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Zusammenfassung:
Kalte Atome bieten eine einzigartige Möglichkeit Vielteilchen-Quantensystem ver-
schiedenster Art im Labor zu simulieren und zu untersuchen. Insbesondere im
Regime kleiner, zweidimensionaler Systeme weniger Teilchen erlaubt die wieder-
holte Messung der Position der verschiedenen Teilchen einen Zugang zu der vollen
Vielkörper-Wellenfunktion des präparierten Quantenzustands. Die experimentelle
Simulation solcher Systeme ist vor allem auch deswegen interessant, da eine the-
oretische Beschreibung häufig nur sehr schwer möglich ist. Auf der einen Seite
enthalten sie zu viele Teilchen, als mit herkömmlichen numerischen oder gar ana-
lytischen Methoden zu erfassen wäre, auf der anderen Seite sind sie aber zu klein,
um eine statistische Beschreibung im thermodynamischen Limes zu ermöglichen.
Der erste Teil dieser Arbeit befasst sich daher mit neuen numerischen Methoden
in dem Versuch, mit der Entwicklung derzeitiger Experimente Schritt zu halten.
Im Gegensatz dazu befasst sich der zweite Teil mit der experimentellen Umset-
zung eines erst kürzlich vorgeschlagenen experimentellen Protokolls zur Erzeugung
stark korrelierter Zustände des fraktionellen Quantenhalleffekts. Diese Zustände
zeichnen sich durch einen hohen Gesamtdrehimpuls aus. Zu deren Präperation soll
der dazu notwendige Drehimpuls durch den Einsatz rotierender optischer Fallen
in das System transferiert werden. Der Aufbau der benötigten optischen Instru-
mente und auch die Fortführung der bestehenden numerischen Arbeit hin zu einer
Beschreibung des Systems unter realistischen experimentellen Bedingungen sind
Hauptbestandteil des zweiten Teils dieser Arbeit.

Abstract:
Cold atoms provide an exciting opportunity to simulate and investigate various
many-body quantum systems in the laboratory. Especially in the regime of small,
two-dimensional systems of small particle number the repeated measurement of
the position of the different particles provides access to the full many-body wave-
function of the prepared quantum state. The experimental simulation of such
systems is especially interesting, since a theoretical description is often times very
hard to achieve. On the one hand they contain too many particles for conven-
tional numerical or even analytical methods to handle, on the other hand they
are too small to allow for a statistical description in the thermodynamic limit. In
the first part of this thesis new numerical methods are explored trying to keep up
with advances of current experiments.
On the contrary, the second part deals with the experimental realization of a
recently proposed experimental protocol for the creation of strongly correlated
states of the fractional quantum Hall effect. These states are characterized by
a high total angular momentum. For their preparation the necessary angular
momentum will be transferred into the system by using rotating optical traps.
Setting up the needed optical devices and continuing the existing numerical work,
in order to describe the system under realistic experimental condition will be the
major subject of the second part of this thesis.
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1 Introduction

With the realization of the first Bose-Einstein condensates in vapors of bosonic ru-
bidium and sodium atoms in 1995[Anderson et al., 1995][Davis et al., 1995], interest
in the field of ultracold atoms has grown explosively. In the following years substan-
tial effort was made to push the investigated systems beyond mean field physics in
the hope to find signals of strong interactions and correlations. A further milestone
on this rode was achieved in 1999 with the first demonstration of Fermi degener-
acy[DeMarco and Jin, 1999]. Both fermionic and bosonic gases soon proved to be
highly tunable and clean systems capable of providing an excellent environment for
the simulation of several important models from many-body physics. Since their
early days ultracold atoms hence have been used to address physics of strongly cor-
related matter. Prominent success stories are for example the observation of the
BEC-BCS crossover [Regal et al., 2004][Zwierlein et al., 2004] which can be used to
describe high temperature superconductors [Leggett, 1980][Nozières and Schmitt-
Rink, 1985] and the simulation of important models like the Hubbard, Heisenberg
and Haldane model by means of an optically created periodic potential landscape.
While early experiments were limited to run with a large number of particles recent
experimental advances now allow for the deterministic preparation of small systems
down to single atoms. Accompanied with the development of new tools to resolve
the atomic cloud on a single particle level, this opened up the path to investigate
many-body phenomena outside of the thermodynamic limit. Such mesoscopic sys-
tems pose an inherent challenge to our current understanding being too large to be
exactly solvable and yet to small to be describable on the mean field level. In very
recent experimental work precursors of typical many-body phenomena like quan-
tum phase transitions [Bayha et al., 2020] and cooper pairing [Holten et al., 2021a]
could be observed in surprisingly small systems of 6 to 12 particles. Exploring new
numerical tools [Haverkort et al., 2012] to keep up with these recent experimental
advances will be the first part of this thesis.
Besides investigating the transition from few- to many-body physics, systems of
small particle number promise to be an excellent platform for the realization of
fractional quantum Hall states. In contrast to experiments conducted in semicon-
ductors, where the fractional quantum Hall effect originally appears, which are often
times limited to the study of bulk properties, ultracold atoms offer the exciting op-
portunity to probe the states locally, thereby accessing particle correlations directly.
A number of quantum gas experiments were already performed with the purpose of
preparing a fractional quantum Hall state and probing its correlations [Schweikhard
et al., 2004][Zwierlein et al., 2005][Gemelke et al., 2010]. However, so far quantum
Hall physics could only be accessed in a mean field regime. Interestingly, the problem
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Chapter 1. Introduction 9

was mostly one of size and it is argued that clear signals of the fractional quantum
Hall effect are only observable in systems of few particles. A novel approach to this
problem was explored in [Palm, 2018], investigates the realization of fractional quan-
tum Hall states with filling fraction ν ≤ 1 in a system of a few 6Li atoms. By using a
single optical rotating microtrap a target fractional quantum Hall state is prepared
deterministically. Subsequently releasing the atoms from the trap and imaging them
after a time of flight [Bergschneider et al., 2018] gives access the modulus of the full
few-body wavefunction from which correlations can be extracted. The second and
mayor part of this thesis will be devoted to following up on this proposal. Besides
implementing the optical setup in our current experiment an additional effort is
made to numerically study the system under realistic experimental conditions.

Outline

This thesis will be outlined as follows. In chapter 2 we will discuss some of the
physical fundamentals about ultracold atoms in general and 6Li in particular. We
will then turn towards the theoretical description of our current experimental sys-
tem consisting of interacting atoms in a two-dimensional trap in chapter 3. Here
also the numerical approach used throughout this thesis will be introduced. After
testing this approach in a system with known analytical solution we will consider
the recent experimental observation of the precursor of a quantum phase transition
for which the excitation spectrum will be computed.
A mayor part of this thesis will be devoted to chapter 4 which deals with the im-
plementation of the rotating trap proposal aiming at the observation of fractional
quantum Hall states. Finally, we conclude in chapter 5.



2 Fundamental Physics of Ultracold
Atoms

In this chapter we want to familiarize ourselves with the most important ingredients
and concepts needed to understand the physics of small mesoscopic systems of ul-
tracold atoms. Throughout this thesis a major focus will be put on the interactions
between the atoms and hence we will devote a substantial part of this chapter to
the discussion of scattering theory and the s-wave interactions emerging at ultracold
temperatures. Typically for systems of small particle number the level spacing of
the trapping potential poses a relevant energy scale with respect to the compara-
tively low Fermi-energy. As a consequence it is the interplay of interactions and the
level spacing in the trap that determines much of the ongoing physics. We quickly
touch this subject discussing two interacting particles in a harmonic trap where we
will also see how a quasi two-dimensional regime can be realized by a harmonic trap
that is considerably tighter in one dimension. Finally, we will discuss the properties
of 6Li, the atom of choice, especially focusing on its Feshbach resonance and how
systems of few 6Li-atoms can be prepared deterministically.

2.1 Scattering Theory

We begin with a discussion of scattering theory starting on very general grounds.
To this end let us investigate the Schrödinger equation of one particle interacting
with a potential V̂

E |ψ〉 = (Ĥ0 + V̂ ) |ψ〉 , (2.1)

where Ĥ0 = p̂2

2µ
is the Hamiltonian of the free particle with mass µ. Seeking scat-

tering, i.e. unbound, states we restrict ourselves to solutions with E > 0 (assuming
that V (r)→ 0, r →∞). Given a Green’s operator Ĝ0(E) fulfilling

(E − Ĥ0)Ĝ0(E) = 1 (2.2)

we get a formal solution to eq. (2.1) by

|ψ〉 = |ψ0〉+ Ĝ0(E)V̂ |ψ〉 , (2.3)

where |ψ0〉 is any solution to the free problem (V̂ = 0). Since we expect to recover
the free solution |k〉 in the limit V̂ → 0, we choose |ψ0〉 = |k〉 with E = ~2k2

2µ
, leaving

us with a whole family of solutions |ψk〉.

10



Chapter 2. Fundamental Physics of Ultracold Atoms 11

To proceed we need to solve eq. (2.2) which is most conveniently done in k-space.
Introducing small iε-terms to avoid poles on the real line yields several possible
solutions depending on the location of the shifted poles. Most importantly one finds

Ĝ±0 (k) =
2µ

~2

∫
ddq

(2π)d
|q〉 〈q|

k2 − q2 ± iε
=

1

E − Ĥ0 ± iε
, (2.4)

being termed the retarded (+), advanced (−) Greens operator, respectively 1. With
the Ĝ±0 at hand we now obtain an expression for the scattering solutions (2.3), known
as the famous Lippmann-Schwinger equation:

|ψk〉± = |k〉+
2µ

~2

∫
ddq

(2π)d
|q〉T±q,k

k2 − q2 ± iε
, T±q,k = 〈q| V̂ |ψk〉± . (2.5)

We may now choose a Green’s function according to the boundary conditions we’re
interested in. As is discussed in Weinberg [2005]2, wavepackets formed with the
scattering states |ψk〉± (also termed in- and out-states) evolve like free wavepackets
in the distant past or future, respectively, i.e.

e−iĤt
∫
g(k) |ψk〉±

t→∓∞−−−−→ e−iĤ0t

∫
g(k) |k〉 .

Because we are interested in the scattering of an incoming particle off the poten-
tial, we naturally choose the retarded solution. Nevertheless, the advanced so-
lution is of importance as it allows for a convenient definition of the S-matrix,
Sk′,k = − 〈ψk′ |ψk〉+, connecting the theory to experimental observables like the
cross section.
Let us now proceed by going to position-space, making the above statements more
explicit. Expressing the Lippmann-Schwinger equation on a basis of position eigen-
states |x〉, where 〈x|k〉 = eik·x, yields

ψ±k (x) = eik·x +
2µ

~2

∫
ddyG±k (|x− y|)V (y)ψ±k (y). (2.6)

The Green’s functions G±k (r) are obtained by evaluating the corresponding Green’s
operators in the position basis. We merely state the result for the interesting cases
of two [Adhikari, 1986] and three dimensions

G±0,k(r) ≡
~2

2µ
〈x|Ĝ±0 (k)|y〉 =


− i

4
H±0 (kr) in 2D

− 1
4πr
e±ikr in 3D

, r = |x− y|. (2.7)

Here H±0 are the Hankel-functions of the first and second kind, respectively.
In order to describe the scattering process, one usually just cares about the evolution

1The other possible solutions resulting from this procedure can be expressed in terms of the Ĝ±0 .
Since they correspond to a stationary wave, they are not relevant for our current discussion.

2A less abstract discussion can be found in Bartelmann et al. [2014].
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of the incoming wavepacket after the scattering event, when the particle has long left
the interaction region. Thus, we finally state eq. (2.6) evaluated at large arguments

ψ±k (r, θ)
r→∞−−−→

 eikx +
√
i/(kr)f±(k, θ)e±ikr in 2D

eikx + f±(k, θ)e±ikr/r in 3D
, (2.8)

where without loss of generality we chose k ‖ êx and θ = ](x, êx). Furthermore,
we introduced the scattering amplitude f(k, θ) given by

f±(k, θ) = − µ
√

2π
d−1~2

∫
ddy e∓ik

′·yV (y)ψ±k (y) ∼ T±k′,k, k′ = kx/r. (2.9)

We observe that for both the two and three dimensional case the scattering solution
asymptotically looks like a superposition of an incoming plane wave and an outgo-
ing or incoming spherical wave, depending on whether one chooses the retarded or
advanced solution, respectively. The outgoing spherical wave can be interpreted as
a scattered wave originating in the scattering center and describes the effect of the
interaction with the potential as seen from a large distance. This fits our previous
observation that the retarded solution corresponds to an incoming free particle scat-
tering off the potential.
Finally, we note that the form of eq. (2.8) in two dimensions differs to the three
dimensional case by a factor of

√
i/k. As pointed out by [Adhikari, 1986] this factor

ensures the correct analytic properties of the scattering amplitude f(k, θ).

2.1.1 Partial-wave analysis

Throughout the rest of this thesis we will only deal with the important subclass of
scattering potentials obeying rotational symmetry, i.e. V = V (|x|). In such cases
it is convenient to expand the scattering solutions in terms of angular momentum
eigenfunctions, simplifying the Schrödinger equation to an ODE for the radial coor-
dinate.
Further assuming that V drops to zero sufficiently fast, we approximate V (r) =
0, r ≥ R for some large radius R. In that region the radial Schrödinger equation
reduces to the well-known Bessel equation and we can immediately write down a
general solution in terms of (spherical) Hankel functions of the first and second kind.
The expansion of the scattering wavefunction for r ≥ R is then given by

(2D) ψk(r, θ) =
∞∑
m=0

im
εm
2

cos(mθ)
[
H−m(kr) + e2iδmH+

m(kr)
]

(3D) ψk(r, θ) =
∞∑
l=0

il(2l + 1)Pl(cos θ)
1

2

[
h−l (kr) + e2iδlh+

l (kr)
]
.

(2.10)

Here hl are the spherical Hankel functions, Pl(x) are the Legendre-polynomials and
εm = 2 − δm0. Further l ∈ N labels states with total angular momentum L2 =
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~2l(l+1) in three dimensions, whilem ∈ Z labels the angular momentum eigenstates
in two dimensions, i.e. with angular momentum M = ~m. Note that we already
fixed the constants of integration such that the expansion eq. (2.10) matches the
asymptotic form eq. (2.8) at large radii. The only remaining degrees of freedom are
the so called scattering phases δl which are taken to be real in order to satisfy the
conservation of probability (reflecting the coherence of the scattering process). The
scattering phases depend on the energy as well as the concrete scattering potential
V and are fixed via matching the expansion eq. (2.10) with the inner solution for
r < R at R.
The partial waves asymptotically behave like ∼ cos(kr + δl(k) + constl). Hence,
when viewed from a large distance, the effect of the interaction with the potential
is either to pull the partial waves towards the center (δ > 0) or to push them away
(δ < 0) as compared to the free evolution. We therefore call the interaction either
attractive or repulsive.
Lastly, by again considering the asymptotic behavior of eq. (2.10), we can relate the
scattering amplitude to the partial waves as

f(k, θ) =


√

2
π

∑
m εmfm(k) cosmθ, fm = eiδm(k) sin δm(k) in 2D

∑
l(2l + 1)fl(k)Pl(cos θ), fl = 1

k
eiδl(k) sin δl(k) in 3D

. (2.11)

2.1.2 Low energy scattering

We have seen in eq. (2.9) that the scattering amplitude is directly given by the on-
shell T-matrix, the analytic structure of which it therefore inherits. This allows one
to derive a number of important theorems, most prominently the optical theorem.
In the context of ultracold atoms the low-energy or effective range expansion of the
scattering phases is of great interest as it allows to greatly simplify the theoretical
description of the scattering process. For a large class of potentials it can be shown
that the 3D scattering phases omit an analytic expansion k2l+1 cot δl(k) = cl0 +
cl1k

2 + O(k4), which allows us to write the 3D scattering amplitudes as [Joachain,
1975]

fl(k) =
1

k cot δl(k)− ik
=

k2l

cl0 + cl1k2 +O(k4)− ik2l+1
. (2.12)

In the k → 0 limit, which is the typical situation for ultracold atoms, only the l = 0
(or s-wave) channel can acquire a finite value. Since all other scattering amplitudes
go to zero, the scattering becomes isotropic. This is the quantum analogue of the
classical angular momentum blockade which prevents a particle with angular mo-
mentum to penetrate deeply into a central potential.
Defining the (s-wave) scattering length a = − 1

c00
= limk→0− tan δ0(k)

k
and effective

range reff = 2c01, the scattering wavefunction takes on the following simple form

ψk(r, θ) ≈ eikx +
−a

1 + ika

eikr

r
, r ≥ R, (2.13)
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provided |reffk| � 1. Note that the scattering amplitude a can be either positive or
negative depending on whether the potential is repulsive or attractive, respectively.
A similar story holds in two dimensions where one finds [Randeria et al., 1990]
cot δ0 = 1

π
ln(E/Ea) + O(E/εR), with εR = ~2

2µR2 . Ea is parameterizing the low
energy scattering off a given potential and has units of energy. By introducing the
2D-scattering length as Ea = ~2

2µa2
one finds cot δ0 = 2

π
ln(ka) + O(k2/εR). This

matches the definition of Idziaszek and Calarco [2006] in which the authors relate
the 2D-scattering length to the 3D case in the experimentally accessible quasi-2D
regime in a harmonic trap. The scattering solution in two dimensions then becomes

ψk(r, θ) ≈ eikx +
πi

2 ln(ka)− iπ
H+

0 (kr), r ≥ R. (2.14)

Note that in contrary to its three dimensional counterpart the 2D-scattering length
is always positive.

2.1.3 Pseudopotentials

We have seen that in the k → 0 limit the scattering process is effectively described
by only one parameter, the s-wave scattering length. Intuitively, this can be antici-
pated, as the deBroglie-wavelength of the scattering particle is too large to resolve
the details of the potential. When compared to the length scale of the scattering
solution, 1

k
, the size of the potential becomes arbitrarily small, i.e. kR � 1, and

we are tempted to ignore the actual form of ψk(r) inside the potential completely.
Extending the r ≥ R solution to all of space one observes the following diverging
behavior of the wavefunction as r → 0, where the three-dimensional case is known
as the Bethe-Peierls boundary condition [Bethe and Peierls, 1935]

ψk(r) ∼


ln(reγ/2a) in 2D

(1
r
− 1

a
) in 3D

. (2.15)

In fact, enforcing these boundary conditions yields the approximative low energy
solutions discussed so far as exact scattering solutions for the free Hamiltonian. Be-
yond the scattering solution, one finds a single bound state for arbitrary scattering
length in two dimensions and for positive scattering length in three dimensions.
The bound state has energy Eb = − ~2

2µa2
in two and three dimensions [Whitehead

et al., 2016]3[Giorgini et al., 2008] and its spatial extension is given by the scattering
length. Note that the bound state only yields an accurate, physical description if
the scattering potential actually hosts at least one shallow bound state.
Finally, it is also possible to enforce the boundary condition eq. (2.15) by means of a

3Note that Whitehead et al. [2016] use a different definition of the 2d-scattering length ã which
is matched by identifying ã = 2ae−γ .
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regularized delta function or a simple delta function gδ(d)(~r) with appropriate renor-
malization of the coupling constant g. Such potentials are termed pseudopotentials
or, since they involve delta functions, contact interactions.

2.1.4 Scattering of identical particles

The potential scattering discussed so far is easily extended to describe the scattering
between particles interacting via a potential V (|x1−x2|). Like in the classical case
the problem can be separated into a free motion of the center-of-mass coordinate
and an interacting problem for the relative coordinate x = x1 − x2. The latter is
formally equivalent to the case of potential scattering, where only the mass of the
particles m1 and m2 has to be replaced by the reduced mass µ = m1m2

m1+m2
.

Interesting consequences arise when the scattering takes place between identical
particles. The total wavefunction (including additional degrees of freedom like spin)
has to fulfill the (anti)-symmetry condition

Ψ(x1,x2) = ±Ψ(x2,x1), (2.16)

where the positive sign is picked for bosonic and the negative sign for fermionic
particles. This condition translates to

ψ(x) = ±ψ(−x) (2.17)

for the relative wavefunction ψ. Taking a scattering solution ψk(x) the symmetriza-
tion condition is straightforward to implement via

ψ±,k(x) =
1√
2

(ψk(x)± ψk(−x)) . (2.18)

The partial waves of the solutions (2.10) have parity (−1)m, (−1)l under the trans-
form x → −x (or θ → π − θ) and hence all even angular-momentum channels
vanish in ψ−,k, all odd channels in ψ+,k, respectively . This has especially drastic
consequences for fermions in the low energy regime. If there is no other degree of
freedom left, the radial wavefunction has to be antisymmetric and thus the s-wave
scattering is suppressed completely. Particularly, this means that fermionic particles
of like spin do not interact at low energies.
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Figure 2.1: Energy spectrum in quasi-2D
Comparing the exact quasi-2D energy spectrum with the pure 2D-approximation in
a pancake trap with aspect ratio ωz/ω = 10. The energy is plotted as a function
of the inverse 3D-scattering length (in units of the relative axial harmonic oscillator
length dz) and the corresponding 2D interaction parameter (2D-scattering length in
units of the relative 2D harmonic oscillator length d), respectively. Only the relative
motion states are depicted. The pure 2D-solution is shifted to match the 3D vacuum
energy of the quasi-2D solution.

