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Abstract
This thesis reports on the deterministic preparation of magnetically ordered states in
systems of few fermionic atoms. We follow the concept of quantum simulation and use
6Li atoms in two different hyperfine states to mimic the behavior of electrons in a solid-
state system. In a first experiment, we simulate the two-site Hubbard model by using
two atoms in an isolated double-well potential. We prepare the two-particle ground
state of this model with a fidelity exceeding 90%. By introducing strong repulsive in-
teractions, we are able to realize a pure spin model and describe the energy spectrum
with a two-site Heisenberg Hamiltonian. In a second experiment, we realize Heisenberg
spin chains of up to four atoms in a single strongly-elongated trapping potential. Here,
the atoms self-align along the potential axis due to strong repulsive interactions. We
introduce two novel measurement techniques to identify the state of the spin chains and
thereby confirm that we can deterministically prepare antiferromagnetic ground-state
systems. This constitutes the first observation of quantum magnetism with fermionic
atoms that exceeds nearest-neighbor correlations. Both the double-well system and the
spin chains can be seen as building blocks of larger ground-state spin systems. Their
deterministic preparation therefore opens up a new bottom-up approach to the experi-
mental realization of quantum many-body systems with ultracold atoms.

Zusammenfassung
Diese Arbeit beschreibt die deterministische Präparation von magnetisch geordneten
Zuständen in Systemen, die aus wenigen fermionischen Atomen bestehen. Aufbauend
auf der Idee der Quantensimulation verwenden wir dabei 6Li-Atome in zwei unter-
schiedlichen Hyperfeinzuständen, um das Verhalten von Elektronen in einem Festkörper
zu imitieren. In einem ersten Experiment simulieren wir mit zwei Atomen in einem
isolierten Doppelmuldenpotenzial das Hubbard-Modell mit zwei Gitterplätzen. Wir prä-
parieren den Zweiteilchen-Grundzustand dieses Modelles mit einer Wahrscheinlichkeit
von über 90%. Durch das Einführen starker repulsiver Wechselwirkungen ist es uns
möglich ein reines Spinmodell zu realisieren, dessen Energiespektrum wir durch einen
Heisenberg-Hamilton-Operator für zwei Teilchen beschreiben. In einem zweiten Exper-
iment realisieren wir Heisenberg-Spinketten, die aus bis zu vier Atomen in einem stark
gestreckten Fallenpotenzial bestehen. Aufgrund einer starken Abstoßung ordnen sich die
Atome hierbei selbst entlang der Potenzialachse an. Wir führen zwei neue Messtechniken
ein um den Zustand der Spinketten zu bestimmen und bestätigen, dass wir determin-
istisch antiferromagnetische Grundzustandssysteme präparieren können. Dies ist die
erste Beobachtung von Quantenmagnetismus mit fermionischen Atomen, die Korrela-
tionen zwischen nächsten Nachbarn überschreitet. Sowohl das Doppelmuldensystem als
auch die Spinkette können als Bausteine für größere Grundzustandsspinsysteme gese-
hen werden. Mit ihrer deterministischen Präparation eröffnen wir somit einen neuen
Ansatz zur experimentellen Realisierung von Quanten-Vielteilchensystemen mit ultra-
kalten Atomen.
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1. Introduction
The theory of magnetism is of fundamental importance in condensed-matter
physics. It describes the interplay between magnetic fields and the magnetic mo-
ments of the microscopic particles in a solid state system. Within this theory,
magnetic interactions change the energy of spatially separated particles dependent
on the relative orientation of their magnetic moments. Even without an external
magnetic field, such interactions can lead to phases with broken symmetry and
long-range order of the magnetic moments. Most prominently, ferromagnetic and
antiferromagnetic interactions describe the tendency of neighboring moments to
align in parallel or antiparallel configurations, respectively.
Magnetic interactions seem intuitive when considering two interacting magnetic

dipoles. However, the strength of dipole-dipole interactions between the atoms
and electrons that form a solid-state system are much too weak in order to explain
the properties of most magnetic materials [Isi25, Ash76]. Instead, the emergence
of magnetic interactions in solids is fundamentally connected to the quantum-
mechanical nature of electrons [Aue94]. Therefore, it could only be understood
after fundamental concepts, such as the Pauli principle and the quantization of
angular momenta, had been established.
The first model which offered a conclusive explanation of magnetic interactions

in a solid was developed by Werner Heisenberg in 1928 [Hei28]. It extended the
method that Walter Heitler and Fritz London had established one year earlier in an
attempt to understand the binding energy between two hydrogen atoms [Hei27].
As Heitler and London realized, a so-called covalent bond can arise from the ex-
change of two electrons localized at the individual atoms, reducing the energy
of the system by the superexchange energy J . However, this exchange process
only occurs when the spatial wave function of the two electrons is symmetric with
respect to their exchange. Due to the antisymmetry of the total wave function
of the fermionic electrons, this necessarily leads to a completely antisymmetric
two-particle spin wave function, which can only be realized for an antiparal-
lel alignment of the two spins. As noticed by Heisenberg, this concept can be
transferred to solid-state systems, where antiferromagnetic interactions arise from
the exchange of electrons in a spin-singlet configuration localized at neighboring
atoms [Hei28, Aue94].
The connection between individual spin singlets and the antiferromagnetic
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Figure 1.1.: Assembling ground-state spin systems from separated spin singlets.
(a) Dimerized two-dimensional lattice with alternating strong bonds (solid lines)
and weak bonds (dashed lines). Antiferromagnetic correlations are symbolized by
red clouds. For a vanishing coupling strength along the weak bonds, the ground
state of the system consists of one spin singlet on each of the strong bonds. When
the dimers are connected, the spin singlets delocalize and a phase transition to
the antiferromagnetic ground state with long-range order occurs. Figure adapted
from Ref. [Sac08]. (b) Two individually prepared spin-singlets in double-well po-
tentials are combined to create the antiferromagnetic ground state of a four-well
system. (c) Creation of an antiferromagnetic spin chain in an one-dimensional
harmonically-trapped system. For no interactions, each of the two lowest trap lev-
els is occupied by one spin singlet. For finite interactions, the single-particle trap
levels are not eigenstates of the system anymore and the spin singlets delocalize.
In the limit of infinitely strong repulsion, the atoms form a Heisenberg spin chain
with an antiferromagnetic ground state.

ground state of a homogeneous system is most apparent in a dimerized lattice.
Such a lattice consists of one-dimensional spin chains with alternating strong and
weak covalent bonds and additional weak bonds between these spin chains in the
case of two and three-dimensional lattices [Fig. 1.1(a)]. In this lattice, a spin-
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1. Introduction

singlet on a strong (weak) bond reduces the energy of the system by J (J ′). For
the limiting case of a vanishing coupling strength on weak bonds (J ′ = 0), the
lattice consists of separated dimers. When the spin pairs on each of these dimers
are in a singlet configuration, the system is in its ground state. This ground state
is nondegenerate and separated from the first excited state by the superexchange
energy J . The other limit of the dimerized lattice is the homogeneous case with an
equal coupling strength between all nearest-neighbor sites (J = J ′). In this case,
the spin singlets can not be attributed to individual bonds in the lattice anymore
and are instead delocalized over the lattice. While for the one-dimensional dimer-
ized lattice an adiabatic connection exists between the ground states at J ′ = 0 and
J ′ = J [Mat01, Sac08, Lub11], the ground state of the two-dimensional Heisen-
berg model undergoes a quantum phase transition into a state with long-range
alternating spin order [Mat01, Sac08].
Since the Heisenberg model is a pure spin model it only explains the origin

of magnetism in an insulator with exactly one unpaired electron per atom. In
1963, John Hubbard extended this picture by defining the most basic model that
connects insulating and metallic phases of solid-state systems [Hub63]. Within
this model, the physics of interacting electrons in a lattice of ion cores is reduced
to only two fundamental processes: the hopping of electrons from one lattice site
to a neighboring one and the Coulomb interaction of two electrons occupying the
same lattice site. For weak interactions, the model describes a metallic system,
where electrons move freely through the lattice. This motion is only restricted by
the antisymmetry of the fermionic wave function, which prohibits two electrons
with a symmetric spin wave function to occupy the same site. As a consequence,
each site can be occupied by maximally two electrons, one spin-up and one spin-
down electron in a spin-singlet correlation. As for the magnetic interactions in the
Heisenberg model, on-site interactions in the Hubbard model are hence limited
to spin singlets. For strong enough on-site interactions, the ground state of the
half-filled Hubbard model, which has on average one electron per site, undergoes
a phase transition into an insulating state. In this so-called Mott insulator, each
lattice site is occupied by exactly one electron and the system can be described by
an effective Heisenberg model [Aue94].
Despite the conceptual simplicity of these models, their application to many-

body systems is still an ongoing topic of research with many open questions. Es-
pecially, antiferromagnetic correlations between electrons are of particular interest
due to the observation of high-temperature superconductivity in antiferromag-
netic materials [Bed86, Nor11]. Yet, even after nearly 30 years of theoretical
efforts, it is still not known if the Hubbard model suffices to explain these observa-
tions [And87, Ess10]. Except for special cases, like the half-filled one-dimensional
Heisenberg and Hubbard models [Gia04], the analytical solution of these problems
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is often prevented by the complicated interplay of interactions, quantum fluctua-
tions, and the geometry of the underlying lattice [Ess10]. Additionally, numerical
simulations of fermionic quantum many-body systems are typically limited to only
few particles by the exponential growth of their complexity with the system size.
This deficiency of classical computers in simulating quantum many-body mod-

els has inspired the idea of experimentally simulating these models with sys-
tems that inherently possess quantum-mechanical properties, but are easier to
control than electrons in a solid [Fey82]. Ultracold-atom experiments were es-
tablished as a prime candidate for this task by the successful cooling of both
bosonic [And95, Dav95] and fermionic [DeM99] neutral atoms into the regime of
quantum degeneracy. The simulation of solid-state models in such experiments was
further encouraged by the possibility of trapping ultracold atoms in the standing-
wave intensity pattern of crossed laser beams [Jak98, Dua03, Jak05, Blo08a, Ess10].
In this approach, the atoms mimic the electrons of a solid-state system, while the
laser light provides a periodic potential, called optical lattice, that resembles the
lattice of ion cores.
Using ultracold bosonic atoms in optical lattices, low-energy phases of the Hub-

bard model were successfully realized and used to simulate the quantum phase
transition into the Mott insulating state [Gre02, Stö04, Spi07, Bak09]. In contrast
to the case of electrons in a solid-state system, the superexchange interactions
in a bosonic Mott-insulator are ferromagnetic and favor the parallel alignment of
neighboring spins. A single-component Mott-insulator of bosonic atoms can there-
fore be seen as the ground state of the bosonic Heisenberg model. Recently, the
dynamics of spin excitations above this ferromagnetic ground state was explored
by selectively changing the internal state of individual atoms [Fuk13a, Fuk13b].
Additionally, exchange couplings in a two-component Bose gas were investigated
in an array of isolated double wells [Tro08].
Although Mott-insulating states could also be realized with two-component

