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Abstract

This thesis presents Raman transitions between two hyperfine ground states in ultracold
6Li atoms with an optical phase locked loop. Raman transitions offer fast population
transfer with high spatial resolution for quenching interactions, e.g. to the measure
momentum distribution of an expanding atomic cloud. The crucial condition here is
coherence of both light fields, relative phase noise would suppress the transition. To
ensure phase stability during the experiment, an optical phase-locked loop was used,
which continuously regulates one of the two lasers used such that there is a stable phase
and frequency relation to the second laser. Raman transitions between ground states
|3〉 and |4〉 were measured at a magnetic field of B=685.4 G. We phase locked the beat
signal of two ECDL to the corresponding energy difference of both states. For an ideal
transition the influence of scattering rates has to be minimized, while maintaining a high
frequency, which leads to an optimal laser frequency between the D1 and D2 line. A
Rabi frequency of ΩR = 2π × (130.7± 0.2) kHz was achieved.

Zusammenfassung

Diese Arbeit präsentiert das Treiben von Ramanübergängen zwischen zwei hyperfeinen
Grundzuständen in ultrakalten 6Li Atomen mithilfe einer optischen Phasenregelschleife.
Ramanübergänge bieten eine Möglichkeit für schnellen Populationstransfer mit hoher
räumlicher Auflösung zur Aufhebung von Wechselwirkungen, z.B. zur Messung der Im-
pulsverteilung einer expandierenden Atomwolke. Die entscheidende Bedingung hierbei
ist die Kohärenz beider Lichtfelder, relatives Phasenrauschen würde den Übergang un-
terdrücken. Um eine Phasenstabilität während des Experiments zu gewährleisten wurde
eine optische Phasenregelschleife verwendet, die einen der beiden verwendeten Laser
kontinuierlich reguliert, sodass eine stabile Phasen- und Frequenzbeziehung zum zwei-
ten Laser besteht. Es wurden Ramanübergänge zwischen den Grundzuständen |3〉 und
|4〉 bei einem magnetischen Feld von B=685.4 G getrieben. Dazu wurde das Beat Si-
gnal zweier ECDL bei einer Frequenz, die dem Energieunterschied der Zustände ent-
spricht, phasenstabilisiert. Für einen idealen Übergang muss der Einfluss der Streurate,
unter Beibehalten einer hohen Frequenz, minimiert werden, was eine optimale Laserfre-
quenz zwischen der D1 und D2 Linie zur Folge hat. Es wurde eine Rabifrequenz von
ΩR = 2π × (130.7± 0.2) kHz erreicht.
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1 Introduction
In order to investigate the quantum mechanical behaviour of Fermions our group per-
forms experiments with ultracold 6Li atoms. Through various cooling techniques tem-
peratures in the nK region can be reached [1]. The experiments are performed with two
of the lowest three Zeeman sublevels at a magnetic field between 300 and 1200 G. Figure
1.1 (a) shows the magnetic field dependence of the ground state.

An exciting regime is the so called unitary regime in which the gas is still dilute but the
scattering length diverges, hence all length scales of the system disappear and the sys-
tem exhibits universal behaviour. However, in order to probe such systems in ultracold
gases typically a time-of-flight method is used in which the atoms expand and are then
imaged. During the expansion though, the atoms should be non-interacting in order to
preserve the initial quantum state. To avoid this interaction one of the two states has
to be transferred to one of the highest three Zeeman sublevels. The energy difference
corresponds roughly to a frequency of 1 GHz, therefore a direct transition requires mi-
crowave radiation, which results in a poor spatial resolution and makes quick transitions
hard, since the beams intensities are not sufficient [2].

m =+1/2S

m =-1/2S

(a) (b)

Figure 1.1: (a) Zeeman splitting of the gorund state of 6Li. Taken and adapted from [3]
(b) Basic scheme of a Raman transitions between two ground states |g1〉
and |g2〉

A high Rabi frequency for quick population transfer can be achieved by a Raman tran-
sition. Both ground states |g1〉 and |g2〉 are coupled by two laser beams, with frequency
difference corresponding to the energy difference, via an exited state |e〉. Actual excita-
tion to |e〉 can be avoided by detuning both beams from the resonant transition. Hence
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|e〉 is effectively not populated and we have population transfer between |g1〉 and |g2〉.

To properly drive a Raman transition the system has to be in a coherent superposition
of states |g1〉 , |g2〉 and |e〉, which implies a high level of phase stability between both
beams. Relative phase noise would introduce decoherence and suppress the transition.
Raman transitions between state |1〉 and |2〉 were already successfully performed in our
group [4]. There only one laser was used and both beams were created by splitting the
initial beam and sending one part through an AOM, which shifted the frequency by
80 MHz, hence both beams had the frequency difference needed. Phase coherence is
automatically guaranteed by this method, since only one laser is used.

Unfortunately this method can not be used for driving a transition between one of the
lowest three Zeeman levels to |4〉 , |5〉 or |6〉 as their frequency difference is around 2
GHz for high fields, too high for an AOM. We therefore have to use another method.
One possible way would be to use two different lasers with the corresponding frequency
difference. To ensure phase stability between both lasers an optical phase locked loop
(OPLL) can be employed [2]. The OPLL regulates one laser such that a stable phase
and frequency difference to the other laser is maintained over time. Thus relative phase
noise is reduced to a minimum and coherence between both beams is provided.

Outline

In the first two sections the fundamentals of Raman transitions and Phase locked loops
are introduced. Section 4 gives a brief overview of cooling and trapping Lithium and
presents the phase lock setup used in our experiment. The measurements of Raman
transitions, beat signals stabilized by the OPLL and spectra of one laser used in the
experiment are shown in section 5 and finally a conclusion and outlook is given in
section 6.
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2 Raman Transitions

2.1 Basic Theory
In this section we want to set out the basic theoretical concepts that are necessary to
describe Raman transitions in an atom.
The atom is reduced to a three level system in which the lower two states are ground
states, while the upper one represents an excited state. Coupling state |1〉 with the pump
laser to state |3〉, whereas the stokes laser couples |2〉 and |3〉 results in a Λ-configuration
as shown in figure 2.1.

Pump laser Stokes laser

Figure 2.1: Raman transition in a Λ configuration. Two ground states |1〉 and |2〉 are
coupled via |3〉 by Stokes and Pump laser. A large detuning ∆ avoids
excitation in |3〉.

A Raman transition is a coherent population transfer between states |1〉 and |2〉. Si-
multaneous to being in an intermediate virtual state through absorption of a photon
from the pump laser the system undergoes a transition to |2〉 by stimulated emission of
a photon from the Stokes laser. This coherent two-photon process requires the detuning
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2.1 Basic Theory

∆ of each laser beam from the intermediate state to be much larger than the linewidth
Γ, to avoid excitation in |3〉 . Hence |3〉 is not effectively populated. Since the transfer
occurs in the same way from |2〉 to |1〉, this results in an oscillating population of the
two lower states with Rabi frequency ΩR.

If not mentioned otherwise the following derivation is adapted from [5]. In order to
derive the Rabi frequency we apply a quantum mechanical treatment to the system, i.
e. we solve the Schrödinger equation.

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 (2.1)

The atom-light interaction is treated as a perturbation Ĥint of the isolated atom Ĥ0.
The full Hamiltonian is Ĥ = Ĥ0 + Ĥint with

Ĥint = −d̂ · E = −d̂ · (EP + ES) (2.2)
where −d̂ is the dipole moment operator of the atom and

EP = EP0 exp(−iωP t)
ES = ES0 exp(−iωSt) (2.3)

are the light fields of the lasers.
Writing |Ψ(t)〉 as a superposition of the basis states

|Ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉+ c3(t) |3〉 (2.4)
the Schrödinger equation becomes

i~
∂

∂t
c(t) = Ĥc(t) (2.5)

with c(t) = [c1(t), c2(t), c3(t)]T . The probability to measure the system in state |i〉 is
|ci(t)|2. Using the rotating wave approximation (RWA) the Hamiltonian in the ordered
basis {|1〉 , |2〉 , |3〉} can be written:

Ĥ = ~
2

 0 0 ΩP

0 −2δ ΩS

ΩP ΩS −2∆

 (2.6)

Where δ is the detuning from two photon resonance and Ωi are the Rabi frequencies of
the individual transitions.