2.2 Interacting particles in a harmonic trap

So far we have only studied the scattering properties of particles in free space.
However, the experimental reality looks different, as particles are confined in usu-
ally harmonic, or close to harmonic, traps. This significantly alters the inter-particle
scattering leading to a series of bound states instead of a continuous scattering spec-
trum. Still assuming the validity of the low energy description, analytic results have
been derived for two particles in anisotropic harmonic traps for different dimensions.
We merely state the results here as a more detailed discussion is given later in the
context of numerical methods anyway. Busch et al. [1998] find the radial (m = 0)
energy spectrum 4 for two interacting particles in an isotropic two-dimensional har-

4I.e. after separating the problem in center-of-mass and radial coordinates as will be laid out
later. Moreover, only states of zero relative angular momentum are coupled by the contact
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monic trap to be given by

ψ

(
1

2
− E

2~ω

)
= 2 ln(d/a) = 2 ln(

√
2l0/a), (2.19)

where ψ is the Digamma function, l0 =
√

~/mω and d =
√

2l0 are the harmonic os-
cillator length in the full and the relative system, respectively, a is the 2D-scattering
length describing the inter-particle scattering, m is the particles mass and ω is the
trapping frequency.
Experimentally, a two-dimensional trap can be realized by making the trapping fre-
quency along one axis, say the z-axis, ωz much larger than along the remaining axes.
Starting from an arbitrarily shaped three dimensional harmonic trap Idziaszek and
Calarco [2006] have identified this quasi-2D regime. They relate the 2D-scattering
length to the 3D-scattering length by

a ≈ dz√
2

exp

(
1.938

2
−
√
πdz

2a3D

)
, (2.20)

with the relative axial harmonic oscillator length dz =
√

2~/mωz. The 2D-description
is found to be valid provided that |E − ~ω|/~ωz � 1 holds.
The energy spectrum of the relative motion in a quasi-2D pancake-shaped trap is
depicted in Fig. 2.1. In comparison to the exact quasi-2D solution [Idziaszek and
Calarco, 2006] the pure 2D-solution with the 2D-scattering length given by eq. (2.20)
and the non-interacting spectrum for states with zero relative angular momentum
are plotted. Firstly, we observe that the non-interacting solution is recovered in
the limit a3D → 0−, corresponding to a vanishing interaction potential between
the atoms. Furthermore, the ground state energy is well-described on the entire
negative branch a3D < 0. On the other hand, for positive 3D-scattering lengths,
the true ground state energy is only well-approximated in the regime a3D/dz � 1.
This can be understood intuitively as follows. For positive scattering lengths the
scattering potential becomes sufficiently deep to host a two-body boundstate (the
dimer- or halo-molecule-state), the spatial extension of which is given by the 3D-
scattering length. The 2D-approximation now breaks down once the size of the dimer
becomes smaller than the axial-confinement of the trap and the molecule-states re-
covers its three dimensional nature. Alternatively, and perhaps more rigorously, the
same statements can be derived by looking at the approximation of the ground state
E0−E
~ωz ≈ 0.288e

√
πdz/a3D , valid for |E−E0|/~ωz � 1 [Idziaszek and Calarco, 2006]. As

stated above, this is exactly the regime in which we expect the pure 2D-description
to be valid.
As long as one is just interested in a few of the lowest excited states, the system
might nevertheless be accurately described as 2D in the regime 0 < a3D/dz � 1 .
While it may seem odd in the beginning to simply ignore the deeply bound dimer-
state, this situation is actually of great experimental relevance. Namely, when the

interaction. The spectrum of the uncoupled states is omitted for clarity.
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ultracold gas is prepared on the positive branch of the Feshbach-resonance (a3D > 0)
the overlap between the ’warm’ gas and the molecular-ground state is too small to
significantly populate the latter during the cooling process. If the experimental situ-
ation allows us too neglect the dimer-state beyond some binding energy on the scale
of the level spacing ~ω we expect the pure 2D-description of the bound state and
the lowest excited states to be accurate in the regime |a3D/dz| � 1.

2.3 Properties of 6Li

All experiments carried out in our group work with 6Li. With its three protons,
neutrons and electrons this isotope behaves fermionic in nature. Two of the three
electrons fill the 1s-shell and hence the electronic ground state is determined by the
remaining valence electron in the 2s level, resulting in orbital angular momentum
L = 0 and total electronic angular momentum J = 1/2 from the electrons spin. Fig.
2.2A shows the level structure of 6Li, in particular it shows the optical D1 and D2

transitions at around 671 nm between the ground state and excited manifolds and
the hyperfine splitting due to coupling of the angular momentum J of the electron
to the spin I = 1 of the nucleus. Fig. 2.2B shows the splitting of the hyperfine
levels in an external magnetic field. Beyond 100 G the splitting is well described
by the Paschen-Back effect as the coupling of the magnetic field to the spin of the
electron and the nucleus become stronger the spin-orbit coupling. In this limit
the three lowest states are given by |−1

2
, 1〉 , |−1

2
, 0〉 and |−1

2
,−1〉, labeled by the

z-projection of electronic and nucleus spin, respectively. Experiments are usually
performed in the region of [250, 1000] G using two of these three states which allows
the system to be formally described as a spin-1/2 system. The splitting of ∼ 80
MHz between the states, corresponding to ∼ 3.8 mK, is much larger than the typical
temperature of the gas reached during cooling of less than 1 µK [Klemt, 2021], and
hence any thermal effects altering the nuclear spin state of the atoms can be safely
neglected. Furthermore, protocols between all six states |1〉-|6〉 can be implemented
experimentally via direct radio-frequency transitions [Klemt, 2021] or alternatively,
by optical Raman-transitions via states in the excited manifold [Abbas, 2021].
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Figure 2.2: Hyperfine spectrum of 6Li and Zeeman splitting
A - Hyperfine level structure of 6Li at zero magnetic field. The experimentally
relevant states are hosted in the ground state 22S1/2-manifold. The optical D1 and
D2 at around 671 nm are used for cooling, trapping and imaging the Lithium gas.
B - The hyperfine manifolds split further in the presence of a magnetic field. The
experimentally relevant states are the three lowest states |1〉, |2〉, |3〉. Beyond 100
G they enter the Paschen-Back regime and are split by 80 Mhz ∼ 331 neV ∼ 3.8
mK. Taken from [Klemt, 2021].



Chapter 2. Fundamental Physics of Ultracold Atoms 20

Figure 2.3: Feshbach resonance of 6Li
a - A sketch of the inter-atomic potential of 6Li. The potential strongly depends on
the spin-wavefunction of the colliding atoms valence electrons which can either be
in a spin-triplet (VT ) or spin-singlet (VS). Due to the external magnetic field the
potentials are shifted depending on the total spin-projection of the electrons. Note
that the arrows only indicate the electron spins! Taken and adapted from [Ketterle
and Zwierlein, 2008]. b - The Feshbach resonance of 6Li occurs when the bound state
becomes energetically accessible which is accompanied by a pole in the scattering
length. For each mixture of the states |1〉 − |3〉 the inter-atomic potentials look
slightly different, giving rise to different scattering lengths and resonances. Taken
from [Klemt, 2021].

2.3.1 The Feshbach-resonance of 6Li

At low temperatures the scattering properties of the Lithium atoms can effectively
be described by only one parameter, the s-wave scattering length. Luckily, the scat-
tering process is often times sensible to external magnetic fields and even exhibits
scattering resonances, where the scattering length quickly runs over a large range
of negative and positive values. These so called Feshbach-resonances allow one to
tune the interaction between the atoms from non-interacting to strongly attractive
or repulsive, making them ideal candidates for quantum simulation. An extensive
discussion of this subject can be found in [Chin et al., 2010] and we merely want to
recap a few important results here.
Like the level structure, the inter-atomic potential of Lithium is greatly influenced
by its valence electron. When two atoms collide, their valence electrons can be in a
symmetric spin triplet or an antisymmetric spin singlet state. Since the electronic
wavefunction has to be antisymmetric in total, the spatial part of the wavefunction
correspondingly has to be of opposite symmetry. In the triplet state the antisym-
metric spatial wavefunction has a knot whenever the position of the two electrons co-
incides and hence the electrons tend to avoid each other. This leads to less screening
of the positively charged nuclei, i.e. stronger repulsion and a in total less attractive
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(Born-Oppenheimer)-potential VT (R) for the atomic separation R as compared to
the singlet-case. Both the singlet potential VS(R) and the triplet potential VT (R)
are depicted in Fig. 2.3a. From Fig. 2.2B we see that the spin -1/2-states (|1〉-|3〉)
and spin +1/2-states (|4〉-|6〉) get shifted in energy at non-zero magnetic field. The
triplet and singlet potentials get shifted correspondingly depending on their total
spin z-projection. While the singlet-channel is not directly accessible due to its large
energy shift it is nevertheless coupled to the experimentally relevant ↓↓-triplet state
via the hyperfine interaction [Ketterle and Zwierlein, 2008]. Note that in contrary
to the triplet potential, the singlet potential hosts a bound state rather close to the
energy of the colliding atoms. All of this significantly impacts the scattering process
which now has to be described using a coupled-channel model. However, since the
energy of the singlet-channel is too high it always remains closed, i. e. the incoming
atoms can never scatter into states with different electronic spins. Furthermore, the
bound state remains a forbidden exit state for two-particle scattering due to conser-
vation of momentum and hence the scattering process remains coherent in nature
and can still be described by the s-wave scattering length. 5 Fig. 2.3b shows the
scattering length for varying magnetic field. Note that the scattering length has a
pole where it quickly runs through −∞ and +∞ when the bound state is tuned very
close to the energy of the incoming atoms. Shortly after the resonance at positive
scattering lengths the bound state is energetically accessible and its energy is given
by that of a shallow bound state in a pseudopotential ~2

ma2
as discussed previously.

Beyond this point the bound state becomes essentially too deeply bound to signifi-
cantly impact the scattering process anymore. In this regime the relation E = ~2

ma2

is rendered useless.

2.4 Preparing an ultracold Fermi gas

A cloud of 6Li-atoms is initially loaded into a magneto-optical trap (MOT) where it
is laser-cooled to around a few hundred µK. At this point the recoil energy introduced
by the photons scattering off the atoms dominates their thermal motion and cooling
essentially stops. This requires non-resonant techniques to be used where photon-
scattering becomes suppressed. To this end we employ a optical dipole trap (ODT)
of infrared laser-light at 1064 nm. The electric component of the strong light field
induces a dipole moment p which subsequently interacts with the laser field via the
potential V ∼ −p · E. This can be treated semiclassically yielding the trapping
potential [Grimm et al., 2000]

V (x) = −3πc2

2ω3
0

(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)
I(x). (2.21)

5If energetically accessible two particles can in principle scatter into the molecular bound state in
the presence of a third particle, making the scattering incoherent. However, at the experimental
conditions we are going to consider such three-particle processes are very unlikely and thus we
shall neglect them entirely.
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Figure 2.4: Deterministic preparation of few-particles
A - Additional to the ODT a smaller but much deeper microtrap is switched on.
On the left side the occupation probability of the gas in the ODT is shown, which
corresponds to T/Tf ∼ 0.5. The microtrap gets completely filled with atoms from
the surrounding reservoir. Switching off the ODT hence results in highly degenerate
gas with T/Tf ∼ 0.05 in the microtrap. B . Adding a magnetic field gradient to the
trap leads to spilling of atoms from the trap. In this way samples of small atom
number can be prepared. Taken from [Klemt, 2021].
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Here ω0 is the frequency of the optical transition (the D2 line) and Γ is its line-
width. Furthermore, ωL is the frequency of the ODT-laser and I(x) is the light
fields intensity distribution. Introducing the detuning ∆ = ω0 − ωL we see that for
red-detuned light, i.e. ∆ > 0, the atoms experience an attractive force towards the
intensity maxima of the laser field. Since the photon-scattering rate scales as ∆−2,
it is favorable to choose a large detuning. This suppresses the photon-scattering
effectively, while the same trap depth can be maintained by cranking up the laser
power accordingly. Once the atoms are transferred from the MOT to the ODT, the
laser power can be decreased again. This leads to the evaporation of hot atoms from
the trap which finally allows us to reach temperatures of around 100 nK [Serwane
et al., 2011].
To increase the degeneracy of the Fermi gas another much narrower laser beam is
shone into the ODT. This creates an additional small but very deep microtrap which
as indicated in Fig. 2.4B gets completely filled with atoms from the ODT. Since all
states in the microtrap are filled with almost certainty, switching off the ODT leaves
us with a highly degenerate Fermi gas with T/Tf ∼ 0.05. In a final step, a magnetic
field gradient is applied, which deforms the microtrap as depicted in Fig. 2.4B. As
a consequence all atoms above a certain energy level escape from the trap allowing
us to prepare systems of few atoms (down to only two atoms) with fidelities above
90 % [Serwane et al., 2011].
One last ingredient is needed to go from the cigar-shaped microtrap into the 2D-
regime. By using a standing wave dipole trap thin pancake-shaped layers of high
light intensity can be created [Petzold, 2016]. Such traps are designed to have a
high aspect ratio ωz/ωr of around 100, with ωz ≈ 2π · 30 kHz. These layers are then
to be oriented perpendicular to the microtrap (or the rotating trap later on). Due
to the weak radial confinement of the pancake-trap the microtrap will control the
radial trapping frequency of the combined trap, while the z-confinement is set by
the pancake-trap.



3 Numerical Study of interacting atoms
in a 2D-trap

Analytic solutions for the problem of interacting cold atoms in a harmonic trap are
available only for two particles. We therefore make an attempt to solve the problem
numerically, at least for a few particles.
Again assuming the atoms to be sufficiently cold, we neglect any higher angular
momentum-scattering, and incorporate the s-wave interaction via a simple delta
function. We further adopt a purely two-dimensional model, for which the Hamil-
tonian becomes

H =
∑(

−1

2
∆i +

1

2
x2
i

)
+ g

∑
i<j

δ(2)(xi − xj), (3.1)

where we expressed energies in terms of ~ω and lengths in terms of the harmonic
oscillator length l0. Furthermore, g is the coupling constant carrying units of energy
times length squared (i.e. gSI = g~ωl20). Note that this Hamiltonian is unphysical,
since it is not bounded from below. However, it turns out that working on a finite
Hilbert space and carefully choosing the bare coupling constant g in terms of e.g.
the 2D-scattering length, allows one to obtain meaningful results in the limit of the
Hilbert space dimension going to infinity. Since using numerical methods forces us
to truncate the infinite Hilbert space anyway, this approach to incorporating the
s-wave scattering seems natural.
Let’s firstly lay out the renormalization procedure in detail be revisiting the two
particle problem.

3.1 Renormalization of the coupling constant for
the two particle-problem

In the two particle case it’s convenient to introduce center-of-mass and relative
coordinates as

X ≡ 1

2
(x1 + x2), x ≡ x1 − x2. (3.2)

Eq. (3.1) then reads

H = −1

4
∆X +X2︸ ︷︷ ︸
Hcom

+−∆x +
1

4
x2 + gδ(2)(x)︸ ︷︷ ︸
Hrel

. (3.3)

24
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Figure 3.1: States and spectrum of the 2D isotropic-harmonic oscillator
a - Probability density for a few low laying eigenstates of the two-dimensional
isotropic harmonic oscillator. m labels angular momentum. The number of nodes
of the wavefunction is given by the primary quantum number k. b - The energy
spectrum of the two-dimensional isotropic harmonic oscillator. The eigenstates form
shells of equal energy. The n-th shell (n = 2k + |m| = 0, ...) contains n+ 1 states.

Since the center-of-mass motion is non-interacting, we neglect it for the remainder of
this section. Further re-expressing x and g in terms of the relative oscillator length
d =
√

2l0, leaves us with the effective one-particle Hamiltonian

H =
1

2
(−∆x + x2) + gδ(2)(x). (3.4)

Next we want to expand the Hamiltonian on the angular momentum eigenbasis
of the 2D-harmonic oscillator. The eigenfunctions in units of the corresponding
harmonic oscillator are given by

ψkm(r, θ) = 〈r, θ|k,m〉 ≡ Rkm(r)φm(θ)

Rkm =

√
2k!

(k + |m|)!
r|m|L

|m|
k (r2)e−

1
2
r2 , φm(θ) =

1√
2π
eimθ,

(3.5)

where m runs over all integers, k over all non-negative integers and Lmk (x) are
the generalized Laguerre-polynomials. (3.5) are simultaneous eigenfunctions of the
angular momentum operator M̂ = −i~ ∂

∂θ
with eigenvalue ~m and the 2D-isotropic

harmonic oscillator with eigenenergy E = ~ω(2k + |m| + 1). Furthermore, they
form an orthonormal basis of the Hilbert space of square-integrable functions on R2.
Some of these eigenstates and the energy spectrum are depicted in Fig. 3.1.
Using these wavefunctions we can write the Hamiltonian as

H =
∞∑
k=0

m=−∞

(2k + |m|+ 1) |k,m〉 〈k,m|+ g

π

∞∑
k=0
k′=0

|k, 0〉 〈k′, 0| . (3.6)
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We observe that the problem separates again, since only the zero angular momen-
tum modes interact. This is just as expected since the centrifugal barrier completely
hides the zero-range contact interaction.
Again neglecting the non-interacting part we may now attempt to solve for the eigen-
values by the ansatz |ψ〉 =

∑
k ck |k, 0〉. Acting on the Hamiltonian and projecting

out a single state yields

(E − 2k − 1)ck =
g

π

∑
k′

ck′ . (3.7)

Dividing by (E − 2k − 1) and summing over k finally leaves us with

π

g
=
∑
k

1

E − 2k − 1
, (3.8)

which unfortunately is terribly divergent. We deal with this by first regularizing the
sum by cutting it off at Kc, allowing us to write eq. (3.8) as

2π

g
= ψ(−ε/2)− ψ(Kc + 1− ε/2), (3.9)

where ψ(x) is once more the Digamma-function and ε = E − 1. While this doesn’t
change anything about the divergent behavior we might already recognize the first
term as the left hand side of eq. (2.19). What if we could just cancel the remaining
term in the Kc → ∞ limit ? Indeed, we so far haven’t attributed any physical
meaning to the coupling constant g and might as well just try to push the divergence
here. Observing that ψ(N + x) − ψ(N + y) ∼ O(1/N) 1 as N → ∞, we find that
any kind of replacement 2π/g → 2π/g0 − ψ(Kc + 1 + x) will cancel the divergence
in eq. (3.9). Putting everything together and using eq. (2.19) we find that the bare
coupling constant (in relative harmonic oscillator units)

g(g0;Kc, x) =
g0

1− g0
2π
ψ(Kc + 1 + x)

, π/g0 ≡ ln(1/a) (3.10)

is itself divergent. However, all physical observables are now divergence-free and
in the Kc → ∞ limit the energy spectrum (2.19) is predicted correctly. Loosely
speaking, we constructed a family of models H(g0;Kc, x) which in renormalization-
group-language flow, for Kc →∞, to a fixed point H(g0) independent of x.

While for the fixed point the choice of x is irrelevant it does significantly influence
the behavior at finite Kc. Consider for example the two-body bound state with
ε < 0 in eq. (3.8). Since for ε < 0 the right hand side is negative, the left hand
side must be negative as well. This means that in the finite Hilbert space the bound
state is only found provided that g < 0 or equivalently in the region

2π

g0

= ln(1/a) < ψ(Kc + 1 + x). (3.11)

1using that ψ(z) ∼ ln z +O(1/z) for large z
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Figure 3.2: Renormalization of the coupling constant
Comparing two different renormalization conditions for a system of two interacting
atoms in a two-dimensional isotropic, harmonic trap. Only the interacting, relative
motion spectrum is considered and the Hilbert space is truncated at Kc as explained
in the main text. Left (a,c,e) - the bare coupling constant g is chosen such that the
numerical ground state energy always matches the true ground state energy. Right
(b,d,f) - the bare coupling constant is fixed, somewhat arbitrarily, via x = 0 in eq.
(3.10). Upper panel (a,c) - exact and cut-off energy spectrum. Middle panel
(c,d) - running of the coupling with interaction strength. Lower panel (e,f) -
speed of convergence for first states in the region ln(d/a) ∈ (−10, 0).
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Figure 3.3: Convergence of Overlap
Overlap of eigenstates for different cut-offs Kc with corresponding eigenstates at
very high cut-off of Kc = 500. The first three lowest, interacting eigenstates of two
particles in a 2D isotropic, harmonic trap are depicted. The coupling constant is
renormalized by the ground state condition. a - overlap at ln(d/a) = −1. b - overlap
at ln(d/a) = 0.

