomography data in the combined trap, meaning the 2D Trap in overlap with
the new Microtrap. Left and right graphs show results for di�erent spilling
conditions.

con�guration of �gure 8.15 the contribution in the central layer is:
Nrel,weak =

Ncentre,weak

Ntot,weak
≈ 71.8%

and for the right spilling con�guration of �gure 8.15 the central layer contribution is:
Nrel,strong = Ncentre,strong

Ntot,strong
≈ 72.5%
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8.4 Stability

In this section the stability of the 2D Trap is analysed. This contains the long term
stability as well as the stability against heating disturbances.

8.4.1 Stability during tomography

Analysing the tomography data

The long term stability was investigated by analysing the tomography data by cutting
the data in di�erent tomography spectra along time and �tting them with the �t-model
described above. The relevant parameters of this �t-model are the centre position of the
envelope and the phase shift between the envelope and the carrier plotted in �gure 8.16.

Figure 8.16: Fit results to tomography data for the 2D Trap as function of time: Each
�t was executed over the statistics of 6 tomography runs. Each time value
corresponds to the time of the last run. On the left, the envelope position
in z-direction is shown, whereas on the right the relative phase between the
carrier position and the envelope is depicted. The error bars correspond to
the errors of the �t results.

One can realize that the two quantities �uctuate over 14 hours about a substantial fraction
of the layer spacing (2π) but are all in all relatively stable and show no strong drifts in a
speci�c direction.

Compare camera C2 images

During the tomography also images with camera C2 were taken in series. These images
also can be used to detect the stability of the trap during the tomography measurement.
Each image of the temporal series is rotated about an angle of α = −2.5◦ and summed
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along each axis individually to be able to �t the two one-dimensional distributions. As
�t-model the general intensity distribution was used as starting point: The horizontal
�t-model has the form:

Itot,x = I2D(x = x− x0, y = 0, z = 0, P1,2,W0x,W0z = c1, θ = c2,∆φ = 0) (8.25)

with ci > 0 for an arbitrary positive value because the �tted beam power is not of any
relevance and the vertical �t-model can be identi�ed as:

Itot,z = I2D(x = 0, y = 0, z = z − z0, P1,2,W0x = c3,W0z, θ,∆φ) (8.26)

Also for these two �t-models, one could add an o�set but it was not necessary for the
analysed data set. One example �t of the �rst image of the series is shown in �gure 8.17.

Figure 8.17: Fits to the one-dimensional intensity distributions which can be deduced from
the �rst image of the detected sequence by summing along the vertical or hori-
zontal axes, respectively. On the left, the intensity distribution in x-direction
is �tted by a Gaussian �t-model extracted from the three-dimensional the-
oretical model of the intensity distribution. One has to mention that the
higher re�ection orders from the dichroic mirror DM2 were not blocked out
during the measurement. For this reason, an additional interference struc-
ture appears in the distribution which disturbs the �tting procedure. On the
right, the intensity distribution in z-direction is �tted by a standing wave
with a Gaussian envelope which is also extracted from the three-dimensional
theoretical model of the intensity distribution.

One has to interpret the horizontal �t results with care as the higher re�ection orders from
the dichroic mirror DM2 were not blocked out during the measurement. These re�ection
orders disturb the Gaussian shape of the horizontal intensity distribution by interference
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e�ects. Nevertheless, the �uctuations of the mean position and the width can be used
for the stability analysis. Figure 8.18 shows the temporal �uctuations of the resulting
�t-parameters.
All quantities seem to be quite stable and remarkably, if one compares the �uctuation
of the envelope position in z-direction from the camera C2 images with the �uctuations
from the tomography, they show a comparable behaviour. The same holds qualitatively
for the phase �uctuations. From this fact, one can conclude that the stability of the
trap can be monitored by the camera C2. Furthermore the �uctuations can be in�uenced
by the drift of the laboratory temperature. Similar results can be extracted from the
tomography in the combined trap as portrayed in �gure B.41 and B.42 in the appendix.
One has to remark that the analysis of the camera C2 images in �gure B.42 can only
detect the stability of the 2D Trap and not the one of the combined trap. Nevertheless,
the correlation between the tomography stability results and the results from the analysis
of the camera C2 images also here hold qualitatively. However in this case, one can observe
a small drift of the trap parameters although the laboratory temperature is quite stable.
One reason could be a local heating e�ect. All in all, the quantities are still relatively
constant.

8.4.2 Stability during the heat-up experiment

Finally, the e�ect of a strong heating was investigated. So, there were taken pictures with
camera C2 directly after covering the experimental setup and turning on all modules.
Afterwards, the same analysis as previously described could be applied. In �gure 8.19
the results of this analysis are shown in the form of the temporal �uctuations of the
�t-parameters.
One can register a clear drift of all parameters correlated with a drift of the laboratory
temperature of about ∆T = 0.4 ◦C. One can speculate that the drift in power happens
most likely because the sensitivity of the camera chip is temperature dependent. All
other parameters drift presumably because of the temperature dependent alignment of
the opto-mechanical components. To estimate the timescale on which an equilibration
takes place, �gure 8.20 shows an exponentially decaying �t to the temporal �uctuation of
the envelope position in z-direction.
The �t-model has the form:

W = A · exp

(
− t

τ

)
+ c (8.27)

The relevant time constant which characterizes the equilibration time is τ = (71.2± 0.8)
min. So it seems one has to wait at least τ before starting stable experiments.

8.5 Characterization results

Finally the most important results are summarized in table 8.1. Here, one can compare
the target values for the 2D Trap parameters and properties with the actual measured val-
ues. There are two di�erent comparison sets with di�erent laser powers, one at P1,2 = 0.1
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parameter/property target value measured values target value measured values
P1,2 [W] (tunable) 0.1 0.1 2 2

λ [nm] 1064 1064 1064 1064
W0x [µm] 133 117.4± 0.3 133 117.4± 0.3
W0z [µm] 17 31.14± 0.11 17 31.14± 0.11
θ [◦] 7.3 7.35± 0.04 7.3 7.35± 0.04

E ≡ W0x

W0z
[1] 7.82 3.770± 0.016 7.82 3.770± 0.016

d ≡ λ
2 sin(θ)

[µm] 4.19 4.159± 0.023 4.19 4.159± 0.023

fx [Hz] 92.7 96.8± 4.1 414 612± 26
fy [Hz] 92.7 95.9± 2.1 414 607± 14

fr ≡ fx+fy
2

[Hz] 92.7 96.4± 2.3 414 610± 15
fz [kHz] 6.58 8.66± 0.14 29.4 54.8± 0.9

R2D ≡ fz
fr

[1] 71 89.8± 2.6 71 89.8± 2.7

Rxy ≡ fx
fy

1 1.01± 0.05 1 1.01± 0.05

U0 = −aI0 [µK·kB] −1.1 − −22 −
U0 = −aI0 [h · fz] −0.97 − −19 −
N2D ≡ f2z

4fxfy
[1] 1260 2020± 116 1260 2019± 117

Table 8.1: 2D Trap characteristics including trap parameters and trap properties. The
target values are compared with the measured values for P1,2 = 0.1 W on the
�rst two columns and for P1,2 = 2 W in the last two columns.

W and one at P1,2 = 2 W. Unfortunately, the agreement between the measured and the
target values is quite weak. The measured beam width in x-direction is smaller then the
target value, and the measured beam width in z-direction is nearly twice as large as the
target value. This leads to a much smaller ellipticity of the single elliptical beams. In
contrast to that, the estimated half-crossing angle �ts quite well to the target value which
is expected as it is �xed by the opto-mechanical setup. The same holds naturally for the
layer spacing which depends on the half-crossing angle.

For the trap properties, the measured trap frequencies are all much larger than the target
values if one considers the set with P1,2 = 2 W. The measured radial trap frequencies are
about 48% larger than the target values, and the measured vertical trap frequency is even
about 86% larger than the target value. However, this partially seems to be a result of
the extrapolation of the trap frequencies to values at higher beam power. For example,
the agreement for the radial trap frequencies is much better for P1,2 = 0.1 W, and near
this power the trap frequency measurement was executed. Remarkably, the ratio between
the radial trap frequencies is nearly one, corresponding to nearly perfectly circular light
sheets. This observation does not match at all with the poor measured ellipticity of the
single beams. Besides, one also may not expect from the measured beam widths such high
trap frequencies. However, also the �atness ratio is about 25% larger than the expected
target value. The measured number of available states in the quasi-two-dimensional re-
gime is about 60% larger than the expected target value.
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So, one can conclude from table 8.1 that the measured trap parameters do not �t quite
well to the target values and one may expect an unsatisfactory performance. In contrast
to that, the measured 2D Trap properties outperform the target values quite remarkably
in a satisfying way. This means the measured trap parameters and trap properties do not
match together. The question remains if one should trust the measured trap parameters
or the measured trap properties. As the beam widths were measured from the 2D Trap
image and are not deduced directly from the real 2D Trap intensity distribution, it seems
reasonable to assume that the 2D Trap image does not re�ect perfectly the real 2D Trap
parameters. Furthermore, the imaging system behind the Imaging-Box was not optimized
for the detection of the 2D Trap intensity distribution with infrared laser light but for
the registration of the atom absorption image with resonant laser light. This might be a
reason for the inconsistency in the comparison between the measured trap parameters of
the 2D Trap image and the measured 2D Trap properties. On top of that, the measured
trap properties re�ect the direct e�ect of the 2D Trap on the atoms and seem to be more
reliable. So, it might be reasonable to trust the measured trap properties more than the
measured trap parameters. However, the fact that all trap frequencies are much stronger
than the target values with the observed amount is still unexpected. Partially, one can
explain this di�erence with the extrapolation schema.