Fermi gases [Jör08, Sch08], the simulation of the antiferromagnetic Heisenberg
model in this system has proven to be a great challenge [McK11]. This is mostly
due to the minuscule energy scale of superexchange processes, which typically
correspond to temperatures below 1 nK, and the limited efficiency of evapora-
tive cooling schemes in fermionic quantum gases [McK11]. In recent experiments,
optimized lattice potentials [Har15] and the redistribution of entropy in the op-
tical lattice [Gre13] allowed to approach the antiferromagnetic state and observe
short-range spin correlations in various lattice geometries [Gre13, Har15, Mes15].
However, long-range antiferromagnetic spin order of fermionic atoms in the Mott-
insulating state with a correlation length exceeding the interparticle distance has
not been observed yet.
In this thesis, we describe two experiments, which are first steps in a novel
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1. Introduction

bottom-up approach to the simulation of ground-state Hubbard and Heisenberg
models of finite size. In contrast to more prevalent top-down experiments, where
atomic gases are cooled in a bulk system and then loaded into an optical lat-
tice, this approach follows the idea of assembling a quantum many-body system
from individual components [Kau14, Mur15a, Les15]. In our case, these individ-
ual components are isolated atom pairs in spin-singlet configurations. We prepare
these spin singlets with a fidelity exceeding 95 % in the ground state of a sin-
gle optical microtrap [Ser11b]. Their spin symmetry is of major importance for
our approach, since for equal numbers of spin-up and spin-down particles also the
ground states of both the Hubbard and the Heisenberg model have a total spin of
S = 0 [Lie89, Lie62]. Following the ideas presented in Fig. 1.1(a), these individ-
ually prepared spin singlets can be adiabatically combined in order to create the
ground state of larger Heisenberg and Hubbard systems [Mat01, Sac08, Lub11].
In a first experiment [Mur15a], we start with a spin singlet in a single optical

microtrap and slowly ramp on a second microtrap in order to adiabatically reach
the two-particle ground state in a double-well potential. With only two atoms and
one tunnel junction, this double-well system can be seen as the fundamental build-
ing block of the Hubbard model. We demonstrate independent control over the
interaction strength between the atoms and the potential shape and find excellent
agreement with the predictions of a two-site Hubbard model. In the future, we
plan to create a series of such double-well systems and adiabatically combine them
in oder to reach low-entropy phases in a homogeneous lattice [Fig. 1.1(b)] [Lub11].
In a second experiment [Mur15b], we use two-component ground-state systems of
up to four atoms in the potential of a single microtrap to realize Heisenberg spin
chains. In this experiment, different spin singlets are initially prepared on different
trap levels and subsequently coupled by introducing repulsive interparticle inter-
actions [Fig. 1.1(c)]. The resulting Heisenberg spin chains are stabilized by the
strong repulsive interactions and the one-dimensional geometry of the microtrap,
without the need for an external periodic potential. This work constitutes the first
observation of quantum magnetism with ultracold fermionic atoms that exceeds
nearest-neighbor correlations.

Outline

The thesis is structured in the following way. In Ch. 2, we discuss the physics
of two-component Fermi gases in one dimension. We specifically introduce the
energy spectrum of one-dimensional systems of few interacting atoms, which are
realized in the experiments presented later in this thesis. Afterwards, we introduce
the Heisenberg Hamiltonian in Ch. 3. We show how it emerges from superex-
change interactions between nearly separated particles and discuss its realization
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in quantum-gas experiments. In Ch. 4, we explain the experimental setup and
how we can use it to deterministically prepare and detect samples of few fermionic
atoms. We will specifically focus on the setup for the generation of arrays of par-
tially overlapping microtraps that allowed us to prepare an isolated double-well
potential. In following two chapters, we present the two main experimental stud-
ies of this thesis. First, in Ch. 5, the simulation of the two-site Hubbard model
with two atoms in a double-well potential. Second, in Ch. 6, the realization of
Heisenberg spin chains of up to four atoms in a single optical microtrap.
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2. Strongly interacting few-fermion
systems in one dimension

The experiments described in this thesis are performed on strongly-interacting
quasi-one-dimensional systems of ultracold fermionic atoms. In this chapter we will
explain the meaning and significance of the expressions in the last sentence. The
purpose of this chapter is to compile the theoretical and experimental background
that is necessary for the understanding of the following chapters.
We will start in Sect. 2.1 with an introduction on quantum-degenerate Fermi

gases and specifically concentrate on spin-1/2 systems. We will see that the spin
state of two spin-1/2 particles can either belong to a singlet, or a triplet depending
on the symmetry of the spin wave function. This symmetry strongly influences the
scattering properties of ultracold fermionic atoms. Specifically, two 6Li atoms with
low enough kinetic energy can only interact when they are in a spin-singlet state,
while two atoms in a spin-triplet state are noninteracting. We will repeat the main
steps leading to this important result and then describe how these interactions can
be tuned using magnetic Feshbach resonances in Sect. 2.2. We will also discuss
how the scattering properties of ultracold atoms change in the so-called quasi-1D
regime, which is reached when the atomic motion is confined to only one spatial
dimension. In Sect. 2.3, the energy spectrum and wave function of few-fermion
systems in the quasi-1D regime will be discussed. Finally, in Sect. 2.4, we will
introduce the Tonks-Girardeau gas and the concept of fermionization, which is a
powerful method for the description of strongly interacting 1D systems of bosons
or multicomponent fermions. This last section will be of special importance for
the realization of Heisenberg spin chains in our experiment, which is the topic of
Ch. 6.

2.1. Ultracold Fermi Gases
When the wave functions of identical particles overlap, the properties of the system
are influenced by the exchange symmetry of the particles. In this case, two types
of particles, bosons and fermions, have to be distinguished. Identical bosons have
a completely symmetric wave function under the exchange of any two particles.
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2.1. Ultracold Fermi Gases

Figure 2.1.: Ground state distribution of identical noninteracting bosons (a) and
fermions (b) in a harmonic trap. While identical bosons all condense into the
single-particle ground state of the trap, identical fermions populate the lowest
trap levels with one particle each.

This so-called Bose-Einstein statistics allows arbitrary numbers of bosons in each
quantum state, which leads to the condensation of bosons in the systems ground
state for low enough temperatures [Fig. 2.1(a)]. In contrary, the wave function ΨF

of identical fermions has to be completely antisymmetric under the exchange of
two particles. This can formally be written as

Pi jΨF = −ΨF , (2.1)

where the permutation operator Pi j interchanges any two particles i and j. As
a direct consequence of this so-called Fermi-Dirac statistics, the wave function of
two identical fermions that occupy the same single-particle state vanishes. The
fact that two identical fermions can therefore never occupy the same state is called
the Pauli exclusion principle. Following this principle, the many-particle ground
state of N trapped fermions is realized when the N lowest trap levels are occupied
with one fermions each [Fig. 2.1(b)].
The many-particle wave function ΨF of N fermions on N distinct single-particle

trap levels ψ1 . . . ψN can then be constructed from product states of these single-
particle trap levels by using the Slater determinant

ΨF (1, 2, . . . , N) = 1√
N !

∣∣∣∣∣∣∣∣∣∣
ψ1(1) ψ2(1) · · · ψN(1)
ψ1(2) ψ2(2) · · · ψN(2)

... ... . . . ...
ψ1(N) ψ2(N) · · · ψN(N)

∣∣∣∣∣∣∣∣∣∣
. (2.2)
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2. Strongly interacting few-fermion systems in one dimension

RL

Figure 2.2.: Two spin-1/2 particles in a double well. Each particle is in a super-
position of the spin states |↑〉 and |↓〉 and the spatial states |L〉 and |R〉. The
total wave function of two fermionic atoms has to be antisymmetric, leading to six
different eigenstates (Tab. 2.1) [Foo11].

The Slater determinant can also be rewritten as

ΨF = A
N∏
ν=1

ψν(ν), (2.3)

where the antisymmetrizing operator is given by

A = 1√
N !

∑
P

(−1)P P. (2.4)

Here, the sum is over all N ! permutation of the particles and (−1)P is +1 (−1)
for even (odd) permutations [Fli05, Sak85].