Ωp = 〈2|d · EP0 |3〉
~

Ωs = 〈1|d · ES0 |2〉
~

(2.7)

The individual Rabi frequency can be written in terms of the beam intensity I

Ω = Γ
√
I

I0
(2.8)

where Γ is the linewidth of the exited level and I0 the saturation intensity.
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2.1 Basic Theory

Plugging (2.6) into (2.5) yields a set of linear differential equations for the probability
amplitudes:

i
∂c1

∂t
= 1

2ΩpP c3

i
∂c2

∂t
= 1

2ΩSc3 − δc2 (2.9)

i
∂c3

∂t
= 1

2(ΩP c1 + ΩSc2)−∆c3

Now we want to apply adiabatic elimination which is a basic tool for reduction of com-
plex quantum systems by removing the weakly coupled states. As population of |3〉 is
strongly suppressed adiabatic elimination can be achieved by setting ∂tc3 = 0, leaving
us with an effective two level system:

i
∂c1

∂t
= ΩP

4∆(ΩP c1 + ΩSc2)

i
∂c2

∂t
= ΩS

4∆(ΩP c1 + ΩSc2)− δc2 (2.10)

With Hamiltonian:

Ĥeff = ~
2

 Ω2
P

2∆
ΩPΩS

2∆
ΩPΩS

2∆
Ω2
S

2∆ − 2δ

 (2.11)

Just like in a two level system the off diagonal elements describe the coupling of states
|1〉 and |2〉 via both laser beams. Solving the equations with the atom being initially in
state |1〉 yields the time evolution of the population:

|c1(t)|2 = 1− Ω2
R

Ω2
0

sin2
(

Ω0t

2

)

|c2(t)|2 = Ω2
R

Ω2
0

sin2
(

Ω0t

2

)
(2.12)

Where
ΩR = ΩPΩS

2∆ (2.13)

is the Rabi frequancy of the resonant transition (δ = 0) and Ω0 =
√

Ω2
R + δ2 is the

effective Rabi frequency.

Note that a coherent Raman transition involving simultaneous absorption and stimulated
emission is fundamentally different from two successive single photon processes. But even
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2.2 Raman Transitions in Lithium

with a detuning from the resonance frequency the atom can be excited. The scattering
rate of a laser beam with detuning ∆ is given by [6]

Γsc = Γ
2

Ω2/2
∆2 + Ω2/2 + Γ2/4 (2.14)

Where Γ is the linewidth and Ω the Rabi frequency. With large detuning ∆ � Γ and
since ∆� Ω this becomes approximately

Γsc '
ΓΩ2

4∆2 (2.15)

Consider a π-pulse containing both laser frequencies ωp and ωs with duration tπ:

Ω0tπ = π (2.16)

Note that this means a complete period for oscillation of the population |ci|2, whereas the
components ci oscillate with half the frequency Ω0/2, sometimes the latter is referred
to as Rabi frequency. Assuming that both beams have similar intensities such that
Ωp ' Ωs ≡ Ω and therefore Ω0 ' Ω2/2∆. The number of spontaneously emitted
photons during the pulse is then [6]

Γsctπ '
πΓ
2∆ (2.17)

Hence spontaneous emission can be neglected if the detuning is sufficiently large resulting
in Rscatttπ � 1 and the atom can be subjected to many π-pulses before a spontaneous
emission occurs and destroys the coherence.

The Rabi frequency however also decreases with lager detuning. Furthermore we only
discussed three-level systems so far. Unfortunately life is not that simple. In reality
there are several more exited states that must be taken into account and lager detuning
does not necessarily lead to better Rabi oscillations. We have two main gaols, we want
a high ratio between Rabi frequency ΩR and single photon scattering event, called β
factor

β = ΩR

Γscatt
(2.18)

and a high Rabi frequency.

2.2 Raman Transitions in Lithium

2.2.1 Properties of 6Li
We will drive Raman transitions on ultra-cold 6Li atoms. So let’s get familiar with some
basic properties of Lithium. The information presented here is taken from the standard
reference for Lithium [7], where further details can be found. The ground state of 6Li has

10



2.2 Raman Transitions in Lithium

the configuration 1s22s1. It has a single valence electron, which makes it an alkali metal
and therefore similar to hydrogen. The advantage of this are a simple level structure
and easier calculations. 6Li is the lightest of alkali metals, which makes tunneling rates
higher than for other alkalis, as they decrease with mass. Raman transitions however
turn out to be rather challenging with Lithium since β - factors of other alkalis are
higher by a factor of ∼ 103 [8]. This is due to the low fine and hyperfine splitting in
Lithium compared to other alkalis. For instance Rubidium has a fine structure splitting
of ∼ 15 nm between D1 and D2 line [9]. We are therefore limited by orders of magnitude
higher scattering rates in Lithium.

- 5a3/2

- a3

3a3/2

a2/2

- a2

a1/2

- a1

F = 1/2

F = 3/2

F = 5/2

F = 3/2

F = 1/2

F = 3/2

F = 1/2

(a1 = 152.1 MHz)
228.2 MHz

(a2 = 17.4MHz)
26.1 MHz

(a3 = -1.1 MHz)
4.4 MHz2 2P3/2

2 2P1/2

2 2S1/2

D2= 670.977 nm

D1= 670.979 nm

10.056 GHz

Figure 2.2: Energy level diagram of 6Li with fine and hyperfine splitting. Taken from
[7].

In figure 2.2 one can see the energy level diagram of 6Li, the transition from excited
state 22P to the ground state 22S (the D-line) splits into two transitions. This is the
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2.2 Raman Transitions in Lithium
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Figure 2.3: Magnetic field dependence of the ground state 22P1/2. Taken and adapted
from [7].

fine structure splitting, the cause of which is the coupling of orbital angular momentum
L with the spin S. These add vectorially to the angular momentum J = L + S. The
quantum number J can take values in integer steps between

|L− S| ≤ J ≤ (L+ S) (2.19)

Thus the D line is split into transitions 22P3/2 ←→ 22S1/2 (D2) and 22P1/2 ←→ 22S1/2(D1).
With energy difference of both lines around 2π × 10 GHz. The last splitting in absence
of an external magnetic field is due to the interaction between nuclear spin I and J. This
is described by the total atomic angular momentum F = J + I. F can take values in
integer steps between

|J − I| ≤ F ≤ (J + I) (2.20)
6Li has nuclear spin I = 1, therefore 22S1/2 and 22P1/2 split into two lines, while 22P3/2
splits into three. The energy shift due to hyperfine is roughly a factor of 103 smaller
than fine structure splitting. Note that the energy diagram in figure 2.2 is not to scale.

When applying an external magnetic field the hyperfine levels are split into 2F + 1
sublevel. For small fields we are in the linear Zeeman regime, the energy is split linear
with magnetic field B

∆E = µB
~
gFmFB (2.21)

where µB is the Bohr magneton and gF the Lande factor. For higher fields nuclear spin
starts to decouple from angular momentum, and we are no longer in the linear Zeeman
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Figure 2.4: Magnetic field dependence of the exited state 22P3/2. Taken from [7].

regime. This can be seen in figure 2.3 and 2.4. The decoupling already happens for 10-
20 G for the ground state and 1 G for the exited 22P3/2 state, which causes the energy
lines to bend. If the magnetic field is now increased further nuclear spin and angular
momentum are completely decoupled. The states are now labeled with numbers, starting
from the lowest energy state as can be seen in figure 2.3. The ground states |3〉 and |4〉
are our candidates for Raman transitions.

2.2.2 Multilevel Raman Transitions
As mentioned earlier, there are several excited states that need to be considered. The D1
line splits into 6 and the D2 into 12 sublevels. The equations (2.12) for populations still
remain valid. However, we need to be more precise when calculating the Rabi frequency
and scattering rate. Not all 18 excited states are available to drive a Raman transition,
because due to polarization of the beams not all states are coupled to the ground states,
for certain pairs of polarization even no Raman transition is possible, but more than one
excited state remains to be considered.