To investigate the di�erence and the reliability of the measured values, one can assume
either one trusts the trap parameters and calculate from that the trap properties or one
trusts the trap properties and calculates on this basis the trap parameters. The result
from this analysis can be found in table B.1 and table B.2 in the appendix. It is important
to remark that if one fully trusts the trap properties the resulting trap parameters are not
consistent with the experimental boundary conditions. Here the resulting half-crossing
angle is simply too large for the view ports. This observation appears even stronger in
the extrapolated trap property set at P1,2 = 2 W. Therefore, it seems to be reasonable
to execute further characterisation measurements at higher power values if one wants to
know precise and reliable values for the trap frequencies. Nevertheless, one can conclude
from the measured values of the trap properties, that the 2D Trap ful�lls at least the
target values and one can start with �rst experiments.

parameter/property target value measured values param./prop. from prop.
P3 [W] (tunable) 0.2 ≡ 0.2 ≡ 0.2

λ [nm] 1064 ≡ 1064 ≡ 1064
W0 [µm] 10 − 12.95± 0.04
fr [kHz] 4.1 2.471± 0.017 ≡ 2.471± 0.017
fz [Hz] 99 − 81.0± 0.8

U0 = −aI0 [µK·kB] −12 − −7.31± 0.05
U0 = −aI0 [h · fr] −103 − −61.6± 0.4

Table 8.2: New Microtrap characteristics including trap parameters and trap properties.
The target values are compared with the measured values and trap properties
and parameters are calculated from the trap properties.
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The new Microtrap properties are in the right order of magnitude although the trap
frequencies are a little bit weaker than the target expectations. The calculated beam
width seems to be in a reasonable range, but it is 30% larger than the target value.
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Figure 8.18: Temporal �uctuations of the �t results from the one-dimensional intensity
distributions deduced from the camera C2 images during the tomography
measurement of the 2D Trap. The error bars correspond to the errors of the
�t results.
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Figure 8.19: Temporal �uctuations of the �t results from the one-dimensional intensity
distributions deduced from the camera C2 images during the tomography
measurement of the 2D Trap during the heat-up experiment. The error bars
correspond to the errors of the �t results.
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Figure 8.20: Exponential �t to the envelope position in z-direction to identify the times-
cale on which the equilibration happens. The error bars correspond to the
errors of the �t results.
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9 Conclusion and further perspectives

This master thesis ties in with the work of a bachelor thesis ([27]) which mainly has
focused on the conceptional development of the quasi-two-dimensional optical dipole trap
formed by two elliptical laser beams interfering in their crossing point and the main part
of the opto-mechanical design as well as the de�nition of target properties. Apart from the
two-dimensional trap, the target trap was extended in this thesis by the new Microtrap
consisting of an additional single focused beam from the top which enables the control
over the radial trap frequency independent from the vertical con�nement controlled by
the 2D Trap. Besides the identi�cation of reasonable target values for this combined
tunable 2D Trap during this thesis, the opto-mechanical design was �nalized and actually
installed and integrated into the few fermionic experimental system. More important, the
thesis presents alignment schemas to optimize the performance of the trap and approach
eventually the target trap properties. By the characterisation of the trap parameters and
properties in the �nally reached con�guration, the success of the design and alignment
could be tested. In this state, one can conclude that the 2D Trap has adequate properties
in terms of trap frequencies, �atness ratio, and roundness ratio. The new Microtrap
reaches also the expected properties to an acceptable degree, such that the tunable 2D
Trap is ready to be used. The 2D Trap image can be exploited for stability measurements,
but re�ects at this time not the precise parameters of the real 2D Trap. Furthermore, it
is possible to load the main part of the atoms into a single layer of the 2D Trap and the
2D Trap is stable enough at least over about half a day. However, it was observed that
the setup is temperature-sensitive why it is highly recommendable to start with reliable
experiments only after the setup temperature is su�ciently equilibrated.
For future experiments, it might be helpful to measure the precise values of the trap
frequencies also for higher beam powers if needed to check the extrapolated values given
in this theses. Besides, if the roundness of the trap turns out to be not good enough, it
can be interesting to change the elliptical beam con�guration before the �nal focus lens
to a better collimated beam by changing the relative distances between the lenses. A
second promising method to reach a round trap is to displace the two crossing beams in
x-direction from each other. However for most of the experiments, the radial con�nement
is anyway dominated by the single new Microtrap beam which is perfectly round by itself.
As �rst demonstration of the new setup, �gure 9.1 shows the binarized images from the
�uorescence signal of an atomic cloud prepared in the 2D Trap which is made nearly as
shallow as possible for this purpose. Besides, �gure 9.2 depicts the corresponding atom
number distributions and �gure 9.3 shows the mean atom number distribution of the atom
cloud localized in the 2D Trap.
It is expected that the analysis of these density distributions together with time-of �ight
images which re�ect the momentum distribution can provide deeper understanding of the
system of a 2D Fermi gas and its correlations. Here the few-body normal-to-super�uid
transition is a subject of interest as well as pairing correlations in the quasi-two-dimensional
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Figure 9.1: Binarized �uorescence images from an atomic cloud in the 2D Trap taken
from the top by camera C3. Bright pixel re�ect the count of a photon. The
identi�cation of atoms demands the application of an additional low-pass �lter.
However, this method is not applicable in this case as the atoms are too close
to each other.

sample ([9]), the emergence of the described Higgs mode ([3]), and quasi-two-dimensional
systems with strong interactions. Furthermore, with an additional upgrade of the exper-
imental setup by a rotating trap designed in [26], it will be possible to investigate even
quantum Hall physics.
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Figure 9.2: Atom number distributions in the 2D Trap corresponding to the raw �uores-
cence images from the atomic cloud in the 2D Trap normalized by the number
of counts per photon which is assumed to be about 300 counts/photon and nor-
malized by the number of photons per atom which is about 24.3 photons/atom.
Here, an intensity of I = 3.12 · Isat was assumed leading to a resonant scatter-
ing rate of Γsc = 13.97 photons/µs. It was also assumed that about 8.7% of
the scattered photons are detected and the exposer time is about 20 µs ([2]).
A formula for the resonant scattering rate can be found in the appendix.
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Figure 9.3: Mean atom number distribution in the 2D Trap corresponding to the aver-
aged raw �uorescence image from the atomic cloud in the 2D Trap normal-
ized to the number of counts per photon which is assumed to be about 300
counts/photon and normalized to the number of photons per atom which is
about 24.3 photons/atom. Here an intensity of I = 3.12 · Isat was assumed
leading to a resonant scattering rate of Γsc = 13.97 photons/µs. Furthermore
it was assumed that about 8.7% of the scattered photons are detected and
the exposer time is about 20 µs ([2]). A formula for the resonant scattering
rate can be found in the appendix. If one integrates over the region of interest
image, one can count about 37 atoms which are localized on average in the
2D Trap. The standard deviation of the mean atom number from the analysis
over all taken images is about 6 atoms. As only one spin state is imaged at a
time, this holds for both spin states and the total atom number localized in
the trap is twice as large.
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Part V

Appendix
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A Tunable 2D Trap

A.1 Harmonic approximation

In order to be able to calculate the trap parameters from measured trap properties, one
can invert the equations in the following way. To simplify the inversion one can consider
only the leading terms in the y- and z-direction which is justi�ed as the last term in both
cases scales with λ2 and d < W0z:
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√
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The inverted equations are then:
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A.2 Finding the target trap: experimental boundary

conditions

In this section the central steps for the determination of the optimization curveW0z,min(θ)
that already have been published in [27] should be summarized.
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The diameter of the blind before the view port of the experimental vacuum chamber is
D = 0.034 m, the diameter of the experimental chamber octagon itself is: q = 0.2027
m, and the blind thickness is about b = 0.002 m. The total diameter of the octagon is
therefore:

Q = q + 2 · b (A.7)

One can conclude that the geometrically maximal half-crossing angle is:

α = arctan

(
D

Q

)
(A.8)

The distance from the chamber centre to the blind edge is:
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)2

(A.9)

The correction shift at the view-port window can be expressed as:
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Figure A.1: Experimental boundary conditions: On the left, a schematic of the restriction
to the half-crossing angle is shown. On the right, it is demonstrated that the
relevant beam size is the vertical component which has to �t through the
blind at a half-crossing angle θ. The �gure was taken from [27].