2.1.1. Two-component Fermi systems
Spin-1/2 particles are of special interest in physics, since both leptons and quarks
belong to this category. Like all particles of half-integer spin, these elementary
particles are fermions and they can only be in one of two spin states, which are
distinguished by the secondary spin quantum number (mS = ±1/2). In our ex-
periment, we realize an (iso-)spin-1/2 system by restricting fermionic 6Li atoms to
exactly two hyperfine states.
As a minimum example of such a system, we discuss the case of two spin-1/2

particles which can each be in one of two orbitals (Fig. 2.2). We call the two
possible spin states up ( |↑〉 ) and down ( |↓〉 ) and the two spatial states left ( |L〉 )
and right ( |R〉 ). In Ch. 5, we discuss the realization of this textbook example in
our experiment with two fermionic atoms in an isolated double-well potential.
We assume that no coupling between spin and spatial degrees of freedom exists

and therefore both single-particle and two-particle wave functions can be separated

9



2.1. Ultracold Fermi Gases

Φ(A) χ(S)

|↓ ↓〉
1√
2

(
|LR〉 − |RL〉

)
1√
2

(
|↓ ↑〉+ |↑ ↓〉

)
|↑ ↑〉

Φ(S) χ(A)

|LL〉
1√
2

(
|LR〉+ |RL〉

)
1√
2

(
|↓ ↑〉 − |↑ ↓〉

)
|RR〉

Table 2.1.: Spin and spatial wave functions of two noninteracting fermionic parti-
cles in a double well. The particles are either in a spatial singlet and a spin triplet
(upper part), or in a spatial triplet and a spin singlet (lower part) [Foo11].

in a spin part and a spatial part. A two-particle spin wave function can now be
expressed within the basis of all possible product states{

|↓ ↓〉 , |↓ ↑〉 , |↑ ↓〉 , |↑ ↑〉
}
, (2.5)

while the same is true for the spatial wave function{
|LL〉 , |LR〉 , |RL〉 , |RR〉

}
. (2.6)

Here, the first (second) entry in each ket characterizes the first (second) particle.
Using the relation of Eq. 2.1, we know that the combined two-particle wave func-
tions have to be antisymmetric under the exchange of the particles. This can be
realized in two different ways. Either the spin wave function χ is antisymmetric
(A) and the spatial wave function Φ is symmetric (S), or vice versa. As shown
in Tab. 2.1, a symmetric wave function of space or spin can be realized in three
different ways, while the realization of an antisymmetric wave function is always
unique. A system with a symmetric spin (spatial) wave function is therefore part
of a spin (spatial) triplet, while two atoms with an antisymmetric spin (spatial)
wave function form a spin (spatial) singlet.
For more than two spin-1/2 particles the situation gets significantly more dif-

ficult, since now the spin wave function on its own can not have a completely
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2. Strongly interacting few-fermion systems in one dimension

antisymmetric exchange symmetry anymore1. But, as we will see many times
throughout this thesis, it is often still possible to characterize the properties of
many-body spin-1/2 systems by the amount of spin-singlet or spin-triplet cor-
relations they contain. Important examples for this are the antiferromagnetic
ground state of the Heisenberg model, which contains the maximum amount of
spin-singlet correlations (see Ch. 3 and Ch. 6) [Sac08], and fermionic atoms in
the regime of ultracold temperatures, which only interact when spin-singlet cor-
relations are present (see Sect. 2.2). However, the spin-singlet correlations in a
many-body system are in general not confined to two specific particles anymore.
Instead they are delocalized over many particles and can therefore be seen as an
collective property of the system2.

2.2. Interactions in Fermi gases

In the investigation of many-body systems, the modeling of interparticle interac-
tions is typically one of the central problems. In this section, we collect the basic
concepts of interactions in ultracold quantum gases of fermionic atoms. Despite
the complicated internal structure of atoms, the description of interactions be-
tween them can be greatly simplified (Sect. 2.2.1). For low enough temperatures,
interactions reduce to only two-body scattering between atoms in a spin-singlet
configuration and can be characterized by a single parameter, the s-wave scatter-
ing length a3D. We will see that a3D can be tuned in ultracold-atom experiments
by using a magnetic Feshbach resonance (Sect. 2.2.3) [Chi10]. Magnetic Fesh-
bach resonances will be essential for the generation of strongly-interacting atomic
samples is Ch. 5 and Ch. 6. For atoms that are confined in a potential that re-
stricts their movement to one or two spatial dimensions, the scattering properties
change. Interactions between atoms in a quasi-1D confinement will be the topic
of Sect. 2.2.4.
While the discussion in this section focuses on the phenomenological description

of the respective concepts, detailed review articles on interactions in ultracold
gases and Feshbach resonances are available [Blo08b, Ket08, Chi10].

1This is due to the fact that in any spin-1/2 system of more than two particles at least two
spins have to be identical.

2A prominent example for this principle is a cooper pair in BCS theory. Although a cooper
pair is usually in a spin-singlet state it cannot be attributed to only two spin-1/2 particles
but has to be understood as a collective effect.
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2.2. Interactions in Fermi gases

2.2.1. Scattering in ultracold atomic gases
One of the main reasons, why interactions in ultracold gases of neutral atoms can
generally be treated in a greatly simplified way is that these systems are typically
very dilute. This can be seen by comparing the mean interparticle distance, which
is typically ≤ 1 µm, to the characteristic length scale of the Van-der-Waals poten-
tial between two particles, which has typical values of r0 ≈ 50 a0 ≈ 3 nm [Ket08],
where a0 is the Bohr radius. For these conditions, the probability of finding three
or more atoms close to each other can be neglected and the interactions reduce to
two-body scattering. The Schrödinger equation of such a two-particle scattering
process can be written in relative coordinates as(

−~2∇2

2µ + Vint(r)
)

Ψ(r) = EΨ(r), (2.7)

where r is the relative coordinate of the two particles, µ is the reduced mass and
Vint(r) is the scattering potential, which is assumed to be zero for large interparticle
distances r.

Partial wave expansion

For a central scattering potential Vint(r) = Vint(r), the scattering wave function can
be expanded in partial waves Rl(r)Ylm(θ, φ). Here, Ylm are spherical harmonics
with an angular momentum quantum number l and a magnetic quantum number
m and Rl(r) is a radial wave function. Due to the central scattering potential, the
problem is axially symmetric to the direction of the incoming wave and therefore
the scattering wave function is independent of the azimuthal angle φ [Ket08]. For
each radial wave function Rl(r), we can now define a separate scattering channel
that belongs to a specific l and write the adjusted Schrödinger equation as(

− ~2

2µ
( ∂2

∂r2 + 2
r

∂

∂r

)
+ Veff(r)

)
Rl(r) = ERl(r). (2.8)

Here, Veff(r) is an effective scattering potential

Veff(r) = l(l + 1)
2µr2 + Vint(r), (2.9)

which differs from the interaction potential in Eq. 2.7 for scattering channels with
l > 0 [Fli05]. The first term in Veff results in a centrifugal barrier, as shown in
Fig. 2.3.
The partial wave expansion greatly simplifies the description of scattering pro-
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2. Strongly interacting few-fermion systems in one dimension

(a) l = 0

r

E

(b) l = 1

E

r

Figure 2.3.: Effective scattering potential for s-wave scattering (a) and p-wave
scattering (b). If the energy of the scattering particle (red dotted line) is low
enough, the centrifugal barrier blocks all scattering channels except for s-wave
scattering with l = 0.

cesses in ultracold gases. Most of all, because scattering processes in different scat-
tering channels (according to different l) can now be treated separately. Addition-
ally, the exchange symmetry of the scattering wave function Ψl(r) = Rl(r)Ylm(θ, φ)
of a specific scattering channel is given by Ψl(−r) = (−1)lΨl(r). This is of partic-
ular interest for scattering processes between identical quantum particles, where
the exchange symmetry of the wave function is restricted (Sect. 2.1). For the case
of two spin-1/2 fermions, where the possible wave function symmetries are shown
in Tab. 2.1, only the following scattering channels are allowed:

l = 0, 2, 4, ... for two atoms in a spin-singlet configuration,
l = 1, 3, 5, ... for two atoms in a spin-triplet configuration.

(2.10)

The situation simplifies even further, because of the centrifugal barrier in the
effective scattering potential. For typical temperatures in ultracold atom experi-
ments of T . 1µK, the energy E = kBT of the colliding particles is lower than the
centrifugal barrier of even the p-wave channel (l = 1). Therefore, the s-wave scat-
tering channel (l = 0) is the only remaining possibility for particles to interact3. In
combination with the restrictions in Eq. 2.10, we can conclude that cold fermionic
atoms can only interact if they are in a spin-singlet configuration. Importantly,
this results in the fact that a sample of identical fermions, in which atoms can
only form spin triplets, will become noninteracting at low enough temperatures.

3Unless scattering of higher partial waves is not resonantly enhanced.
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2.2. Interactions in Fermi gases

The s-wave scattering length

To characterize the strength of interactions during a scattering process, we consider
an asymptotic solution for the scattering wave function Ψ(r) outside of the range
of the scattering potential. Assuming an incoming plane wave and an outgoing
spherical wave Ψ(r), results in a asymptotic scattering wave function of

Ψ(r) = eik·r + f(k, θ) eik′r. (2.11)

Here, k is the wave vector of the incoming wave and f(k, θ) is the scattering
amplitude that expresses the probability amplitude of scattering as a function
of k = |k| =

√
2µE/~2 and the scattering angle θ. We assume a fully elastic

scattering process so that k = k′ has to be satisfied. Performing a partial wave
expansion, the scattering amplitude f(k, θ) can be separated into the amplitudes
of the individual scattering channels.
For low-energy scattering, f(k, θ) can be reduced to its (l = 0) component fs,

which is independent of the scattering angle θ and can be written as

fs = 1
k cot δs − ik

, (2.12)

where δs is the s-wave scattering phase. The physical meaning of δs can be directly
motivated from the asymptotic form of the scattering wave function (Eq. 2.11).
Since the amplitudes of the incoming and outgoing waves are fixed, the only effect
the potential can have in an elastic scattering process is adding a phase shift to
the outgoing wave. The whole influence of the potential is therefore reduced to
one number.
In the low-momentum limit (k � 1/r0, where r0 is the characteristic length of

the scattering potential), the scattering phase can be replaced by the 3D s-wave
scattering length, which is defined as

a3D = − lim
k�1/r0

tan δs
k

. (2.13)

While the absolute value of a3D characterizes the strength of the s-wave interactions
(k|a3D| � 1 for weak interactions and k|a3D| � 1 for strong interactions) its sign
indicates whether the interactions are attractive (a3D < 0) or repulsive (a3D > 0).