For constant x the boundary of that region is just the pole of g(g0), where the bare
coupling constant jumps from negative to positive values.
By choosing x = −ε0/2, with ε0 being the exact bound state energy, we see that ε0
is a solution to equation (3.9) at any Kc, i.e. the two-body bound state energy is
always found exactly. Furthermore, g < 0 for all g0

2 and we avoid the pole in eq.
(3.10) completely. This renormalization condition is especially useful as it allows
one to link the bare coupling to experimental observables directly, without the need
of knowing a mapping between g0, Kc and g in advance.
The resulting energy spectrum from eq. (3.9) is compared with the exact solution
in Fig. 3.2. The left column and right column depict the choice x = −ε0/2 and
x = 0, respectively. As discussed previously, we only find a pole in the bare coupling
constant g in the (x = 0)-case. Furthermore, the maximal relative error between
the predicted and the exact energy spectrum is plotted in the lowest panel. We
observe that already a small cut-off Kc yields good results for the first eigenstates.
However, one is usually not only interested in predicting the eigenenergies but also
the eigenstates. To get a feeling for how well the eigenstates are explained we plot
the overlap between a few of the lowest eigenstates computed at various Kc with
numerical solutions computed at a high cut-off of Kc = 500 in Fig. 3.3. We observe
that already for a small size of the Hilbert space, an overlap close to 1 is obtained.
The overlap depends on the interaction strength, where a higher Kc is needed for
stronger interactions. For this figure the ground state renormalization condition was
chosen.

2From eq. (3.9) evaluated at ε0 we get 2π/g0 = ψ(−ε0/2). Further noting that ψ(x+N)−ψ(x) > 0
for x > 0 already yields g < 0.
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3.2 The Hamiltonian in second quantization

We have seen that in the two particle case the renormalized model is exactly solvable
when working in center-of-mass and relative motion coordinates. Unfortunately, this
method doesn’t generalize well to cases with more than two particles. Instead we
will make use of the formalism of second quantization, i. e. we will expand the
Hamiltonian on a basis of one-particle spin-orbitals. This however, greatly blows
up the size of the Hilbert space, such that even the two-particle problem becomes
numerically hard to solve.
Introducing the creation operators a†i , we can create a particle in mode |i〉 ≡
|αi, σi〉 ≡ |ki,mi, σi〉 by acting on the vacuum state |0〉 via

|i〉 = a†i |0〉 , (3.12)

where k and m label the 2D-harmonic oscillator states in the usual way and σ
describes the spin degree of freedom, σ ∈ {↑, ↓}. For convenience we summarize
the orbital labels k and m in the index α at times. Since we deal with a system
of fermionic particles we require the creation operators to anti-commute with their
hermitian conjugates

{ai, a†j} = aia
†
j + a†jai = δij, {ai, aj} = {a†i , a

†
j} = 0 (3.13)

and further demand that the ai operators annihilate the vacuum ai |0〉 = 0. Hence,
the operators ai annihilate a particle in mode i, which can be seen from ai |i〉 =
aia
†
i |0〉 = |0〉. We finally note that correctly symmetrized multi particle states are

simply created by acting multiple times on the vacuum, e.g. a†ia
†
j |0〉 creates a state

1√
2

(|i; j〉 − |j; i〉). We can use the states created in this fashion to span the Hilbert

space of N -fermions as H(−)
N = span{a†i1 ...a

†
iN
|0〉 , for all i1, ..., iN}.3

With all these tools at hand we can finally write the Hamiltonian (3.1) as

H =
∑
i

(2ki + |mi|+ 1)︸ ︷︷ ︸
≡Ei

a†iai +
g

2

∑
ijnl

〈i; j|δ(2)(x− y)|n; l〉 a†ia
†
jalan. (3.14)

Here |i; j〉 is denotes the unsymmetrized product state |i〉 ⊗ |j〉. Further, note that
the order of the fermionic creation and annihilation operators in the two-particle
term matters. Next, we have to evaluate the matrix elements of the delta function.
Expanding the states in the position basis we find for 1

2
〈i; j|δ(2)(x− y)|n; l〉

〈σi|σn〉 〈σj|σl〉
∫ ∞

0

drrRαi(r)Rαj(r)Rαn(r)Rαl(r)︸ ︷︷ ︸
≡2πR[αi,αj ,αn,αl]

∫ 2π

0

dθ

2(2π)2
eiθ(mn+ml−(mi+mj))

=
1

2
δσi,σnδσj ,σlδM,M ′R[αi, αj, αn, αl],

3The creation and annihilation operators connect the Hilbert spaces of different particle number.
Their action is closed on the Fock state defined as F (−) =

⊕∞
n=0H

(−)
n , which contains states

of uncertain particle number.
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(3.15)

where Rα(r) = Rkm(r) is defined in eq. (3.5) and M = mn + ml, M ′ = mi + mj

are the total angular momentum of the incoming and outgoing states. The factor
δM,M ′ thus ensures angular momentum conservation during the interaction. Note
that the integral R[α, β, γ, δ] is fully symmetric under index exchange which has
some important consequences. Plugging this into eq. (3.14) yields

H =
∑
i

Eia
†
iai +

g

2

∑
α,β,γ,δ
σ1 6=σ2

R[α, β, γ, δ]δM,M ′a
†
α,σ1

a†β,σ2aδ,σ2aγ,σ1 , (3.16)

where the σ1 = σ2 contribution vanishes because we can always find two terms
R[α, β, γ, δ]a†α,σa

†
β,σaδ,σaγ,σ = −R[α, β, γ, δ]a†α,σa

†
β,σaγ,σaδ,σ andR[α, β, δ, γ]a†α,σa

†
β,σaγ,σaδ,σ

that cancel each other out due to the symmetry of R[·]. This reflects the fact that,
as discussed earlier, the s-wave interaction is suppressed for particles with like spin.
In a last step we write out the spin sum and use the symmetry of R again to finally
arrive at

H =
∑
i

Eia
†
iai + g

∑
α,β,γ,δ

R[α, β, γ, δ]δM,M ′a
†
α,↑a

†
β,↓aδ,↓aγ,↑. (3.17)

The integrals R[α, β, γ, δ] can be computed numerically, where the computational
effort can be reduced by taking into account the symmetry of R[·] and angular
momentum conversation.

3.3 Quanty - a many body code

For most of the numerical computations performed in this thesis the fermionic many
body code Quanty was used [Haverkort et al., 2012]. It allows the user to express
operators and wavefunctions directly in second quantized manner in terms of the
creation and annihilation operators a†i , ai. As we will use Quanty only for exact
diagonalization, let us roughly sketch the underlying Lanczos-algorithm.
When working with multiple particles the dimension of the multi-particle Hilbert
space scales exponentially and the problem becomes computationally intractable
very fast. For example, the Hilbert space of three spin-up and three spin-down
particles expressed on a basis of 15 orbitals (e.g. the five lowest shells of the harmonic
oscillator) has already dimension

(
15
3

)2 ∼ 2·105. Furthermore, physical Hamiltonians
are oftentimes sparse with a lot of vanishing matrix elements due to symmetries. For
example, expressed on the same basis the two-particle interaction term in eq. (3.17)
contains only ∼ 9% non-zero elements. This means that dense methods are not only
computationally hard but also inefficient. Instead of diagonalizing the Hamiltonian
directly on the full Hilbert-space, the idea of the Lanczos-algorithm is to only use a
much smaller Krylov-subspace Kn. This space is spanned by a sequence of n vectors
generated by acting multiple times with the operator H on a starting vector |ψ0〉,

Kn = span{|ψ0〉 , H |ψ0〉 , H2 |ψ0〉 , ...Hn−1 |ψ0〉}. (3.18)
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The goal is now to continue this sequence until the next vector Hn |ψ0〉 is fully lin-
early dependent on the previous vectors, in other words, once Kn is invariant under
action of H. Assuming that the ground state |ψg〉 of H has a finite overlap with
the initial state |ψ0〉, |ψg〉 can now be accurately computed by diagonalizing H on
Kn. In practice, one directly orthonormalizes the vectors as they are generated, such
that the Krylov-sequence becomes an orthonormal basis of the subspace. Since the
employed Gram-Schmidt decomposition is prone to numerical errors, one usually
only generates a couple of hundred Krylov-vectors to avoid loss of orthonormality.
The algorithm is then restarted with the lowest eigenvalue-eigenvector obtained from
diagonalizing H on the Krylov-subspace just found. Since eigenvectors correspond-
ing to the eigenvalues of largest magnitude converge first, it is beneficial to shift
the Hamiltonian by the largest eigenvalue at this point. Practically, the procedure
is stopped once a convergence condition, e.g. regarding the variance of the found
states, is met. Starting with several orthogonal vectors allows for the computation
of the lowest part of the spectrum.

3.4 The two-particle problem revisited

To benchmark our numerical approach we once more consider the two-particle prob-
lem for which solutions can be computed accurately. Furthermore, computing the
two-particle ground state energy from eq. (3.17) is necessary to fix the bare coupling
constant g via the ground state renormalization scheme presented earlier. For now
we are only interested in the left part of the spectrum, i.e. in the region ln(d/a) < 1.
Fig. 3.4 shows the numerical results obtained from solving eq. (3.17) using Quanty
for a range of reasonable basis sizes of 5, 6, 8 and 10 shells (i.e. 30, 42, 72 and
110 spin-orbitals, respectively). A qualitative picture is given in Fig. 3.4a and b.
As a measure of accuracy we compare the energy of the first excited state with the
exact solution in Fig. 3.4c. The deviation is given by |E1 − Eexact

1 |/|Eexact
1 − 3|, i.

e. we measure the energy with respect to the states energy at a→∞. As a second
measure of accuracy we compute the overlap of the numerical ground state with the
exact ground state obtained from numerical diagonalization of the relative motion
Hamiltonian with a high cut-off of Kc = 500. To expand the relative motion state
in second quantization (or in the lab-frame) we use the relation

1√
2
|k = 0,m = 0︸ ︷︷ ︸

com

;K,m = 0︸ ︷︷ ︸
rel

〉 (|↑↓〉 − |↓↑〉)

= 2−K
m=K∑
m=−K

K∗∑
k1=0

εk1k2

[(
K

k1

)(
K

k2

)] 1
2 {

a†k,m,↑a
†
k2,−m,↓ − a

†
k,m,↓a

†
k2,−m,↑

}
|0〉 ,

(3.19)

where K∗ = bK−|m|
2
c, k2 = K − |m| − k1 and εk1k2 = (1 + δk1k2)

−1. The results for
the overlap presented in Fig. 3.4c are consistent with the findings in Fig. 3.3 when
considering that a single-particle basis of 2Kc + 1 shells is need to fully capture the
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Figure 3.4: Full two-particle energy spectrum
Numerical and exact solution for two interacting particles in a 2D isotropic harmonic
trap. The coupling constant is renormalized by matching the numerical to the
exact ground state energy. a - exact spectrum including non-interacting states and
center-of-mass motion. Center-of-mass excitations beyond shell number ncom = 5
are omitted for clarity. b - detailed view of the part of the spectrum where atoms
are not too deeply bound. Besides the exact solution the numerical solution for
different sizes of the single-particle basis is plotted. c - Overlap of the numerically
obtained ground state with the exact solution (obtained by numerically diagonalizing
the relative motion Hamiltonian with a high cut-off of Kc = 500 and expanding in
lab-frame coordinates) on the left axis. Deviation between the numerical and exact
solution for the first excited state as measured from its value at ln(d/a) = −∞ on
the right axis.
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Figure 3.5: Closed-shell excitation spectrum for 3 + 3 and 6 + 6 atoms
Comparing the numerically computed excitation spectrum with experimental data
[Bayha et al., 2020]. The coupling constant is renormalized by matching the nu-
merical ground state energy to the experimental data for the two-particle problem.
The bound state energy Eb is defined as Eb = 2 − Eground. M is the total angular
momentum. a - spectrum for three spin-up and three spin-down atoms. Computed
on a single particle basis of 6 shells. b - spectrum for six spin-up and six spin-down
atoms. Computed on a single particle basis of 5 shells. The numerical solution
is only purely converged. Both cases represent a closed shell configuration of the
two-dimensional isotropic harmonic oscillator.

relative motion state in eq. (3.19). To obtain results with error of less then 10 %, a
large single-particle basis of 110 spin-orbitals is needed. Already for the two particle
problem this leads to long computation times.

3.5 Precursor of the Higgs Mode

Let us conclude this chapter by finally applying our numerical approach to a recent
experimental measurement comprising more than only two particles. In [Bayha
et al., 2020] the authors experimentally investigate the emergence of a quantum
phase transition from the normal to the superfluid phase occurring in a balanced
mesoscopic systems of 3+3 or 6+6 (number spin-up + spin-down particles) 6Li
atoms, respectively. All experimental results are parameterized by the two-body
binding energy. We therefore renormalize the coupling constant by matching the
numerical solution of the ground state energy to the experimental result in the two-
body case. With the mapping between the coupling constant and the two-body
binding energy at hand we go on and diagonalize eq. (3.17) using Quanty. The
numerical results together with the experimental data are presented in Fig. 3.5.
In the 3+3 case the experimental spectrum is qualitatively well described, with
deviations around 5% − 20%. This is roughly what we would expect at the very
least from the two-body result in Fig. 3.4c. Since they use a harmonic trap with
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aspect ration ωz/ω ∼ 6.8 some of the errors towards the strong binding energy end
can be attributed to the loss of 2D-ness in that regime. This can qualitatively be
anticipated from Fig. 2.1 which shows the exact and 2D-solution for a trap of aspect
ratio 10.
The excitation spectrum in the 6+6 case could not be predicted to a satisfactory
degree. Reasons for this might be found in the smaller single-particle basis consisting
of only 5 shells as opposed to the 6 shells that were used for the 3+3 calculation.
Sacrificing the additional shell was necessary to obtain a solution in any reasonable
computational time. In fact, even with the smaller basis set the 6+6 calculation did
only poorly converge. Taking a look at eq. (3.18) we see that the Krylov-space on
which the Hamiltonian is eventually diagonalized heavily depends on the starting
vector. Especially in large Hilbert spaces, and with a dimension of

(
15
6

)2 ∼ 25 · 106

that’s truly the case here, the overlap of the starting vector with the true ground
state will very easily tend to zero. Hence, in the future the convergence might be
significantly improved by taking a good guess for the starting vector. 4

4Currently the computation is started with the non-interacting ground and first excited states.



4 Rotating Traps: A path to Quantum
Hall Physics

It has long been known that particles trapped in a two-dimensional harmonic po-
tential under rotation are formally equivalent to electrons moving in a plane perpen-
dicular to an external magnetic field. The latter situation gives rise to the integer,
and in the presence of interactions, the fractional quantum hall effect. Due to the
equivalence of both systems, ultracold atoms offer an intriguing opportunity to study
highly-entangled fractional quantum hall states. Several protocols for the creation
of such states have been proposed for bosonic [Popp et al., 2004] and fermionic sys-
tems [Palm et al., 2020].
The reminder of this thesis will deal with the experimental realization of the scheme
proposed by [Palm et al., 2020]. First let us very briefly present the quantum hall
effect. We will then introduce the equivalence of the cyclotron motion of electrons
and the rotating trap, before we discuss the theoretical results found in [Palm et al.,
2020]. We will then proceed with studying the system in a experimentally realistic
setting. Finally the experimental methods and the optical setup is presented.

4.1 The Quantum Hall Effect in a nutshell

The classical quantum Hall effect occurs when a current I flowing through an elec-
trical conductor is subject to a magnetic field B perpendicular to the conductor.
To maintain its original direction an electric field E transverse to the current needs
to build up, exactly balancing out the Lorentz force from the magnetic field com-
ponent. The quotient I/E defines the Hall-, or transverse, resistivity ρxy which is
proportional to the applied magnetic field. The quantum analog of this effect was
first discovered in 1980 by Klitzing et al. [1980]. At low temperatures and high
magnetic field the Hall resistivity becomes quantized and the formation of plateaus
of constant resistance can be observed. The center of these plateaus, on which one
finds a constant resistivity of ρxy = 2π~

e2
1
ν
, occur at magnetic fields B = 2π~

e
n
ν
. Since

the filling fractions ν are integers, the effect was termed the integer quantum hall
effect. Fig. 4.1 shows a measurement taken in a sample displaying the quantization
of the Hall-resistivity at both integer and rational filling fractions.
A theoretical explanation for the integer quantum Hall effect can be given by con-
sidering the motion of an electron in an external magnetic field. The Hamiltonian of
the electron in terms of the canonical momentum operator p and the vector potential

35
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Figure 4.1: The integer and fraction Quantum Hall Effect
At low temperature and high magnetic fields plateaus appear in the transverse, or
Hall-resistivity ρxy. The longitudinal resistivity ρxx jumps to finite values during
transitions between plateaus. Taken from [Tong, 2016].

A is given by

H =
1

2m
(p+ eA)2. (4.1)

Assuming the magnetic field to be aligned in z-direction, we only consider motion
in the x-y-plane. With the vector potential chosen in Landau gauge, A = xBey,
it is convenient to make the ansatz ψ(x, y) ∼ eikyfk(x) which decouples the x- and
y-motion. The Hamiltonian can then be rearranged to

H =
p2
x

2m
+
mω2

B

2
(x+ kl2B)2, lB =

√
~
eB

, ωB =
eB

m
(4.2)

which we recognize as a harmonic oscillator shifted along the x-axis by kl2B, where
k is the momentum in y-direction. Hence, we find the energy spectrum to be given
by En = ~ωB(n + 1/2), where each level is hugely degenerate with respect to the
motion in y-direction. These are the famous Landau levels.
Let us briefly compute the density of states in one such level. To this end we consider
a square in the x-y-plane of length L. Imposing periodic boundary conditions in y-
direction restricts the possible wavevectors k to 2π

L
m,m ∈ Z. Cutting this off at N

yields N + 1 oscillators spaced over a distance N 2π
L
lB on the x-line. By setting this
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equal to L we estimate the density of states per Landau level to be nL = 1
2πl2B

= eB
2π~ .

Modeling the electrons in the conductor as a non-interacting Fermi-gas with density
n, we find that they occupy ν = n/nL Landau levels which depends inversely on
the magnetic field via nL. Exactly at an integer filling fraction, i.e. when ν Landau
levels are completely filled, we recover the magnetic field B = 2π~n

eν
at which the

center of the plateaus occur.
Two years after the discovery of the integer quantum Hall effect plateaus at rational
filling fractions ν ∈ Q were observed, which was subsequently called the fractional
quantum Hall effect [Willett et al., 1987] (see Fig. 4.1). The additional plateaus hint
at additional states in the spectrum that were previously hidden. In fact, we have so
far considered the electrons to be non-interacting. It is however reasonable to assume
that the Coulomb repulsion between the electron will lift the huge degeneracy of the
Landau levels, leading to new states within the Landau levels at which additional
plateaus can appear. We will learn more about these fractional quantum hall states
in the context of the rotating trap.
Finally, the interested reader is referred to Tong [2016] for a much more detailed
discussion of the physics of the quantum Hall effect.