δcorr =
D

2
− Q

2
tan(θ) (A.10)

where 0 ≤ θ ≤ α is scanned.
Then the maximal beam width at the vacuum window is:

Wz,window =
1

B
δcorr cos(θ) (A.11)

with B = 1.7 including the full power beam radius. In order to �nd now the corresponding
minimal beam waist, one needs the distance between the vacuum window and the beam
focus in the centre of the experimental vacuum chamber:

Lfw =
Q

2 cos(θ)
+ δcorr tan(θ) (A.12)
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Then the minimized minimal waist is as function of half-crossing angle is:

W0z,min =

√√√√W 2
z,window −

√
W 4
z,window −

4L2
fwλ

2

π2

2
(A.13)

Figure A.2: On the left, the maximal beam width at the view-port blind (window) as
function of half-crossing angle is plotted. On the right, the corresponding
minimal beam width of the focus in z-direction as function of half-crossing
angle is shown.
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B Realization of the tunable 2D Trap

B.1 Opto-mechanical design

B.1.1 List of opto-mechanical components

• M1,2,3,4,5,6,7,8,9,10 : mirror/ high re�ective @ 1064 nm/ 1 inch/ 0− 45◦/ fused silica/
Lens Optics

• WP1,2,3,4 : λ/2-wave-plate/ @ 1064 nm/ 1/2 inch/ FOCtek

• M11,12,13 : broadband mirror/ BK7/ @ 760− 1064 nm/ 1 inch/ 0− 45◦/R ≥ 99.6%/
10 kW/cm2 CW/Lens Optics: M760-1064/1"

• M14,15 : broadband mirror/ BK7/ @ 760− 1064 nm/ 0.5 inch/ 0− 45◦/R ≥ 99.6%/
10 kW/cm2 CW/Lens Optics: M760-1064/0.5"

• M16,17,19,20 : mirror/ 1 inch/ high re�ective @ 671 nm/ 0− 45◦/ Lens Optics

• M18 : dichroic mirror/ 1 inch/ high re�ective @ 671+1064 nm (+532 nm)/ 0− 45◦/
Lens Optics

• WP5 : λ/4-wave-plate / @ 1064 nm/ 0.5 inch/ FOCtek

• WP6 : λ/4-wave-plate / 2 inch/ λ @ 1064 nm and λ/4 @ 671 nm/ FOCtek:
WPD0169

• DM1 : dichroic mirror (long pass)/ 2 inch/ 50% T/R @ 950 nm/ Thorlabs: DMLP950L

• DM2 : dichroic mirror (short pass)/ 2 inch/ Thorlabs: DMSP805L

• PBS1,2,3 : polarizing beam splitter cube/ @ 1064 nm/ 0.5 inch/ high power/ Al-
techna: 2-HPCB-C-0125

• PBS4 : thin �lm polarizing beam splitter cube/ extinction ratio = 10000:1/ 1 inch/
@ 671 nm/ LINOS: G335749000

• PBS5 : polarizing beam splitter cube/ NIR: @ 1064 nm and not so well @ ∼ 671
nm/ 50 mm/ Edmund optics

• NPBS1 : non-polarizing beam splitter cube/ 0.5 inch/ high power: ∼ 1 MW/cm2

CW/ Spectral Optics: RCBS-50-S-050-BK (or: -FS)

• BS1 : beam sampler/ @ 1064 nm/ 1 inch/ Thorlabs: BSF10-B

• L1 : spherical lens/ f = 75 mm/ 1 inch/ @ 671+1064 nm/ BK7/ FOCtek
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• L2 : spherical lens/ f = −50 mm/ 1 inch/ @ 671+1064 nm/ BK7/ FOCtek

• L3 : spherical lens/ f = 50 mm/ 1 inch/ @ 671+1064 nm

• L4 : spherical lens/ f = 125 mm/ 1 inch/ 0.5% @ 1064 nm and 0.25% @ 671 nm /
CASIX: PCX 0305

• L5 : spherical lens/ f = 100 mm/ 1 inch/ 0.5% @ 1064 nm and 0.25% @ 671 nm /
CASIX

• L6 : achromatic doublet/ spherical lens/ f = 150 mm/ 2 inch/ B-Coating/ Near
IR/ Thorlabs: AC508-150-B

• L7 : achromatic doublet/ spherical lens/ f = −40 mm/ 2 inch/ B-Coating/ Near
IR/ Thorlabs: ACN254-040-B

• Lz : cylindrical lens/ f = −75 mm/ 1 inch/ @ 1064 nm/ BK7/ FOCtek

• Lxz : spherical lens/ f = 300 mm / 1 inch/ @ 671+1064 nm/ K9/ FOCtek

• Lx : cylindrical lens/ f = −250 mm/ 1 inch/ @ 1064 nm/ N-BK7/ Thorlabs:
LK1030L1-C

• LF1, F2 : spherical lens/ F = 120 mm/ 2 inch/ @ 1064 nm/ Gradium Lens/ Light
Path: GPX50-120-1

• FC1 : �bre coupler/ f = 8 mm/ @ 650− 1100 nm/ Thorlabs: C240TME-B

• FC2 : �bre coupler/ f = 8 mm/ @ 1064 nm/ Thorlabs: C240TME-1064

• FC3 : �bre coupler/ f = 6.24 mm/ @ 1064 nm/ Thorlabs: C110TME-1064

• FC4 : �bre coupler/ f = 11 mm/ @ 650− 1100 nm/ Thorlabs: C220TMD-B

• FC5 : �bre coupler/ spherical lens/ f = 50 mm/ 1 inch/ B-coating/ LiCs Fibre:
high power/ @ 980 nm/ AMS Technology AG: PMJ-A3AHPCA3AHPC-980-6/125-
3AS-1-1-AR2

• AOM : acousto-optical modulator/ νs = 110 MHz/ @ 1064 nm/ Gooche and
Housego: 3110-197

• AF1 : absorptive ND �lter/ 1 inch/ ND = 1.0/ Thorlabs: NE10A

• AF2 : absorptive ND �lter/ 1 inch/ ND = 0.5/ Thorlabs: NE05A

• AF3 : absorptive ND �lter/ 1 inch/ ND = 0.6/ Thorlabs: NE06A

• PD1,2 : home-made photodiode

• PD1,2 : logarithmic photodiode

• GP1 : glass plate/ 1 inch/ 1 mm thick/ @ 650− 1050 nm/ Thorlabs: WG41010-B
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B.2 Installation and alignment

B.2.1 Installation of the Trapping-Box

All aluminium components fabricated in the workshop are listed in �gures B.3, B.4, B.5,
B.6, B.7, B.8, B.9, B.10, B.11, B.12, and B.13. The installation of the Trapping-Box can
be executed in the following way:

• Clean all mechanical parts from the workshop.

• Put the micrometer thread (Thorlabs: F6MSSA1) into the central hole of the mi-
crometer screw plate.

• Fix the micrometer screw plate with two M6 screws in the top pocket of the central
basis plate, such that the micrometer thread is sandwiched in between.

• Fix the �ve stud screws at the backside of the central basis plate. Ask the workshop
to do it. Alternatively, one can use two screw nuts at the top of the stud screws and
rotate them against each other to create a temporal screw head. In this way the
stud screw can be �xed and the screw nuts can be removed afterwards. However,
the last of the two possibilities presumes a careful procedure because the brass stud
screws can be broken apart by the force of the steel screw nuts. Therefore the �rst
possibility is preferable.

• Make sure that the central basis plate can freely be moved in the front pocket of
the back plate (you might contact the workshop to �t both parts together).

• Fix the dichroic mirror tower with two M6-screws to the central basis plate while
pushing it to the stopper surface.

• Fix the basis plate in the front pocket of the back plate with �ve screw nuts from
behind and lay both horizontally on a table.

• Connect the lock nut (Thorlabs: LN6M25) to the top end of the micrometer screw
(Thorlabs: F6MSS50). On top connect a removable adjuster knob (Thorlabs:
F6MSSK1). Turn the adjuster knob against the lock nut to �x it at the screw
head.

• Connect the micrometer screw to the top hole through the back plate into the central
basis plate.

• Glue NPBS1 in the right orientation on top of the beam splitter tower of the central
basis plate while pushing it to the stopper surface.

• Fix DM1 in a lens mount (Thorlabs: LMR2/M), such that the surface re�ecting
the laser with a wavelength of λ = 671 nm points to the closed surface of the lens
mount.
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• Connect the lens mount (Thorlabs: LMR2/M) with the dichroic mirror to the lower
pocket in the dichroic mirror tower with a long enough M4-screw. The closed surface
of the lens mount has to point up and one has to push the open side to the stopper
surface while �xing the mount.

• Fix mirror M18 in a mirror mount (Thorlabs: FMP1/M), such that the re�ecting
side points to the open side of the mirror mount.

• Connect the mirror mount with M18 to the upper pocket in the dichroic mirror
tower, such that the open side of the mount points downward to the surface of the
central basis plate and �x it with a M4-screw while pushing the open side of the
mount to the stopper surface.

• Glue mirror M13 in a �xed mirror mount (Thorlabs: POLARIS-B1G) with the
re�ecting side to the open side of the mount.

• Connect the mirror mount with M13 to the lower right step on the central basis
plate while pushing the open side of the mount to the stopper surface.

• Connect the translation stage (Thorlabs: MS1/M) in the lower pocket of the central
basis plate while pushing it to the bottom side. One might want to put a paper in
between the translation stage and the bottom surface while �xing the translation
stage with two M4-screws. Afterwards one can remove the paper and the translation
stage can move freely but is well de�ned in position.

• Glue Lx in the Lx-lens mount with the �at surface pointing to the closed side. Make
sure that the cylindrical lens is oriented such that the curvature appears to be along
the x-direction, in the same direction as the �xing screws of the lens mount.

• Fix the lens mount with Lx on the translation stage with two M4-screws, such that
the screws are to the left of the lens. One has two possible con�gurations which
are 12.5 mm apart. It is recommended to choose the right hole pair because of the
calculated lens distances.

• Put WP5 into a rotatable mount (Thorlabs: RSP05/M).

• Connect the rotatable mount to the wave-plate holder, such that laser light can
travel straight through the wave-plate and the rectangular hole in the holder. The
rotation ring has to point to the same side as the top edge of the holder.

• Connect the wave-plate holder to the right side of the central basis plate with two
M4-screws. The rotation ring of the wave-plate mount has to point to the dichroic
mirror.

• Put M14,15 into the two piezo mirror mounts (Newport: AG-M050N).

• Connect the two mirror mounts with the mirrors M14,15 to the two steps on the left
side of the central basis plate. Fix the mirror mounts each with a single M4-screw
from the top into the surface of the central basis plate and ignore the side holes. Use
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the side surface next to the mirror mount to align the orientation properly before
�xing it.

• Connect the bottom plate to the central basis plate with �ve M6-screws while the
basis plate lies on the table. Exploit the stopper surface for proper alignment.