The scattering potential

The low-momentum condition k � 1/r0 used in the last section implies that the
de Broglie wavelength of the particles and therefore the spatial extent of their
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2. Strongly interacting few-fermion systems in one dimension

wave function is much larger than the characteristic length of the scattering po-
tential4. In this limit, the atoms do not probe the internal structure of the scatter-
ing potential, which can instead be replaced by a simpler pseudo-potential. This
pseudo-potential has to reproduce the correct s-wave scattering length a3D [Ket08].
Typically, a regularized delta-potential δres(r) . . . = δ(r) ∂

∂r
(r . . .) is used leading to

an effective scattering potential given by

Vint(r) = g3D δreg(r). (2.14)

Here, g3D is defined as
g3D = 2π~2a3D

m
(2.15)

and called the potential strength or coupling constant.

2.2.2. Scattering resonances
While for most applications the scattering potential is replaced by the pseudo-
potential (Eq. 2.14), its exact form is still necessary to determine the value of the
scattering length a3D. Specifically, both the absolute value and sign of a3D depend
on the energy of the highest bound state in the scattering potential. This can
be understood by assuming a coupling to this bound state during the scattering
process. If the bound state closely below the continuum energy of the scattering
particles, it adds a positive phase shift of 0 ≤ δs(mod π) ≤ π/2 to the outgoing
wave. According to Eq. 2.13, this results in a positive scattering length and there-
fore in repulsive interactions. The binding energy of the weakly-bound state can
then be expressed as a function of the scattering length as [Ket08]

EB = ~2

ma2
3D
. (2.16)

Equivalently, a virtual state closely above the continuum energy leads to a nega-
tive phase shift of −π/2 ≤ δs(mod π) ≤ 0 and consequently to a negative scattering
length and attractive interactions.
Whenever the potential is just deep enough to have a bound state on resonance

with the continuum energy, the phase shift (modulo π) reaches δs = π/2 and the
s-wave scattering length diverges. Since the exact shape of the scattering potential
in an atomic collision is normally not known, the position of scattering resonances
and hence the value of a3D in an atomic collision is hard to predict from ab initio

4For ultracold atoms, the de Broglie wavelength is on the order of ∼ 1µm, while the scattering
potential has a characteristic length of approximately 3nm [Ket08].
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2.2. Interactions in Fermi gases

r

E

Figure 2.4.: Two-channel model for atomic scattering in the low-energy limit. If
the continuum energy (red dotted line) of two atoms in an open scattering channel
(yellow) is on resonance with the bound state of a closed scattering channel (blue)
a Feshbach resonance can occur.

calculations. Instead, the scattering potential is usually replaced by the simplified
pseudo-potential of Eq. 2.14 and a3D is regarded as an experimental parameter.

2.2.3. Feshbach resonances
For two atoms in a particular scattering channel, the scattering phase can also be
influenced by bound states of another channel, if a coupling to this channels exist.
For simplicity, we assume that the second channel has a continuum energy above
the energy of the incoming atoms. It is therefore a closed channel and the atoms
always have to leave the scattering region in their initial open channel (Fig. 2.4). If
the open and closed channels are coupled during the scattering process, the phase
shift δs is affected by bound states in both channels.
This is of particular interest, when the energy of the closed channel can be tuned

experimentally with respect to the energy of the open channel. If the bound state
of the closed channel is tuned into resonance with the continuum energy of the
open channel, the scattering length diverges (Sect. 2.2.2). This so-called Feshbach
resonance is a fundamental tool in realizing strong interactions in ultracold atom
experiments [Chi10]. Mostly, these experiments use magnetic Feshbach resonances,
where the open and closed channel have different magnetic moments and therefore
their energy difference can be tuned by changing the magnetic field. Phenomeno-
logically, the scattering length close to such a magnetic Feshbach resonance can
be written as

a(B) = abg
(
1− ∆B

B −B0

)
. (2.17)
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2. Strongly interacting few-fermion systems in one dimension
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Figure 2.5.: 3D s-wave scattering length a3D between the two lowest hyperfine
states of 6Li as a function of the magnetic offset field. A broad s-wave Feshbach
resonance with a width of ∆B ≈ 262G occurs at a magnetic field of B ≈ 832G
[Zür13a]. Below the resonance, a3D has a zero crossing at B ≈ 527G, where
the system becomes noninteracting. Above the resonance, a3D approaches the
background scattering length of about −2200a0 [Joc04].

Here, abg is the background scattering length of the initial channel, ∆B is the
width of the Feshbach resonance and B0 is the value of the magnetic field where
the resonance occurs.

Feshbach resonances in 6Li

In 6Li, an exceptionally broad magnetic Feshbach resonance exists for scattering
between the two energetically lowest hyperfine states (Fig. A.1). As shown in
Fig. 2.5, it is located at a magnetic offset field of B ≈ 832G and has a width of
∆B ≈ 262G [Joc04, Zür13a]. This allows for the precise control of the interac-
tion strength at both positive and negative values of a3D and for the realization
of strongly-interacting Fermi gases. Also, due to a negative background scattering
length, a3D can be tuned to zero at approximately 527 G, resulting in a noninter-
acting Fermi gas.

2.2.4. Scattering in one-dimensional systems
When the motion of two colliding atoms is restricted to only one or two spatial
dimensions, their scattering properties change [Bus98, Ols98]. In this section, we
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2.2. Interactions in Fermi gases

will discuss the case of scattering in a one-dimensional (1D) confinement, which
is of great importance for this thesis. We will show that a 1D coupling con-
stant can be defined, which is closely related to the potential strength of the 3D
pseudo-potential. Furthermore, we will discuss the model of confinement-induced
resonances (CIR), which shows that the position of the scattering resonance in a
quasi-1D systems is shifted compared to the 3D Feshbach resonance.

1D and quasi-1D

In the following discussion, we have to distinguish between two related concepts:
True 1D and quasi-1D. True 1D is a purely theoretical idea that describes a sit-
uation in which all dynamics of a system happens along one spatial dimension,
independent of the systems energy. In reality, this can not be achieved, since in
any real system the radial confinement can only be of finite strength. Therefore,
for large enough energies, excited states of the radial confinement will be populated
and the movement of the particles will be in more than one spatial dimension. Still,
if in a trap with strong radial confinement, the energy is low enough that particles
predominantly populate the radial ground state, the system can be approximately
described as 1D. Systems in this limit are then called quasi-1D.
In the experiments presented in Ch. 5 and Ch. 6, we realize quasi-1D systems.

By focusing a single Gaussian laser beam, we create a strongly-elongated trapping
potential for the atoms (see Sect. 4.3). For low atomic energies, this potential can
be harmonically approximated and written as

Vharm(ρ, z) = V⊥(ρ) + V||(z) = 1
2mω

2
⊥ρ

2 + 1
2mω

2
||z

2. (2.18)

Here, V⊥(ρ) is the potential in radial direction with ρ =
√
x2 + y2, V||(z) is the

potential in axial direction, and ω⊥ and ω|| are the radial and axial trap frequencies.
The aspect ratio

η = ω⊥
ω||
, (2.19)

which characterizes how elongated the potential is, has typical values of η ≈ 10 in
our experiment5.
To realize a quasi-1D system in a trapping potential described by Eq. 2.18,

all energies should be much smaller than ~ω⊥, which is the energy of the first
excited level in the radial confinement. Therefore, the Fermi energy, which in a
1D harmonic trap is given by EF = N~ω||, limits the maximum atom number in

5The realization of this trapping potential is described in Sect. 4.3. A detailed list of the trap
parameters can be found in App. A.4.
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2. Strongly interacting few-fermion systems in one dimension

each spin state to N � η. Also, the motion of the particles should be restricted to
the few lowest axially excited states. Both condition are fulfilled in the experiments
presented in this work.

Scattering in 1D

To characterize scattering in a 1D system, the goal is to replace the 3D pseudopo-
tential in Eq. 2.14 by its one-dimensional counterpart

Vint(r) = g1Dδ(r), (2.20)

where g1D is called the 1D potential strength or 1D coupling constant. To calculate
the relation between g1D and g3D, we assume in this section that the atoms are
radially confined in a 2D harmonic potential (V⊥(ρ) in Eq. 2.18), but that atomic
motion along the z axis is free. We further assume that the 3D wave function
Ψ(r) = φ⊥(ρ)ψ||(z) factorized into a radial and an axial component and follow the
calculations in Refs. [Ols98, Ber03].
Making the unrealistic assumption of a true 1D system, in which the atoms

are always in the ground state φ⊥,0(ρ) of the radial confinement, the 1D coupling
constant g1D can be calculated by simply rescaling the 3D value g3D [Ber03]. This
can be seen by integrating over the transversal density in the 3D pseudopotential

g1D δ(r) ≈
∫

2πρdρ|φ⊥,0(ρ)|2 g3D δres(r)

= 2 g3D
a2
⊥
δ(r)

= 2~2a3D
ma2
⊥
δ(r)

(2.21)

Here, a⊥ =
√
~/mω⊥ is the harmonic oscillator length of the radial confinement.

During the calculation, the identity |φ⊥,0(0)|2 = 1/πa2
⊥ for the ground state of a

harmonic oscillator and Eq. 2.15, which relates g3D and a3D, were used [Ber03].

Scattering in quasi-1D – Confinement-induced resonances

Despite the unrealistic assumption of a true 1D system, Eq. 2.21 is still a good
approximation for the 1D coupling constant of a weakly-interacting quasi-1D sys-
tem. However, it was shown in Ref. [Ols98] that this approximation fails if a3D
approaches the harmonic oscillator length of the radial confinement [Ber03]. In
this case an additional term has to be included and the 1D coupling constant can

19



2.3. Interacting 1D systems

(a)

0 200 400 600 800 1000 1200

-4

-2

0

2

4

Magnetic Field (G)

g
1
D

(a
∥
ℏ
ω

∥
)

(b)

-3 -2 -1 0 1 2 3

-5

0

5

a 3D (a⊥)

g
1
D

(a
⊥
ℏ
ω

⊥
)

Figure 2.6.: Confinement-induced resonance in a quasi-1D system. (a) 1D cou-
pling constant g1D as a function of the 3D scattering length a3D in units of the
harmonic oscillator length of the transversal confinement a⊥. For a3D ≈ 1.0326a⊥,
a confinement-induced resonance (CIR) occurs. (b) 1D coupling constant between
6Li atoms in the two energetically lowest Zeeman sublevels (Fig. A.1). The atoms
are trapped in the lowest axial states of a cylindrically symmetric harmonic trap
with aspect ratio η ≈ 10. When changing the magnetic offset field, a3D changes
as shown in Fig. 2.5 due to a magnetic Feshbach resonance at 832 G. At approxi-
mately 780 G, a3D reaches 1.0326a⊥ and g1D diverges.

be written as
g1D = 2~2a3D

ma2
⊥

1
1− C a3D/(

√
2a⊥)

, (2.22)

where C/
√

2 = −ζ(1/2) ≈ 1.0326, and ζ(x) is the Riemann zeta-function [Ols98].
The second term in Eq. 2.22 shifts the position of the scattering resonance as
shown in Fig. 2.6. Due to the dependence of g1D on the radial confinement, such
scattering resonances are called confinement-induced resonances (CIR).
A physical interpretation of the shifted resonance position was first provided in

Ref. [Ber03]. Here, the CIR was explained as a scattering resonance between two
incoming atoms in the ground state of the radial confinement and a bound state
with radial excitation.