4.2 The Rotating Harmonic Trap

Let us return to our ultracold atoms and consider again the Hamiltonian eq. (3.1)
describing particles interacting in a two-dimensional isotropic harmonic trap. How-
ever, this time we take a new perspective on the problem and place ourselves in
a frame of reference rotating with angular velocity Ω with respective to the lab-
frame. Since the angular momentum operator Mi = −i ∂

∂θi
generates rotations of

the coordinates of the i-th particle, we write down a unitary transformation like

U = e−iMΩt,M =
∑
i

Mi. (4.3)

Let’s denote the regular lab-frame operators and states by O′ and |ψ′〉. We can then
smuggle in the unitary defined above without effecting any physical observables, i.e.
expectation values, if we define

|ψ〉 = U † |ψ′〉 , O = UO′U †, (4.4)

which leaves all expectation value invariant, 〈ψ|O|ψ〉 = 〈ψ′|O′|ψ′〉. We can see how
the new states evolve in time by evaluating the time-dependent Schrödinger equation
in the lab-frame

i∂t |ψ〉 =
(
U †H ′U −MΩ

)
|ψ〉 ≡ H |ψ〉 , (4.5)
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where H ′ is the Hamiltonian in the lab-frame.1 Since the whole Hamiltonian includ-
ing the s-wave interaction is rotationally invariant we have

H = H ′ − ΩM =
∑
i

(
−1

2
∆i +

1

2
x2
i − ΩMi

)
+ g

∑
i<j

δ(2)(xi − xj). (4.6)

For now let us assume that the particles are non-interacting, i. e. we set g = 0.
We note that the harmonic oscillator states eq. (3.5) remain eigenstates of the new
Hamiltonian allowing us to directly read off the single-particle spectrum

E = ~ω(2k + |m|+ 1)− Ωm ≡ ~ω(2k + 1 + |m| −m+ αm), (4.7)

where the dimensionless parameter of rotation α = 1 − Ω
ω

was introduced. As
depicted in Fig. 4.2(insets) the inverted-tree-like energy spectrum of the harmonic
oscillator starts to fall over to the side of positive angular momentum when the
speed of rotation is increased. In the α = 0 limit the so called deconfinenment
is reached and the spectrum is formed by horizontal levels of, in principle, infinite
degeneracy. These are once again the Landau levels we have already met in the
context of the quantum Hall effect! In fact the equivalence becomes more apparent
when considering the single-particle Hamiltonian in a rearranged way (and expressed
in physical units),

H =
1

2m
(p−mΩez × x)2 +

m

2
(ω2 − Ω2)x2, (4.8)

where p = −i~∇ is the momentum operator. In the α = 0 limit the centrifugal
force cancels the confining harmonic potential and only the Coriolis force remains.
The coriolis force −2mΩ× ẋ is equivalent to the Lorentz force −qB × ẋ a particle
of charge q experiences in a magnetic field of strength B = 2m

q
Ω. As in electromag-

netism one might introduce an artificial gauge field A = m
q
Ω×x (with B = ∇×A)

in which the particle seems to move when observed in the rotating frame. For q = −e
we precisely recover the Hamiltonian (4.1) of the free electron moving in a magnetic
field.2
Finally, note that the transformation we just did, i.e. |ψ〉 = U † |ψ′〉 and O = UO′U †
does not actually correspond to a change of reference, but rather is a gauge transfor-
mation. Intuitively, this can be seen by looking at the angular momentum operator
which transforms invariant under U . I.e. a state with angular momentum ~m will
have the same angular momentum no matter what frame we use. While this is the
correct behavior for a gauge transformation it is not what we would expect for a
change of reference to a rotating frame, where the angular momentum should be
lowered or increased depending on the speed of rotation. Fortunately, we formally

1For ease of notation we diverged from the rule O = UO′U† when we labeled the new Hamiltonian
by H.

2Note however the different choice of gauge. Here the symmetric gauge is chosen, while earlier
we chose the Landau gauge.
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obtain the same equations (4.6) and (4.8) for the proper change of reference, only
that p and M wouldn’t label the kinetic (angular) momentum operator but rather
the canonical ones (for the gauge transformation that’s the same) [Anandan and
Suzuki, 2003]. Which way of performing the ’change of reference’ is in the end a
matter of taste.

Figure 4.2: Single-particle spectrum of the rotating harmonic trap
The inverted tree-like energy structure of the harmonic trap (top inset, right) trans-
forms into degenerate Landau levels when viewed from a rotating frame (top inset,
left). Perturbations of higher azimuthal-order lead to the opening of gaps in the
spectrum and can be used to adiabatically transfer atoms into the lowest Landau
level (LLL) via the single-particle paths highlighted in red. The experimental trap-
ping potentials corresponding to these perturbations are shown in the left column
where the values in the bracket indicate the perturbation strengths (ε1, ε2, ε3, ε4). a
- pure elliptical, b - triangular, c - composite perturbation. The transition of the
perturbed spectrum is only sketched. Taken from [Palm et al., 2020].
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4.2.1 Perturbations: Opening an adiabatic path to the LLL

From taking a look at the energy spectrum in the deconfinement limit in Fig. 4.2
one might expect that, due to the large degeneracy, the lowest energy eigenstates
are predominantly formed in the lowest Landau level (LLL). Even when switching
on interactions this shouldn’t change drastically as long as the interaction energy
remains small compared to the splitting of the Landau levels of 2~ω. However,
describing the system from a rotating frame of reference is merely a theoretical trick
and shouldn’t change anything about the actual physics going on. Furthermore, it
is neither experimentally possible to measure nor to prepare atoms directly in the
rotating frame. So what’s the point of the whole equivalence?
When looking closely at the energy spectrum we notice that any state hosted in the
LLL will have a potentially arbitrarily large angular momentum. In fact the LLL
precisely consists of the state with lowest energy (as seen from the lab-frame) per
sectors of non-negative angular momentum. This gives us a clue on how to prepare
states in the LLL. We simply need to transfer angular momentum into the system
in an adiabatic way such that the system always remains in its ground state. To
this end we consider the following class of time-dependent perturbations,

Vl(t) = εl(r
leilθeilΩt + c.c.). (4.9)

The potential clearly breaks the rotational symmetry and couples modes which differ
in angular momentum by ±l. Its matrix elements in the harmonic oscillator basis
(3.5) can be computed directly and are given by [Srivastava et al., 2003]

〈k′m′|rleilθ|k,m〉 = δm′,m+lΓ(µ+ 1)(−1)k+k′

√
k!k′!

(k + |m|)!(k′ + |m′|)!

·
min(k,k′)∑
n=0

(
µ− |m|
k − n

)(
µ− |m′|
k′ − n

)(
µ+ n

n

)
,

(4.10)

where µ = 1
2
(l + |m|+ |m′|).

The transformation U precisely cancels the time-dependence of the perturbation,
U †Vl(t)U = εl(r

leilθ + c.c.) and the perturbed problem can be solved straightfor-
wardly in the frame rotating with the speed Ω. 3 The numerically computed
energy spectrum for different perturbations is shown in Fig. 4.2a-c versus the ro-
tation parameter α. The coupling of states of different angular momentum leads
to the opening of gaps in the spectrum whenever two states cross, that fulfill the
selection rule ∆m = m′ − m = ±l. This corresponds to the resonance condition
∆E = ~∆mΩ, |∆m| = l when viewed from the resting frame. The perturbations
can be superimposed to open gaps corresponding to different selection rules simul-
taneously, cf. Fig. 4.2c. A simple experimental protocol could for example look like
this. Starting from a zero angular momentum, closed shell configuration of three

3This means for a perturbation rotating with speed lΩ we go to a frame rotating with Ω.
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spin-up and three spin-down atoms populating the first two shells one switches on
the l = 3 perturbation and slowly increases the speed of rotation. Beyond α = 0.6
we have then introduced six quanta of angular momentum into the system and
transferred all atoms into the LLL.
Lastly, also some technical remarks about the perturbations eq. (4.9) are in place.
Note that beyond l = 2 the perturbation leads to a Hamiltonian that isn’t bound
from below anymore. In fact, the form of the perturbation given here is only approx-
imately true as long as εlRl � 1 holds for R being the maximal spatial extension
of the wavefunctions considered. In that sense the (l > 2)-perturbations are always
only valid on a finite Hilbert space respecting this condition. At non-zero Ω the
overall potential can nevertheless become anti-confining. An instructive example
is the case of the elliptical l = 2 perturbation which for Ω = 0 and ε2 < 2 (in
h.o. units) represents a valid Hamiltonian even in the infinite dimensional limit.
However, once the speed of rotation is increased above Ωc =

√
1− 2ε2 ≈ 1− ε2 the

total potential (trap + perturbation + centrifugal force) becomes anti-confining in
one axis and the atoms start to escape from the trap. This effect was just recently
observed in a rotating Bose-Einstein-condensate by Fletcher et al. [2021].

4.2.2 Switching on Interactions: Renormalization in the
Lowest Landau Level

So far we have only investigated the non-interacting case. To see how the picture
of the interacting system changes in the rotating frame let us study once more the
two-particle problem in relative coordinates. Since all interacting states have zero
relative angular-momentum anyway their energy stays unaltered. The other non-
interacting states are shifted in energy and form Landau levels just as we already
know them from the single particle problem. Fig. 4.3a shows the energy of the two
lowest interacting relative motion states. Furthermore, the overlap of the two states
with the relative motion |k = 0,m = 0〉-state is plotted. Since interacting states
are a superposition of |k, 0〉 states, the overlap with |0, 0〉 gives the overlap with
the complete LLL of two particles. We observe that the ground state and the first
excited stated are predominantly hosted in the LLL for scattering lengths d/a� 1
and d/a� 1, respectively. This tells us that in this regime (provided we don’t care
about the deeply bound dimer-state for d/a � 1) we might be able to effectively
describe the physics at low energies, i.e. < 2~ω with respect to the non-interacting
ground state, by only considering the LLL, even when dealing with more than two
particles. We further note that at small interaction energies ∆E = E − ~ω the
solution of eq. (3.9) is approximately given by 4

∆E ≈ 2~ω
2 ln(d/a) + γ

, | ln(d/a)| � 0.289. (4.11)

4Using that ψ(x) = −γ − 1
x +O(x).
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Figure 4.3: Interacting states and renormalization in the LLL
a - The lowest two interacting states for the relative motion of two particles inter-
acting in a 2D isotropic harmonic trap. Furthermore, the approximative solution
ELLL, eq. (4.11), is plotted which is valid for small interaction energies. Besides the
energies also the overlap of the states with the LLL is depicted on the right axis. b -
The value of the coupling constant in terms of the 3D-scattering length for different
aspect ratios is plotted on the left axis. The corresponding 2D interaction strength
is depicted on the right axis.

In total, we find that in the deconfinement-limit the energy spectrum below 2~ω
w.r.t. the non-interacting ground state consists of only two, infinitely-degenerate
manifolds, the non-interacting states at the vacuum energy and the interacting states
with energy ~ω∆E above that, both of them being hosted in the LLL. As already
stressed above these states correspond to the states of lowest energy from sectors
with non-negative angular momentum in the lab-frame.
For two particles, the LLL can be spanned by the states |0,M〉com ⊗ |0,m〉rel.

Remarkably, these are already solutions to the Hamiltonian (3.1) with energy 2~ω
for relative angular momentum m 6= 0 and ~ω(2 + g/2π) for the m = 0 states.
By matching this solution with the previous one we can identify the bare coupling
constant in terms of the 2D- and 3D-scattering length, respectively

g/~ωl20 =
4π

ln(d/a) + γ
≈ 4π

ln(0.513n) +
√
π dz
a3D

|a3D
dz
|�

√
π

ln(0.513n)

≈ 4
√
π
a3D

dz
. (4.12)

Here g is expressed in physical units and n = ωz/ω is the aspect ratio. The coupling
constants for different aspect ratios is plotted in Fig. 4.3b. From now on we assume
to be always well in the regime |a3D

dz
| �

√
π

ln(0.513n)
∼ 1 and g � 2π. Since we neglect

the deeply bound dimer-state this is also precisely the regime in which we expect
the purely two-dimensional treatment to be accurate. With these assumptions in
mind we will restrict ourselves to the lowest Landau level for the remainder of this
section. Finally, note that the coupling constant is then independent of any angular-
momentum cut-off!
Choosing to work in the LLL greatly simplifies the evaluation of the interaction
and perturbation matrices. Neglecting the vacuum energy, the Hamiltonian (4.6)
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reduces to

H = α
∑
mσ

a†m,σam,σ + g
∞∑

M=0

M∑
m,m′

hM,m,m′a
†
m′,↑a

†
M−m′,↓am,↓aM−m,↑

+
∑
l

εl
∑
m,σ

vl,m(a†m+l,σam,σ + h.c.)

, (4.13)

where a†m,σ creates a particle in the |0,m, σ〉 state and m ≥ 0, σ ∈ {↑, ↓}. The
matrices h and vl are given by

hM,m,m′ =
M !

2π2M
√
m!m′!(M −m)!(M −m′)!

(4.14)

vl,m =

√
(m+ l)!

m!
. (4.15)

4.2.3 Fractional Quantum Hall States

We have seen how for the two-particle problem the eigenstates formed in the LLL
took the simple form |0,M〉com ⊗ |0,m〉rel ∼ (z1 + z2)M(z1 − z2)me−

1
2

(r21+r22), with
the complex coordinates zi = xi + iyi. For repulsive interactions the ground state
manifold is given by the m 6= 0 solutions for which the wavefunction becomes zero
when the position of the particles coincides. The particles, therefore, never see each
other and cannot feel any repulsion from the contact interaction. Interestingly, the
argument can be extended to multiple particles. Let us assume α = 0 and introduce
the new complex coordinates zi = xi+ iyi and z̃i = x̃i+ iỹi, labeling the spin-up and
the spin-down particles, respectively. In the case of a spin-polarized system with
only one spin component, say N↑, an extension of the two-particle ground state was
proposed by Laughlin [1983],

Ψn(z1, ..., zN↑) ∼
N↑∏
i<j

(zi − zj)m, (4.16)

where the Gaussian envelope was omitted. This state occupies the LLL up to angular
momentum mmax = (N↑−1)m and has total angular momentumM =

mN↑
2

(N↑−1).
Note how the vortices (zi − zj)

m carve out a region around each particle. In the
presence of a general repulsive interaction this helps to reduce the energy of the
state. For systems of small particle number one finds a high overlap between the
Laughlin-wavefunction and the numerically found ground state. While the overlap is
expected to vanish for large systems it is still instructive to study the Laughlin-state
in the context of the fractional quantum Hall effect, where the electrons interact via
the Coulomb repulsion. In fact, we can compute the filling fraction of the Laughlin-
states by estimating their size by the largest occupied LLL state. For N particles we
find R =

√
2mmaxl2B ≈

√
2Nml2B corresponding to an area A = πR2 = 2πNml2B,
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where we used that l20 = 2l2B (since ωB = 2ω). This results in a particle density of
nm = 1

2πl2B
which exactly matches the electron density n at magnetic field B = 2π~n

eν
,

with ν = 1
m
. These correspond to the centers of some of the plateaus we find in the

fractional quantum Hall effect! Furthermore, we can compare the particle content of
the Laughlin-state with that of a partially field LLL for the area A. One finds that
the Laughlin-state contains the same particle density as a partially filled LLL with
filling fraction ν = 1

m
. For m = 1 we recover the fully filled LLL. The Laughlin-

wavefunction then only contains vortices of order one which stem from the Paul-
exclusion principle and correspondingly describes a Fermi-sea of N particles. Note
also that, at least for fermions, the spatial wavefunction needs to be antisymmetric
in the case of a one-component gas ruling out all even m. In the case of ultracold
atoms we note that the Laughlin-states become exact ground states due to the pure
s-wave interaction (at g > 0).
The Laughlin states were further generalized by Halperin [1983] to contain another
spin-component

Ψ(m,m,n)(z1, ..., zN , z̃1, ..., z̃N) ∼
N∏
i<j

(zi− zj)m ·
N∏
i<j

(z̃i− z̃j)m ·
N∏
i,j

(zi− z̃j)n, (4.17)

where we already restricted ourselves to the balanced case with N = N↑ = N↓.
These states have maximum angular momentum mmax = (N − 1)m + nN , total
angular momentum M = mN(N − 1) + nN2 and filling fraction ν = 2/(m + n).
They are antisymmetric with respect to exchange of particles of like spin for uneven
m. However, in general they do not obey the correct symmetry properties when
one exchanges spin-up and spin-down particles. An exception to this are states with
m = n and m odd, which represent a fully antisymmetric orbital wavefunction.
Together with the symmetrized version of the spin-wavefunction |↑ ... ↑↓ ... ↓〉 the
total state has the correct symmetry. Due to the symmetric spin-wavefunction this
state has maximum total spin S2, representing a ferromagnet with Sz = 0.
In general the Halperin-states should be seen as some kind of shorthand notation
from which the fully antisymmetric states are obtained by application of an an-
tisymmetrization procedure. In second quantization, for example, one could sim-
ply expand the product in eq. (4.17) and replace each term by the correspond-
ing Slater-determinant N{m},{m̃}a†m1,↑...a

†
mN ,↑a

†
m̃1,↓...a

†
m̃N ,↓, with the normalization

N{m},{m̃} =
√∏

i πmi!
∏

j πm̃j!.
With this understanding of the Halperin-states one finds that only the Ψ(n+1,n+1,n), n
even, states form a spin-singlet with total spin S2 = 0. Ψ(1,1,0) for example denotes
a product of two Fermi-seas with total spin S2 = 0. A spin-singlet state around
ν = 1

q
, i.e. Ψ(q,q,q), was identified by Yoshioka [1998],

Ψ(r)
q = Ψ(q,q,q)per|M (r)|, (4.18)

where the additional factor per|M (r)| is the permanent of the matrix M (r)
ij = (zi −

z̃j)
r. It introduces another r quanta of angular momentum in to the state, resulting
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Figure 4.4: Energy spectrum of 3 + 3 particles in the deconfinement-limit
The numerically computed Yrast-spectrum of a system of 3 + 3 particles. The
computation is done in the deconfinement limit and hence the resulting spectrum
can be scaled to arbitrary interaction strengths, here η = g/4π = 1. The first
states with vanishing interaction energy appear in the (S = 3)-channel at angular
momentum M = 15. For higher angular momentum also channels with lower spin
host a non-interacting state. For non-zero α all states would shift in energy according
to their angular momentum content. Taken from [Palm et al., 2020].

in mmax = (N − 1)m + nN + r and total angular momentum M = mN(N − 1) +
nN2 + rN . Note that the contribution of r to mmax does not scale with the particle
number. Hence, for large N it will have a filling fraction very close to 1

q
. This

suggests that the state can be seen as an excitation on top of the ferromagnetic
Ψ(q,q,q) state.

FQH-states in the Rotating Trap

Palm et al. [2020] have conducted a numerical study for the case of a balanced mix
of 3 + 3 atoms in a rotating harmonic trap. They solved the Hamiltonian (4.6) in
the deconfinement-limit on a LLL-basis. Since in this case all terms other than the
contact interaction vanish, the results are independent of the interaction strength
(however, still g > 0). By computing the overlap of the numerical eigenstates with
the states eq. (4.17) and (4.18) a series of fractional quantum Hall states could be
identified. The energy spectrum they obtain is shown in Fig. 4.4 where the iden-
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tified FQH-states are highlighted. First notice how the interaction is completely
suppressed in the S = 3 channel. The first ground state at M = 15 exactly cor-
responds to Ψ(1,1,1) representing a ferromagnetic state. The most interesting states
however appear in the S = 0 channel. Starting from the Ψ(1,1,0) state at M = 6

one finally reaches the first non-interacting state at M = 18. This is the Ψ
(1)
1 state,

which how further analysis reveals, can be identified as a Skyrmion.

What is a Skyrmion?