• Thread the cable from the �xed piezo mirror mounts through the respective holes of
the entrance plate such that the guiding edge of the entrance plate points towards
the central basis plate. The top hole is intended for the cables of the top mirror
and the two holes at the bottom are for the cables from the bottom mirror, but the
central hole of the three bottom holes is for the infrared beam.

• Connect the entrance plate to the back plate and the bottom plate with �ve M6-
screws.

• Orientate the setup, such that the bottom plate is at the bottom.

• Connect the bottom cover plate with a single M4-screw with a countersunk head to
the bottom plate.

• Connect the side cover plate with eight M4-screws to the setup by pushing it care-
fully over the back plate.

• Connect the MOT-lens holder to the entrance plate with three M4-screws.

• Connect a cage plate (Thorlabs: CP02/M) with a single M4-screw to the MOT-lens
holder roughly in the central position of the elongated hole.

• Put L4 into an adjustable lens tube (Thorlabs: SM1V10) with the �at side to the
open side of the tube.

• Connect the lens tube with L4 to the cage plate �xed at the MOT-lens holder from
the outer side, such that the open side of the tube points away from the entrance
plate.

• Connect the modi�ed cage plate (modi�ed Thorlabs: LCP08/M) with three M4-
screws to the pocket on the right side of the central basis plate while pushing it to
the stopper surface. Two holes are added to the single hole at the bottom of the
cage plate and the cut surfaces should be left of the open sides.

• Put LF1 into an adjustable lens tube (Thorlabs: SM2V05) such that the �at surface
of the lens points to the open side of the tube.

• Connect the lens tube with LF1 to the modi�ed cage plate, such that the open side
of the tube points to the right, away from WP5.

• Connect the top exit cover with the central basis plate on the right side above LF1,
such that the edge points to the side cover plate.
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• Connect the bottom exit cover with the central basis plate on the right side below
LF1, such that the edge points to the side cover plate.

• Insert the glass plate GP1 with an appropriate Thorlabs mount system.

• Connect the front cover plate with maximally seven M4-screws to the side of the
entrance plate, the bottom plate, and the dichroic mirror tower.

• Push the front exit cover plate over the lens tube of LF1.

• If one wants to open the setup, reverse the steps above.

• Connect two cage plates (Thorlabs: CP02/M) with two long M4-screws to the left
part of the telescope plate. Use round spacer plates of total width of 16 mm for
each cage plate to �x them, such that the optical axis is about 57.6 mm above the
optical table.

• Glue Lz on a rotatable cage plate (Thorlabs: CRM1/M) with the �at lens surface
on the rotation ring.

• Integrate the rotatable cage plate with Lz between the two �xed cage plates on the
telescope plate with four cage rods (Thorlabs: ER4). The upper front cage rod
should have adjustment marks (Thorlabs: ER4E). The curved lens surface has to
point to the left. As �rst orientation, one can position Lz above the mark on the
telescope plate (non-collimated con�guration).

• Connect two lens tube holders (Thorlabs: SM1RC/M) to the left of the telescope
plate with two long M4-screws. Use round spacer plates of total height of 17 mm
to reach a height of the optical axis of about 57.6 mm above the optical table. The
two lens tube holders should be positioned to one of the hole pairs on the right and
should be as close as possible to each other.

• Put Lxz in an adjustable lens tube (Thorlabs: SM1V15), such that the �at surface
of the lens points to the open side of the tube.

• Put the adjustable lens tube with Lxz in a lens tube (Thorlabs: SM1L15).

• Put the lens tube with Lxz into the two lens tube holders on the telescope plate,
such that the closed side of the tube points to the right and the open side with Lxz
points to the left where Lz is already �xed. As �rst orientation, one can position
Lxz above the mark on the telescope plate (non-collimated con�guration).

• Put the mirrors M11,12 into two mirror mounts (Thorlabs: POLARIS-K1S4).

• Connect the two mirror mounts to the two holes in the front and back sides of the
central part of the telescope plate. Use round spacer plates of a total height of 12
mm, such that the optical axis is about 57.6 mm above the optical table. The front
mirror should have an angle of about 22.5◦ relative to the edge of the telescope plate
behind him, and the back mirror should be parallel to the right edge of the telescope
plate behind him.
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• Connect the telescope plate with two M6-screws through the two holes on the right
edge of the telescope plate to the entrance plate of the Trapping-Box.

B.2.2 Installation of the Imaging-Box

All aluminium components fabricated in the workshop are listed in �gures B.17, B.18,
B.19, B.20, B.21, B.22, B.23, and B.24. The installation of the Imaging-Box can be
executed in the following way:

• Clean all mechanical parts from the workshop.

• Put the micrometer thread (Thorlabs: F6MSSA1) into the central hole of the mi-
crometer screw plate.

• Fix the micrometer screw plate with two M6 screws in the top pocket of the central
basis plate, such that the micrometer thread is sandwiched in between.

• Fix the �ve stud screws at the backside of the central basis plate. Ask the workshop
to do it. Alternatively, one can use two screw nuts at the top of the stud screws and
rotate them against each other to create a temporal screw head. In this way the
stud screw can be �xed and the screw nuts can be removed afterwards. However,
the latter of the two possibilities presumes a careful procedure because the brass
stud screws can be broken apart by the force of the steel screw nuts. Therefore the
�rst possibility is preferable.

• Make sure that the central basis plate can be moved freely in the front pocket of
the back plate (you might contact the workshop to �t both parts together).

• Connect the side plate to the lower pocket of the central basis plate with four M6-
screws while pushing it to the stopper surface and align the side edges on top of
each other.

• Connect the MOT-path plate with one M6-screw to the central basis plate and two
M6-screws to the side plate while pushing it to the stopper surface of the side plate.

• Connect the beam-splitter �xing foot to the central basis plate with a single M6-
screw while pushing it to the stopper step next to it.

• Insert WP6 into a rotatable cage plate (Thorlabs: LCRM2-M) with the edge mark
aligned to the zero of the rotation ring.

• Connect the rotatable cage plate with WP6 by using maximally three M4-screws to
the left pocket of the two pockets on the right side of the central basis plate, such
that the rotation ring points to the left.

• Insert DM2 into a mirror mount (Thorlabs: FMP2/M), such that the side which
re�ects laser light with a wavelength of λ = 1064 nm points to the closed side of the
mirror mount.
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• Connect the mirror mount with DM2 to the side plate with a single M4-screw while
pushing the closed side of the mount to the stopper surface at an angle of 45◦. The
side which re�ects infrared laser light should point now away from the central basis
plate.

• Connect the bottom plate with �ve M6-screws to the back plate while pushing it to
the stopper surface and align the side edges on top of each other.

• Fix the basis plate in the front pocket of the back plate with �ve screw nuts from
behind. One can orientate the setup with the bottom plate on the table during this
procedure.

• Connect the lock nut (Thorlabs: LN6M25) to the top end of the micrometer screw
(Thorlabs: F6MSS50). On top connect a removable adjuster knob (Thorlabs:
F6MSSK1). Turn the adjuster knob against the lock nut to �x it at the screw
head.

• Connect the micrometer screw to the top hole through the back plate into the central
basis plate.

• Connect the �xing plate to the back plate and the bottom plate with four M6-screws.

• Put PBS5 on the left side of the side plate and push it to the stopper surface
from the central basis plate. The cube should be orientated such that the vertically
polarized light is re�ected away from the surface of the central basis plate.

• Put the beam-splitter cube hat on the top of PBS5 such that the central hole points
upwards and the stopper surface at the bottom side of the hat pushes the cube to
the surface of the central basis plate.

• Fix the beam-splitter cube hat and PBS5 carefully with a single M4-screw through
the beam-splitter �xing foot pushing with the tip into the central hole of the hat.
The screw should not be �xed too strongly as PBS5 can break.

• Connect the modi�ed cage plate (modi�ed Thorlabs: LCP08/M) with three M4-
screws to the pocket on the right side of the central basis plate while pushing it to
the stopper surface. To the single hole at the bottom of the cage plate two holes
are added and the cut surfaces should be left of the open sides.

• Put LF1 into an adjustable lens tube (Thorlabs: SM2V05), such that the �at surface
of the lens points to the open side of the tube.

• Connect the lens tube with LF1 to the modi�ed cage plate, such that the open side
of the tube points to the right, away from WP6.

• Put mirror M19 into a mirror mount (Thorlabs: FMP1/M) with the re�ecting side
to the closed side of the mirror mount.
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• Connect the mirror mount with M19 to the lower hole in the MOT-path plate while
pushing the closed and re�ecting side to the stopper surface. The mirror is �xed at
an angle of 45◦.

• Connect a cage plate (Thorlabs: CP02/M) to the central hole in the MOT-path
plate while pushing it to the stopper surface.

• Put L5 into an adjustable lens tube (Thorlabs: SM1V10), such that the curved side
of the lens points to the open side of the tube.

• Connect the lens tube with L5 to the top side of the cage plate which is �xed to the
MOT-path plate, such that the open side of the tube points upwards.

• Put mirror M20 into a mirror mount (Thorlabs: KM100).

• Connect the mirror mount with M20 to the top hole of the MOT-path plate, such
that the re�ecting side points downwards and is parallel to the optical table.

• Connect the guiding hand plate to the upper left side of the back plate with three
M4-screws.

• Connect the beam-splitter cover plate to the left side of the side plate with two
M4-screws, such that the curved edge points away from the central basis plate.

• Connect a lens tube holder (Thorlabs: SM2RC/M) to the left hole in the side plate
next to PBS5 with a single M4-screw.