2.3. Interacting 1D systems
After discussing the scattering properties of ultracold atoms in 1D and defining
the 1D coupling constant g1D in the last section, we will now turn to the energy
spectrum of one-dimensional few-atom systems at both attractive and repulsive
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2. Strongly interacting few-fermion systems in one dimension

interactions. We will specifically concentrate on exact or perturbative solutions
of few-particle two-component systems of ultracold fermionic atoms. The special
case of infinitely strong repulsive interactions (g1D →∞), where the atoms are in
the so-called fermionization regime, will be the topic of the next section (Sect. 2.4).

2.3.1. Hamiltonian of two interacting atoms
We will first discuss the problem of two fermionic atoms in a harmonic trap that
interact via s-wave scattering. Here, only atoms in a spin-singlet configuration
will interact with each other, since the antisymmetric spatial wave functions of
fermionic atoms in a spin-triplet configuration prohibits any scattering processes
(see Sect. 2.2.1).
The Hamiltonian of two interacting ultracold atoms in a harmonic potential

Vharm(r) with cylindrical symmetry (Eq. 2.18) can be written as

H = −~2∇2
1

2m − ~2∇2
2

2m + Vharm(r1) + Vharm(r2) + Vint(r1 − r2). (2.23)

Here, r1 and r2 are the positions of the two atoms, and the interaction potential is
given by the regularized delta potential of Eq. 2.14. In a harmonic potential, the
relative (rel) and the center of mass (COM) motion separate and two independent
single-particle Hamiltonians can be defined as

Hrel(r) = −~2∇2
r

2µ + µ

m
Vharm(r) + Vint(r) and

HCOM(R) = −~2∇2
R

2µ + M

m
Vharm(R).

(2.24)

Here, M is the mass of both atoms, µ is the reduced mass, and r = r1 − r2 and
R = (r1 + r2)/2 are the relative and COM coordinate respectively.
The eigenfunction ofHCOM can be separated in radial and axial parts and written

as
ΨCOM(R) = Θn||(z) Φn⊥,0(ρ). (2.25)

Here, Φn⊥,0 is a 2D harmonic oscillator wave function with radial quantum number
n⊥ and angular quantum number m = 0, and Θn|| is a 1D harmonic oscillator wave
function with axial quantum number n||. The energy of the COM motion can be
written as

ECOM = ~ω||(n|| +
1
2) + ~ω⊥(n⊥ + 1). (2.26)

The problem of two interacting atoms in a harmonic trap is now reduced to finding
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2.3. Interacting 1D systems

the solutions to the Schrödinger Equation

Hrel(r)Ψrel(r) = ErelΨrel(r) (2.27)

of the relative motion.

2.3.2. Ground-state energy of two atoms in a harmonic trap
Noninteracting two-atom systems

For a vanishing interaction strength (g1D = 0), the system becomes noninteracting
and the solutions of Eq. 2.27 are harmonic oscillator wave functions as described
for the COM motion (Eq. 2.25). In this case, the ground-state energy of two atoms
in a spin-singlet configuration is given by the combined energies of the zero-point
oscillations of relative and COM motion and can be written as

ES,0 = ~ω|| + 2~ω⊥ = ~ω||(1 + 2η). (2.28)

For a spin triplet, Pauli exclusion prohibits both particles from occupying the
single-particle ground state of the trap and therefore the lowest energy is

ET,0 = ES,0 + ~ω||. (2.29)

Here one particle occupies the singlet-particle ground state of the trap, while the
second particle occupies the first axially excited state.6
When the 1D coupling constant is not zero anymore, the energy of two interact-

ing atoms in a spin-singlet configuration changes. In the following section, we will
discuss the 3D solution of this problem [Idz06] and compare it to a 1D approxi-
mation [Bus98]. We will see that the 1D approximation provides remarkably good
results, if the 1D coupling constant of Eq. 2.22, which incorporates the influence
of the radial confinement, is used as an input [Idz06].

Energy shift in a cylindrically symmetric trap

To solve the Schrödinger equation of the relative motion (Eq. 2.27), the wave
function Ψrel(r) can be expanded in wave functions of the 3D harmonic oscillator
with cylindric symmetry (see Eq. 2.25). Inserting this expansion into Eq. 2.27 re-
sults in an implicit integral equation, which relates the energy of two attractively
interacting atoms to the 3D s-wave scattering length [Idz06]. Using an analytic

6Since, the zero-point oscillations of the radial motion only add a constant term of 2~ω⊥ to the
energy of all systems described in this thesis, we will neglect it in all further discussions.

22



2. Strongly interacting few-fermion systems in one dimension

continuation, the solution can be extended to repulsive interactions and the im-
plicit equation can be written as

− 1
a3D

= η

(2π)3/2

∞∑
n=0

(
Γ(−E/2 + nη)

Γ(1/2− E/2 + nη)

)
+
√
η

(2π)3/2 ζ(1
2). (2.30)

Here, Γ(x) is the Euler gamma function and E = E − E0 is the energy of the
system without the energy E0 of the zero point oscillation [Idz06]. All energies
and lengths in this equation are expressed in units of ~ω|| and a|| respectively,
which are the characteristic units of harmonically trapped particles. The solutions
of Eq. 2.30 can be found numerically and are shown as red lines in Fig. 2.7.

Energy shift in the 1D regime

Assuming a true 1D system and expanding the relative wave function of two in-
teracting atoms in the axial harmonic oscillator states results in an approximate
formula for the energy of the system. Similar to Eq. 2.30, an implicit equation
can be calculated, which connects the energy shift due to interactions to the 1D
coupling constant

− 1
g1D

= 23/2 Γ(−E/2)
Γ(−E/2− 1/2) . (2.31)

Again, energies and lengths were expressed in characteristic trap units. By relating
g1D to a3D via Eq. 2.22, which describes the shifted position of the scattering
resonance in a quasi-1D system [Ols98], this 1D approximation can be significantly
improved [Idz06]. In contrast to the 3D case, Eq. 2.31 can be evaluated analytically
and the solutions are shown as blue lines in Fig. 2.7.
As we can see in Fig. 2.7, the 1D model offers a good approximation of the exact

energies for small coupling constants (|g1D| � 1). The discrepancy between the
1D approximation and the exact 3D solution at g1D � 1 is a result of a virtual
populations of excited states during the scattering process. For large values of the
interaction strength, radially excited states are included in the 3D evaluation, but
they are missing in the 1D case. This also explains, why the 1D approximation
worsens for excited states with energies approaching η~ω|| = ~ω⊥. Also, the at-
tractive ground state shows a clear disagreement between the 1D approximation
and the exact solution. We will discuss this deviation in the next section.

Attractive and Repulsive interactions

Neglecting the zero-point oscillation energy of the radial motion, the ground-state
energy of a noninteracting spin singlet of two atoms in a harmonic trap is given
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2.3. Interacting 1D systems

(a) (b)

Figure 2.7.: Energy of two interacting atoms in a harmonic trap as a function of
the inverse 1D interaction strength (Eq. 2.22) [Ols98]. Negative (positive) values
of −1/g1D correspond to repulsive (attractive) interactions. In both (a) and (b),
red lines depict the energy of a quasi-1D system with aspect ratio η = 10 [Idz06],
while blue lines depict the energy of the system in a 1D approximation [Bus98].
The energy of the radial zero-point oscillation has been subtracted. (a) The upper
branch and the lower branch are connected to the noninteracting two-particle
ground state at −1/g1D → −∞ and −1/g1D → +∞. While the atoms in the lower
branch form a molecule for increasing attractive interactions, they keep an atomic
character in the upper branch, even if the system crosses the CIR to attractive
interactions. Excited molecular states, which cross the upper branch close to the
CIR are not depicted. (b) In the 1D approximation, the binding energy of two
atoms in the lower branch diverges when approaching the CIR. In a real quasi-1D
system, the molecule eventually loses its 1D character and its energy stays finite
while crossing the CIR [Mor05b].
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2. Strongly interacting few-fermion systems in one dimension

by ES,0 = ~ω|| (Eq. 2.28), as shown in Fig. 2.7 for −1/g1D → ±∞. Finite val-
ues of |g1D| shift the energy upwards (downwards) if −1/g1D < 0 (−1/g1D > 0)
corresponding to repulsive (attractive) interactions. The attractive and repulsive
states that are connected to the noninteracting ground state of the system will in
the following be called the upper branch and lower branch7.

In contrast to the homogeneous 3D case, where molecular states only exist for
repulsive interactions, a 1D system supports a two-particle bound state also if the
atoms interact attractively. For large |g1D| two atoms in the lower branch form a
molecule, which achieves bosonic properties [Ast04]. In a 1D harmonic trap, the
energy of this bound state diverges when approaching the scattering resonance
[blue line in Fig. 2.7(b)]. However, in a real quasi-1D system, the molecule will
loose its 1D character when a3D approaches the harmonic oscillator length a⊥ of
the radial confinement [Blo08b, Gha14]. The bound state energy therefore crosses
the scattering resonance at a universal value of 2~ω⊥ [red line in Fig. 2.7(b)] and
eventually approach the binding energy of a 3D molecule given by ~2/(ma2

3D)
(Eq. 2.16) [Mor05b, Blo08b].