Raman transitions in alkali metals exposed to an external magnetic field are discussed
in [8], on which we have based our calculations and where further information can be
found. We will summarize the main results here.
We consider two ground states |g1〉 and |g2〉 coupled to a pair of exited multiplets
{|eµ〉 , |eν〉} by two laser beams. The states |eµ〉 and |eµ〉 are states in the J=1/2 (D1)
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2.2 Raman Transitions in Lithium

Figure 2.5: Multilevel Raman transition. Both ground states are coupled to exited
states eµ and eν from the D1 and D2 line by two lasers with detuning ∆
from the D1 line. Taken from [8].

and J=3/2 (D2) manifolds with energies Eµ and Eν . For 6Li the energy difference
Af = Eν − Eµ is around 2π × 10 GHz. Let ∆ be the energy mismatch between laser
frequency and the D1 transition. The Rabi frequency then becomes

ΩR =
∑
µ

Ω1µΩ2µ

2∆ +
∑
ν

Ω1νΩ2ν

2(∆ + Af )
(2.22)

where Ωiε = Ei · 〈gi|d |eε〉 /~ is the optical Rabi frequency of each individual transition.
In the first sum we add up all states from theD1 line coupled to the ground states by both
lasers and the second sum adds up all states from the D2 line, therefore the detuning is
increased by Af . The ground state quadrupole matrix element 〈g1| dadb |gj〉 = 0, unless
i = j and a = b (a, b = x, y, z). This is due to the spherical symmetry of the electron
wave function and the fact that electronic dipole does not couple to spin. We then find∑
µ Ω1µΩ2µ +∑

ν Ω1νΩ2ν = 0 and can simplify the equation above to

ΩR = Af
2∆(∆ + Af )

∑
µ

Ω1µΩ2µ (2.23)

which for a big detuning ∆� Af can be approximated to ΩR ∼ Af/∆2. This however
does not apply to our case, since we will detune our lasers red to the D2 and blue to the
D1 line.

The inelastic scattering rate emerging from spontaneous emission of the exited states is
given by

Γsc = γ

[∑
µ

(Ω2
1µ + Ω2

2µ)
4∆2 +

∑
ν

(Ω2
1ν + Ω2

2ν)
4(∆ + Af )2

]
(2.24)

To calculate the Rabi frequency and scattering rate one needs to calculate Ωiε and its
dependence on the magnetic field, therefore we have to diagonalize the Hamiltonian. The
fine and hyperfine structure of an alkali metal is described by a coupled spin Hamiltonian

14



2.2 Raman Transitions in Lithium

H = Ha +HB (2.25)
with

Ha = cfL · S + chf1L · I + chf2S · I (2.26)
HB = µB(gLL + gSS + gII) ·B (2.27)

This Hamiltonian can now be diagonalized in the basis |LmLmSmI〉 and the eigenstate
|LQ〉 can be expanded

|LQ〉 =
∑

mLmSmI

CQ
mLmSmI

|LmLmSmI〉 (2.28)

with coefficients CQ
mLmSmI

, which will be used to calculate the electronic dipole tran-
sition. Let Dq = 〈LmLmSmI | erq |L′m′Lm′Sm′I〉 be the electronic dipole transition be-
tween state |L′m′Lm′Sm′I〉 and |LmLmSmI〉, where rq is a spherical tensor and q =
−1, 0,+1 corresponds to σ−, π and σ+ polarized light. The electric dipole does not di-
rectly couple electron or nuclear spin and the dipole transition can be written Dq =
δmSm′SδmIm′I 〈LmL| erq |L′m′L〉. Using the Wigner-Eckart theorem we can further sim-
plify this to Dq = δmSm′SδmIm′IW

L′L
m′LqmL

〈L| |erq| |L′〉. Where WL′L
m′LqmL

can be written in
with a Wigner 3-j symbol

WL′L
m′LqmL

= (−1)L′−1+mL
√

2L+ 1
(
L′ 1 L
m′L q −ml

)
(2.29)

The electronic dipole transition DL′Q′

q,LQ between two states |LQ〉 and |L′Q′〉 can then
finally be written

DL′Q′

q,LQ ≡ 〈LQ| erq |L′Q′〉 (2.30)
=

∑
m̄Lm̄

′
Lm̄Sm̄I

CQ
m̄Lm̄Sm̄ICm̄′Lm̄Sm̄IW

L′L
m′LqmL

〈L| |erq| |L′〉 (2.31)

This was all done and implemented in Python by Laurin Fischer from our group, which
we used for our theoretical calculation of electric dipole transitions, Rabi frequencies
and β factors.
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3 Phase Locked Loops
Phase-locked loops (PLL) are widely used in radio-frequency engineering, computers and
other applications. The basic idea is to stabilize phase and frequency of an oscillator to
a reference signal. By continuously keeping track of the phase error between reference
and oscillator, small adjustments to the tuning voltage of the oscillator are made by the
PLL in order to regulate its phase and thus providing a stable signal. The optical-phase-
locked loop (OPLL), which will be used in our experiment is a special PLL, stabilising
the beat signal of two laser beams.

3.1 Basics of Control Theory
In order to analyse the PLL and its components in detail, we must first introduce a few
concepts of Control Theory. We call the components in our loop systems. A system
transforms a time dependent input signal x(t) to an output signal y(t).

Figure 3.1: Typical visualisation of a system generating the output y(t) = T {x(t)}

From a mathematical point of view, a system is a self mapping operator T on the set of
time dependent functions.
Control theory deals with linear time-invariant (LTI) systems, using the Laplace trans-
form as a key tool for analysis. So let’s define these terms first.

LTI-Systems
A system is linear if the sum of any number of input signals xi(t) transforms proportional
to the sum of their output signals yi(t).

T
{∑

i

λixi(t)
}

=
∑
i

λiT {xi(t)} =
∑
i

λiyi(t) (3.1)

A system is time independent if it reacts to a time delayed input by the same output
except for the time delay.

T {x(t− t0)} = y(t− t0) (3.2)
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3.2 Analysis of PLLs

Laplace transform
The Laplace transform maps a function of real time f to a function of complex frequency
F . For a function f : R+ −→ C the Laplace transform L = F : C −→ C is defined by

L{f(t)} = F (s) =
∫ ∞

0
f(t)e−st dt (3.3)

if the integral exists. For our intentions the transform of a derivative, an integral and of
a time delay are of particular interest.The transform of a derivative is

L
{
df

dt

}
= sF (s)− f(0) (3.4)

With initial condition f(0) = 0 this becomes a simple multiplication of the transform
with s. Since integration is the inverse operation of differentiating one can guess that
the Laplace transform of an integral corresponds to a division by s.
In fact this is exactly what we get.

L
{∫ t

0
f(ξ) dξ

}
= 1
s
F (s) (3.5)

Signals are often not instantaneously transmitted. The Laplace transform of a signal
delayed by τ is given by

L{f(t− τ)Θ(t− τ)} = F (s)e−sτ (3.6)

where Θ is the unit step function. For continuous LTI systems the transfer function
H(s) describes the relation between an input x(t) and an output signal y(t) in the
Laplace domain. It is defined as

H(s) = Y (s)
X(s) = L{y(t)}

L {x(t)} (3.7)

It is common to use capital letters for Laplace transformed quantities. One can also read
the above equations as Y (s) = H(s)X(s), thus the transfer function is a linear mapping
of the transformed input to the transformed output. Consider a system creating its
output by integrating the input y(t) =

∫ t
0 x(ξ) dξ. Because of (3.5) the transfer function

then is given by H(s) = 1/s.
The advantage of describing systems in the Laplace domain becomes apparent when
we consider a composition of two systems. The overall transfer function is simply the
product of each individual transfer function H(s) = H1(s)H2(s).

3.2 Analysis of PLLs
A PLL is a feedback control system, mainly consisting of two oscillators (reference and
slave), a Phase-Frequency detector (PFD) and a Loop Filter. A basic scheme can be seen
in Figure 3. The goal is to stabilize the signal of our slave oscillator, also called voltage
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3.2 Analysis of PLLs

controlled oscillator (VCO), since its frequency is determined by the tuning voltage, to
the reference and thus not only ensuring a stable frequency but also a fixed phase of the
VCO.