• Connect the bottom cover plate to the central basis plate and the cage plate of LF2

with �ve M4-screws.

• Connect the top cover plate to the central basis plate and the cage plate of LF2 with
four M4-screws.

• connect the front cover plate to the side plate and the top and bottom cover plates
with four M4-screws.

B.2.3 Precise alignment of the imaging-beam

The beam width of the imaging-beam along its optical path can be found in �gure B.29.

B.2.4 Precise alignment of the 2D Trap beams

Making the 2D Trap circular

The original intensity distribution of the 2D Trap has the following form. The two indi-
vidual intensity distributions can be written as ([27]):

I1(x, y, z) =
2P

π ·Wx(l2)Wz(l2)
·exp

(
− 2x2

W 2
x (l2)

− 2

W 2
z (l2)

· (sin(θ)y + cos(θ)z)2

)
(B.1)
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I2(x, y, z) =
2P

π ·Wx(l1)Wz(l1)
·exp

(
− 2x2

W 2
x (l1)

− 2

W 2
z (l1)

· (− sin(θ)y + cos(θ)z)2

)
(B.2)

where l1 = cos(θ)y − sin(θ)z for the �rst beam and l2 = cos(θ)y + sin(θ)z for the second
beam are the distances to the focal points which lie on the crossing point of both beams.
The wave-vectors indicating the propagation direction of both beams are:

~k1 = k · (0, cos(θ),− sin(θ)) and ~k2 = k · (0, cos(θ), sin(θ)) (B.3)

where the wave-number k = 2π
λ

can be expressed by the wavelength λ, which is in the
experiment red-detuned to λ = 1064 nm. The total original intensity distribution is then:

Itot(x, y, z) = I1(x, y, z)+I2(x, y, z)+2·
√
I1(x, y, z)

√
I2(x, y, z)·cos((~k1−~k2)·~x+∆φ) (B.4)

In contrast, the real intensity distribution might be modi�ed because of non-optimal
alignment or aberrations. This can be considered by small shifts of both beams in each
spatial dimension and small changes of the half-crossing angle, but with ∆φ = 0:

Imod(x, y, z) = I1 + I2 + 2 ·
√
I1

√
I2 · cos(~k1~x1 − ~k2~x2) (B.5)

with:

I1 = I1(x+ dx1, y + dy1, z + dz1, θ + dθ1) (B.6)

I2 = I2(x+ dx2, y + dy2, z + dz2, θ + dθ2) (B.7)

~k1~x1 = k cos(θ + dθ1)(y + dy1)− k sin(θ + dθ1)(z + dz1) (B.8)

~k2~x2 = k cos(θ + dθ2)(y + dy2) + k sin(θ + dθ2)(z + dz2) (B.9)

Relative shift in x-direction To decrease the trap frequency in x-direction relative to
the trap frequency in y-direction, one can shift both beams apart from each other in
x-direction by the shift distance ∆x, such that it holds: dx1 = ∆x/2 and dx2 = −∆x/2.
The observed e�ect is demonstrated in the graphs B.30, B.31 and B.32 for ∆x = 100 µm
and the usual trap parameters: W0x ≈ 133 µm, W0z = 17 µm and θ = 7.3◦.
However, this procedure can not be executed for arbitrarily large shifts in x-direction
because for too large shifts there exists no unique maximum in x-direction anymore as is
exemplarily shown in �gure B.33. The maximal possible shift for the given trap con�gur-
ation is about ∆x ≈ 180 µm, such that there still appears a unique intensity maximum
in x-direction. To investigate the e�ect of the shift on the shape of the e�ective harmonic
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trap in the centre of the intensity distribution, �gure B.34 depicts the harmonic trap fre-
quencies, the roundness ratio, and the potential depth as functions of relative beam shift.
One can conclude that this method allows the manipulation of the circularity of the light
sheets quite e�ectively. The method can be applied if the trap frequency in y-direction is
smaller than in x-direction. This is the usual case for a too small ellipticity of the beams.
However, one has to mention that the procedure leads to a decrease of the overall absolute
values of the trap frequencies. For a small correction of the circularity in the range of a
few percent, the method is nevertheless a good choice.

Symmetric focus shift During the alignment procedure, it is possible that one faces
the case that the two single-beam foci appear not at the same position and both can not
be overlapped with the crossing point at the same time. In this case two scenarios are
possible. Either only one of the two single-beam foci can be overlapped with the crossing
point, or one can place the two foci left and right from the crossing point symmetrically. It
is clear that it is desirable to move the single-beam foci as close as possible to the crossing
point to reach high trap frequencies and to maximize the ellipticity in the overlapping
region for circular light sheets. The question remains which of the two procedures leads
to a better performance of the trap. To answer this question one can introduce a shift
parameter df to shift the single-beam foci along the beam propagation direction with
following relations:

dy1 = df1 cos(θ + dθ) (B.10)

dz1 = −df1 sin(θ + dθ) (B.11)

dy2 = df2 cos(θ + dθ) (B.12)

dz2 = df2 sin(θ + dθ) (B.13)

The �gures B.35, B.36, and B.37 show the e�ect of a symmetric shift of the single-beam
foci around the crossing point with: df1 = 500 µm and df2 = −500 µm. One has to
remark that the cuts through the interference pattern are made through the central layer
and in the case of the symmetric shift a phase shift appears which shifts the central layer
along the z-direction.
In �gure B.38, the two described cases are compared with each other, and one can see that
if the foci are symmetrically positioned around the crossing point the overall intensity is
slightly larger.
In the symmetric case holds:
df1 = ∆df/2 and df2 = −∆df/2
and for the asymmetric case:
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df1 = ∆df and df2 = 0

One can conclude that it is slightly preferable to align the two single-beam foci symmet-
rically before and behind the crossing point, but the di�erence is not very large and also
depends on the relative single-beam focus distance ∆df . One has to remark that for a
distance of ∆df = 2000 µm the asymmetric con�guration seems to be a little bit better
as portrayed in �gure B.39.
So, for small relative single-beam focus distances the symmetric con�guration is preferable,
whereas for larger ones the asymmetric con�guration is better. To check this behaviour
more precisely, �gure B.40 shows the identi�ed intensity maximum along the z-direction
as function of focus shift ∆df for the two con�gurations.

B.3 Characterization

B.3.1 Trap parameters

Estimation of the crossing angle: interpretation of the measured crossing angle

The two half-crossing angles for the top and bottom beams could be identi�ed from a two-
dimensional �t to the atom-absorption image while the atoms are trapped in the single
beams. However, the resulting angles seem to be far away from the expected ones, but
one has to take care about their interpretations because the absolute values depend on
the perspective of camera C1 on the beams. To approach the values of the actual angles
one has to consider at least that camera C1 sees the two beams under an angle of α = 45◦.
Conceptionally, one can rotate the two 2D Trap beams represented by two unit vectors:

~e1 = (0, cos(θ1),− sin(θ1)) (B.14)

and

~e2 = (0, cos(θ2), sin(θ2)) (B.15)

around the z-axis using a rotation matrix of the form:

Rz(α) =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (B.16)

From a rotation of α = 45◦ around the z-axis follows:

Rz(α = 45◦)~e1 =

(
− cos(θ1)√

2
,
cos(θ1)√

2
,− sin(θ1)

)
(B.17)

and

Rz(α = 45◦)~e2 =

(
− cos(θ1)√

2
,
cos(θ1)√

2
, sin(θ1)

)
(B.18)
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Subsequently, one can use the yz-plane as camera perspective, and one can just use the
projection of the two unit vectors on the yz-plane to determine the half-crossing angles
seen by the camera:

θ̃1 = arctan

(
|e1,rot,z|
|e1,rot,y|

)
= arctan

(
| − sin(θ1)|

cos(θ1)

√
2

)
= arctan

(
tan(θ1)

√
2

)
(B.19)

θ̃2 = arctan

(
|e2,rot,z|
|e2,rot,y|

)
= arctan

(
sin(θ2)

cos(θ2)

√
2

)
= arctan

(
tan(θ2)

√
2

)
(B.20)

By inverting the two equations, one can calculate the real expected angles from the angles
measured on the camera images:

θ1,2 = arctan

(
tan(θ̃1,2)√

2

)
(B.21)

and error:

dθ1,2 =
dθ̃1,2( tan2(θ̃1,2)

2
+ 1
)√

2 cos2(θ̃1,2)
(B.22)

With the results from the two-dimensional �t-model one can conclude:
θ1 = (6.26± 0.06)◦ and
θ2 = (−8.42± 0.06)◦.
Unfortunately, this result is still asymmetric in the two crossing angles although the total
crossing angle of: χ = |θ1|+ |θ2| = (14.68± 0.08)◦ is quite promisingly near the expected
value of: χideal = 14.6◦. However, it is not very probable that the asymmetry observed
on camera C1 is real because the 2D Trap beams were properly aligned. In contrast,
one can assume that the camera sees the two 2D Trap beams under an additional angle
from a rotation around the y-axis. To check if this hypothesis is possible, one can use an
additional rotation matrix:

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (B.23)

From an additional rotation of β = 1.5◦ around the y-axis follows:

Ry(β = 1.5◦)Rz(α = 45◦)~e1 =

 −
cos(β)√

2
cos(θ1)− sin(β) sin(θ1)

cos(θ1)√
2

sin(β)√
2

cos(θ1)− cos(β) sin(θ1)

 (B.24)

and

Ry(β = 1.5◦)Rz(α = 45◦)~e2 =

 −
cos(β)√

2
cos(θ2) + sin(β) sin(θ2)

cos(θ2)√
2

sin(β)√
2

cos(θ2) + cos(β) sin(θ2)