Starting from the noninteracting limit at −1/g1D → −∞, the energy of the
upper branch continuously increases with growing g1D until reaching a value of
ES,0 + ~ω|| at the position of the CIR [Bus98, Zür12b]. As we will see in the
next section, the interacting atoms obtain properties of identical noninteracting
fermions at this point [Gir60, Gir10, Zür12b], which allows for a simplified way
of solving the Schrödinger equation. As a result of this so-called fermionization,
the energies of a strongly interacting spin singlet and a spin triplet coincide at
the position of the CIR as shown in Fig. 2.8. The energy of the spin singlet on
the upper branch continuously crosses the CIR and becomes an excited state for
−1/g1D > 0 [Ast05, Hal09]. It continues to increase in energy until it reaches a
limiting value of E0 + 2~ω|| for vanishing attractive interactions (−1/g1D →∞).

This structure of an upper branch and a lower branch exists for all excited states
in the harmonic potential with symmetric spatial wave functions (n = 0, 2, 4...) and
therefore repeats itself in the energy spectrum every 2~ω||. The attractive states
of excited levels, which are not shown in Fig. 2.7, cross the upper branch of the
ground state close to the CIR. In a harmonic trap, no couplings between the upper
branch and excited molecular states are expected, but in an anharmonic potential,
the atoms can couple to molecular states with radial COM excitations [Sal13].

7This nomenclature will later also be used for states with more than two atoms.
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Figure 2.8.: Ground-state energy of a spin singlet (blue) or a spin triplet (green)
of two harmonically trapped fermions in 1D as a function of the inverse 1D cou-
pling constant. The sketches on the left side show the unsymmetrized single-
particle level distributions of the singlet and triplet state in the noninteracting
limit (−1/g1D = −∞). The states of the spin-triplet can not interact via s-wave
scattering and have a constant energy of 2~ω||. In contrast, the energy of two
atoms in a spin-singlet configuration depends on g1D. At the position of the CIR
(−1/g1D = 0), the energy of spin singlets and spin triplets is identical and the
system fermionizes (Sect. 2.4) [Gir60, Gir10, Zür12b].

2.3.3. Ground-state energy of more than two atoms

For quasi-1D systems of more than two interacting atoms, no explicit formulas for
the energy as a function of the interaction strength are known. Therefore, a vast
amount of numerically exact [Gha12, Gha13, Bro13, Bug13, Sow13, Cui14, Lin14]
and other approximate methods [Bro13, Gha15, Gri15, D’A14] for the energy of
two-component systems of three and more atoms were developed in recent years,
largely inspired by the experimental progress in our group [Ser11b, Zür12b, Zür13b,
Wen13b, Mur15b]. Also, much theoretical effort was directed toward identify-
ing the eigenstates of these systems for g1D → +∞ at the position of the CIR
(i.a. [Gir07, Deu08, Gua09, Gir10, Vol14]), which will be the topic of the next
section.
The conceptionally simplest and most widely used method of numerically cal-

culating the energy of interacting particles is the exact numerical diagonaliztion
of the problem [Gha12, Gha13, Bug13, Sow13, Cui14, Lin14]. In its most basic
realization, the wave function of the many-body system is expanded in single-
particle wave functions and subsequently diagonalized numerically. Typically, a
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2. Strongly interacting few-fermion systems in one dimension

cut-off energy is defined, which limits the number of basis functions and therefore
the size of the Hilbert space. This necessary cutoff restricts simple numerical di-
agonalization methods to relatively small atoms number of N . 6 and moderate
interactions strengths. However, the capability of exact diagonalization methods
could be significantly enhanced by incorporating the analytic solution of the two-
body problem [Gha12, Gha13, Lin14]. Also, the investigation of the symmetry
of individual states can help to limit the amount of basis functions and therefore
improve the efficiency of numerical algorithms [Har14].

Lower branch and upper branch for more than two atoms

The general trend of the energy eigenstates of quasi-1D two-component systems
of few harmonically trapped atoms is always similar to the two-particle case 2.3.2.
This fact is not surprising, since two-particle scattering is the dominant form of
interactions, even in strongly-interacting two-component Fermi systems8 [Ket08].
In the lower branch, the attractively interacting atoms form molecular pairs,
which consist of one spin-up and one spin-down atom in a spin-singlet configu-
ration [Ast04, Mor05b]. For equal number of spin-up and spin-down atoms, the
system forms a bosonic gas with repulsive interactions between the pairs [Mor05a,
Blo08b]
Also the general trend of the states on the upper branch is similar for any two-

component few-fermion system. But, in contrast to the case of one spin-up and
one spin-down atom, where only one singlet and one triplet states exist, more
eigenstates can be found for higher atoms numbers. For N↑ spin-up and N↓ spin-
down atoms, the number of states in each multiplet is given by

M =
(
N↓ +N↑
N↓

)
. (2.32)

As an example, the ground state multiplet of the (N↑ = 2, N↓ = 1) system is shown
in Fig. 2.9.
As for the case of two atoms, the highest excited state of each multiplet below

resonance is a noninteracting state with a completely antisymmetric spatial wave
function. Furthermore, allM states of the multiplet are degenerate at −1/g1D = 0
(see Sect. 2.4) with an energy of ~ω||(N↑ +N↓)2/2. Above the CIR (−1/g1D > 0),
each state gains as much energy as below (−1/g1D > 0).

8This is due to the Pauli principle that prohibits two identical fermions from coming close to
each other.
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Figure 2.9.: Energies of the states of the upper branch of two spin-up and one spin-
down atoms in a harmonic 1D trap. The sketches on the left show unsymmetrized
single-particle level distributions of the individual states in the noninteracting
limit (−1/g1D = −∞). The solid lines show approximations for the energy of
three particles as a function of −1/g1D. The state depicted by the green line has
a completely antisymmetric spatial wave function and is therefore noninteracting
for any value of g1D. At the position of the CIR, all three states are degenerate
and have an energy of 4.5~ω||. The red dashed line compares the energy of the
intermediate state (black line) to the energy of an isolated two-particle spin singlet
(blue line in Fig. 2.8) shifted by 2.5~ω||. The good agreement between both curves
shows that the intermediate state can be seen as an interacting spin singlet and a
noninteracting spectator atom [Lin14]

2.4. Fermionization of ultracold atoms
In the last section, it was shown that for a diverging coupling constant (g1D →∞)
a 1D system of two strongly-interacting fermionic atoms in a spin-singlet config-
uration obtains the energy of two identical noninteracting fermions. The basic
principle behind this observation, which in fact is much more general, is called
fermionization. It was originally proposed as a one-to-one mapping between the
wave functions of impenetrable identical bosons and identical fermions in one-
dimensional systems [Gir60]. The main idea behind the fermionization of bosons
is that for a diverging 1D coupling constant, the interactions between bosons have
just the same strength as the Pauli pressure between identical fermions. The im-
penetrable bosons will thereby obtain the same energy and density distribution as
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2. Strongly interacting few-fermion systems in one dimension

(a) γ � 1 (b) γ ∼ 1 (c) γ � 1

Figure 2.10.: Fermionization of identical bosons in 1D. (a) For weak interactions
and cold temperatures, trapped bosons form a Bose-Einstein condensate and pop-
ulate the same state. (b) Intermediate interaction cause the single-particle wave
functions to separate. (c) For strong interactions, the single-particle wave func-
tions completely separate and the system reaches the Tonks-Girardeau regime.
Figure adapted from Ref. [Kin04].

a Fermi system.
In this section, we will first explain this mapping between the wave functions of

identical bosons and fermions (Sect. 2.4.1) [Gir60], before discussing the fermion-
ization of two-component Fermi systems (Sect. 2.4.2) [Deu08, Gir10].

2.4.1. Fermionization of identical bosons

In a 1D gas of trapped identical bosons, different regimes can be identified depend-
ing on the strength of interparticle interactions [Pet00]. The regimes are usually
characterized using the dimensionless Lieb-Liniger parameter

γ = mg1D
~2n

, (2.33)

where n is the 1D density. For γ � 1 and low enough temperatures, a trapped 1D
Bose gas forms a Bose-Einstein condensate, where all bosons occupy the single-
particle ground state [Fig. 2.10(a)]. In this limit, the single-particle wave functions
overlap completely. For growing values of γ the particles start to separate in order
to minimize the interaction energy in the system [Fig. 2.10(b)]. Finally, in the limit
of γ � 1, the so-called Tonks-Girardeau limit, the single-particle wave functions
separate completely and the bosons become impenetrable [Gir60, Kin04, Kin05].
Assuming two-body contact interactions as introduced in Eq. 2.20, this complete
separation of single-particle wave functions is the only possibility to prevent the
interaction energy from diverging for a diverging coupling constant.
The infinitely strong interactions therefore impose the condition

ΨB(z1, . . . zN) = 0 if zi − zj = 0, 1 ≤ j < i ≤ N (2.34)
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2.4. Fermionization of ultracold atoms

on the wave functions of N bosons with contact interactions9. The same condition
is also true for N identical fermions, since the antisymmetry of the fermionic wave
function prohibits two identical fermions to occupy the same position in space (see
Eq. 2.2). This similarity inspired Girardeau to write the bosonic wave function
ΨB as a symmetric version of a fermionic wave function ΨF

ΨB =
∏
P

(−1)P ΨF . (2.35)

Comparing this mapping to the definition of a fermionic many-particle state via
the Slater determinant (Eq. 2.2), we can see that the factor (−1)P removes the
minus sign of every odd permutation of particles in ΨF and therefore creates a
state with completely symmetric exchange symmetry. For ground-state systems,
the Fermi-Bose mapping of Eq. 2.35 reduces to

ΨB = |ΨF | (2.36)

In Ref. [Gir60], Girardeau argues that for any permutation of particles, the map-
ping in Eq. 2.35 is constant (either +1 or −1). Assuming that ΨF satisfies the
systems Schrödinger equation, he then concludes that also ΨB does. Furthermore,
he shows that both the energy spectrum and the density distribution of the bosonic
and fermionic systems are identical.
Since ΨF can be calculated as the Salter determinant of product states of

single-particle wave functions (Eq. 2.2), the complexity of finding the solution
of a strongly-interacting Bose gas is vastly reduced by this mapping.