Figure 3.2: By comparing reference and VCO signal the PFD produces an error signal,
wich after futher processing by the Loop Filter is fed back in to VCO

Although the components in general show nonlinear behaviour its justified to assume
linearity if dealing only with small variations, i.e. φr(t) ≈ φ0(t) and the methods in-
troduced above can be applied. Before being fed into the PFD the signals are usually
divided down φr(t) = 1

R
φref and φ0(t) = 1

N
φV CO. The PFD then generates an error sig-

nal proportional to the phase difference verr(t) = Kd(φr(t)− φ0(t)) with proportionality
constant Kd or in the Laplace domain

Verr(s) = Kd(Φr(s)− Φ0(s)) (3.8)

One important task of the Loop Filter is to integrate and filter the error signal from the
VCO. Key entities concerning stability of the loop like bandwidth and phase are mainly
determined by the Loop Filter with transfer function F (s). The VCO reacts to a change
of its tuning voltage vc with a proportional shift in its frequency ∆ω and since frequency
is the derivative of phase we get:

dφV CO
dt

= ∆ω(t) = KV vc(t) (3.9)

Since the incoming signal is integrated by the VCO this results in a change of phase
φV CO(t) = KV

∫ t
0 vc(ξ) dξ. With (3.5) the relation in the Laplace domain becomes:

ΦV CO(s) = KV Vc(s)
s

(3.10)

However the VCO used in our experiment is a diode laser and deviates from this ideal
integrating behaviour. When modulating the laser thermal effects also have to be taken
into account, which results in [2]

ΦV CO(s) = KV Vc(s)
s

1
1 + τLs

(3.11)
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where τL is a time constant. Another issue that has to be taken into account are delay
times in the loop, since signals need time to travel.
The overall transfer function G(s) (also called open loop gain) relating the down divided
phase of the VCO Φ0(s) with the phase error Θ(s) = Φr(s)− Φ0(s) then becomes:

G(s) = Φ0(s)
Θ(s) = KdKV F (s)

Ns
e−sτ 1

1 + τLs
(3.12)

The closed loop gain H(s) relates the reference to VCO phase.

H(s) = Φ0(s)
Φr

= G(s)
1 +G(s) (3.13)

The loop bandwidth is defined as frequency slb of unity gain |G(slb)| = 1.

3.2.1 Phase-frequency-detector
Digital phase detectors such as the EXOR gate, the JK-flipflop and PFD became in-
creasingly popular as PLLs went digital. The digital PFD is the most widely used type
of phase detector. As the name suggests, it can detect not only phase but also frequency
differences, allowing the PLL to get locked even for large frequency offsets between the
two input signals u1 and u2 [10].
There are basically two different designs of the PFD, a distinction is made between a
voltage and a current output ("charge pump"). The PFD with voltage output has the
problem of so-called backlash, this phenomenon leads to unwanted spurious frequencies
("spurs"), which can be avoided by using the charge pump design. The latter is therefore
the preferred one in most applications [10].

Figure 3.3: Block diagram of a PFD with current output

Figure 3.3 shows the block diagram of such a PFD. This is made up of two D flip-flops,
labelled UP and DOWN and which can each take the value 0 or 1. The PFD state is one
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3.2 Analysis of PLLs

of the 4 possible combinations of these numbers. However the state UP=1, DOWN=1
is prevented by an additional AND gate by resetting both flip-flops to zero due to the
logic "high" level at their CD "clear direct" inputs. The remaining three possible PFD
states are named -1, 0 and 1 [10]:

UP DOWN PFD state
0 0 0
1 0 1
0 1 -1

The actual state of the PFD, how it can change and how it gets into it at all can be
understood with the fact that the D-flip-flops are positive edge triggered. Rising edges
of signal u1 can trigger the UP flip-flop, while those of u2 trigger the DOWN one. For
example, if we are in the initial state 0 and a positive edge of u1 occurs, the state changes
from 0 to 1. Further positive edges of u1 no longer change the state. It only changes
when a positive edge of u2 appears which triggers DOWN and sets the PFD back to the
0 state. If we start in the 0 state and a positive edge of u2 appears first, the PFD is in
the -1 state. In summary, positive edges of u1 always change the state by +1 unless the
state is already +1 and positive edges of u2 by -1 unless the state is already -1. Figure
3.4 illustrates all possible state changes for all initial states.

0 +1-1

Figure 3.4: State diagram of the PFD visualising state changes due to occurring posi-
tive edges

The charge pump consists of two current sources. The upper one is active whenever the
PFD is in state 1, while the lower one is active in state -1. The upper source supplies a
positive current while the lower one supplies a negative one, both with the same absolute
value. The total outgoing current is therefore proportional to the PFD state. Let us
now look at the state and current curve for the case that two signals have the same
frequency but are slightly out of phase lock. In (a) the initial state is 0 and the first
positive edge is from u1, setting the PFD state to 1 until the first positive edge from u2
occurs. This results in positive current pulses from the charge pump, whereas in (b) the
signal from u2 leads and therefore negative current pulses leave the PFD.
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3.2 Analysis of PLLs

Figure 3.5: Signals u1 and u2 in frequency but slightly out of phase lock (a) positive
phase error (b) negative phase error

The average current Ī is then given by

Ī = Imax
2π ∆φ

= KD∆φ (3.14)

where Imax is the current amplitude and of KD the gain factor of the PFD in (3.8).
We therefore have a linear relation between Ī and ∆φ, which can be seen in figure 3.6.
Note that the phase difference has to be understood modulo 2π.

Now one might think this is in contradiction to the equation (3.8). There, linearity of
the PFD output signal to the phase difference was assumed, but the output signal for
a phase difference at same frequency is a periodic current pulse. The linearity consists
between mean value of the current pulses and phase difference but not between current
itself and phase difference. Why can we still assume this linearity?
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3.2 Analysis of PLLs

Figure 3.6: Average output current Ī over phase difference ∆φ

Since the output signal I(t) is a periodic function, it can be expanded in a Fourier series

I(t) ∼ a0

2 +
∞∑
k=1

(ak cos(kt) + bk sin(kt)) (3.15)

Without loss of generality we choose the period T to be 2π and our coordinate system
such that I(t) is a symmetric function. The antisymmetric coefficients bk therefore vanish
for all k and the remaining coefficients ak are given by

ak = 1
π

∫ π

−π
I(t) cos(kt) dt (3.16)

Thus for k = 0 the integral is just twice the mean value Ī and we obtain a0/2 = Ī as
the first term of the series. Now we only have to justify, that the higher coefficients
ak for k ≥ 1, describing the oscillating behaviour, can be neglected. The reason for
this is that these higher frequencies are filtered out by the Loop Filter. This essentially
determines the loop bandwidth and acts as a low-pass filter for higher frequencies than
this, which also explains the general low-pass behaviour of the transfer functions G and
H. The frequency of the PFD signal must be a multiple of the loop bandwidth in order
to ensure a stable operation. It is recommended that the Loop bandwidth should not
exceed 1/5th of the PFD frequency [2]. Filtering out high frequencies of the PFD signal
is then the same as time averaging.
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3.3 Optical Phase Locked Loops (OPLL)

3.3 Optical Phase Locked Loops (OPLL)
We use an optical phase-locked loop to phase stabilize the two lasers in our experiment.
Here we just want to get familiar with the basic functionality. The exact structure
of the loop used in the experiment, including the characterization of each individual
component, will follow later. We name the two lasers as master and slave, whereby the
master laser is free-running and the slave is controlled. The two beams interfere and are
sent to a photodetector. This beat signal is now stabilized to a reference. If we want
to think of the OPLL as a special case of a PLL, the combination of master, slave laser
and photodetector takes over the role of the VCO.

Figure 3.7: Simplified scheme of an OPLL, the Beat signal of two Laser beams is
stabilised to a reference

We use a photodiode as a photodetector. Let Ei = Ei0 cos(ωit + φi(t)) be the electric
fields of both laser beams, the beat signal on the photodiode has then the intensity:

I(t) = 1
2c ε0 [E1(t) + E2(t)]2

= 1
2c ε0 [E10 cos(ω1t+ φ1(t)) + E20 cos(ω2t+ φ2(t))]2

= 1
2c ε0

[1
2
(
E2

1 + E2
2

)
︸ ︷︷ ︸

DC

+ E1 · E2 cos(∆ωt+ ∆φ(t))︸ ︷︷ ︸
slow oscillation

+ E2
10 cos(2ω1t+ 2φ1(t)) + E2

20 cos(2ω2t+ 2φ2(t))
+ E1 · E2 cos((ω1 + ω2)t+ φ1(t) + φ2(t))

]
(3.17)

The first term is the DC part, which is filtered out by adding Bias-Tee behind the
photo diode. The second term oscillates slowly with frequency ∆ω = ω1−ω2 and phase
∆φ(t) = φ1(t) − φ2(t). Since the bandwidth of the photo diode is usually several GHz
the remaining fast oscillating terms are completely filtered out leaving us only with the
slowly oscillating beat.

IBeat(t) = 1
2c ε0E1 · E2 cos(∆ωt+ ∆φ(t)) (3.18)
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3.3 Optical Phase Locked Loops (OPLL)

Phase stabilising the Slave to Master Laser therefore ideally means ∆ω = const and
∆φ(t) = const.