Skyrmions are commonly found as excitations on top of ferromagnetic states. They
can be thought of as quasi-particles featuring a long-range spin texture. While
locally preserving the ferromagnetic correlations, i.e. a parallel orientation of the
spins, the Skyrmion excitation also hosts reversed spins on longer scales. Hence the
Skyrmion state can be distinguished from the other FQH-states by analyzing its
correlations. Palm et al. [2020] conduct a quantitative analysis by employing the
second order correlation functions

g(2)
σ1,σ2

(x1,x2) =
〈Ψ†σ1(x1)Ψ†σ2(x2)Ψσ1(x1)Ψσ2(x2)〉
〈Ψ†σ1(x1)Ψσ1(x1)〉 〈Ψ†σ2(x2)Ψσ2(x2)〉

, (4.19)

where Ψ†σ(x) creates a particle at site x with spin σ. This spin-resolved correla-
tion function tells us whether finding a particle at site x1 with spin σ1 correlates
(g(2) > 1) or anti-correlates (g(2) < 1) with finding a spin σ2 particle at site x2.
However, instead of repeating the findings of the authors here we instead want to
paint a more qualitative picture. To this end we compute the optimal configurations
of the spin-resolved wavefunction for different states, i.e. we seek the configurations
z and z̃ that maximize |Ψ(z, z̃)|2. Note that for a spin-resolved measurement the
correct probability distribution is already given by eq. (4.17) and (4.18) provided
that we have m odd. The resulting configurations for the product state Ψ(1,1,0), the
ferromagnetic S = 3,M = 15 ground state Ψ(1,1,1) and the S = 0,M = 18 Skyrmion
Ψ

(1)
(1,1,1) in the case of N↑ = N↓ = 8 particles are depicted in Fig. 4.5. The config-

urations were obtained by numerical optimization starting from randomly chosen
initial configurations. From all runs the best and another interesting configuration
(with almost the same value of the probability density) was picked, where the latter
is shown in the second row in Fig. 4.5.
The state shown in the first column is the simple product state Ψ(1,1,0) corresponding
to a Fermi-sea of both components. We expect the particles of like spin to separate
due to the Pauli-exclusion principle (or equivalently the (m = 1)-vortices) while
particles of unlike spin remain uncorrelated. This is indeed what can be observed in
Fig. 4.5. The emerging structure is the lowest Landau level analog of the recently
discovered Pauli crystals [Gajda et al., 2016][Holten et al., 2021b]. In the second
column the ferromagnetic ground state Ψ(1,1,1) with S = 3,M = 15 is shown. We see
how now also the particles of unlike spin repel each other. Furthermore, particles
of like spin tend to cluster together in long chains. This clustering is significantly
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Figure 4.5: Optimal configurations of FQH-states
Configurations that maximize the multi-particle probability density for a spin-
resolved measurement. The optimal configurations are computed for the product
state Ψ(1,1,0) (first column), the ferromagnetic S = 3,M = 15 ground state Ψ(1,1,1)

(second column) and the S = 0,M = 18 Skyrmion Ψ
(1)
(1,1,1) (third column) in the

case of N↑ = N↓ = 8 particles. A second optimal configuration with slightly lower
probability density is depicted in the lower row. Lengths are measured in harmonic
oscillator units l0.

enhanced in the optimal configurations found for the Skyrmion state. In the third
row we can observe that the two spin-species seem to spatially separate from an-
other forming two distinct phases characterized by their spin-projection. Note also
how the size of the ferromagnetic and the Skyrmion-state increases as compared to
the product state indicating a smaller filling fraction ν. As a final remark keep in
mind that the crystalline structures we can observe in Fig. 4.5 only emerge when
considering the optimal configurations of the underlying probability distribution.
Depending on how sharp the distribution is peaked around these configurations the
images obtained by sampling from the probability distribution, either numerically or
experimentally, will significantly deviate from the rigid crystalline structure. Since
the FQH-states typically describe quantum liquids this is indeed to be expected.
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4.2.4 Detection

Based on Fig. 4.5 we can get a feeling about the size of the states we are interested
in. For a typical trapping frequency of ω = 2π ·1 kHz we obtain a harmonic oscillator
length of l0 =

√
~/mω ∼ 1.3 µm. On the other hand the atoms are imaged through

a high-NA objective with NA = 0.55. For resonant 671 nm light this yields a
diffraction-limited resolution of δx = λ/2NA ∼ 0.61 µm. Hence, to obtain high-
quality images of the atomic cloud it has to be enlarged before imaging. Luckily,
such a magnification mechanism is available with the wavefunction microscope [Read
and Cooper, 2003]. By switching off the harmonic trap the atomic gas can expand
freely. After sufficiently long times the distribution in position space is given by the
rescaled initial momentum distribution. In that sense the momentum distribution
can be accessed by direct imaging of the expanded cloud. Since the eigenfunctions
of the harmonic trap transform self-similar under a Fourier transform, the final
distribution in the case of a harmonic trapping potential will be just a magnified
version of the original distribution in position space. In fact in the harmonic case
the original distribution but magnified is already recovered at finite times. Finally,
note that the authors argue that interactions among the atoms are negligible during
the free expansion. Anyhow, the interactions between the atoms may be removed
quasi-instantaneously during the measurement by flipping the (electronic) spin of
one of the atomic species via a Raman transition. If the new mixture is only weakly
interacting the interaction is effectively switched off [Holten et al., 2021a].
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4.3 The Rotating Gaussian Trap and other
experimental caveats

In the last chapters we have always tacitly assumed that the trapping potential
has the form of a harmonic oscillator. Unfortunately, due to the ever more rapidly
growing potential, harmonic traps are experimentally not possible to realize and the
best one can achieve is to maintain a close to harmonic shape at the center of the
trap before the potential eventually has to level off. The finiteness of the trap has
some important consequences, most importantly it only supports a finite number
of bound states and possesses a continuum of unbound states. That’s especially
relevant in the context of rotating traps. The rotating perturbations successively
couple states to higher and higher angular momentum which may eventually cause
the atoms to escape from the trap. This behavior will lead to a finite life time of the
atoms in the trap setting an upper bound for the time in which the experiment has
to be performed. Furthermore, the LLL hosts states with high angular momentum
which are, due to their high energy in the resting frame, especially sensible to the
actual shape of the trapping potential. These deviations in the potential will lift the
degeneracy of the Landau levels, introducing another energy scale competing with
the interactions.
As outlined in the introduction the 2D-traps used in the experiments in our group
are mostly generated by strongly focused Gaussian laser beams. The potential the
atoms feel via the optical dipole force is itself of Gaussian shape. Note, that in the
optical setup used to generate the rotating traps the use of a spatial light modulator
(SLM) allows one to madify the actual shape of the light fields. Typical trapping
potentials might for example resemble more the shape of an Airy-disk. On the other
hand, the SLM can also be used to increase the harmonicity of the potential.
However, for now we will adopt the model of a perfect Gaussian beam. At the very
least this will serve us as a Toy-model to study effects of the finite trap depth and
anharmonicity. In this spirit Laguerre-Gaussian laser beams will be used to generate
the higher-order azimuthal perturbations.

4.3.1 Realistic Traps using Laguerre-Gaussian Laser Beams

A Laguerre-Gaussian beam is a special type of monochromatic electromagnetic ra-
diation. It is a so called transverse electromagnetic mode, i.e. both the electric
and the magnetic component oscillate in the plane perpendicular to the direction
of propagation. Other characteristic features are the compact distribution of power
around the central axis of propagation, giving it its beam like shape and that the
beam is maintaining its intensity pattern in the transverse plane up to rescaling.
Gaussian beams in general are a solution to the paraxial Helmholtz equation, i.e.
their amplitude is assumed to vary only very slowly on the scale of the wavelength
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of the light. The amplitude of the Laguerre-Gaussian beam at its focus is given by

LGl
p(r, φ, z = 0) =

√
2

w0

√
p!

π(|l|+ p)!

(√
2r

w0

)|l|
L|l|p (2r2/w0)eilφe−r

2/w2
0 , (4.20)

where w0 is called the minimal waist of the beam which it assumes precisely at the
focus. Note, that this is equivalent to the eigenfunctions (3.5) of the 2D harmonic
oscillator with the oscillator length given by l0 = w0/

√
2. The amplitude eq. (4.20)

is normalized accordingly and hence a beam of total power P =
∫
d2x|u(x)|2 is

simply given by u =
√
PLGl

p.
For a standard Gaussian beam consisting only of the LG0

0 mode the intensity distri-
bution in the focal plane is given by

I(r) =
2P0

πw2
0

e−2r2/w2
0 = I0e

−2r2/w2
0 , I0 ≡

2P0

πw2
0

. (4.21)

Let us now consider the presence of atoms in the focal spot of the beam with a
optical transition ω0 close to the frequency of the laser light ωL. For a large red-
detuning with respect to the width of the transition Γ, ∆ = ω0−ωL � Γ, the atoms
experience an attractive force from the laser field , c.f. eq. (2.21),

V (r) ≈ −3πc2

2ω3
0

Γ

∆
I(r) = −V0e

−2r2/w2
0 , V0 ≡

3c2

ω3
0

ΓP0

∆w2
0

. (4.22)

Evaluating this expression for small radii to lowest non-vanishing order allows one
to make contact with the harmonic oscillator. Neglecting the constant shift we find

V (r) ≈ 2V0r
2

w2
0

+O(r4) ≡ mω2

2
r2, (4.23)

where we identified the harmonic oscillator frequency

ω =
2

w0

√
V0

m
=

√
12c2Γ

mω3
0∆

√
P0

w2
0

(4.24)

in terms of the mass of the atoms m. Due to the similarity of the Gaussian potential
with the harmonic oscillator we estimate the Gaussian trap to contain N = V0/~ω
’shells’. The number of shells can be taken as a measure of the anharmonicity of
the trap and is given by

N =

√
3mc2Γ

4~2ω3
0∆

√
P0. (4.25)

Combining eq. (4.24) and (4.25) yields relations for the waist of the Gaussian beam
and the total beam power in terms of the trapping frequency and the anharmonicity
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5

w0 =

√
4~N
mω

∼ 8.19 µm

√
N / 10

ω / 2π kHz

P0 =
4~2ω3

0∆

3mc2Γ
N2 ∼ 1.03 mW (N/10)2

. (4.26)

The values for the waist and the beam power can be evaluated for a reasonable trap-
ping frequency of ω = 2πkHz and a moderate depth of N = 10. Assuming 6Li to be
used, fulfilling these constraints already requires a large trap of waist ∼ 8 µm, which
is much larger than usual trap sizes of w0 ∼ 1 µm. As we will see later on increasing
the trap size further to N ∼ 20 is probably necessary. This would correspond to a
waist of ∼ 12 µm. Note that an upper bound for the trapping frequency ω is given
by the maximal experimentally possible trapping frequency in z-direction since we
want to maintain a large aspect ratio ωz/ω. We have ωz / 2π · 30kHz.
Before we investigate the spectrum of the Gaussian trap in detail, let us see how
higher order Laguerre-Gaussian modes can be used to generate azimuthal perturba-
tions.

Generating azimuthal perturbations with Laguerre-Gaussian beams

To this end we consider a superposition of a Gaussian beam with a waist w0 and a
higher-order L̂G

l

0 beam with waist w′0. Let the total amplitude be given by

u(r, φ) =
√
P0LG0

0(r)−
√
PlL̂G

l

0(r, φ). (4.27)

We further assume the waists of both beams to be of comparable size, γ = w0/w
′
0 ∼

1. The composed beam then generates a trapping potential

V (r, φ) = −V0e
−2r2/w2

0

∣∣∣∣∣∣1−
√
Pl
P0

γ√
|l|!

(√
2r

w′0

)|l|
eilφe(1−γ2)r2/w2

0

∣∣∣∣∣∣
2

. (4.28)

Expressing everything in terms of harmonic oscillator units ω =
√

4V0
w2

0m
, l0 =

√
~
mω

and using that l20
w2

0
= ~ω

4V0
we arrive at

V (r, φ) = −V0e
−r2/2V0

∣∣∣∣∣1−
√
Pl
P0

γ√
|l|!

(
γr√
2V0

)|l|
eilφe(1−γ2)r2/4V0

∣∣∣∣∣
2

≡ −V0e
−r2/2V0

∣∣∣∣1− 1

V0

εlr
leilφe(1−γ2)r2/4V0

∣∣∣∣2
, (4.29)

5The numerical values are computed in the case of 6Li, with ω0 = 2πc
671 nm , ∆ = 2πc (1/671 −

1/1064) nm−1 and Γ = 2π · 5.87 MHz.
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where now all energies and lengths are dimensionless and the perturbation strength

εl = γ|l|+1

√
Pl

P0|l|!
V 2

0

(2V0)|l|
(4.30)

has been introduced. Evaluating the square yields 6

V (r, φ) = −V0e
−r2/2V0 + εlr

l(eilφ + c.c.)e−(1+γ2)r2/4V0 +O(ε2l /V0). (4.31)

Whenever it’s possible to neglect the second order term in ε is a somewhat subtle
question that depends on the energy scale on which we want the approximation to
be valid. Let R be the maximal length scale of interest which might either be given
by the scale of the potential R ∼

√
2V0 itself or by an angular momentum cut-off M

in the LLL, yielding R =
√
M . If we want the approximation only to be accurate

on the energy scale of the potential ∼ V0 we require εlRl/V0 � 1. However, we
usually want the harmonic oscillator to stay the dominant energy scale and thus
we demand the perturbation itself to be small on that scale, i.e. εlRl � 1. Note
that this automatically implies that the second order terms in ε are negligible, since
εlR

l/
√
V0 � 1.

Finally, if R�
√

2V0 we can also perform the harmonic approximation yielding

V (r, φ) =
r2

2
+ εlr

l(eilφ + c.c.), (4.32)

where the offset energy was omitted.
The time-dependent perturbation potential eq. (4.9) for only one εl 6= 0 can be re-
covered by introducing a detuning δ = lΩ between the trapping the and perturbation
laser. This results in the potential

Vl(r, φ, t) = εlr
l(eilφeilΩt + c.c.). (4.33)

4.3.2 Exact single-particle spectrum

Let us now compare the single-particle spectrum of the Gaussian trap to that of a
harmonic trap. The potential of the Gaussian trap is given by

Vg(r) = −V0e
−r2/2V0 , (4.34)

where we have already expressed all quantities in harmonic oscillator units. The
single-particle Hamiltonian can then be conveniently written as

Hg =
1

2
(−∆ + r2)− (1− α)M︸ ︷︷ ︸

H0

−V0e
−r2/2V0 − 1

2
r2 (4.35)

6The second order term in εl computes to 1
V0
ε2l r

2le−γ
2/2V0 .
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consisting of the harmonic trap Hamiltonian H0 as seen from the rotating frame
and a perturbation term. The matrix elements of the Gaussian potential and the
harmonic term can be computed analytically in the harmonic oscillator basis (3.5),

〈k′,m|Vg|k,m〉 = −V0

√
k!k′!

(k + |m|)!(k + |m|)!

∫ ∞
0

dxxme−(1+a)xL
|m|
k (x)L

|m|
k′ (x),

(4.36)

with a = 1/2V0. The remaining integral is a special case of the more general integral
[Srivastava et al., 2003] 7

I[k,m,k′,m′; l, a] =

∫ ∞
0

dxxµe−(1+a)xL
|m|
k (x)L

|m′|
k′ (x), µ =

1

2
(l + |m|+ |m′|)

=
Γ(µ+ 1)

(1 + a)µ+1

min(k,k′)∑
n=0

(
k + |m|
k − n

)(
k′ + |m′|
k′ − n

)(
n+ µ

n

)
(1 + a)−2n

· 2F1

(
−k + n, µ+ n+ 1, |m|+ n+ 1,

1

1 + a

)
· 2F1

(
−k′ + n, µ+ n+ 1, |m′|+ n+ 1,

1

1 + a

)
(4.37)

appearing in the context of 〈k′,m′|rleilφe−ar2|k,m〉. The harmonic term, giving the
expectation value of the potential energy on the diagonal, can be expressed similarly
as

〈k′m|r2|k,m〉 = (|m|+ 1)!(−1)k+k′

√
k!k′!

(k + |m|)!(k′ + |m|)!

·
min(k,k′)∑
n=0

(
1

k − n

)(
1

k′ − n

)(
|m|+ 1 + n

n

), (4.38)

which only couples k = k′ and k = k′ ± 1 modes.
Since the Gaussian potentials retains the rotational symmetry of the harmonic
Hamiltonian, angular momentum stays a good quantum number. We can then
solve for the eigenvalue spectrum for each angular momentum channel separately.
The resulting spectrum for different trap depths is shown in Fig. 4.6a. In the
deconfinement limit we can clearly see how the degeneracy is lifted. With higher
angular momentum m the levels start to curve down significantly. Fig. 4.6b gives
a quantitative picture of the energy shifts in the LLL. Even for low angular mo-
menta fairly deep traps are necessary to ensure that the energy shifts stay below
~ω. Furthermore, we see that shallow traps host only a small number of states in
the LLL.

7
2F1(a, b, c; z) is the Gaussian hypergeometric function.
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Figure 4.6: Energy Spectrum of the Gaussian Trap
a - Exact energy spectrum of Gaussian traps of various depths V0 (rows). The
columns show the spectrum as seen from a rotating frame rotating with frequency
1 − α. For comparison the levels of the harmonic oscillator are shown as well. b -
Energy shift of the LLL levels in the Gaussian trap as compared to the harmonic
oscillator, ∆Em = EGaussian

m + V0 − EHO
m .

m is the angular momentum quantum number. Only bound states with energy E < 0
are depicted. Per m-channel 41 k-modes are used to expand the Hamiltonian.
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4.3.3 How deep is deep enough?

A natural question to ask now is how deep we have to design the Gaussian trap to
avoid the lifted degeneracy in the LLL to destroy the fractional quantum hall states
we’re seeking. Qualitatively speaking we expect the degeneracy to be sufficiently
well preserved when the energy shift ∆Ean caused by the anharmonicity is small
compared to the scale of the interaction ∆Eint = g/2π. In the opposite regime
∆Ean > ∆Eint the particles may be willing to pay the extra energy cost of the in-
teraction, since we take g > 0, in favor of a net gain of energy by shifting the weight
of the populated angular momentum states around (still maintaining the same total
angular momentum).
To get a more quantitative picture of this effect we want to study the ground state
of the Gaussian trap in the deconfinement limit. Since we’re ultimately interested in
finding the Ψ

(1)
(1,1,1) Skyrmion-state let us compare the numerically computed ground

state in the S2 = 0,M = 18 channel for 3 + 3 atoms with the ’Gaussian’ Skyrmion,
i.e. instead of the harmonic LLL-states we use the analog states from the Gaus-
sian trap. To this end we expand the Gaussian Hamiltonian eq. (4.35) and the
contact interaction on a large harmonic oscillator basis with angular momentum
cut-off 0 ≤ m ≤ 9 and six k-modes per m-channel. In a first step we solve the
single-particle problem from which we get the eigenstates of the Gaussian-trap. By
taking only the two lowest eigenstates per m-channel we can create a new much
smaller basis, which we denote by b†k,m,σ =

∑′
k R

(m)
k,k′a

†
k′,m,σ. All operators in second

quantization are then readily obtained by replacing ak,m,σ → R
(m)
k′,kbk′,m,σ. This rota-

tion procedure is handled automatically by Quanty, one only needs to provide the
semi-unitary rotation matrices R which we already computed in the first step. We
finally compute the ground state via Quanty where starting with the ’Gaussian’-
Skyrmion state significantly boosts the convergence of the Lanczos-algorithm. The
numerical results for different trap depths and interaction strengths are depicted in
Fig. 4.7. Note that we introduced the interaction parameter η = g

4π
which was

used in [Palm et al., 2020].8 For a very low interaction strength of η = 0.01 no
overlap with the Skyrmion-state is found. For η = 0.05, η = 0.1 and η = 0.25 the
overlap jumps to order 1 at trap depths around 45~ω, 20~ω and 12~ω. Following
the qualitative argument made above we should be able to infer similar values of
the trap depth by considering the level shifts in Fig. 4.6b. The Skyrmion-state
populates angular momentum states up to m = 6. Since that might be a little too
conservative we read off the trap depths at which we find the corresponding energy
shifts ∆E = 0.02, 0.1, 0.2 and ∆E = 0.5 (∆Eint = 2η) for the m = 5 state. This
gives roughly > 100~ω, 50~ω, 25~ω and 12~ω, which is in fairly good agreement with

8In principle we should have η = g. Instead the numerical results from [Palm et al., 2020] can
only be reproduced with g = 4πη. Note that the authors give the relation η =

√
8π a3Dlz . In

contrast we found g =
√

8π a3Dlz in eq. (4.12), which hints at an error. Note that also the matrix
elements of the contact interaction in the LLL given in [Palm et al., 2020] differ by a factor 4π
(be aware of the summation of spins in the operator!) to the ones given here, which is in line
again with the relation g = 4πη.
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Figure 4.7: Ground state overlap with the Skyrmion for the Gaussian Trap
Overlap of numerically computed ground state in the channel S2 = 0, M = 18
with the ’Gaussian’ Skyrmion-state Ψ

(1)
(1,1,1) for N↑ = N↓ = 3 (the state is build

with states from the Gaussian LLL instead of the harmonic oscillator LLL). The
two lowest Landau levels of the Gaussian traps with angular momentum cut-off
0 ≤ m ≤ 9 are used. The interaction strength η is related to the previously used
coupling constant g = 4πη. Hence, the interaction energy is ∆Eint = 2η.

the numerical finding!
Note that the overlap was computed for η > 0.5 as well, corresponding to large
interaction energies of above 1~ω. Interestingly, the Skyrmion-state sill remains the
ground state of the system, despite the presence of the second Landau level. How-
ever, this can be anticipated because the positive coupling constant strongly favors
non-interacting states as the ground state. In that sense we expect the Skyrmion-like
ground state even for arbitrary large η. Per contra, as has been discussed already, a
positive coupling constant hides the dimer-state. For large interaction strengths we
will finally come into a regime where the dimer-like states become to shallow to be
ignored anymore (cf. Fig. 3.2b,d). Then such dimer-like states, consisting of many
Landau levels, will become the new ground state of the system.
Besides the condition ∆Eg < ∆Eint, we should take care that no relevant states
from the next higher Landau level drop into the LLL, i.e. ∆E1LL

g < 2~ω. This
condition is fulfilled for all trap depths considered in Fig. 4.7.
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4.3.4 Adiabatic Passage in the Gaussian Trap