 (B.25)
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The angles detected on camera C2 can again be concluded by using the projection com-
ponents of the two unit vectors on the yz-plane:

θ̃1 = arctan

(
|e1,rot,z|
|e1,rot,y|

)
= arctan

( sin(β)√
2

cos(θ1)− cos(β) sin(θ1)

cos(θ1)

√
2

)
(B.26)

θ̃2 = arctan

(
|e2,rot,z|
|e2,rot,y|

)
= arctan

( sin(β)√
2

cos(θ2) + cos(β) sin(θ2)

cos(θ2)

√
2

)
(B.27)

Finally, one can invert the equations to get the real expected half-crossing angles from
the angles measured on the camera images:

θ1 = arctan

(
sin(β)− tan(θ̃1)√

2 cos(β)

)
(B.28)

dθ1 =
dθ̃1((

sin(β)−tan(θ̃1)√
2 cos(β)

)2

+ 1

)√
2 cos2(θ̃1)

(B.29)

θ2 = arctan

(
tan(θ̃2)− sin(β)√

2 cos(β)

)
(B.30)

dθ2 =
dθ̃2((

tan(θ̃1)−sin(β)√
2 cos(β)

)2

+ 1

)√
2 cos2(θ̃1)

(B.31)

For rotation angles: α = 45◦ and β = −1.5◦ follows:
θ1 = (7.31± 0.06)◦,
θ2 = (−7.38± 0.06)◦ and
χ = |θ1|+ |θ2| = (14.69± 0.08)◦.
So, it seems to be reasonable to assume the the camera C1 is tilted about the two angles
α = 45◦ and β = −1.5◦ with respect to the two 2D Trap beams. From the total crossing
angle one can deduce an expectation of the mean half cross angle of: θ = (7.35± 0.04)◦.

B.3.2 Stability

Stability during the tomography

Figure B.41 shows the stability analysis of the combined 2D Trap, whereas the analysis
of the camera C2 images in �gure B.42 can only re�ect the stability of the 2D Trap.
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parameter/property prop. from param. param. from prop. pa. from pr. (�xed θ)
P1,2 [W] (tunable) − ≡ 0.1 ≡ 0.1

λ [nm] − ≡ 1064 ≡ 1064
W0x [µm] − 119.2± 3.5 167.5± 7.6
W0z [µm] − 21.63± 0.59 7.80± 0.52
θ [◦] − 10.35± 0.28 ≡ 7.35± 0.04

E ≡ W0x

W0z
[1] − 5.51± 0.22 21.5± 1.7

d ≡ λ
2 sin(θ)

[µm] − 2.96± 0.08 ≡ 4.159± 0.023

fx [Hz] 82.6± 0.3 − −
fy [Hz] 39.9± 0.3 − −

fr ≡ fx+fy
2

[Hz] 61.23± 0.23 − −
fz [kHz] 5.19± 0.04 − −

R2D ≡ fz
fr

[1] 84.7± 0.7 − −
Rxy ≡ fx

fy
2.070± 0.018 − −

U0 = −aI0 [µK·kB] −0.671± 0.003 − −
U0 = −aI0 [h · fz] −2.695± 0.024 − −
N2D ≡ f2z

4fxfy
[1] 2042± 36 − −

Table B.1: 2D Trap characteristics including trap parameters and trap properties for
P1,2 = 0.1 W. Here, the trap properties are calculated from the measured trap
parameters, and the trap parameters are calculated from the measured trap
properties. In the last column the half-crossing angle is assumed to be known
to calculate the other trap parameters from the measured trap properties.

B.3.3 Characterization results

The formulas for the calculation of the 2D Trap properties from the 2D Trap parameters
are summarized below together with the expressions for the calculation of the 2D Trap
parameters from the 2D Trap properties. Table B.1 shows the results for P1,2 = 0.1 W
and table B.2 the results for P1,2 = 2 W. If one assumes that the measured trap para-
meters are true, the calculated trap frequencies are smaller than the target values and
much smaller than the measured values. The calculated �atness ratio �ts better to the
measured value, but the roundness ratio is twice as large as the measured one. If one
assumes that the trap properties are true, the beam widths are smaller than the measured
ones except for W0x for P1,2 = 0.1 W, and the half-crossing angle is much larger than the
measured one. In the case of P1,2 = 2 W the half-crossing angle even is about twice as
large as the measured one which is not possible because of the experimental boundary
conditions. Therefore it seems more reasonable to also assume the half-crossing angle is
known to have the measured value. In this case the calculated beam width in z-direction
is much smaller than the measured value.

To calculate the 2D trap properties from the 2D trap parameters the following formulas
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parameter/property prop. from param. param. from prop. pa. from pr. (�xed θ)
P1,2 [W] (tunable) − ≡ 2 ≡ 2

λ [nm] − ≡ 1064 ≡ 1064
W0x [µm] − 94.7± 2.8 167.5± 7.7
W0z [µm] − 21.61± 0.61 3.90± 0.26
θ [◦] − 13.08± 0.36 ≡ 7.35± 0.04

E ≡ W0x

W0z
[1] − 4.38± 0.18 43.0± 3.5

d ≡ λ
2 sin(θ)

[µm] − 2.35± 0.06 ≡ 4.159± 0.023

fx [Hz] 369.2± 1.6 − −
fy [Hz] 178.4± 1.4 − −

fr ≡ fx+fy
2

[Hz] 273.8± 1.0 − −
fz [kHz] 23.20± 0.18 − −

R2D ≡ fz
fr

[1] 84.7± 0.7 − −
Rxy ≡ fx

fy
2.070± 0.018 − −

U0 = −aI0 [µK·kB] −13.42± 0.06 − −
U0 = −aI0 [h · fz] −12.05± 0.11 − −
N2D ≡ f2z

4fxfy
[1] 2042± 36 − −

Table B.2: 2D Trap characteristics including trap parameters and trap properties for
P1,2 = 2 W. Here, the trap properties are calculated from the measured trap
parameters, and the trap parameters are calculated from the measured trap
properties. In the last column the half-crossing angle is assumed to be known
to calculate the other trap parameters from the measured trap properties.

were used: The trap frequency in x-direction is:

fx =
1

2π

√
32aP1,2

πmW 3
0xW0z

(B.32)

with the error:

dfx =

√(
3fxdW0x

2W0x

)2

+

(
fxdW0z

2W0z

)2

(B.33)

The trap frequency in y-direction can be calculated from:

fy =
1

2π

√
16aP1,2

πmW0xW0z

[
2 sin2(θ)

W 2
0z

+

(
λ cos(θ)

π

)2(
1

W 4
0x

+
1

W 4
0z

)]
(B.34)

and the error from the leading terms can be approximated as:

dfy ≈

√(
fydW0x

2W0x

)2

+

(
3fydW0z

2W0z

)2

+

(
fy cos(θ)dθ

sin(θ)

)2

(B.35)
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The trap frequency in vertical direction can be calculated from:

fz =
1

2π

√
16aP1,2

πmW0xW0z

[
2 cos2(θ)

W 2
0z

+

(
λ sin(θ)

π

)2(
1

W 4
0x

+
1

W 4
0z

)
+

(
π

d

)2]
(B.36)

and the error from the leading terms can be approximated as:

dfz ≈

√(
fzdW0x

2W0x

)2

+

(
3fzdW0z

2W0z

)2

+

(
fz cos(θ)dθ

sin(θ)

)2

(B.37)

To calculate the 2D trap parameters from the 2D trap properties, one can exploit the
following relations. The minimal beam width in x-direction is:

W0x =

(
32aP1,2

πm(2πfx)W0z

) 1
3

≈
(√

2 · 8aP1,2fy
π2mf 2

xλfz

) 1
3

(B.38)

with the error:

dW0x =

√(
2W0xdfx

3fx

)2

+

(
W0xdfy

3fy

)2

+

(
W0xdfz

3fz

)2

(B.39)

The minimal beam width in z-direction is:

W0z ≈
16aP1,2π

24 sin(θ)2

πmW0x(2πfz)2λ2
=

√
λ2f 2

z

2π2f 2
y

(B.40)

with the error:

dW0z =

√(
W0zdfy
fy

)2

+

(
W0zdfz
fz

)2

(B.41)

The half-crossing angle can be calculated from:

θ ≈ arcsin

((
mλ4f 4

z

32πaP1,2fxfy

) 1
3
)

(B.42)

with the error:

dθ =
1√

1− x2

1

3x2

√(
x3dfx
fx

)2

+

(
x3dfy
fy

)2

+

(
4x3dfz
fz

)2

(B.43)

including the de�nition:

x ≡
(

mλ4f 4
z

32πaP1,2fxfy

) 1
3

(B.44)
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If one assumes the half-crossing angle to be known, one can calculate the two left trap
parameters from the trap properties in the following way: The minimal beam width in
x-direction is:

W0x =

(
32aP1,2

πm(2πfx)2W0z

) 1
3

=

(
1

8

) 1
6 λfz
π sin(θ)fx

(B.45)

with the error:

dW0x =

√(
W0xdfx
fx

)2

+

(
W0xdfz
fz

)2

+

(
W0x cos(θ)dθ

sin(θ)

)2

(B.46)

The minimal beam width in z-direction can be expressed as:

W0z =
16aP1,2π

24 sin2(θ)

πmW0xλ2(2πfz)2
=

16
√

2aP1,2 sin3(θ)fx
mλ3f 3

z

(B.47)

with the error:

dW0z =

√(
W0zdfx
fx

)2

+

(
3W0zdfz
fz

)2

+

(
3W0z cos(θ)dθ

sin(θ)

)2

(B.48)

B.4 Conclusion

Here the formula for the calculation of the scattering rate should be given with the form
([37]):