3.3.1 External Cavity Diode Laser
For our experiments we use External Cavity Diode Lasers (ECDLs). Laser diodes offer
an inexpensive, durable and compact method of generating laser light. They use re-
combination processes from electrons and holes at the pn-junction of a semiconductor
to emit light. In case of population inversion between the valance and conduction band
stimulated emission is the dominant process. Population inversion is achieved by inject-
ing a current. The minimal current for this to happen is called threshold current Ith. In
contrast to an individual atom we have quasi continuous energy levels in semiconductors,
which lead to a broad emission spectrum of approximately ∆λ = 10 nm. Running a laser
diode single mode therefore requires additional frequency selecting elements, provided
by an external cavity. In an optical cavity of length L only modes of the light can exist,
which are capable of forming standing waves. This limits the allowed wavelengths to

k
λ

2 = L k ∈ N (3.19)

We have two cavities in our lasers. One cavity is the laser diode itself. The amplified
wavelengths are far apart and wide. The external cavity consists of a blaze grating in
Littrow configuration, which reflects the first order back into the diode, while the zeroth
order is decoupled and available as laser light.

Figure 3.8: Left: Littrow configuration ECDL Right: The overall gain is formed by
combination of the different gain profiles. Taken from [11]

The output power of a laser diode depends on the injection current and the temperature.
Figure 3.9 shows such a curve for constant temperature. Above the threshold current
Ith the power increases sharply, whereas below it only increases slightly. Here we are in
the regime of spontaneous emission with a large spectral width, similar to an LED. The
threshold current increases with temperature. After passing Ith, spontaneous emission
with a narrow line width dominates. Electrical power is now efficiently converted into
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3.3 Optical Phase Locked Loops (OPLL)

optical power. This is commonly characterised with the differential slope efficiency,
which is the slope above threshold current. Figure 3.10 shows the spectra of the Toptica
DL pro used in our laboratory for both regions.

η = ∆P
∆I (3.20)

Figure 3.9: Output power of a laser diode against injection current. Above Ith stimu-
lated emission starts to dominate
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Figure 3.10: Relative intensity of the DL pro below Ith compared to the carrier peak
at λ = 671 nm
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3.3.2 Phase noise
The main advantage of an OPLL compared to conventional frequency stabilization,
which does not take the phase of the signal into account, becomes clear when looking
at the power spectrum. In the Figure 3.11 one can see an unlocked signal (blue), in
which a frequency lock may shift the signal to the correct frequency but the shape
remains unchanged. A significant portion of the power is in frequencies outside the
carrier frequency. So this stabilization does not affect the noise. However, if we now
consider the power spectrum with additional phase stabilization (red), noise around the
carrier frequency is strongly suppressed and most of the power is contained in the carrier.
With help of phase stabilization, a very low-noise signal can be generated, being very
useful for applications in which phase coherence plays a decisive role.
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Figure 3.11: Shape of the beat signal with (red) and without phase locking (blue).
Phase locking suppresses noise around the carrier and most of the power
is contained in the carrier

An ideal sinusoidal signal would have a delta function as the power spectrum. However,
every signal is subject to processes that lead to a deviation from the desired frequency.
This leads to a blurred out spectrum around f0. Let us consider the beat signal in the
presence of noise.

E(t) = [E0 + A(t)] sin(2πf0t+ φ(t)) (3.21)
Where A(t) denotes the amplitude and φ(t) the phase noise. In our discussion of the
power spectrum, we neglect the amplitude noise. However, this is not irrelevant for driv-
ing Raman transitions. Amplitude fluctuations correspond to intensity changes, which
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3.3 Optical Phase Locked Loops (OPLL)

in turn, because of (2.8), lead to an undesired change in Rabi frequency.

In the rest of this section, we will discuss the propagation of phase noise in an OPLL
following [12], which will ultimately explain the shape of the beat signal in figure 3.11.

In order to discuss noise the Power Spectral density is (PSD) analysed. Therefore the
Fourier transform is usually calculated. Random stationary fluctuations however are in
general not square integrable, thus the energy ||E||22, where ||.||

2
2 is the L2- norm, or the

Fourier transform F {E(t)} in general do not exist. In this case time limited parts ET
of the signal are considered

ET (t) =
{
E(t), t ∈ [−T, T ]
0, t 6∈ [−T, T ] (3.22)

The average power during the interval [−T, T ] is then

1
2T

∫
R
|ET (t)|2 dt = 1

2T

∫
R
|F {ET (t)} (ω)|2 dω (3.23)

where equality to the integral over the Fourier transform is given by Plancherels theorem.
If we now demand that the average power of the signal is finite

lim
T→∞

1
2T

∫
R
|ET (t)|2 dt <∞ (3.24)

we can define the PSD SE(ω):

SE(ω) = lim
T→∞

1
2T |F {ET (t)} (ω)|2 (3.25)

The PSD is often defined as Fourier transform of the autocorrelation function

SE(ω) = F {rE(t)} (ω) = 1
2π

∫
R
rE(t) exp(−iωt) dt (3.26)

where rE(t)
rE(t) = 1

2T

∫ T

−T
E(t)E∗(t+ τ) dτ (3.27)

is the autocorrelation function of the signal E(t). The equality to the definition above
is given by the Wiener–Khinchin theorem.

For LTI systems noise with spectrum SNoise(ω) propagates as follows

SNoise, out(ω) = |H(ω)|2 SNoise, in(ω) (3.28)

where H(ω) is the noise transfer function. What does this mean for our OPLL? In order
to see how the noisy beat signal is changed by the phase lock, we have to determine
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the transfer function and spectral power density of the noise. In case of active phase
stabilization, we thus have:

SBeat noise, locked(ω) = |H(ω)|2 SBeat noise, unlocked(ω) (3.29)

The PSD SE(f) from the signal in (3.21) can be calculated using the equations above
and is given by

SE(f) = E2
0

[
(1− σ2

φ)δ(f − f0) + Sφ(f − f0)
]

(3.30)
where Sφ(f −f0) is the phase noise power spectral density of which the variance is given
by

σ2
φ =

∫ ∞
−∞

Sφ(f) df (3.31)

For a detailed calculation see [12]. The carrier only contains a fraction 1 − σ2
φ of the

total power, the rest is distributed around f0 described by Sφ(f). Since the spectrum in
general is symmetric around f0 one is usually interested in the single-sided phase noise,
which describes the noise power in a bandwidth of 1 Hz at f relative to the power in the
carrier at f0. It is common to use the unit dBc/Hz (dB carrier, dB relative to carrier
power) or rad2/Hz. Experimentally this is determined by measuring the power P (f)
using a spectrum analyser

Sφ(f) = 10
PE(f−f0)

10

RBW · 10
PE(f0)

10

(3.32)

where RBW is the resolution bandwidth of the spectrum analyser. The ratio between
carrier to total power is given by:

η = SE(f0)∫∞
−∞ SE(f) df (3.33)

The relation beween η and the phase noise variance is given by η = 1 − σ2
φ as one can

see from equation (3.30).

Each component in the loop is a source of noise. The VCO consisting of both lasers
however is the dominant noise source, with noise transfer function:

H(s)VCO = 1
1 +G(s) (3.34)

With equation (3.29) we get an expression describing how the beat noise propagates in
the OPLL,

Sφ,locked(f) =
∣∣∣∣∣ 1
1 +G(s)

∣∣∣∣∣
2

s=2πif
[Sφ,M(f) + Sφ,S(f)]︸ ︷︷ ︸

Sφ,unlocked

(3.35)

Where Sφ,M(f) and Sφ,S(f) are the phase noise of Master and Slave laser respectively.
The open loop gain G(s) can be approximated by

G(2πif) = K
e2πifτ

if
(3.36)
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Figure 3.12: Sφ,locked(f) for different gain values K. If we increase the gain, noise
around the carrier is strongly suppressed and the servo bumps arise.
Taken from [12].

where K is the overall linear gain. Assuming the unlocked noise of both lasers can be
modelled as a superposition of white and 1/f frequency noise we get

Sφ,unlocked(f) = (2π)2
[
Cw + C1/f

2πf

]
(3.37)

where Cw and C1/f are coefficients for each noise. Plugging (3.36) and (3.37) into (3.35)
yields:

Sφ,locked(f) = 1
f 2

∣∣∣∣∣ if

if +Ke2πifτ

∣∣∣∣∣
2

(2π)2
[
Cw + C1/f

2πf

]
(3.38)

Figure 3.12 shows Sφ,locked(f) for different gain values. If we increase the gain, noise
around the carrier is strongly suppressed and the servo bumps arise, which in combina-
tion with a delta peak leads to the shape of the beat in figure 3.11.
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4 Experimental Setup

4.1 Already existing Setup
This section gives a brief overview of the experimental setup for preparation of ultracold
Lithium atoms. More detailed information on the cooling processes can be found in the
literature ( [13], [14], [6]). Further information of our experimental setup can be found
in several theses from our group ( [15], [16], [17], [18]).