We conclude our discussion of the Gaussian trap by considering the adiabatic prepa-
ration of the Skyrmion-state. Based on Fig. 4.7 we choose a moderately deep trap
of V0 = 20~ω and a coupling constant of g = π (η = 0.25). Starting from a closed-
shell configuration of 3 + 3 non-interacting atoms the LLL can be reached by the
same protocol that was already mentioned when discussing the harmonic trap. We
apply a (l = 3)-perturbation which opens a gap between the |0,−1〉 and |0, 2〉 state.
Beyond α ≈ 0.5 the perturbation can be turned off as we have successfully prepared
the S = 0,M = 6 Ψ(1,1,0) state. Note that due to the anharmonicity of the Gaussian
trap, the position of the gap will be slightly shifted as compared to the harmonic
case. In a next step we switch on the interactions and apply the elliptical (l = 2)-
perturbation. Note that one wants to do this only at rather small α where the LLL
(up to the angular momentum we care about) is energetically separated from the
higher Landau Levels. This avoids coupling into other Landau levels which might
otherwise be energetically favorable.
Let us pause for a moment here. In the harmonic case we would now ramp up the
speed of rotation until the Skyrmion-state is reached i.e. when the Skyrmion be-
comes the ground state of the non-perturbed system. Since it is the first state with
vanishing interaction energy for S = 0, all higher angular momentum states will be
shifted by an energy α∆M . Depending on the ratio between α∆M and the strength
of the perturbation an increasing number of higher excited states will be coupled
into the perturbed ground state. However, by slowly switching off the perturbation
we can drive the system eventually into its true ground state, the Skyrmion.
For the Gaussian trap this situation unfortunately is much more delicate. States
with angular momentum higher then the Skyrmion will have a lower total energy
due to the energy shifts in the Gaussian trap. Because these shifts can easily exceed
~ω for high enough angular momentum the strict ordering in energy with increasing
total angular momentum we know from the harmonic trap is not maintained. Thus
we expect states of higher angular momentum M > 18 + ∆M to be the true ground
states where we would have thought to the find the Skyrmion (actually these will
be scattering states with arbitrarily high angular momentum). Note that ∆M will
increase with the depth of the trap. Without any coupling between states of differ-
entM we can simply ignore this effect. In the presence of the elliptical perturbation
however we have to be careful as it can directly couple states up to ∆M ≤ 12 (for 6
particles). Now, if the Skyrmion-state gets coupled to a state of lower energy we can
no longer drive the system into the Skyrmion-state by switching off the perturbation!
Under which circumstances this is going to be a problem is hard to anticipate. Due
to the large angular momenta involved numerical simulation is not feasible as the
corresponding Hilbert spaces are too large. For now we simply resort to checking if
the occupation probability of the different angular momentum states drops to zero
for the highest m states. An interesting option to address this potential problem
consists in designing the perturbation to primarily couple states of lower angular
momentum. This can be achieved by choosing a narrower waist for the perturbation
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Figure 4.8: Adiabatic Passage for 3 + 3 atoms in the Gaussian Trap
a - Energy of the two lowest states for 3+3 atoms in a Gaussian trap of depth 20~ω
perturbed with a elliptical perturbation rotating with speed 2Ω = 2ω(1 − α). The
energies have been shifted with respect to the vacuum energy. The perturbation
has strength ε2 = 0.02 and the same waist as the Gaussian trap, i.e. γ = 1.
The interaction strength is set to η = 0.25 (g = π). Highlighted regions indicate
the angular momentum (top x-axis) of the ground state in the unperturbed trap.
Besides the energy the expectation value of angular momentum is plotted on the
right axis for both states. Numerical results are obtained by expanding on a basis
of the Gaussian-LLL with maximum angular momentum mmax = 9. b - Energy gap
between the ground and first excited state.
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beam, i.e. γ > 1. Fig. A.1 in the appendix shows the matrix elements of the l = 2
perturbation for V0 = 20~ω and different γ. At the cost of higher coupling into the
first Landau level the coupling between higher angular momentum modes can be
significantly reduced.
Let us now set this issue aside and focus on the result of a computation where we
choose ε2 = 0.02 9 and γ = 1 for simplicity, i.e. both the trap and the perturbation
have the same waist. As before we expand the Hamiltonian on the Gaussian LLL
with angular momentum cut-off mmax = 9. In Fig. 4.8a the energies and angu-
lar momentum expectation values of the two lowest laying eigenstates in the spin
singlet-channel are plotted. Due to the perturbation gaps open in the spectrum
and we can adiabatically follow the ground state from M = 6 to the Skyrmion at
M = 18. The energy difference between both states is plotted in Fig. 4.8b. The
values found here a very similar to the findings of Palm et al. [2020] for the same
set of parameters (η = 0.25, ε = 0.02) in the harmonic case. In Fig. 4.8a the high-
lighted background areas indicate the regions for which the state with total angular
momentum M (top x-axis) is the ground state of the unperturbed system. For the
first three segments (M = 6, 8, 12) pronounced plateaus in the angular momentum
of the perturbed ground state can be observed. Once the M = 18 region is entered
this changes and angular momentum starts to increase more steadily in both the
ground and the first excited state. For the excited state this is in strict contrast
to the behavior observed for M < 18, where its angular momentum content often
times got exchanged with that of the ground state or a higher excited state whenever
there was a level crossing. This is to be anticipated since states beyond M = 18 can
effectively suppress the interaction. This leads to a reduced separation in energy
which enhances the transfer of angular momentum.
In Fig. 4.9 we further plot the ground state density distribution at selected points
during the adiabatic passage. One can clearly see how the ellipticity of the droplet
increases for higher rotational speed. In the lower right corner also the occupation
probability of the different angular momentum modes in the LLL is plotted. Beyond
α = 0.16 more weight is pushed into modes with higher angular momentum. This
may be taken as a signal that the used Hilbert space becomes too small. Especially
the results towards α = 0.1 should hence be taken with a grain of salt.
Finally, let’s get some numbers about the Gaussian and Laguerre-Gaussian beams
we would need to execute the aforementioned protocol. First of all eq. 4.26 tells us
that we need a 4 mW beam with a 12 µm waist to generate a trap of depth 20~ω
and a trapping frequency of 2π kHz. The power of the perturbation beam can be
computed from eq. 4.30 which yields 13 µW. From Fig. 4.8b we can now also read
off the minimal gap size which gives ∆ ∼ 2π · 5 Hz.

9In the harmonic approximation this yields a critical speed of αc = 0.02. At faster rotation the
atoms are anti-confined and will escape from the trap.
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Figure 4.9: Density of 3+3 atoms during an adiabatic passage in the Gaus-
sian Trap
The density distribution during the adiabatic passage of 3 + 3 atoms in a Gaussian
trap of depth V0 = 20~ω is shown in the region [−5, 5] × [−5, 5]l0. The trap is
perturbed with an elliptical perturbation of strength ε2 = 0.02 and same waist as
the Gaussian trap, i.e. γ = 1. The interaction strength is set to η = 0.25 (g = π).
Numerical results are obtained by expanding on a basis of the Gaussian-LLL with
maximum angular momentum mmax = 9. In the bottom right corner the occupa-
tion probability of the different angular momentum modes in the LLL is depicted.
For small speed of rotation α < 0.16 the higher angular momentum modes be-
come increasingly populated. This may indicate that the numerical results become
erroneous, especially towards α = 0.1.
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4.4 Implementation and Experimental Methods

After discussing the physics in a rotating harmonic trap and the more realistic ro-
tating Gaussian trap from a theoretical standpoint we finally turn towards their
experimental realization. A central role of this chapter will be played by the spatial
light modulator (SLM) that allows us to generate the light fields needed for trapping
and perturbing the atoms. However, since it heavily relies on the concept of Fourier
optics, we shall start with a brief introduction to this subject first. In this context
we will also discuss the Fourier transforming properties of lenses, perhaps our most
important optical tool after all. Special focus will be put on the influence of aber-
rations on the formed Fourier transforms. Eventually, the current optical setup will
be presented.

4.4.1 Optical Design: Lenses and Aberrations

A short Introduction to Fourier Optics

Already in the context of the Gaussian beams we came across the paraxial Helmholtz
equation. This is a special case of the general wave equation under the condition
that the spatial shape of the involved light fields varies only very slowly on the scale
of the wavelength of the light. Let us take a few steps back and start from the scalar
wave equation(

∇2 − 1

c2

∂2

∂t2

)
u(x, t) = 0. (4.39)

It describes the evolution of the scalar wave u which we will take to be the amplitude
of the electric field E. Note that this will yield a valid description of electromagnetic
waves in linear, homogeneous and isotropic media. Separating the amplitude into a
product u(x, t) = u(x)eiωt immediately yields the Helmholtz equation(

∇2 + k2
)
u(x) = 0, (4.40)

where the wave number k obeys the well-known wave relation k = |ω|/c. A conve-
nient solution is again found by a product ansatz separating the spatial coordinates,
u(x) = eik·x. In order to fulfill the wave relation one of the components of the wave
vector k is constrained in terms of the others. Choosing this to be the z-component
gives the solutions

ukx,ky(x) = e−i(kxx+kyy)e∓i
√
k2−k2x−k2yz. (4.41)

These are just plane waves with wavelength λ = 2π/k which propagate in either
positive or negative z-direction as long as k2 > k2

x + k2
y. Beyond this point the z-

propagation becomes damped exponentially as kz becomes imaginary. 10 Since the
10Technically, it grows exponentially in the other direction. However, without any further bound-

ary conditions, e.g. in a finite volume, this branch of the solution is unphysical.
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Helmholtz equation is linear and kx and ky are still unconstrained we can superim-
pose solutions as we wish. This allows us to compose an (almost) arbitrary field in
some plane of fixed z, e.g. z = 0,

u0(x, y) =

∫
dkxdkyU0(kx, ky)e

−i(kxx+kyy)e−i
√
k2−k2x−k2yz|z=0 = u(x, y, z = 0), (4.42)

which we recognize as a Fourier transform. Evaluating u at non-zero z then tells us
how the field u0 propagates to planes at different z! Due to the important role of
the Fourier transform, this approach to solving the Helmholtz equation was termed
Fourier optics. It is especially useful when the problem allows one to consider the
propagation of fields between planes, like above.
By means of the Fourier transform 11

U(νx, νy) = F [u](νx, νy) =

∫
dxdyu(x, y)e2πi(νxx+νyy) (4.43)

of a function u(x, y) we can write down the propagation of a light field given by u
to a different plane located a distance d away by

G(νx, νy) = e
−2πi

√
1
λ2
−ν2x−ν2yd︸ ︷︷ ︸

H0

U(νx, νy). (4.44)

The field in the new plane can be computed by in the inverse Fourier transform of
G, i.e. g(x, y) =

∫
dνxdνyG(νx, νy)e

−2πi(νxx+νyy). H0 is called the transfer function
of free space. Throughout the rest of this thesis we will assume the so-called small
angle and Fresnel approximation which is valid in the regime

λ2ν2 � 1,
dλ3ν4

4
� 1, ν2 = ν2

x + ν2
y . (4.45)

Since the smallest features in real-space δxmin will determine the largest features
in Fourier-space νmax = 1/δxmin the first conditions tells us that u better be well
resolved on the scale of the wavelength, i.e. δxmin/λ � 1. Introducing the angle θ
between the wave vector k and the z-direction allows us to write ν = 1

λ
sin θ. The

small-angle condition then translates to θ2 � 1⇔ ν ≈ θ/λ. We can also rewrite the
second condition in this way, dθ4/4λ � 1. Putting everything together allows us
to expand the square root in the free space transfer function to first non-vanishing
order in ν,

H0 ≈ e−ikdeiπλd(ν2x+ν2y). (4.46)

Using the convolution theorem we are now able to directly compute the propagated
field g in real space,

g(x, y) =
i

λd
e−ikd

∫
dx′dy′u(x′, y′)e−i

k
2d((x−x′)2+(y−y′)2). (4.47)

11In the following we will adopt the notation of Bahaa E. A. Saleh [1991], which essentially means
introducing νi = ki/2π.
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The thin Lens

Probably the most important piece of optics we will make use of is the lens. We
don’t really want to discuss the absolute basics here, rather we want to develop a
little bit of a refined understanding in the context of Fourier optics. Especially, we
want to focus on the Fourier transforming properties of the lens.
Let us start by considering a lens of very simple shape. One side shall be plane and
its other side shall be shaped in terms of a function ∆(x, y) giving the thickness of
the lens. Furthermore, let ∆0 be its maximum thickness. In the spirit of Fourier
optics we are interested in how a light field u(x, y) propagates from the plane just
before the lens, say at z = 0, to the plane at z = ∆0. For a moment let us picture a
light ray passing through the lens. It will penetrate the lens at some point (x, y, 0)
where it will be refracted until it hits the other surface of the lens. Here it will be
refracted again, leave the lens and finally arrive at the output plane at (x′, y′, z0). In
total the ray is now displaced and in terms of wave optics it will also have acquired
a phase along its way. Both the displacement and the phase shift will depend in a
very complicated way on the lens shape, the entrance point of the ray and its angle.
This will only get worse if we want to follow the propagation of the whole light
field u through the lens. Luckily, the problem considerably simplifies when we make
a few assumptions that nevertheless allow us to capture typical practical situation
quite well. The main problem of the full description is the complicated path a ray of
light takes through the lens. However, if we assume a suitable combination of a thin
profile ∆(x, y) and small angles at the diffracting surfaces we can approximate the
path of the ray to be straight. The displacement will then be zero and the light field
in the output plane is straightforwardly found to be e−i(∆0+(n−1)∆(x,y))u(x, y), where
n is the refractive index of the lens material. These assumptions are summarized
under the name thin lens approximation. A special type of thin lens is the ideal lens
which is precisely shaped to yield the output field

u′(x, y) = eik
x2+y2

2f u(x, y), (4.48)

with the focal length f of the lens. Within the thin-lens approximation a more
realistic description can be obtained by introducing the pupil function p(x, y) =
T (x, y)ei2πW (x,y) with which the light field is to by multiplied. T (x, y) gives the
transmission of the lens, which for the simplest case is given by Θ(D/2− r)12, rep-
resenting a spherical aperture of diameter D. W (x, y) will encode aberrations to be
discussed later on.

The Fourier transforming Lens

Let ũ(x′, y′) be said input field directly in front of a lens with focal length f and
pupil function p(x′, y′). We now want to compute the field in the focal plane of the

12Θ(x) is the Heaviside step function
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Figure 4.10: The Fourier transforming lens
The field in the object plane O can be decomposed into plane waves with different
spatial frequency ν = (νx, νy), which propagate under an angle θ = (θx, θy) = λν
with the optical axis (z-axis). The plane waves are focused in the focal plane of the
lens at positions (x, y) = λfν, leading to the formation of the Fourier transform of
the field in the object plane. Taken and adapted from [Heine, 2008].

lens. To this end we use eq. (4.47) which directly equates to (with xf = x
λf
, yf = y

λf
)

g(x, y) =
i

λf
e−ikfe−i

k
2f

(x2+y2)

∫
dx′dy′p(x′, y′)ũ(x′, y′)e2πi(xfx

′+yfy
′)

=
i

λf
e−ikfe−i

k
2f

(x2+y2)

∫
dνxdνyŨ(νx, νy)P (xf − νx, yf − νy).

(4.49)

Up to a phase this is the Fourier transform of ũ(x′, y′) times the pupil function! Or
equivalently the Fourier transform Ũ of the input field convoluted with the Fourier
transform P of the pupil function. Note that P is the well-known point spread
function one encounters when considering the image formation properties of the
lens, i.e. when we are interested in the field formed in the image plane of the lens.
Well, usually one doesn’t know the field in the lens plane but rather at some distance
d before it. Using eq. (4.44) in the Fresnel-approximation we obtain

g(x, y) =
i

λf
e−ik(f+d)e

i k
2f2

(x2+y2)(d−f)

·
∫
dνxdνyU(xf − νx, yf − νy)P (νx, νy)e

iπλd(ν2x+ν2y)e−i2πλd(νxxf+νyyf )

, (4.50)

where U is the Fourier transform of the field u(ξ, η) at z = −d (where (ξ, η) label
the coordinates in that plane). This situation is sketched in Fig. 4.10. For the
ideal lens the point-spread function is given by a delta function and the integral



Chapter 4. Rotating Traps: A path to Quantum Hall Physics 65

reduces to U(xf , yf ). In the non-ideal case we now face also two exponential terms
oscillating with ν and ν2, respectively. These terms potentially influence the shape
of the resulting light field g significantly. Especially for large distances g will look
nothing like the Fourier transform of u anymore. Interestingly, the ν2-term can be
neglected for most of the experimental situations we’re interested in. For reasonable
applications the pupil function should be well concentrated inside a region of radius
νp. In the case of a perfect spherical aperture of diameter D we find the Airy-disk
P (ν) ∼ J1(πνD)/ν for which we set νp ≈ 1.22/D ≈ 1/D based on its first root. We
can then neglect the ν2-term in eq. (4.50) provided that

λd

D2
� 1 (4.51)

holds. For a typical one-inch lens this gives a pretty large upper bound for the
distance of d� 606 m given that we use infrared light with a wavelength λ ∼ 1 µm.
Under this assumption the integral in eq. (4.50) reduces to∫

dνxdνyU(xf − νx, yf − νy)P (νx, νy)e
−i2πλd(νxxf+νyyf ) (4.52)

or equivalently∫
dξdη u(ξ, η)p(ξ + λdxf , η + λdyf )e

i2π(ξxf+ηyf ), (4.53)

which we recognize as some kind of odd convolution and Fourier transform, respec-
tively where the function to be transformed depends on the final argument. The
latter equation is the easiest to interpret by considering again the angle θ correspond-
ing to a spatial frequency ν or position in the focal plane xf as θ = λν = λxf .
Plugging this into eq. (4.53) tells us that the pupil function is shifted by dθ. This
is exactly the geometrical displacement in the lens plane rays propagating with
wavevector k = (θ/λ, kz) acquire over the distance d! Hence, the shift just accounts
for the evolution of the light field from the object to the lens plane. Now for the
ideal lens with finite aperture the pupil function is just given by a disk of radius
D/2, p(r) = Θ(D/2 − r), and evaluating the integral for different positions in the
focal plane will crop out different parts of the light field u(ξ, η) to be Fourier trans-
formed. For our purposes we can assume u(ξ, η) to be extending over a scale smaller
or at most comparable to the lens’ aperture. We can then identify two interesting
regimes, where we for simplicity also take u(ξ, η) to be centered at the optical axis.
If

λdrf � D, with r2
f = x2

f + y2
f (4.54)

we can simply neglect the pupil function and obtain a perfect Fourier transform in
the focal plane. In the opposite regime, λdrf � D, the integral becomes zero since
we evaluate the pupil function outside the aperture. Since νp ≈ 1/D, this condition
is equivalently expressed as 2λdrfνp � 1 and we observe that the convolution eq.
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(4.52) will vanish accordingly due to the now rapidly oscillating exponential. In
total this tells us that the free space propagation together with the lens is causing
a cutoff

νc =
1

2dλνp
=

D

2dλ
(4.55)

in the frequency spectrum of the field u(ξ, η). In that sense the lens acts as a lowpass
filter. Hence, under the above assumptions we find the field in the Fourier plane
z = f to be given by,

g(x, y) =
ie−ik(f+d)

λf
e
i k
2f2

(x2+y2)(d−f)
(U∗P )(xf , yf ) ∼ F [u·p](xf , yf ), rf � νc (4.56)

where ∗ denotes the usual convolution. 13 Note that the pupil function also intro-
duces a maximal cutoff length scale L = 1/νp for the field u(ξ, η) in the object plane
at z = −d, where in the simplest case of a perfect spherical pupil function we have
L = D. This corresponds to the finest length scale δxf = 1.22/D in the Fourier
plane. In physical coordinates x = xf/λf we find the well-known diffraction-limited
resolution δx = 1.22λf/D = 0.61λ/NA, where NA = D/2f is the numerical aper-
ture of the lens.
Finally, note that the non-ideal pupil function will not be unity inside the aper-
ture and thus the shift in eq. (4.53) actually does matter at intermediate frequen-
cies, ν . D/2λd. However, if the frequency spectrum of u is concentrated suffi-
ciently well around a central value, say ν0, we might simply get away with replacing
p(x)→ p(x+ λdν0) and P (ν)→ P (ν)e−2πiλdν·ν0 in eq. (4.56).

Aberrations

In the typical experimental situations we face during this thesis the field in the focal
plane of the lens should be well described by eq. (4.56). Furthermore, all lenses will
be chosen such to avoid any clipping of the incident beam. Thus, one might assume
that P (νx, νy) is essentially 1 and all the Fourier transforms we need are going to be
perfectly realized. Unfortunately, realistic lenses are other than perfect. All sorts of
errors during the manufacturing-process and the optical alignment by the end-user,
but also designed deviations from the optimal geometric shape for a single wave-
length lead to broadening of the point-spread function. While the effect of these
errors will unarguably have significant impacts on the actual light fields that form
in the lens focal plane our hope is that they are small enough to still be describable
in the thin lens approximation. To this end the phase term e2πiW (x,y), W ∈ R was
introduced in the pupil function.