2.4.2. Fermionization of spin-1/2 fermions
The fermionization of identical bosons can be extended to multicomponent par-
ticles in 1D, and in particular to two-component fermions [Gir10, Zür12b]. As
shown in Fig. 2.8, two harmonically trapped atoms in a spin-singlet configuration
obtain the energy of two noninteracting identical fermion for g1D → ∞. In this
limit, also the spatial wave functions of a spin singlet [Fig. 2.11(c)] can be related
to the spatial wave function of two identical fermions [Fig. 2.11(f)] by the map-
ping established between bosons and fermions in Eq. 2.36. This fermionization of
two fermionic particles was demonstrated in our group by measuring the energy
of both a spin singlet and a spin triplet as a function of the interaction strength
throughout the regime of strong interactions [Zür12b].

9The assumption of contact interactions is just a simplification. In general any kind of interac-
tions with an "impenetrable core" is sufficient [Gir60].
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2. Strongly interacting few-fermion systems in one dimension

(a) g1D → 0+ (b) g1D > 0 (c) g1D → ±∞ (d) g1D < 0 (e) g1D → 0−

(f) Triplet

Figure 2.11.: Relative spatial wave function of two repulsively interacting atoms
in a spin-singlet [(a)-(e)] or a spin-triplet configuration (f) [FA03, Gir10, Zür12b].
(a) Noninteracting ground state wave function. (b) Repulsive interactions lead to
a cusp in the spatial wave function of a spin singlet, which approaches zero at the
position of the CIR (c). At this point, the absolute of the spatial wave functions
of two atoms in a spin-singlet and in a spin-triplet are identical. (d, e) Above the
CIR, the relative wave function approaches the second excited eigenfunction of the
harmonic oscillator.

However, for more than two spin-1/2 particles, the simple mapping of Eq. 2.35
is not sufficient anymore. This is due to the fact that the relative spatial wave
function of two atoms in a two-component Fermi system can either be symmetric
or antisymmetric. This additional degree of freedom, given by the spin of the
particles causes the fermionized ground state of N↑ spin-up and N↓ spin-down
particles to be M -fold degenerate (see Eq. 2.32) as already seen for three particles
in Fig. 2.9.
Nearly 50 years after the original Fermi-Bose mapping, generalized fermioniza-

tion schemes for multi-component particles were developed [Gir07, Deu08, Gir10].
They use the fact that for g1D → ∞ the spin and the density degrees of freedom
of the particles decouple. States of multi-component particles can then be con-
structed from the wave function of noninteracting spinless fermions, as in the orig-
inal Fermi-Bose mapping, combined with an arbitrary spin wave function [Deu08].
The difficult problem of solving a strongly-interacting system of multi-component
particles is thereby reduced to a discrete spin model. The effective Hamiltonian
of this spin model was later solved for small particle numbers by using a pertur-
bative ansatz around the limit of g1D = ±∞ [Deu14, Vol14]. It was furthermore
recognized that in the case of spin-1/2 particles, this effective spin Hamiltonian
is identical to a Heisenberg Hamiltonian (see Sect. 3.4.2) [Mat08, Deu14, Lev15].
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2.4. Fermionization of ultracold atoms

These findings opened up the possibility of simulating Heisenberg spin chains with
fermionic atoms in the fermionization regime. The realization of this approach in
our experiment is the topic of Ch. 6 and Ref. [Mur15b].

32



3. Quantum magnetism with
ultracold atoms

Magnetic interactions change the energy of two particles dependent on the relative
orientation of their spins. In quantum many-body systems, such magnetic interac-
tions can emerge between identical particles, even if their fundamental interactions,
e.g. the Coulomb interactions between electrons or the s-wave interactions in a
gas of ultracold atoms, are nonmagnetic [Aue94]. Since these magnetic interac-
tions depend on the exchange symmetry of the interacting particles, they are often
called exchange interactions. The paradigmatic model to explain the formation
of magnetic phases due to exchange interactions is the Heisenberg model [Hei28],
which will be the topic of this chapter.
We will start by explaining how exchange interactions emerge between two

fermions in a double-well potential (Sect. 3.1). To describe this system, we will
introduce and apply the formalism of the two-site Hubbard model [Hub63]. We
will see that in the limit of large repulsion, an effective Hamiltonian emerges that
only acts on the spin state of the two particles. In the next section (Sect. 3.2),
we will extend these ideas to a many-body Hubbard system and identify the ef-
fective Hamiltonian as the Heisenberg Hamiltonian [Hei28]. We will discuss the
properties of its ground state and mostly focus on antiferromagnetic exchange in-
teractions. Especially, the assembly of antiferromagnetic ground-state systems by
combining individual spin-dimers will be discussed (Sect. 3.3) [Sac08], because of
its importance for the experiments described in this thesis.
In the final section of this chapter (Sect. 3.4), we will review two methods of

experimentally realizing the Heisenberg Hamiltonian by using systems of ultracold
atoms as quantum simulators. The first method uses the already mentioned con-
nection between the Heisenberg Hamiltonian and the Hubbard model with strong
repulsive interactions (Sect. 3.4.1) [Jak98, Dua03]. The implementation of this
method in our experiment with only two atoms in an isolated double-well potential
is the topic of Ch. 5 [Mur15a]. In the second method, atoms in a strongly elon-
gated trapping potential are brought into the fermionization regime (see Sect. 2.4)
and used to simulate Heisenberg spin chains (Sect. 3.4.2) [Deu14]. The realization
of such spin chains in our experiment, is discussed in Ch. 6 [Mur15b].

33



3.1. Superexchange interactions

3.1. Superexchange interactions
Superexchange interactions have first been predicted to explain the binding energy
in the ground state of the hydrogen molecule [Hei27]1. There, the two hydrogen
atoms exchange their electrons and thereby reduce the energy of the system, if
the electrons are in a spin-singlet configuration. As it turned out, the concept
of superexchange interactions is not dependent on the specific properties of the
hydrogen atoms. Instead, it can be seen as the generic way of introducing magnetic
interactions in a quantum many-body system [Aue94].
In this section, we will explain how superexchange interactions emerge between

two fermions trapped in a double-well potential. We will use a two-site Hubbard
Hamiltonian to model this system [Hub63]. The Hubbard model is one of the most
fundamental models of correlated quantum many-body systems. Its popularity is
often attributed to the fact that it is the simplest model for interacting quantum
particles that can not be reduced to a single-particle theory [Aue94]2.

3.1.1. The two-site Hubbard model
To explain the origin of superexchange interactions, it is necessary to include both
the motion and the interactions of quantum-mechanical particles in the model. In
the Hubbard model both of these processes are present, but they are reduced to
their simplest possible form . Within this model, particles only move by tunneling
from one well into a neighboring one and they only interact when occupying the
same well.
The Hubbard model can be conveniently described by using the second quantiza-

tion formalism. Within this formalism the operator c�i,s (ci,s) creates (annihilates)
a fermionic particles in spin state |s〉 = {|↑〉 , |↓〉} and spatial state i. Many-body
states can then be expressed within a Fock basis, where the number of spin-up
or spin-down particles in each single-particle spatial state i is counted. The anti-
symmetry of the fermionic wave function is ensured by the usual anticommutation
relations between the creation and annihilation operators [Aue94].

1Note that in solid state literature (i.e. p. 681 of [Ash76]), the exchange of spins on neighboring
sites of a lattice is typically referred to as direct exchange, while only processes that involve
nonmagnetic intermediate sites are referred to as superexchange. This differs from the usage
of these term in this thesis, which follow Ref. [Aue94] (see p. 17). Here, superexchange
is generally used to describe the process that allows two particles with nearly completely
separated spatial wave functions to exchange their position and thereby change the energy
of the system energy.

2The fundamental approximations leading to the Hubbard model, which are important for its
implementation in an ultracold-atom experiment, are discussed in Sect. 3.4.1.
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Figure 3.1.: Parameters of the two-site Hubbard model. Particles can tunnel be-
tween the right and the left well with a rate determined by the tunneling matrix
element J t. If both particles occupy the same well, they interact and change the
energy of the system by the on-site interactions energy U . Additionally, the tilt ∆
describes an energy difference between the two wells.

For the two-site Hubbard model (Fig. 3.1), the spatial states i are in good
approximation the ground-states of the left and the right well. We first assume
that the two wells are completely separated and therefore atoms can not tunnel
between them. Assuming that particles occupying different wells do not interact,
the Hamiltonian in this limit can be written as

Hint = U
∑

i={L,R}
ni,↑ni,↓. (3.1)

Here, U is the on-site interaction energy and the operator ni,s = c�i,sci,s counts the
number of particles in spin state s and spatial state i. Importantly, only particles
in a spin-singlet configuration can interact, since only for spin singlets, one spin-up
and one spin-down particle are allowed to occupy the ground state of the same
well. For repulsive interactions (U > 0), the energy of any superposition of the
states |↑↓ , 0〉 and |0 , ↑↓〉 with two particles on one site increases by U . In this
case, the ground-state is fourfold degenerate and given by superpositions of the
states {|↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉} with separated atoms.
If the two wells of the double-well system are not fully separated anymore, the

spatial wave function of a particle localized in one well reaches into the other well.
This allows single particles to tunnel from one site to the other, which can be
expressed within second quantization as

Ht = −J t
∑

s={↑,↓}

(
c�L,scR,s + c�R,scL,s

)
, (3.2)
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3.1. Superexchange interactions

where J t is the tunneling matrix element3. For two particles in the double-well
system, the tunneling behavior of the particles is strongly influenced by their
exchange symmetry. Thereby, only atoms in a spin-singlet correlation can tunnel,
since two atoms in a spin-triplet state always have to occupy different sites.
The full Hamiltonian of the two-site Hubbard model is finally given by the sum

of Eqs. 3.1 and 3.2 and an additional term describing an energy tilt ∆ between
the left and the right well

HH = Ht +Hint +
∑

s={↑,↓}
(nL,s − nR,s)∆. (3.3)

This two-site Hubbard model can be solved analytically for any strength of U , J t,
and ∆. However, in order to understand the emergence of exchange interactions,
it can nevertheless be instructive to calculate approximate solutions in the limit
of strong repulsive interactions (U/J t � 1). This is the topic of the next section4.