All experiments with ultracold atoms have to be performed in ultra high vacuum, other-
wise collisions with the background gas would lead to very short lifetime of the trapped
atoms, which makes experiments impossible. Figure shows the vacuum chamber with
several pumps (1),(2) ensuring a pressure in the order of 10−12 mbar at the position
where the atoms are trapped [15]. Fist the 6Li atoms are heated in a oven to around

Figure 4.1: Vacuum chamber. After leaving the oven (3) the atoms are slowed down
by the Zeeman slower (4) and then trapped by an MOT in the octagon
(5), where they are transferred into a dipole trap. Taken from [15].

360°C and slowed down by the Zeeman Slower from a initial velocity of 800 m/s to

30



4.1 Already existing Setup

60 m/s [17]. This is achieved with a counterpropagating laser beam resonant to the
D2 line (λ ≈ 671 nm). When absorbing a photon from the beam total momentum is
conserved, reducing the atoms momentum by p = h/λ with each absorption. Since the
spontaneous emitted photons do not prefer a spatial direction this results in a net force
decelerating the atoms. To compensate the Doppler shift a magnetic field is applied
with decreasing strength in direction of the octagon.

The next step is further cooling and trapping by a MOT (magneto-optical-trap). The
Zeeman slower is needed to reduce the velocity of the atoms to a range where they can
be captured by a MOT. Two separate mechanisms act in a MOT, one to cool the atoms,
the other to trap them at a certain position. The cooling is achieved by three pairs of
counterpropagating beams red-detuned from resonance, each of which is orthogonal to
one another. If an atom is now moving, the beam directed against the movement appears
blue shifted due to the Doppler effect. The detuning ∆ is reduced to ∆ − k · v. It is
therefore more likely that a photon will be absorbed against direction of movement and
the momentum transfer will reduce the velocity. A Taylorexpansion of the force for small
velocities yields F = −δv, with constant δ [13]. This is analogous to viscous damping in
mechanics and therefore also known as optical molasses. Since the Doppler effect plays
an important role this process is called Doppler cooling. The lowest temperature that
can be reached with Dopplercooling, the so-called Doppler limit, is

TD = ~Γ
2kB

(4.1)

For 6Li the Doppler limit is 140 µK [15]. With an optical molasses it is possible to
cool the atoms, but the force only depends on the velocity and not on the position, i.e.
in order to trap the atoms in a certain area,an additional position-dependent force is
necessary. This can be achieved by applying a magnetic quadruple field in addition to
the optical molasses. Near the center the magnetic quadrupole field is linear in each
spatial direction, therefore the energy splitting of the atomic lines is also linear. The
right choice of polarization of the red-detuned laser beams now ensures a resorting force
F = −δv−kx [13]. This is analogous to the restoring force in a spring with an additional
friction term.

The temperature is still too high to prepare a few atom system. Further reduction
through evaporative cooling in a dipole trap follows. The idea is to transfer atoms from
the MOT to a conservative potential and remove the hot atoms, while the remaining
rethermalize. This is similar to cooling of a hot cup of tea. An optical dipole trap set
up by a focused laser beam provides a nearly conservative potential. The electric field
of the laser induces a dipole moment on the atom p = αE, where α is the polarizability
of the atoms. The potential energy of this dipole in the electric field is given by [19]

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r) (4.2)
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where ω0 is the resonance frequency, ω the laser frequency and Γ the linewidth. The
potential is proportional to the beam intensity. Our dipole trap is realized with a far red
detuned λ = 1064 nm laser with maximum power of P = 200 W. By slightly decreasing
the overall intensity and thus lowering the trap depth, the atoms with highest kinetic
energy can escape, allowing the remaining to rethermalize. With this technique we can
prepare 40.000 atoms with a temperature of 250 nK [16].

Now a second 1064 nm laser is focused on the dipole trap creating the micro trap. This
beam has a waist of 1.15 µm [18]. This tightly focused beam in combination with the
large dipole trap results in a potential shown in figure 4.2. With this trick we create a
highly degenerate Fermi gas with occupation probability of nearly 1 for the lowest states.
After the states in the micro trap are populated the larger dipole trap is switched of

Figure 4.2: A tightly focused beam with waist of 1.15 µm is superimposed to the
dipole trap, creating the micro trap with high occupation probability for
the lowest levels. Taken from [16].

leaving us with around 1000 atoms in the micro trap [17].

Figure 4.3: Spilling in the micro trap. A magnetic field gradient lowers the trap, al-
lowing the highest atoms to escape. Taken from [16].

The last step to lower temperature and atom number is the spilling technique. By
adding a magnetic field gradient one side of the potential is lowered and the highest
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atoms can escape. After spilling the magnetic field gradient is switched off, restoring
the initial micro trap.
For imaging the atoms after performing the experiment we recapture them in a MOT,
called µMOT. The beams of the µMOT excite the atoms and the fluorescence signal
is focused onto a CCD camera. The intensity of the signal is proportional to the atom
number, allowing us to determine how many atoms are captured in the trap.

4.2 Phase Lock Setup
In our setup we use two external cavity diode lasers, the DL pro and DL 100 from the
manufacturer Toptica. Both lasers have a center frequency of λ = 671 nm. We will use
the DL pro as a slave and the DL 100 as a master laser. After light from the DL pro
passes a λ/2 plate, it is split into two beams by a PBS cube, one of which goes to the
second part of the setup, in which both lasers, the DL pro and DL 100 also referred as
Pump and Stokes laser, respectively, are combined and guided to the atoms, while the
other is brought together with light from the DL 100 by a Fiber Beam Splitter from
Thorlabs with a 50:50 coupling ratio. We use one with reduced length to around 30 cm,
instead of the standard commercially available with length of a meter in order to reduce
the time delay of the optical feedback loop. Since the light only propagates with 2/3c0
in the fiber, its length mainly determines the time delay τ of our loop. The beat signal
is now coming out at both outputs of the Fiber Beam Splitter.

Figure 4.4: Setup for phase locking the DL pro

One output is connected to a cavity. We use a Scanning Fabry Perot Interferometer
from Thorlabs. This spectrum analyser only transmits specific frequencies, which can
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be tuned by changing the length of the cavity by a piezo. The transmitted light is then
detected by a photodiode and displayed on an oscilloscope.
The cavity is mainly used for diagnosis reasons. For instance we noticed that the DL
pro was not running single mode at certain currents values near I= 45 mA. This can be
seen on the oscilloscope connected to the cavity and should be avoided in experiment.
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Figure 4.5: DL pro not running single mode for currents around I=45 mA. There is
an undesired amplification at λ = 664 nm. Mode selection by the grating
does not work properly here.

Light from the other output is focused on a photodiode with a lens, whereupon a Bias
Tee cuts off the DC part followed by three amplifiers. One part is split off and sent to
the Rohde and Schwarz spectrum analyser where we can observe the beat signal, the
other part is sent to our OPLL module, the Toptica FALC 110, which now regulates the
DL Pro. Two different control mechanisms are possible here. The current and voltage
regulation. Direct regulation of the diode current has a bandwidth of several Mhz and is
necessary for fast regulation such as phase locks, while additional voltage regulation of
the grating piezo has a bandwidth of a few 10 kHz and cancels out long-term frequency
drifts. In order to phase lock properly the beam on the photodiode should have a power
of 1 mW.

In the second part of the setup, both beams are sent through an acousto-optical modu-
lator (AOM). It allows us to give pulses of different time durations to the atoms and to
control the beam power . In an AOM, a piezo oscillator produces sound waves, usually
in the radio frequency range. These sound waves cause a periodic change in the crystal
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4.2 Phase Lock Setup

density and thus also a periodic change in the refractive index, which diffracts the in-
coming beam. The light leaves the AOM in different orders m ∈ Z, each at a different
angle θm and frequency f0 +mF , with the frequency shift F equal to the frequency of the
sound wave. We use a AOM with a frequency of F = 80 MHz. For the experiment we
use the order m = 1. Note that the frequency shift caused by the AOM does not affect
the beat frequency, since both beams are shifted by 80 MHz the frequency difference
stays the same.