Γsc =

(
γs0
2

)
1 + s0 +

(
2∆
γ

)2 (B.49)

with the detuning ∆ = ωL − ω0 depending on the laser frequency ωL and the resonance
frequency ω0. In addition, the damping factor γ = 2πΓ depends on the natural line
width which is for the D2-line of 6Li: Γ = 5.8724 MHz ([8]). The on-resonance saturation
parameter ([37]):

s0 =
I

Isat
(B.50)

depends just on the intensity of the laser light I and the saturation intensity which is for
6Li: Isat = 2.54 mW/cm2 ([2]). For resonant light the equation for the scattering rate
simpli�es to:

Γsc,resonant =

(
γs0
2

)
1 + s0

(B.51)
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back view:

front view:

3d view:

Figure B.1: Pictures from the CAD-model designed in CATIA: di�erent view on the
Trapping-Box with telescope plate together with the Imaging-Box. The path
of the 2D Trap beams is depicted as green line. The path of the MOT-
beam is drawn as red line and overlaps most of the time with the path of the
imaging-beam shown as yellow line. 133



top view:side view:

side view:

3d front view:

Figure B.2: Pictures from the CAD-model designed in CATIA: di�erent views to the
Trapping-Box together with the telescope plate. The path of the 2D Trap
beams is depicted as green line. The path of the MOT-beam is drawn as red
line and overlaps most of the time with the path of the imaging-beam shown
as yellow line.134



Figure B.3: On the left: central basis plate of the Trapping-Box. On the right: back plate
of the Trapping-Box. The two objects have not the same length scale.

Figure B.4: On the left: bottom plate of the Trapping-Box. On the right: entrance plate
of the Trapping-Box. The two objects have not the same length scale.

Figure B.5: On the left: top exit cover plate of the Trapping-Box. On the right: bottom
exit cover plate of the Trapping-Box. The two objects have not the same
length scale.
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Figure B.6: On the left: side cover plate of the Trapping-Box. On the right: front cover
plate of the Trapping-Box. The two objects have not the same length scale.

Figure B.7: On the left: front exit cover plate of the Trapping-Box. On the right: bottom
cover plate of the Trapping-Box. The two objects have not the same length
scale.

Figure B.8: On the left: micrometer screw plate of the Trapping-Box. On the right: stud
screw of the Trapping-Box. The two objects have not the same length scale.
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Figure B.9: On the left: alignment plate of the Trapping-Box. On the right: wave-plate
holder of the Trapping-Box. The two objects have not the same length scale.

Figure B.10: On the left: dichroic mirror tower of the Trapping-Box. On the right: Lx-
lens mount of the Trapping-Box. The two objects have not the same length
scale.
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Figure B.11: On the left: MOT-lens holder of the Trapping-Box. On the right: lens cage
plate of the Trapping-Box (modi�ed Thorlabs piece: LCP08/M). The two
objects have not the same length scale.

Figure B.12: On the left: telescope plate of the Trapping-Box. On the right: spacer plate
of the Trapping-Box. The two objects have not the same length scale.

Figure B.13: View-port blind of the Trapping-Box.
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Figure B.14: Front view to the real Trapping-Box.

139



Figure B.15: Front view to Trapping-Box with complete cover.
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top view:side view:

front view:

3d view:

Figure B.16: Pictures from the CAD-model designed in CATIA: di�erent views on the
Imaging-Box. The path of the 2D Trap beams is depicted as green line. The
path of the MOT-beam is drawn as red line and overlaps most of the time
with the path of the imaging-beam shown as yellow line.
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Figure B.17: On the left: central basis plate of the Imaging-Box. On the right: back plate
of the Imaging-Box. The two objects have not the same length scale.

Figure B.18: On the left: bottom plate of the Imaging-Box. On the right: �xing plate of
the Imaging-Box. The two objects have not the same length scale.

Figure B.19: On the left: MOT-path plate of the Imaging-Box. On the right: side plate
of the Imaging-Box. The two objects have not the same length scale.
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Figure B.20: On the left: top cover plate of the Imaging-Box. On the right: bottom cover
plate of the Imaging-Box. The two objects have not the same length scale.

Figure B.21: On the left: beam splitter front cover plate of the Imaging-Box. On the
right: front cover plate of the Imaging-Box. The two objects have not the
same length scale.

Figure B.22: On the left: beam splitter �xing foot of the Imaging-Box. On the right:
beam splitter cube hat of the Imaging-Box (plastic). The two objects have
not the same length scale.
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Figure B.23: On the left: guiding hand plate of the Imaging-Box. On the right: micro-
meter screw plate of the Imaging-Box. The two objects have not the same
length scale.

Figure B.24: Lens cage plate of the Imaging-Box (modi�ed Thorlabs piece: LCP08/M).
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Figure B.25: Front view to the real Imaging-Box.

Figure B.26: Top view to the real Imaging-Box.
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Figure B.27: Front view to the real Imaging-Box with full cover.

Figure B.28: Front view to the real Imaging-Box with full cover.
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Figure B.29: Beam width of the imaging-beam along its optical path through the whole
setup from an on-axis Gaussian beam ABCD-matrix calculation. Here, not
all relative distances between the lenses correspond exactly to the real values
but were roughly estimated.
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Figure B.30: One-dimensional intensity distribution in all spatial dimensions. The original
distributions are plotted as solid lines, and the modi�ed distributions with a
relative shift between the beams in x-direction are plotted with dashed lines.
The relative shift is: ∆x = 100 µm.
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Figure B.31: Two-dimensional intensity distributions in the three spatial planes of the
laboratory coordinate system. The distributions are given for a relative
shift between the beams in x-direction of: ∆x = 100 µm.
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Figure B.32: Two-dimensional intensity distributions in the xz-plane, scanned along the y-
direction. The distributions are given for a relative shift between the beams
in x-direction of: ∆x = 100 µm.

150



Figure B.33: One-dimensional intensity distribution in all spatial dimensions. The original
distributions are plotted as solid lines, and the modi�ed distributions with a
relative shift between the beams in x-direction are plotted with dashed lines.
The relative shift is: ∆x = 200 µm.
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Figure B.34: Three harmonic trap frequencies, the roundness ratio, and the potential
depth as functions of relative beam shift in x-direction.
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Figure B.35: One-dimensional intensity distribution in all spatial dimensions. The original
distributions are plotted as solid lines, and the modi�ed distributions with a
symmetric shift of the single-beam foci around the crossing point are plotted
with dashed lines. The cut line in the two horizontal directions for the dashed
line is shifted along the z-direction to the layer with maximal intensity. The
relative distance between the foci along the beams is: ∆df = 1000 µm.
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Figure B.36: Two-dimensional intensity distributions in the three spatial planes of the
laboratory coordinate system. The cut plane in horizontal direction is shifted
along the z-direction to the layer with maximal intensity. The distributions
are given for a relative distance between the foci along the beams of: ∆df =
1000 µm.
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Figure B.37: Two-dimensional intensity distributions in the xz-plane, scanned along the
y-direction. The distributions are given for a relative distance between the
foci along the beams of: ∆df = 1000 µm.
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Figure B.38: One-dimensional intensity distribution in all spatial dimensions. The original
distributions are plotted as solid lines, the modi�ed distributions with a
symmetric shift of the single-beam foci around the crossing point are plotted
with dashed lines, and the modi�ed distributions with an asymmetric shift of
the single-beam foci around the crossing point are plotted with dotted lines.
The cut line in the two horizontal directions for the dashed and dotted lines
is shifted along the z-direction to the layer with maximal intensity. The
relative distance between the foci along the beams is: ∆df = 1000 µm.

156



Figure B.39: One-dimensional intensity distribution in all spatial dimensions. The original
distributions are plotted as solid lines, the modi�ed distributions with a
symmetric shift of the single-beam foci around the crossing point are plotted
with dashed lines, and the modi�ed distributions with an asymmetric shift of
the single-beam foci around the crossing point are plotted with dotted lines.
The cut line in the two horizontal directions for the dashed and dotted lines
is shifted along the z-direction to the layer with maximal intensity. The
relative distance between the foci along the beams is: ∆df = 2000 µm.
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Figure B.40: Maximal intensity along z-direction as function of distance between the two
single-beam foci and the corresponding potential depth.
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Figure B.41: Fit results to tomography data for the combined trap as function of time:
Each �t was executed over the statistics of 6 tomography runs. Each time
value corresponds to the time of the last run. On the left, the envelope
position in z-direction is shown, whereas on the right the relative phase
between the carrier position and the envelope is depicted. The error bars
correspond to the errors of the �t results.
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Figure B.42: Temporal �uctuations of the �t results from the one-dimensional intensity
distributions deduced from the camera C2 images during the tomography
measurement of the combined trap. The error bars correspond to the errors
of the �t results.
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C A new laser shutter design

During this thesis the laser shutter design described in [39] was slightly modi�ed for larger
laser beam sizes and developed for high quantities. Conceptionally, a laser shutter is just
used to close or open a laser beam path as depicted in �gure C.1. As described in [39],

Figure C.1: On the left, a closed laser shutter in front of a photodiode and on the right an
open one. For the �nal design the SMA-connector is exchanged by a cheaper
BNC-connector.

there exists a huge list of desirable requirements for a laser shutter. The main properties
are the activation delay and the switching time which is demonstrated in �gure C.2. If
the activation time is known and stable, it is mainly the switching time which has to
be minimized. Besides a short activation delay and switching time, further requirements
are a high timing precision of the opening and closing events, a large repetition rate, a
low vibration and heat dissipation for minimal disturbance of the experimental setup,
an aperture size which can block all relevant beam sizes, a high extinction ratio, high
enough laser power handling, long operation lifetime, small size, simple usage including
alignment and control, low cost, and �nally the construction should have small perform-
ance inconsistencies from one laser shutter to the other ([39]). Apart from acousto-optical
modulators, electro-optical modulators, or polarization-based shutters, one possible real-
ization are mechanical laser shutters which have the advantage that they can block the
beam completely. In [39] a fast and compact laser shutter design with a DC-motor and a

161



Figure C.2: Characteristic time scales of a laser shutter. The �gure was taken from [39].