13(f ∗ g)(x, y) =
∫
dtduf(t, u)g(x− t, y − u).
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Figure 4.11: Aberrations
The effect of different aberrations on the intensity profile of a flat-top beam with
constant phase (second row) and with a phase-vortex ei2φ (third row) in the focal
plane of a lens is depicted. The first row shows the phase error map W (x, y) re-
sponsible for the aberrations caused by the lens. No aberrations, spherical defocus,
astigmatism and coma are shown. For the flat-top beam with constant phase 3 ·W
is used to enhance the visible effects of astigmatism and coma.

A few of the most common aberrations and their characteristic effects on two
different types of light beams are depicted in Fig. 4.11. The second and third row
show the intensity profile obtained in the focal plane of the lens for a flat top beam
(second row) and a flat top beam with an additional second-order phase vortex e2iφ

(third row). For a perfect lens the latter will give rise to an intensity pattern close
to a LG2

0 Laguerre-Gauss mode. The focal pattern of the pure flat top beam is just
the point spread function of the illuminated part of the lens. The different types of
aberrations can be associated with the so-called Zernike polynomials, which form a
basis for the real functions on the unit disk. Expanding W (x, y) on this basis hence
allows for a good qualitative and quantitative discussion of the aberrations present
in a lens.
To quantify the broadening of the point spread function, the Strehl-ratio [Jr et al.,
2004][str]

S =
|Preal(0, 0)|2

|Pideal(0, 0)|2
(4.57)
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can be used which compares the peak intensity of the aberrated point spread function
Preal(νx, νy) = F [Θ(D/2−r)e2πiW (x,y)](νx, νy) to the unaberrated case Pideal(νx, νy) =
F [Θ(D/2− r)](νx, νy). Optics with S > 0.8 is said to be diffraction-limited. If the
object to be Fourier-transformed is smaller than the lens’ size a high-quality Fourier
transform can be achieved if the lens is in fact diffraction limited. Then the finest
details in the Fourier transform, set by the size of the object, can be fully resolved. In
the case of much smaller objects this condition can be relaxed as we only require the
illuminated part of the lens to be diffraction limited. Since aberrations usually grow
with distance from the optical axis smaller apertures will generally speaking result
in a higher Strehl-ratio. Based on the condition S > 0.8 we can define an effective
lens diameter D∗ < D, which will result in a larger effective size ν∗p = 1/D∗ > 1/D
of the point spread function and hence also a lower frequency cutoff ν∗c . If the full
point spread function is known νp can of course be determined directly.
In practice aberrations are oftentimes also caused by non-perfect alignment of the
lens with respect to other optical components. For example light beams that prop-
agate through the lens under a ’mean’ non-zero angle θ0 with the optical axis typ-
ically experience coma. This angle-dependency indicates the limit of the thin-lens
approximation. Luckily, the angular scale of such effects is usually much larger than
the corresponding frequency spectrum of the object to be imaged or Fourier trans-
formed. If that’s the case we can include an angle or frequency dependency into the
aberrations W = Wθ0(x, y) and the point spread function P = Pν0(νx, νy), the pupil
function p = pν0(x, y), respectively. 14 It is reasonable to assume that νp grows with
θ0. Subsequently, the cutoff of the spatial frequencies in the object plane νc, but
also the resolution in the Fourier plane will drop. By employing the same condition
S > 0.8 we can also define a maximum angle θ0 accepted by the lens.

14Note that this is stronger than simply shifting the pupil function by the mean angle as we did
previously.
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Figure 4.12: Phase-only SLM
A spatial light modulator is used to imprint a spatially varying phase φ(x, y) onto
the incident beam. By a subsequent Fourier transform via a lens an almost arbitrary
intensity distribution can be generated in focal plane of the lens. Taken from [Palm,
2018].

4.4.2 The Spatial Light Modulator

A powerful optical tool for the generation of arbitrary light fields is nowadays given in
terms of spatial light modulators (SLM). The phase-only SLM we are going to use in
this thesis can be pictured as a small mirror consisting of roughly half a million pixels.
But these pixel do not only reflect the incident light. By adapting their refractive
index also the phase of the reflected light can be manipulated. By subsequent Fourier
transformation almost arbitrary light fields can be created in the focal plane of the
used lens. This mechanism is illustrated in Fig. 4.12. Mathematically expressed,
the SLM allows us to imprint a phase field φ(x, y) onto the reflected light field, i.e.

uout(x, y) = eiφ(x,y)uin(x, y). (4.58)

More about the functional principle of the phase-only SLM and its characterization
can be found in [Holten, 2014][Palm, 2018][Hammel, 2019].
Since the desired intensity distribution is not directly accessible, elaborated phase-
retrieval algorithms are needed that at least approximate the phase φ(x, y) that
yields the optimal intensity in the Fourier plane. Numerical and analytic approaches
to this problem have been explored by Palm [2018] and Hammel [2019]. Both meth-
ods can be used to significantly enhance the harmonicity of the potentials we can
generate using the SLM. Unfortunately, they are also rather complicated to imple-
ment and potentially time-consuming in their execution. So far, that means during
the construction phase of the experiment, we have instead resorted to a much sim-
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pler approach to generate the needed Gaussian and Laguerre-Gaussian potentials.
We therefore want to quickly discuss the light fields generated in this way. Once
the experiment is fully setup we can always optimize the trapping and perturbation
potentials by the other methods.

Beam Generation

To generate a Laguerre-Gaussian beam we shine a collimated beam of laser light on
the SLM. The incident laser beam has the profile of a LG0

0-mode eq. (4.21) with
waist W0 and power P0. Shortly behind the SLM the beam, perpendicular to its
direction of propagation, has the modulated amplitude

u(r, φ) =
√
I0Θ(R− r)e−r2/W 2

0 eilφ, I0 =
2P0

πW 2
0

(4.59)

where the phase eilφ and the circular aperture were imprinted via the SLM. The
latter is achieved by modulating a gradient within a disk of radius R onto incident
beam. Such a phase pattern is shown in Fig. 4.13a for l = 4. The beam is then
passed through a system of lenses which we simplify by a single lens of focal length
f performing a Fourier transform of the beam. Assuming this lens to be ideal, the
field at its focal plane is given by eq. (4.50) with P (νx, νy) = δ(2)(νx, νy),

g(x) =

√
I0R

2πr0

eilφFl (r/r0;α) , Fl(ν;α) =

∫ 1

0

dyye−αy
2

∫ 2π

0

dθeilθeiyν cos(θ), (4.60)

where α = R2/W 2
0 , the length scale r0 = λf

2πR
and (r, φ) now label the polar coor-

dinates in the focal plane. Furthermore, any complex factors independent of l were
omitted. The θ-integral can be rearranged slightly and then evaluates to 2πilJl(νy),
where Jl is the Bessel function. The remaining integral can be solved by expansion
in powers of α and ν which leaves us with

Fl(ν;α) = 2πil
∫ 1

0

dyye−αy
2

Jl(νy) = 2πil
(ν

2

)l ∞∑
m=0

(−1)mam,l
m!(m+ l)!

(ν
2

)2m

︸ ︷︷ ︸
≡Hl(ν;α)

, (4.61)

where the symbols am,l(α) =
∑∞

n=0
(−α)n

n!(2n+2m+l+2)
were defined. For our application

we will always have α < 0.4, thus only the first terms in am,l(α) are usually needed.
Putting everything together we finally arrive at

g(r, φ) =

√
I0R

r0

il
(
r

2r0

)l
eilφHl(r/r0;α). (4.62)

The function Hl behaves similar to an Airy-disk, in fact for l = α = 0 it precisely
reduces to this case, H0(ν, 0) ∼ 1

ν
J1(ν).

To connect to the Laguerre-Gaussian modes we compare the behavior of eq. (4.60)



Chapter 4. Rotating Traps: A path to Quantum Hall Physics 71

Figure 4.13: Formation of higher-order Ary-disks
a - Phase pattern on the SLM that leads to a formation of an approximate l = 4
Laguerre-Gauss mode in the Fourier plane of the SLM. b - The exact analytic
solution eq. (4.60) for l = 0, 2, 3 and α = 0.4 compared to the Laguerre-Gaussian
approximation. c - Experimental measurement of the light field in the Fourier plane
for the phase pattern (a) compared to a fit with eq. (4.60). The fit yields r0 = 21.6
µm. The experimental 2D-data was warped to polar coordinates and then averaged
over the angular degree of freedom. The data is taken for an aberration corrected
lens.

with eq. (4.20) at small arguments. This yields

wl = 2r0

√
(l + 1)

a0,l

a1,l

=
λf

πR

√
(l + 1)

a0,l

a1,l

α→0−−→ λf

πR

√
(l + 4)(l + 1)

(l + 2)

Ql =
4P0R

2

W 2
0

a2
0,l

2ll!

(
a0,l

a1,l

(l + 1)

)l+1

α→0−−→ 4P0R
2

W 2
0

((l + 2)22ll!)−1

(
(l + 4)(l + 1)

(l + 2)

)l+1

, (4.63)

where wl is the waist and Ql the power of the corresponding LGl
0-mode in the focal

plane. In the limit of small α we find wl/(λf/R) = 0.45, 0.58, 0.66, 0.75 and 0.82
(for l = 0 − 4), where the deviation for α up to 0.4 is on the order of 1%. In
Fig. 4.13b the exact intensity profile for α = 0.4 and l = 0, 2, 3 is compared to
the Laguerre-Gaussian approximation. For small arguments a good agreement is
achieved. For higher-l modes the deviations become significantly worse at larger
arguments, where the Laguerre-Gaussians overestimate the exact higher-order Airy-
type shape. Finally, the exact result eq. (4.61) is compared to an experimental
observation of the intensity in the Fourier plane generated by a (l = 4)-vortex phase
pattern with effective aperture radius of 160 px (i.e. 3.2 mm)15. The observation and
a fit with eq. (4.61) is shown in Fig. 4.13c. The fit shows an excellent agreement and
15The actual aperture was only 80 px in radius, however the SLM plane was magnified by a 2:1

telescope
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gives r0 = 21.6 µm. For the 400 mm lens used, the expected value of r0 computes to
r0 = λf/2πR ≈ 19.9 µm which is in good agreement with the fit result. Note that
due to the small aperture on the SLM α ≈ 0 was used.

Higher Orders and other parasitic effects

The Hamamatsu 10468-03 SLM we are using consists of an array of 792 times 600
pixels spanning a total area of 15.8 times 12 mm, with a pixel pitch of 20 µm.16
The phase per pixel can be specified with 8 bit resolution. Since the 2π-value, i.e.
the number between 0 and 255 that corresponds to a phase of 2π, is typically less
than 255, the phase-resolution is further lowered. The limited spatial and phase
resolution will introduce some interesting effects that we shall study now.
Let d denote the pixel size and let there further be Nx and Ny pixels in x- and y-
direction, respectively. We want to modulate the continuous phase pattern φ(x, y)
onto the incident light field u(x, y). Due to finite pixel size the actual phase pattern
will be discretized instead and we get

u′(x, y) ≈
∑
n,m

u(xn, ym)eiφ(xn,ym)hd(x− xn, y − ym), (4.64)

where the pixel coordinates are given by xn = d(n − (Nx − 1)/2), n runs from
0 to N − 1 (y-coordinate accordingly) and we assumed that the amplitude of the
incident beam varies hardly over the scale of one pixel. Furthermore, hd(x, y) =
Θ (d− |x/2|)Θ(d− |y/2|) is the envelope of a single pixel. This can be formally
rewritten as

u′(x, y) = (q ∗ hd)(x, y) (4.65)

with

q(x, y) = u(x, y)eiφ(x,y)
∑
n,m

δ(2)(x− xn, y − ym). (4.66)

The field in the focal plane is given by the Fourier transform which is straightforward
to compute in this way,

U ′(νx, νy) = (F [u · eiφ]︸ ︷︷ ︸
U ′0νx,νy)

∗Px)(νx, νy) ·Hd(νx, νy). (4.67)

Hd is the the Fourier transform of the pixel function which computes to 17

Hd(νx, νy) = d2sinc(dνx)sinc(dνy), (4.68)

16Distance between the centers of two neighboring pixels.
17sinc(x) = sin(πx)/πx
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Figure 4.14: SLM with phase gradient
Phase on the SLM and corresponding amplitude in Fourier space for two different
phase gradients. For clarity only one-dimension with 600 pixels is considered. a -
Discretized phase value for a snippet of 20 pixels. b - Light amplitude in Fourier
space. Besides the amplitude for both gradients also the envelope H(ν) is plotted.
The bad resolution in the case of ngrad = 200 leads to stronger higher diffraction
orders. For ngrad = 0 all higher orders would vanish identically as their position
would coincide with the zeros of the envelope function.

and Px denotes the Fourier transform of the sum of the Dirac-deltas

Px(νx, νy) = e−πidν(Nx−1)

Nx−1∑
n

e2πidnνx · (↔ y) =
sin(πdNxνx)

sin(πdνx)

sin(πdNyνy)

sin(πdνy)
. (4.69)

Note that if we agree to take u(x, y) to be zero outside of the SLM we can formally
increase the number of pixels in eq. (4.66). This allows us to evaluate Px in the
limit Nx, Ny →∞ which yields a Dirac comb,

Px(νx, νy) ≈
1

d2

∞∑
n,m=−∞

δ(2)
(
νx −

n

d
, νy −

m

d

)
. (4.70)

Putting everything together we see how the convolution of U ′0 with Px creates an
infinite amount of copies of U ′0 placed on the grid (n/d,m/d). However, successive
multiplication with the envelope function Hd(νx, νy) suppresses all frequencies be-
yond νx = νy = 1/d.
To illustrate this we take a look at a very simple phase pattern, the phase gradient

φ(x, y) = exp
[
2πi(nxgradx/dNx + nygrady/dNy)

]
. (4.71)

The gradient g = (nxgrad/dNx, n
y
grad/dNy) means that the phase wraps nxgrad-times

around 2π over the full length of the SLM in x-direction. In Fourier space the
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gradient will result in a peak at position ν = −g, corresponding a physical displace-
ment x = −λfg in the focal plane of of a lens with focal length f or an angle of
propagation θ = −g/λ with respect to the direction of the reflected beam. In Fig.
4.14a the discretized phase pattern is depicted for two gradients with nygrad = 20 and
nygrad = 200. For simplicity only one spatial dimension is considered. Since Ny = 600
the latter gradient is only very poorly resolved. The amplitude of the Fourier trans-
formed field is shown in Fig. 4.14b where a constant illumination was assumed,
i.e. u(y) = hNyd(y). For the large gradient we observe comparatively strong higher
diffraction orders at dν = 1/3 + k, k ∈ Z, which stem from the poor spatial reso-
lution of the phase pattern on the SLM. For smaller gradients these higher orders
drop in power until for ngrad = 0 they vanish completely, since the location of the
higher orders now coincides with the zeros of the envelope function H. This is to be
expected since in our description the SLM is now completely structureless and hence
no pixel effects should remain. On the contrary, the real SLM has only a filling fac-
tor of around 97 % which means that the pixel size is slightly smaller than the pixel
pitch. In that sense we will always get higher diffraction orders (since the envelope
becomes slightly larger while Px stays the same). More problematic however, is the
’0-th order’ peak, i.e. the light that is simply reflected by the space between the
pixels of the non-ideal SLM. Due to its nature it cannot be manipulated and hence
it has to be filtered out in a 4f-setup. For now let us already estimate the position
of the higher orders in the focal plane. For a lens of f = 100 mm the first higher
orders appear at ±5.3 mm and hence can very easily be filtered out. For reasonable
gradients, or spatial frequencies in general, we can therefore neglect Px and H and
approximate

U ′(νx, νy) ≈ U ′0(νx, νy) = F [u · eiφ](νx, νy). (4.72)

In practice higher orders can nevertheless be observed at lower frequencies, which
have their origin in the 2π-value mentioned above. Let us again consider a a phase
gradient g = (g, 0), however this time with a limited modulation depth a ∈ [0, 1]
corresponding to a 2π-value set too low. The corresponding phase pattern is given
by

φ(x, y) = 2πa(gx mod 1), (4.73)

i.e. the phase jumps to zero whenever a phase of a2π is reached. We can then
rewrite the light amplitude u′ as

u′(x, y) = u(x, y)
∞∑

n=−∞

e2πiag(x−∆n)h∆(x− n∆) (4.74)

with ∆ = 1/g. This looks again like a pixel structure! Fourier transforming yields a
convolution of U(νx, νy) with the Fourier transform of the sum. The latter evaluates
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to

δ(νy)H∆(νx+ag, 0) ·
∞∑

n=−∞

e2πinνx/g = g2δ(νy)H∆(νx+ag, 0)
∑
n

δ(νx+ng). (4.75)

Hence we will observe copies of U at positions νx = −ng, n ∈ Z, where their intensity
is given by the envelope H∆,

In =
sin(πa)2

π2(a− n)2
. (4.76)

For a ≈ 1 the main peak is found for n = 1 at νx = −g just as expected. However,
if the 2π-value is not set correctly the spectrum becomes very spurious.

Generating multiple Beams

We can also use the SLM to generate multiple beams from one incident beam. Say we
want to generate two beams with phase pattern φ1(x, y) and φ2(x, y), respectively.
If we manipulate the incident beam with the pattern

φ(x, y) = arg
(
eiφ1(x,y) + eiφ2(x,y)

)
(4.77)

the resulting modulated amplitude will look like

uout(x, y) =
1

2
uin(x, y)

eiφ1(x,y) + eiφ2(x,y)

1 + cos(φ1 − φ2)
. (4.78)

If we ignore the denominator for a moment we see how this will give rise to two
distinct patterns in the Fourier plane, just what we wanted to achieve. But how is
the oscillating denominator influencing this? Unfortunately, this question is not too
easy to answer. Furthermore, as simulations and experimental observations show the
approach works fine. However, we might nevertheless try to get at least a glimpse
of what’s going on. Let’s assume both patterns to be separated well in the Fourier
plane, i.e. both phase patterns are separated by a gradient ∆g. Since this gradient is
the strongest fluctuation in the phase patterns, we will find poles in the denominator
roughly every ∆x = 1/g, where the exact position of the poles is slightly shifted
around for each pole due to the actual behavior of φ1 − φ2. Between the poles
the denominator will be of order one. Thus we again obtain something like a Dirac
comb! Following the usual story we expect the presence of the denominator to reveal
itself in the existence of higher diffraction orders in the Fourier plane separated by
∆g. This is indeed what one observes.
For our purpose we need two aligned modulated beams with a relative frequency

detuning δ = ωL − ω′L. To this end we simply shine two beams with the required
relative detuning under an angle ∆θ onto the SLM. Displaying the above phase
pattern will consequently result in four outgoing beams. If we choose the relative
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Figure 4.15: Multiple beams
a - Two laser beams (indicated by a slightly different color) are shone onto the
SLM. Due the phase pattern on the SLM, two outgoing beams per incident beam
are generated. Here the relative gradient between the outgoing beams is chosen
such that two of the four beams are aligned. b - The corresponding image in the
Fourier plane of the SLM, however this time none of the beams overlap. If ∆θ is
the angle between the two incident beams then two beams overlap in the Fourier
plane exactly when gB − gA = ∆θ/λ. The dotted little circles indicate the position
of the reflected beams if no phase pattern was modulated onto the incident beams
via the SLM.

gradient between the phase patterns ∆g to match the angle between the two incident
beams, i.e. ∆θ = λ∆g, two of the four outgoing beams will be aligned. This
situation is sketched in Fig. 4.15. Fig. 4.15a shows a simplified version of the
optical setup, where the slight color difference indicates the detuning of the beams.
Here the relative gradient is chosen to precisely align two of the four beams. In Fig.
4.15b the corresponding image in the Fourier plane of the SLM is depicted, however
here the alignment-condition is not met. After two beams are aligned the remaining
two beams need to be filtered out with a pupil placed in the Fourier plane of the
SLM. Note that the size of the angle between the incident beams limits the largest
potentials that can be generated in this way, since at some point the different beams
will overlap.