Figure 4.6: Setup for guiding both beams to the atoms

Component Model no. Manufacturer
Slave Laser DL pro Toptica Photonics
Master Laser DL 100 Toptica Photonics
Phase Lock FALC 110 Toptica Photonics

Spectrum Analyser FSL 9kHz...6GHz Rohde & Schwarz
Fabry Perot Cavity SA200-5B Thorlabs
Fiber beam splitter PN670R5A2 Thorlabs

Photo diode G4176 Hamamatsu
Bias Tee ZX85-12G-S+ Mini-circuits
Amplifiers ZX60-14012L-S+ Mini-circuits
Splitter ZX30-17-5-S+ Mini-circuits
AOM AOMO 3080-120 Gooch & Housego

Table 4.1: Components used in the phase lock setup

For additional mechanical control a shutter is placed after the AOM. The beams then
passes a λ/2 plat and a Iris, that blocks other orders than the first. This is not to
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4.2 Phase Lock Setup

prevent other orders to be coupled into the fiber, which would not happen since they
are spatially separated, but it makes working with the setup easier. Coupled into the
fiber the beam is finally lead to the trapped 6Li atoms.
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5 Measurements

5.1 Incoherent background of the DL pro
The spectrum of the Toptica DL pro laser was recorded using the Tohrlab CCS175/M,
which is a CCD spectrometer with a wavelength range from 500 nm to 1000 nm. We are
particularly interested in the incoherent background. That is why we reduce the current
until the carrier peak at 671 nm can no longer be seen. If we now increase the current

Figure 5.1: Spectra of the Toptica DL pro Laser passing the threshold current. The
incoherent background remains constant, while the resonant mode increases
linearly with the current.

in small steps, we see that the intensity of the incoherent background increases until the
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5.1 Incoherent background of the DL pro

laser threshold Ith is reached. From here on, the intensity of the background remains
the same, while that of the peak increases linearly.

By looking at the spectrum, the threshold current was determined to be Ith = (31.6 ±
0.1) mA. A small peak resulting from stimulated emission can already be seen in the
upper left spectrum. Note that even in the bottom right spectrum the laser is running
on a much lower current than usual. The power in the carrier peak is significantly larger
for typical currents of 40-50 mA. Unfortunately spectra with higher current could not
be taken without further adjustments. The main limitation was the dynamical range
of the CCD spectrometer used. A higher current would lead to a saturated spectrum.
Special care should be taken when interpreting and recording the data. If one wants
to determine the ratio of power in the incoherent background to power in the carrier
PIB/PC for high currents (∼ 50 mA) based on the spectrum, the light must first be
dimmed such that the spectrum is no longer saturated. Although the power that goes
into the fiber is now reduced, the ratio of power in the background to power in the
carrier remains high. It turns out that it is so high that no photons are detected in the
incoherent background region and the power ratio can not be determined using the CCD
spectrometer. Another inaccuracy that has to be taken into account when calculating
ratios from the spectrum is that the spectrometer does not scale linearly with integration
time. For different integrations times ratios of certain areas in spectrum were off by a
factor of 2.

But why are we interested in the background at all? If we prepare an ensemble of atoms
in a dipole trap and expose them to a laser beam, the scattering rate consists of the
contribution from carrier and background:

Γsc = ΓIB + ΓC (5.1)

The scattering rate of the carrier that is detuned from resonance cannot be changed and
is given by (2.24). The incoherent background is now distributed over a wide range of
frequencies. We are particularly concerned about the part that is on resonance, eventu-
ally causing high scattering rates.

While the power of stimulated photons increases the incoherent background resulting
from spontaneous emitted ones however stays the same. What does that mean for our
purpose? Even though we can not reduce the spontaneously emitted photons we can
still increase the ratio between power in the main carrier and power in the incoherent
background by using high currents and thus minimize the relative contribution of the
background. We therefore set the current to roughly 52 mA, with the upper limit of the
DL pro being 55 mA.

The ratio PIB/PC was determined by placing a powermeter behind the λ/2 plate in front
of the DL pro. PIB = 0.5 mW was measured for I = 31.6 mA and Ptotal = 25.9 mW for
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5.1 Incoherent background of the DL pro

I = 52.32 mA. We obtain
PIB

PC
= PIB

Ptotal − PIB
≈ 2% (5.2)

The contribution of incoherent background to scattering rate can be determined as
follows. At first, atoms are prepared in the micro trap, which is then exposed to a
a laser beam. The number of atoms decays exponentially and the lifetime T can be
determined, of which the inverse Γ = 1/T yields the scattering rate. Now one measures
the lifetime Ttotal for a typical high current as used in the experiment, then the current
is turned down to Ith and the lifetime TIB is measured again. From this, the scattering
rates of the carrier and background can be calculated,

Γtotal = 1
Ttotal

= 1
TIB︸︷︷︸
ΓIB

+
( 1
Ttotal

− 1
TIB

)
︸ ︷︷ ︸

ΓC

(5.3)

as well as the relative influence of the background .

ΓIB

Γtotal
= Ttotal

TIB
(5.4)
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5.2 Performance of the OPLL

5.2 Performance of the OPLL
We phase lock our lasers with the Toptica FALC 110 and record the power spectrum of
the beat signal for different frequencies with the Rohde and Schwarz spectrum analyser.
The spectra were recorded with a resolution bandwidth of 10 kHz, video bandwidth of
100 Hz and sweep time of 5.2 s over a range of 5 MHz.
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Figure 5.2: Beat signals for different frequencies. Characteristic for a phase locked
laser is the narrow carrier.

One of the most important characteristics when evaluating performance of the loop is the
ratio between power in carrier to overall power. We calculate the ratios, by integrating
the spectra in the carrier region and dividing by the integral over the complete spectrum.
Furthermore we roughly determine the position of the servo bumps. For f0 = 250 MHz
there are no bums visible. While the lock provides satisfactory results for f0 = 1 GHz
and above, the performance for lower frequencies might not be sufficient for applications
where this range is needed. This however does not affect the Raman transitions we want
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5.3 Rabi Oscillations

to drive, since the beat frequency will be between 1 GHz and 2 GHz.

f0[GHz] Pcarrier/Ptotal [%] fservo bumps [MHz]
0.25 55
0.5 67 0.6
1 89 0.7
2 89 0.8

Table 5.1: Power in carrier and position of servo bumps for different beat frequencies

5.3 Rabi Oscillations
We want to drive Raman transitions between state |3〉 and |4〉 at B=685 G, where |3〉
is the initial state. Calculating the Raman rates according to [8], there are only two
possible pairs of polarisation (qP , qS) for the Pump and Stokes laser in order to drive
this transition:

(qP , qS) =
{

(π, σ−)
(σ+, π) (5.5)

For other polarisations the Raman rate is zero. We will use the DL pro as Stokes and
the DL 100 as Pump laser. We choose the polarisation (π, σ−), since we expect higher
a Rabi frequency based on calculations in [8].

The energy difference between state |3〉 and |4〉 at B=685 G is E/~ = 2π×1.77381 GHz
at which the Raman laser is phase locked to the free running Stokes laser. In order to
achieve large Rabi oscillations a collimated beam with beam diameter 4.3 mm is focused
with a f = 300mm lens onto the atoms. Assuming a Gaussian beam this leads to a
center waist of 30 µm. It is however highly doubtable that we actually hit the atoms
with this waist. The actual waist and intensities of the beams can be calculated by
measuring the Rabi frequency. For now lets assume we hit the atoms with a beam waist
of 30 µm. The intensity of a Gaussian beam is given by

I = 2P
πw2 (5.6)

where w is the waist. With the powers used in the experiment of PPump = 0.7 mW and
PStokes = 1.7 mW we obtain

IPump = 49.5W/cm2

IStokes, eff = 1
2IStokes = 60.1W/cm2 (5.7)

Why is there a factor of 1/2 for the Stokes beam intensity? Both beams are linearly
polarized. The Pump beam oscillates in direction of the magnetic field and thus is π

41



5.3 Rabi Oscillations

polarized, whereas the Stokes beam oscillates perpendicular to the field and is therefore a
superposition of equal amounts of σ− and σ+ polarisation, whereby the latter cannot be
used to drive Raman transitions. Hence, the σ+ component only contributes to inelastic
scattering.
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Figure 5.3: Expected Rabi frequency (a) and single photon scattering rate (b)