3D-printed body is presented which reaches `a switching speed of (1.22±0.02) m/s with 1
ms activation delay, 10 µs jitter in its timing performance' and lifetime of 108 cycles. The
original design published in [39] is given in �gure C.3, consisting of a DC-motor �xed in
a mount and a blade on the DC-motor rod which can be rotated back and forth, stopped
by two rubber �aps. The rubber �aps have to stop the blade such that it nearly does
not oscillate at the stopping edge to guarantee a clean closing and opening edge of the
rectangular beam pulse shape in time.

(flattened!)

ABS plastic mount

→ prevent 
rebounding 
of the blade

Figure C.3: Original laser shutter described in [39].

The described laser shutter is simple, reproducible, and cheap in production. The per-
formance according to the activation delay and switching time was measured for di�erent
voltages for the DC-motor as shown in �gure C.4 where one can see that both quantities
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decrease with increasing supply voltage. Besides the jitter is identi�ed to be about 10
µs for the switching time and 20 µs for the activation delay. The maximum short-term
repetition-rate is approximately 110 Hz, and the maximum long-term repetition-rate is
about 20 Hz. The repetition rate is mainly limited by the heat-dissipation of the DC-
motor to the plastic mount. To enable even larger beam sizes for our setups, the original

10V 8V 4V6V

,

Figure C.4: Original laser shutter performance described in [39].

laser shutter design was slightly modi�ed. However, if one changes the design it is import-
ant to recover essentially the performance properties. Figure C.5 shows the main degrees
of freedom which have to be taken into account during the design process. The activation
time is given by the time the blade needs to move from one neoprene rubber �ap to the
other. So, the distance between the rubber �aps and the blade edge on the opposite side
has to be minimized. At the same time, it is desirable to minimize the size and weight
as well as optimize the shape to reach a small switching time. In contrast to that, for a
large beam size one has to increase the blade size and the distance between the rubber
�aps. So obviously, one has to make a compromise in this context. Finally, the rubber
�aps have to be �xed such that they stop the blade optimally.
The modi�ed version of the laser shutter was designed in the CAD-software CATIA, and
the resulting product is shown in �gures C.6 and C.7. The new laser shutter allows a
maximal beam diameter of 6 mm. Besides, a BNC-connector is �xed on top of the laser
shutter to simplify the electronic connection. The �nal laser shutter can be equipped with
a black plastic blade for visible laser light or an aluminium blade for infrared laser light
which re�ects most of the power to protect the laser shutter from heating damages. The
�nal version of the laser shutter, mounted on a vibrational isolator, is presented in �gure
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Design criteria:
• Moving distance → activation time
• Blade size/weight/shape → switching time
• Blade size/shape → beam size
• Blade-stopper contact distance/            

stopper material → working zone

Damping:
should be not too small and not too large ( few mm ~ 4mm)

reflection zone

working 
zone

Figure C.5: Design criteria demonstrated at the schematic shape of the laser shutter.
Apart from the motor itself, the activation time is limited by the time the
blade needs to move from the open to the closed con�gurations, and the
switching time is limited by the blade size, weight, and shape. At the same
time, the blade shape determines the size of the beam which can be blocked.
The damping of the blade stopping oscillations is mainly given by the distance
between the mount edge and the contact point of the blade to the rubber �aps.
Besides, the damping depends on the characteristics of stopper material itself.

C.8. As the vibrations from the laser shutter are weak, the large vibrational isolator is
possibly not necessary.
Apart from the laser shutter itself [39] describes a driving circuit which is depicted in
�gure C.9. Here, a rectangular positive voltage signal (TTL) is converted by an inverter
and an H-bridge to a rectangular signal also with negative voltage values. In this way the
current �ows back and forth through an RC-element and the DC-motor which rotates in
one or the other direction. The resistor leads to a small holding current which �xes the
position of the blade after its rotation from the opposite con�guration. The capacitor
collects in each step a charge which is released by a strong exponentially decaying current
which accelerates the blades motion.
To simplify the circuit construction and minimize the cost, the inverter with necessary
resistors and the H-bridge are replaced by a dual motor driver carrier from Pololu in our
realization. The element, shown in �gure C.10, can be used for two motors at the same
time and requires a logic supply voltage of 2 − 7 V. The motor can be driven with a
voltage of up to 11 V. For this reason, it was decided to use a 9 V voltage supply and a
linear voltage regulator to provide 5 V of logic voltage. The manufacturing process was
optimized by the design of the circuit in Altium Designer, shown in �gure C.11. The
�nal printed circuit board (PCB) is able to drive four laser shutters at the same time
and �ts in a compact box. So, the box including the PCB has four BNC-connectors
for the TTL-input signals and four BNC-connectors for the motor driver signals. It is
important to note that one has to use isolated BNC-cables for the output signals to the
laser shutters to prevent any short-circuit faults through the metallic optical table between
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Figure C.6: Pictures from the CAD-model of the laser shutter designed in CATIA. On
the left: front view to the laser shutter. On the right: side view to the laser
shutter.

the shutter circuits which can lead to damages. The PCB was ordered from a company
and equipped manually by the workshop. The �nal driver board is shown in �gure C.12
and C.13. In order to check if the modi�ed design still ful�lls the necessary requirements
the activation delay and the switching time were measured with a red laser beam with
a beam width of about 300 µm and a photodiode behind the laser shutter. The results
are given in table C.1. From the measured data, one can conclude that the characteristic
performance quantities of the slightly modi�ed design still are in the right range and lead
to a satisfying result. As expected, the activation time and the switching time are for the
heavier aluminium blade a little bit larger but still acceptable. The plastic blade velocity
was measured to be about: vs = (1.41±0.06) m/s. If one compares two di�erent shutters,
the performance is still quite consistent as demonstrated in table C.2.
An additional question is how stable the characteristic quantities are for di�erent repeti-
tion rates. In �gures C.14 and C.15 the measured performance as function of repetition
rate is shown.
One can observe, that the activation delay and the switching time stay quite stable for
di�erent repetition rates, but the time it stays stable decreases with increasing repetition
rates because of heat-dissipation by the DC-motor to the plastic mount. For a repetition
rate of 90 Hz, the shutter leaves a stable operation state after about less than one second,
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Figure C.7: Pictures from the CAD-model of the laser shutter designed in CATIA: Front
view to the new laser shutter design.

design plastic blade aluminium blade
tact(opening) [ms] 3.85± 0.07 6.20± 0.01
tact(closing) [ms] 3.94± 0.03 5.27± 0.02
tact(mean) [ms] 3.89± 0.07 5.7± 0.5

tswitch (opening) [µs] 277± 10 428± 4
tswitch (closing) [µs] 232± 2 359± 5
tswitch (mean) [µs] 254± 24 393± 35

Table C.1: New laser shutter characteristics including the activation delay and the switch-
ing time. The switching time corresponds to the time the signal amplitude
changes between 10% and 90%. The repetition rate corresponds to 1 Hz. The
measurement was executed for a single shutter. The performance variations
between di�erent shutters can be much larger than the jitter of the temporal
quantities for a single shutter itself. The given errors are probably more lim-
ited by the measurement uncertainty of only at least three measurements per
value and represent not a valid jitter measurement.

whereas for moderate repletion rates of about 20 Hz, the shutter operates stably over the
whole observation time. This is consistent to the observations described in [39].
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Figure C.8: Front view to the new laser shutter design.
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Small steady holding current (~41 mA)

Exponentially decaying 
switching current
→ current pulse

Invert motor voltage/current

9V

-9V

0V

0V

5V

9V

U(t)

U(t)

t

t

Figure C.9: Driver circuit for a single laser shutter. The �gure is based on [39].

Dual Motor Driver Carrier: replaces H-bridge, Inverter (and Resistor)

Figure C.10: Dual motor driver carrier speci�cations from POLOLU (ht-
tps://www.pololu.com/product/2135). The PWM values can be replaced
by HIGH values to reach maximal speed.
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Figure C.11: Full circuit of the laser shutter driver board. The top part shows the schem-
atic, and the bottom part provides a view on the PCB design.
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Figure C.12: Top and bottom view to the designed driver board for the laser shutter which
is able to control four laser shutters at the same time.
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Figure C.13: The top �gure shows a view to the opened driver board box and the bottom
�gure a view to the closed ones. This leads to a compact and robust design.
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design plastic blade
tact(opening) [ms] 3.67± 0.18
tact(closing) [ms] 4.09± 0.16
tact(mean) [ms] 3.88± 0.27

tswitch (opening) [µs] 270± 10
tswitch (closing) [µs] 232± 4
tswitch (mean) [µs] 251± 21

Table C.2: New laser shutter characteristics including the activation delay and the switch-
ing time. The switching time corresponds to the time the signal amplitude
changes between 10% and 90%. The repetition rate corresponds to 1 Hz. The
measurement was executed for two di�erent shutters. Three measurements per
shutter and quantity were taken.

Figure C.14: Activation delay and switching time as functions of repetition rate (switching
frequency). There were taken three measurements per data point.
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Figure C.15: Activation delay and switching time as functions of repetition rate (switching
frequency). There was taken one measurement per data point.
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