Canceling Aberrations

In section 4.4.1 we already discussed how in any realistic setting imperfections in
the optical elements and alignment inevitably introduce aberrations leading to a
broadening and distortion of the systems point spread function. Especially for our
purposes of generating potentials for the ultracold lithium atoms, special care needs
to be taken to carefully reduce the amount of aberrations present. Fortunately, the
SLM provides us with a convenient way of mapping out and even canceling the
aberrations in the optical setup. To this end recall eq. (4.56) that gives the field
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Figure 4.16: Phase shift interferometry (PSI)
a - Two spatially separated parallel beams interfere in the focal plane of the lens.
Aberrations in the lens introduce a relative phase shift ∆ϕ between both beams
shifting the maximum of the observed interference pattern. Moving one beam around
the SLM allows to probe the phase shift at different sites of the lens. An additional
phase shift δϕ is introduced via the SLM. b - Sweeping δϕ over 2π gives rise to a
series of shifted patterns from which the phase map ∆Φ of the original interference
pattern can be extracted. Unwrapping the phase yields a continuous version for
which a linear 2D-fit can be performed. Taken and adapted from [Palm, 2018].

g(z) in the focal plane of a non-ideal lens with pupil function p(x, y),

g(z) = F [u · p](zf ), zf = z/λf (4.79)

where we take u(x, y) to be the field on the SLM. Let’s assume we can write the
pupil function as p(x, y) = Θ(D/2− r)e2πiW (x,y), where D is the lens diameter and
W encodes the aberrations. If we further assume W (x, y) to vary only slowly we
might have the following idea. Let’s make two small apertures with radius R and
gradient g on the SLM located at different positions xi. This creates two beams that
overlap in the Fourier plane. However, due to their displacement on the SLM they
take different paths through the lens. In that sense they probe the pupil function at
different sites from which they acquire an average phase shift ∆ϕi = 2π 〈W 〉 (xi).
The resulting amplitude in the Fourier plane is given by

g(z) ∼
∑
i

√
I(xi)e

2πizf ·xi+i∆ϕiAr(zfR), (4.80)

where Ar(ν) = J1(2πν)/ν is the Airy-disk. When we measure the intensity we can
observe the interference pattern,

I(z) ∼ Ar2(zfR)
[
I1 + I2 + 2

√
I1I2 cos(2π∆x · zf + ∆ϕ)

]
, (4.81)

where ∆x = x2 − x1, ∆ϕ = ϕ2 − ϕ1 and Ii = I(xi). This interference pattern is
shown in Fig. 4.16b for a certain value of ∆x. In principle fitting the central region
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Figure 4.17: PSI for one pixel
A series of intensities is generated by
adding a phase δϕn = 2πn/N to the
probe beam. The phase offset ∆Φ(z)
can be deduced easily from the emerg-
ing cosine pattern. Here, I1 = I2 for
simplicity. Taken and adapted from
[Palm, 2018].

of the pattern allows one to deduce the phase shift ∆ϕ. Note that the central lobe
of the pattern will contain about 1 + |∆x|/R stripes, so R should be chosen small
enough to be able to resolve at least a few of the stripes. To map out the aberrations
of the lens we fix the position of the first beam at the center of the SLM. By moving
the second beam around we can probe the lens at different positions and retrieve
an averaged version of the W (x, y) up to a constant. This mechanism is sketched in
Fig. 4.16a.
Performing a 2D-fit of the interference pattern is not the most reliable way of

obtaining the phase shift ∆ϕ. Fortunately, a refined version of the algorithm exists.
By introducing an additional phase shift δϕ into the probe beam via the SLM
we can alter the observed interference pattern. If we scan the phase according to
δϕ = 2πn/N, n ∈ {0, ..., N − 1} ,this results in a series of intensity patterns I(n)(z).
Since the series ought to be periodic in n it can be decomposed into a Fourier
series. As Schwider et al. [1983] show, this allows us to recover the total phase
∆Φ(z) = 2π∆x · zf + ∆ϕ via

tan(∆Φ(z)) =

∑
n I

(n)(z) sin δϕn∑
n I

(n)(z) cos δϕn
. (4.82)

This procedure is illustrated in Fig. 4.17 for a single position z. The injected phase
shift δϕn leads to the emergence of a cosine-pattern precisely shifted by ∆Φ(z).
Intuitively speaking, ∆Φ(z) can be deduced conveniently by locating the maximum
of the cosine. Finally, we can unwrap the phase pattern ∆Φ to obtain a continuous
version of it. By fitting a gradient to the unwrapped phase we can deduce the
remaining phase offset ∆ϕ as illustrated in Fig. 4.16b. The whole method goes by
the name phase shift interferometry [Bruning et al., 1974] and allows us to measure
aberrations down to 0.01λ [Schwider et al., 1983]. More details and a quantitative
evaluation can be found in [Palm, 2018].
In order to cancel the lens aberrations we simply subtract the measured aberrations
from the phase pattern we want to display. Note that the success of this method
crucially relies on the same assumptions we used to arrive at eq. (4.56). Especially
when we can no longer neglect the frequency dependent shift of the pupil function
in eq. (4.53) the method will fail.
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4.4.3 Optical Setup

In Fig. 4.18 the final setup built into the experiment is presented. Let us go through
the setup step by step. We start with two laser beams that are each coupled out
of a high power fiber. The 5-axis kinematic outcouplers are placed in the top right
corner. The laser beams themselves are prepared on another smaller breadboard
where they are generated by splitting a single laser beam into two. Furthermore
placing two AOMs in the paths of these beams allows us to control their relative
detuning. Hence, the two laser beams arriving at the main breadboard should be
inherently phase stable, at least theoretically.18 After they’re coupled out of the
fibers they diverge rapidly due to their small initial waist of 3.3 µm. Since we want
to illuminate the 16x12 mm large SLM chip, we let the beams expand freely before
we collimate both of them with the same one-inch 100 mm lens. This will yield a
large Gaussian beam with a diameter of about 20 mm large enough to cover the
SLM. To make the setup more compact we already place several optical elements in
the optical path during the expansion of the beams. First of all the polarization of
the light is cleaned with a 5 mm polarizing beam splitter. Directly afterwards a one
centimeter 90:10 beam splitter is placed. The 10 % of the light reflected at this beam
splitter is focused with a short one-inch 40 mm lens onto a fast photo-diode. This
allows us to measure and stabilize the intensity of both beams separately, where
the latter is achieved via the same AOMs used to create a detuning between the
beams. The diverging light from both outcouplers is superimposed on a one-inch
non-polarizing beam-splitter. Only then the light is collimated by the 100 mm lens.
Behind the lens another one-inch beam splitter reflects the light onto the SLM. On
the SLM the phase of the incident beams is modulated and the light is reflected
backwards. This time 50 % of the light is transmitted through the cube down the
breadboard. Note that a this point we have already lost almost 90 % of the light
only due to the beam splitters. For circular apertures on the SLM at least another
40 % will be lost.
To remove the ’0-th order’ and all other higher orders stemming from the SLM we
perform a Fourier transform with a one-inch 100 mm lens. In the lens’ focal plane a
pupil is placed that allows us to crop out the relevant part of the spectrum. Another
one-inch 75 mm lens is placed accordingly to collimate the light beam again. Hence
both lenses together form a telescope with demagnification of 0.75. Note that we
don’t really care about a perfect 4f-configuration here as we will perform a final
Fourier transform when we send the light to the atoms anyway. Fig. 4.19 shows
an image of the intensity in the focal plane of the 100 mm lens. Here the SLM is
used to generate two beams with different gradient but same aperture by means of
eq. (4.77). This result in two separated spots termed beam A and beam B in the
Fourier plane. Since we shine two beams onto the SLM we expect four such spots in
total. Here the gradient between beam A and beam B was chosen to exactly match
the angle of the incident laser beams, thereby aligning two of the four spots int the
Fourier plane. Beside this bright spot, the ’0-th’ orders of both incident beams can
18The optical fibers can be a source of phase instabilities.
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Figure 4.18: Rotating-Trap Setup
The beam path of the rotating trap setup is indicated in red, that of the microtrap in
blue. The trapping and perturbation beam are collimated by the first 100 mm lens.
Then both beams are send to the SLM where their wavefronts are modulated. They
get reflected down the breadboard and filtering is performed with a pupil located in
the focus of a 3:4 telescope. Finally, the beam is superimposed with the microtrap
beam before it is send to the atoms via the high NA objective. a - Without, b -
with tunable lens telescope and additional magnifying 2:1 telescope.
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be seen. Furthermore, we also find a higher order and beam B of the first inci-
dent beam. In the present setup the alignment is achieved for a relative gradient of
∼ (nx, ny) = (60, 10), which allows large forth order vortex modes (100 px aperture
radius + forth order phase vortex) to still be separated in the Fourier plane. This
gradient corresponds to a relative angle of ∼ 5 mrad between both beams.
After the filter telescope the laser beams are once again demagnified by a 1:2 tele-
scope consisting of a 30 mm lens with a focal length of 200 mm and a one-inch -100
mm lens. Finally, the the light is superimposed with the microtrap beam (colored in
blue) via a large 30 mm polarizing beam splitter. The reflected SLM-light and the
transmitted microtrap beam are send down vertically where they are focused via the
high-NA objective (not shown in Fig. 4.18) onto the trapped atoms. By rotating
the polarization of the SLM light and the microtrap beam accordingly a small part
will be transmitted through the 30 mm cube. This light is then focused with a
large two-inch 400 mm lens onto a camera, where we choose the large focal length
of 400 mm in order to minimize aberrations (lenses of smaller focal length usually
bring in more aberrations). The image on the camera will tell us how the intensity
in the plane of the atoms look like. This also allows us to access the aberrations
introduced by the optical components in front of the 30 mm cube. Unfortunately,
additional aberrations will be introduced by the high-NA objective and the window
of the vacuum chamber.
In the scenerario just described (Fig. 4.18a), the strong microtrap is needed to ini-
tially trap the atoms. Only then the atoms are transferred into the much larger trap
generated by the SLM. In the focal plane of the atoms the size of the SLM-trap can
reach from a waist of about 4.3 µm (for the largest possible circular aperture of a
radius of 300 pixel) up to 13 µm (100 px aperture radius). A different scenario is
shown in Fig. 4.18b, where the 2:1 telescope is rotated by 180 degrees and a tunable
lens telescope is inserted after the filter telescope. The tunable lens telescope is
designed to achieve a variable demagnification of 1 to at least 0.2. This allows us
to realize traps in the focal plane reaching from 1.1 µm up to 16.2 µm (for a 100
px aperture and a demagnification of the tunable lens telescope of 0.2) with the
same setup. In this scenario the microtrap is not needed to load atoms into the
SLM-trap. To achieve the aforementioned specifications the tunable lens telescope
requires long optical paths on the order of meters. It is therefore build vertically.
Due to the varying focal lengths of the tunable lenses it is not possible to realize
a perfect 4f-setup with the telescope. Hence, the intensity behind the tunable tele-
scope will be blurred heavily for most configurations due to defocus . Luckily, we
are only interested in the intensity of the Fourier transform in the atom plane which
isn’t sensible to these kind of imaging errors. At the point of writing this thesis the
tunable lens telescope is still under construction and hence the scenario depicted in
Fig. 4.18a is implemented.
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Figure 4.19: Landscape in the Fourier plane
Intensity in the focal plane of the filter telescope. The SLM modulates an aperture
with two different gradients following eq. (4.77) onto the incident light, which leads
to two beams (A and B) propagating under different angles with the optical axis.
Since two beams are shone onto the SLM, we expect four outgoing beams. Here
the gradients have been chosen such that two of these four beams are aligned. This
results in a bright spot in the Fourier plane. Furthermore, one of the other two
remaining generated beams, the ’0-th orders’ and additional higher orders can be
observed. The relative angle between both incident beams is about 5 mrad.
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Figure 4.20: Aberration map for both incident beams
Aberration maps obtained via the PSI algorithm for both incident beams in the
setup Fig. 4.18a.

Phase Errors and Measurements

In order to produce potentials of high quality we need to correct for the aberrations
present in the optical setup. To this end we run the PSI algorithm introduced ear-
lier. The resulting aberration maps are presented in Fig. 4.20, where one phase map
per incident beam was recorded. While we only find weak aberrations for the first
beam, they are significantly stronger for the second one. The reason for this lies in
the simultaneous collimation of both beams with the first lens. In order to achieve
a good collimation both outcouplers have to be placed in exactly the right distance
from the lens. To minimize the amount of aberrations introduced by the lens both
beams should pass through the lens in parallel with the optical axis. We furthermore
want to illuminate the SLM as central as possible and especially we want to avoid
a displacement between both beams on the SLM (which would eventually lead to a
relative phase gradient in the Fourier plane distorting the rotating trap). Finally,
we need a small angle between both beams in order to keep the different generated
orders separable in the Fourier plane of the filter telescope. In turns out that these
constraints are hard to meet simultaneously and hence the perfect collimation of
beam 2 was sacrificed in favor of the other constraints. This is indeed a weakness
of the compact setup. Nevertheless, also the aberrations on the second beam are
sufficiently weak to correct for them via the SLM.
To demonstrate the effectiveness of the PSI algorithm several intensity patterns
measured in the Fourier plane of the SLM are presented in Fig. 4.21. The mea-
surements were taken for a single incident beam and a forth-order vortex and an
aperture with gradient was displayed on the SLM. In Fig. 4.21e we see the intensity
pattern if no correction is applied. The Laguerre Gauss mode is heavily distorted.
Based on Fig. 4.11 the distortion hints at the presence of strong astigmatism in the
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Figure 4.21: Landscape in the Fourier plane
Intensity in the Fourier plane of the SLM for a forth-order vortex and different
aperture diameters. a - 600 px aperture with aberration correction, b - 600 px
aperture with aberration correction and aligned with center of incident beam, c
- 600 px aperture with second iteration of aberration correction and aligned with
center of incident beam, d - 600 px aperture without any correction or alignment,
e - 160 px aperture with aberration correction and aligned with center of incident
beam, f - 160 px aperture with second iteration of aberration correction and aligned
with center of incident beam. g - Intensity standard deviation over rings of different
radii r around the center of the modes. The standard deviation is normalized with
respect to the mean value in the corresponding ring,

√
〈(I(r)− 〈I(r)〉)2〉/ 〈I(r)〉,

with 〈I(r)〉 =
∫
dφI(r, φ)/2π.
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setup. The quality of the mode improves immediately when the aberration map is
subtracted from the phase pattern displayed on the SLM, c.f. 4.21a. The rotational
symmetry is again significantly improved when the center of the vortex is shifted to
match the exact center of the incident Gaussian beam on the SLM (c.f. 4.21b). Per-
forming another iteration of aberration correction improves the result only slightly
(c.f. 4.21b). Fig. 4.21e,f shows the same setting with a smaller aperture of only 160
px. Since the light beam now illuminates a smaller part of the lenses in the optical
setup in total less aberrations are acquired. This again significantly enhances the
quality of the generated modes. For a more quantitative picture the relative stan-
dard deviation over a ring of radius r around the modes’ centers is plotted in Fig.
4.21g. This tells us that despite the aberration correction there are still around 10
to 15 % of anisotropy left. On top of the aberrations stemming from the optical
components on the breadboard additional aberrations will be introduced via the
high-NA objective and the window of the vacuum chamber. How, or if at all these
aberrations can be measured is yet an open question.



5 Conclusion and Outlook

In the first part of this thesis we discussed new numerical tools provided by the
many-body code Quanty. While the taken numerical approach traces back to the
1950s and has long found its way into standard numerical libraries like ARPACK
(and scipy), Quanty directly builds upon the formalism of second quantization mak-
ing it especially attractive for the physics community. In that sense wavefunctions
and operators can be conveniently specified in terms of creation and annihilation
operators and the code handles antisymmetrization internally. During this thesis
parts of the code, that originally runs in the scripting language Lua, were wrapped
in python. The Lanczos-algorithm at the heart of Quanty tackles the problem of the
exponential growth of the Hilbert space of multiple particles by generating a much
smaller subspace on which the Hamiltonian will be diagonalized instead. Unfortu-
nately, we found that the approach was still limited to a rather small number of at
most 12 interacting particles in the harmonic trap. However, much of the problems
can be attributed to the s-wave contact interaction that leads to a (deeply) bound
molecular state. As this state is hard to express in terms of the used harmonic oscil-
lator basis, a huge single particle basis is needed to accurately describe even just the
physics of two atoms. Nevertheless, in a computation for the case of 6 interacting
particles central features of the experimentally observed excitation spectrum could
be reproduced.
To improve the numerical results optimization of the used single-particle basis is
needed, especially when the numerical method should be extended to systems of
larger particle number. One option to approach this would be to express a known
solution of the two-particle problem on a huge basis spanned by the harmonic oscil-
lator states |i〉, i.e. |ψ0〉 ≈

∑
ij Aij |i〉⊗ |j〉. Then we seek a semi-unitary rotation R

that rotates from the used harmonic oscillator basis to a smaller basis, |̃i〉 = Rij |j〉
while trying to keep the norm of |ψ0〉 projected to the new basis as large as possible.
Another way of improving the speed of the numerical computation for large par-
ticle numbers lays in the observation that the convergence of the Lanczos-method
crucially depends on the overlap of the starting state with the ground state of the
system. Hence the method could greatly benefit from starting with a more carefully
chosen starting vector than just the non-interacting configuration. Such a starting
vector could in the future for example be provided by the Richardson-model [von
Delft, 2001].

In the second part we built upon the proposal by Palm [2018] and Palm et al.
[2020] of an experimental scheme for the realization of fractional quantum Hall states
in a system of few fermions in a rotating trap. While the original proposal studied

86
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the case of a harmonic trap, it was quickly noted that the anharmonicity of experi-
mentally realistic traps significantly impacts the physics in the lowest Landau level.
This is mostly due to the lifted degeneracy in the LLL which competes with the
interactions among the particles. This situation is similar to the original fraction
quantum Hall effect where the Coloumb repulsion between the electrons has to com-
pete with disorder in the sample. In order to observe the interesting quantum Hall
state the energy shift ∆Ean introduced by the anharmonicity of the real trap needs
to be small compared to the interaction energy ∆Eint � ∆Ean, at least up to some
maximum angular momentum set by the state we are interested in. Furthermore,
the states corresponding to the lowest and the first Landau level should also be
well separated in energy, resulting in the weaker requirement, ∆E1LL

an < 2~ω. In a
numerical simulation for 6 particles the ground state found in a Gaussian trap was
compared to a target state, the Skyrmion-state occurring in the spin-singlet channel
which was first identified by Palm et al. [2020] in the harmonic case. For traps deeper
than V0 = 20~ω an overlap close to 100 % can be obtained for reasonable interac-
tion strengths above η = 0.1. To prepare the Skyrmion state angular momentum is
transferred by stirring the quantum droplet with a rotating elliptical perturbation.
The corresponding adiabatic passage in a 20~ω deep Gaussian trap was simulated
for η = 0.25 and a perturbation strength of ε2 = 0.02. In this scenario the Skyrmion
state is reached at a speed of rotation of about Ω = 0.85~ω. 1 Note that a larger
interaction lets us reach the Skyrmion at lower speed of rotation, however this comes
at cost of a smaller gab between the ground state and the first excited state. An
upper bound for the perturbation is hard to define for the Gaussian trap since the
lifted degeneracy results in a complicated level spectrum, even in the single-particle
case. For now we resort to the harmonic case for which we can define a critical
speed of rotation beyond which the overall potential becomes anti-confining in the
presence of the perturbation. This yields Ωc = 0.98 in the present setting, however,
this should be seen as only a crude upper bound and atoms might be lost from the
trap at smaller speed. The smallest gap during the adiabatic passage was found to
be ∆ ∼ 0.005~ω and occurs at Ω ∼ 0.74~ω. For an axial confinement of ωz = 2π ·30
kHz and a radial trapping frequency of ω = 2π kHz the scenario just described is
realized at a 3D-scattering length of a3D = 2800aB, where aB is the Bohr-radius. If
the trap and the perturbation are generated via Gaussian and Laguerre-Gaussian
beams, a waist of w0 = 12 µm and a power of 4 mW for the trapping and 13 µW for
the perturbation beam is required. For this choice of the radial trapping frequency
the minimal gab computes to ∆ = 2π · 5 Hz, which poses a lower bound of ∼ 200
ms for the minimal time with which the passage can be executed.
Besides the numerical study of the realistic trap also an optical setup was build in
our 6Li-experiment, which will be used to generate the needed trap and rotating
perturbations by employing a spatial light modulator. To achieve potentials of high
rotational symmetry in the atom plane it is crucial to cancel aberrations present
in the setup. This can be conveniently done with the SLM as well, however some

1The elliptical perturbation is then physically rotating with speed 2Ω = 1.9~ω.
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kind of image feedback is needed. Since so far no atoms could be loaded into the
SLM-trap it still remains an open question whether or not the additional aberra-
tions introduced by optical elements located between the optical setup and the final
plane of the atoms can be canceled or how badly the quality of the final potentials
is influenced.



A Additional Figures
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Figure A.1: Matrix elements of the elliptic perturbation
First row εLLL 〈m+ 2|V2|m〉LLL, second row ε1LL 〈m− 2|V2|m〉LLL, third row
ε1LL 〈m+ 2|V2|m〉LLL, for different ratios of trap to perturbation waist γ = w′0/w0.
The perturbation V2 is given by eq. (4.31). Computed for a trap depth V0 = 20~ω.
The dashed red line represents the harmonic case. Adapting γ allows one to engineer
a perturbation that is suppressed at higher angular momenta.
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