Now we still have to find the optimal detuning, such that β = ΩR/Γsc is high. The
Rabi frequency, single photon scattering rate and beta factor are calculated according
to [8]. Figure 5.3 (a) shows the Rabi frequency for our waist and intensities. A detuning
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5.3 Rabi Oscillations

of zero represents the D line without fine structure splitting. The peaks correspond
to resonance with the D1 or D2 line. Here not only the Rabi frequency but also the
scattering rate is high, which is shown in figure 5.3 (b).
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Figure 5.4: β factor (a) and Rabi frequency in between the D1 and D2 line and red
detuned to both lines

The β factor is shown in figure 5.4 (a). We have high values between the D1 and D2
line, red detuned and blue detuned to both lines. Although the β factor is higher by a
factor of roughly 1.3 in the red detuned region compared to in between the D lines, the
Rabi frequency is lower by a factor of 0.1 as shown in figure 5.4 (b). One has to keep in
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5.3 Rabi Oscillations

mind that we want fast oscillations, therefore not only the beta factor but also the Rabi
frequncy has to be considered. For instance the beta factor is roughly the same for a
detuning of 0 and 10 000 MHz, but the Rabi frequencies differ by a factor of two.
To achieve a high β factor, while maintaining fast Rabi oscillations we therefore choose
our laser frequencies such that they are in between the D2 and D1 line. The frequency
of the Pump laser is set to ω = 2π × 446.7937 THz. Figure 5.5 summarizes the config-
uration of both laser beams, where frequencies of the D1 and D2 line were assumed to
be ωD1 = 2π×446.789597791 THz and ωD2 = 2π×446.799650653 THz according to [20].

Pump laser Stokes laser

Figure 5.5: Configuration for driving Raman transitions between state |3〉 and |4〉 with
B = 685 G. All frequencies given are optical

With these values we would expect a Rabi-frequency of 13 MHz.

Now we have to find the resonant magnetic field, i.e. the field such that the detuning δ
from two photon resonance is zero. Looking at the formula for population in state |4〉

∣∣∣c|4〉(t)∣∣∣2 = Ω2
R

Ω2
R + δ2 sin2


√

Ω2
R + δ2

2 t

 (5.8)

one might think that it does not matter or even is better if δ 6= 0 since the Rabi
frequency gets higher. But the amplitude simultaneously gets smaller. A complete pop-
ulation transfer is therefore only possible if δ = 0.

We start with a (|1〉 , |3〉) mixture in the micro-trap. State |1〉 is shot out of the trap
by resonant light, for which the field is increased to B=795 G beforehand. The reason
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5.3 Rabi Oscillations

Figure 5.6: Atoms transferred to state |4〉 for different magnetic fields

for this is the weaker interaction between the two states than with 685 G. Too strong
interaction when one state is shot out, could lead to a loss from atoms in the other state.
The field is then reduced again to 685 G with only state |3〉 remaining trapped. The idea
is now to send the Ramen beam to the atoms for a duration T , with which we achieve a
population transfer in state |4〉. Then state |3〉 is shot out of the trap by resonant light.
Only atoms in state |4〉 then remain. In order to ensure that the atoms which are left
in the end are actually in this state, the Raman pulse can be omitted between the two
shot outs, which leads to no atoms at all remaining.

First, the resonance was found by scanning the magnetic field while the exposure time
of the two Raman beams is kept constant to T = 2.5 µs. The population transfer to
state |4〉 is shown in figure 5.6. The error in magnetic field is due to the fact that we
only have a magnetic field resolution of around 90 mG. The resonant magnetic field is
chosen to B=685.4 G.

Now we measure the population of state |4〉 for different pulse durations and thus obtain
Rabi oscillations.

The number of atoms in state |4〉 for a resonant transition is given by

N|4〉(t) = Nmax sin2
(

ΩR

2 t

)
(5.9)
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Figure 5.7: Rabi oscillations between state |3〉 and |4〉 at ΩR = 2π× (130.7± 0.2) kHz

Using the identity sin2(x) = 1
2(1− cos(2x)) we can rewrite this as

N|4〉(t) = Nmax

2 (1− cos (ΩRt)) (5.10)

To accurately describe the measurement we modify this to

N|4〉(t) = Nmax

2

(
1− cos (ΩRt) exp

(
− t

T

))
+N0 (5.11)

where the exponential describes the decoherence and N0 the offset. Single photon scat-
tering as well as magnetic field instability, which lead to phase fluctuations between laser
and atoms, are decoherence sources. Fitting this function to the measured data yields a
Rabi frequency ΩR of

ΩR = 2π × (130.7± 0.2) kHz (5.12)
Calculating back from this frequency we obtain a beam waist of 300 µm. We really do
not hit the atoms with center waist.
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5.4 Single Photon Scattering Rates

5.4 Single Photon Scattering Rates
We measure the scattering rate for both lasers with same frequency and intensity val-
ues as when driving the Raman transitions with a magnetic field of B=685 G. First a
(|1〉 , |3〉) mixture is prepared in the micro-trap, whereupon state |1〉 is shot out of the
trap by resonant light. Then we measure the lifetimes of atoms in state |3〉 for both
lasers one after the other.

We fit a exponential function to the data,

f(t) = A exp
(
− t

T

)
(5.13)

which yields the lifetimes:

TStokes = (0.286± 0.004) ms
TPump = (2.59± 0.04) ms (5.14)

For the Stokes laser the measured lifetime is significantly shorter, i.e. the scattering
rate is higher than for the Pump. Reasons for this could on the one hand be the higher
intensity IStokes/IPump ≈ 2.4 and on the other hand that the Stokes laser is closer to the
D1 line. Since only state |3〉 is in the trap, detuning of the Pump laser to the D1 line
with 4.07 GHz is the same as when driving Raman transitions but the Stokes laser is
now 1.77 GHz closer, resulting in a detuning of only 2.3 GHz.

Now the β factor can be calculated. The total scattering rate is given by

Γtotal = ΓPump + ΓStokes

= 1
TPump

+ 1
TStokes

(5.15)

With our Rabi frequency of (130.7± 0.2) kHz this yields a beta factor of

β = (33.66± 0.05) (5.16)
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5.4 Single Photon Scattering Rates

Figure 5.8: Lifetime measurement for the Stokes laser
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Figure 5.9: Lifetime measurement for the Pump laser
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6 Conclusion and Outlook
We successfully performed Raman transitions between ground states |3〉 and |4〉 with a
Rabi frequency of ΩR = 2π × (130.7 ± 0.2) kHz. The phase lock setup can be used for
further experiments where phase coherence is needed. The lock quality for beat frequen-
cies above 1 GHz is satisfactory with over 80% of power in the carrier, however below
it might not be sufficient and other methods may have to be employed, if this range is
needed. Note that the spectra were taken with a resolution bandwidth of 10 kHz. The ac-
tual percentage of power in the carrier might be a bit smaller than our calculated values.

The current setup is not yet optimal, there is still room for improvement. Our measured
Rabi frequency of 130 kHz is well below the theoretically expected of 13 MHz. The
reason for this is that we do not hit the atoms with beam center. An increase in Rabi
frequency can also be achieved by increasing the power, but a smaller waist is more effi-
cient since the intensity goes linearly with the power but anti proportional to square of
the waist. An increase in the intensity would not change the β factor. One might there-
fore think there is no benefit in doing so. However, if the Rabi frequency is sufficiently
high, not only a quick population transfer can be achieved but the influence of magnetic
field fluctuations can also be overcome and thus the influence of one decoherence source
is reduced.

We phase-locked the DL pro to the free running DL 100. Hence the latter has no stable
frequency. Let us assume that the DL 100 has a small frequency shift δf . To ensure a
stable frequency difference, the phase lock now reacts by regulating the DL pro and shift-
ing its frequency by the same amount. The beat signal is therefore stable but frequency
fluctuations of the DL100 directly translate into fluctuations of detuning δf = δ∆, which
in turn lead to an unstable Rabi frequency. An additional frequency stabilization of the
DL 100 would solve this problem.

The fluctuations in power of the lasers were also not taken care of; a lack of stabiliza-
tion leads to intensity fluctuations which, due to (2.8), also lead to an unstable Rabi
frequency. An additional AOM in the second part of the setup, which is used to stabilize
power, would solve this problem.

The relative contribution of incoherent background to inelastic scattering rate can be
measured as described in section 5.1.
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