3.1.2. Superexchange in the Hubbard model
In the limit of strong repulsion (U/J t � 1), the tunneling HamiltonianHt (Eq. 3.2)
can be regarded as a small perturbation on the interaction Hamiltonian Hint
(Eq. 3.1). Diagonalizing the states {|↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉} of the ground-state
multiplet of Hint with respect to the perturbation Hamiltonian Ht leads to the
spin singlet ∣∣∣ψ(0)

〉
= 1√

2
(
|↑ , ↓〉+ |↓ , ↑〉

)
, (3.4)

and the three spin-triplet states

|↑ , ↑〉 , 1√
2
(
|↑ , ↓〉 − |↓ , ↑〉

)
, |↓ , ↓〉 . (3.5)

Since tunneling of the particles in a spin-triplet states is forbidden, only the energy
of the spin singlet can change when applying Ht as a perturbation.
Starting from the spin-singlet state

∣∣∣ψ(0)
〉
, the tunneling of only one particle

leads to a final state with two particles in one well and is therefore strongly sup-
3Note that the letter J is used to describe both tunnel couplings and exchange couplings in
order to be consistent with the notations in Ref. [Mur15a] and Ref. [Mur15b]. To avoid
confusion, we will denote tunnel couplings as J t and exchange couplings as Jex.

4A detailed discussion of the eigenstates of the two-site Hubbard model at both repulsive and
attractive interactions can be found in Ch. 5. In this chapter, we will mostly focus in the
ground-state of the two-site Hubbard model, since there the influence of exchange interactions
is the most apparent.
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Figure 3.2.: Sketch of exchange processes in the Mott-insulating regime of a two-
site Hubbard model. For strong repulsive interactions (U/J t � 1), the tunneling
of single particles in a symmetric double-well (∆ = 0) is far off resonant. This is
due to the energy difference of U between states with both particles in one well and
states with separated atoms. However, two particles in a spin-singlet configuration
can still perform higher-order tunneling processes, during which doubly-occupied
states are virtually populated. Eight distinct second-order tunneling channels,
which either exchange the position of the two particles or not, can be constructed.
If they are combined, they lower the energy of the spin singlet by 4J t2/U .

pressed. However, the two particles can still exchange their position in a correlated
tunneling process, during which states with double occupations are virtually popu-
lated (Fig. 3.2). The influence of such correlated tunneling processes on the energy
Es of the spin singlet can be calculated by using second-order perturbation theory
[Aue94, Sak85] as

∆Es =
〈
ψ(0)

∣∣∣Heff

∣∣∣ψ(0)
〉

= −
〈
ψ(0)

∣∣∣Ht
P

Hint
Ht

∣∣∣ψ(0)
〉
. (3.6)

Here, Heff is an effective Hamiltonian that we will identify as the Heisenberg Hamil-
tonian in Sect. 3.2.2 and P = |↑↓ , 0〉 〈↑↓ , 0| + |0 , ↑↓〉 〈0 , ↑↓| is an operator pro-
jecting on double-occupied states.

When inserting the spin-singlet wave function (Eq. 3.4) into Eq. 3.6, eight dis-
tinct second-order tunneling channels can be identified (see Fig. 3.2), which either
exchange the position of the two particles or not. Their combination changes Es
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3.2. The Heisenberg model

by

∆Es = −Jex = −4 J t
2

U
, (3.7)

where Jex is called superexchange coupling, or superexchange interaction. Since
these effective interactions change the energy of two nearly separated atoms, de-
pendent on their spin state, they can be interpreted as a magnetic interaction.
For fermionic atoms and repulsive interactions, superexchange interactions are al-
ways positive and therefore reduces the energy of the spin singlet. This leads
to a preferential antiparallel alignment of neighboring spins and therefor to an
antiferromagnetic ground state [Lie62].

3.2. The Heisenberg model
As we have seen in the last section, an effective Hamiltonian Heff can be defined to
explain the energy splitting in the ground-state multiplet of the two-site Hubbard
model at large repulsive interactions. This Hamiltonian only acted on the spin
state of the particles and therefore allows to reduce the system to a pure spin
model. This concept can be directly extended to many-body Hubbard systems,
which is the first topic of this section. Afterwards, we will express the effective
Hamiltonian Heff within the formalism of a spin model and see that it actually
is the Heisenberg Hamiltonian. Finally, we discuss the structure of the ground-
state of the Heisenberg Hamiltonian in the case of antiferromagnetic exchange
interactions. A compilation of the basic definitions of a spin model can be found
in App. A.1.

3.2.1. Emergence of spin models
Extending the two-site model in Eq. 3.3 to many sites and particles leads to the
Hubbard Hamiltonian

H = −
∑
〈i,j〉,s

J tij
(
c�i,scj,s + c�j,sci,s

)
+
∑
i

Uini,↑ni,↓ +
∑
i

εini, (3.8)

where 〈i, j〉 denotes neighboring lattice sites, and εi is a site-dependent energy
offset. We limit the discussion to a homogeneous half-filled Hubbard model with
εi = 0, J tij = J t, and Ui = U for each site and a mean atom number of one per
lattice site (Fig. 3.3)5.

5An exact definition of the Hubbard parameters can be found in Sect. 3.4.1, where the imple-
mentation of Hubbard models in ultracold-atom experiments is discussed.
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(a) Metallic phase

U

J
t

(b) Mott-insulating phase

J
ex

Figure 3.3.: Metal to Mott-insulator transition in the Hubbard model. (a) For weak
on-site interaction energies (U/J t � 1), single particles tunnel freely through the
lattice and form a metallic state. (b) For strong repulsive on-site interactions
(U/J t � 1), single-particle tunneling in a half-filled Hubbard model is strongly
suppressed. For sufficiently low temperatures, the particles form a Mott-insulator
with exactly one particle per site. In this limit, the system can be modeled by a
pure spin Hamiltonian with magnetic superexchange interactions (Jex = 4J t2/U)
between neighboring spins.

For weak interactions U/J t � 1 the particles tunnel independently through
the lattice, and the Hubbard model describes a metallic phase [Fig. 3.3(a)]. In
this limit, the motion of particles is only limited by the antisymmetry of the
fermionic wave function that prohibits any two particles that are not in a spin-
singlet configuration to occupy the same site. When introducing repulsive on-
site interactions (U > 0), the probability of two atoms occupying the same well
decreases. Eventually, the Hubbard system undergoes a transition into a Mott-
insulating state, where each well is occupied by exactly one particle [Fig. 3.3(b)].
The critical interaction strength of this transition depends on the dimensionality
of the system and the lattice geometry.

For infinite repulsive interactions (U/J t = ∞), any tunneling in the Mott-
insulating state is completely suppressed and the ground-state of the Hubbard
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system with N↑ spin-up and N↓ spin-down atoms and N = N↑ +N↓ wells isN↑ +N↓

N↓

 (3.9)

times degenerate. For each state within this ground-state multiplet, every lattice
site is occupied by exactly one particle. In this limit, different states can fully
characterized by their spin state. To define a spin model, the particle picture is
abandoned completely, and the spin of each particle is directly attributed to the
lattice site.
For strong but finite interactions 1� U/J t �∞, the degeneracy in the ground-

state multiplet is lifted due to correlated tunneling processes between neighboring
particles in a spin-singlet configurations. Although density fluctuations are not
fully suppressed anymore, the system can approximately still be described as a
spin model. The energy splitting between the states is then interpreted as the
result of exchange interactions between neighboring spins6.

3.2.2. The Heisenberg Hamiltonian
In Sect. 3.1.2, we defined an effective Hamiltonian Heff in a Fock basis, which
describes the influence of superexchange interactions on the energy of nearly sep-
arated particles. We will now see that Heff is in fact identical to the Heisenberg
Hamiltonian, when expressed within a spin basis.
To transform Heff into an Hamiltonian acting on a pure spin basis, one can ex-

press the different second-order tunneling paths listed in Fig. 3.2 by spin operators
(see Eq. A.1). Considering only the tunneling paths that do not exchange the two
particles (|↑ , ↓〉 → |↑ , ↓〉 and |↓ , ↑〉 → |↓ , ↑〉), this results in an effective spin
Hamiltonian given by

HIsing = Jex
(
SzLS

z
R −

1
4nLnR

)
, (3.10)

where Szi is the z component of the spin operator ~Si on site i (Eq. A.1). This is an
Ising Hamiltonian that is for instance used to describe the alignment of separated
spins interacting via dipole-dipole interactions.7

6Since superexchange interactions depend on the wave function overlap of the interacting par-
ticles, their range is typically very short

7The second term on the right-hand side of Eq. 3.10 ensures that the energy of spin triplets is
zero. It does not change the overall structure of the energy spectrum and is often neglected.
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3. Quantum magnetism with ultracold atoms

To express the second-order tunneling paths that exchange the position of the
two particles (|↑ , ↓〉 → |↓ , ↑〉 and |↓ , ↑〉 → |↑ , ↓〉), it is convenient to use the
raising and lowering operators defined in Eq. A.5. The effective Hamiltonian can
than be written as

HXY = Jex
( 1

2 (S+
LS
−
R + S−LS

+
R )
)
, (3.11)

and is typically called XY Hamiltonian. The origin of this name becomes apparent
when using Eq. A.5 to rewrite the XY Hamiltonian as

HXY = Jex
(
SxLS

x
R + SyLS

y
R

)
, (3.12)

where Sxi and Syi are the x and y-component of the spin operator.
The combination of all eight distinct paths of second-order tunneling (Fig. 3.2)

leads to the two-site Heisenberg Hamiltonian

H = HIsing +HXY

= Jex
(
SxLS

x
R + SyLS

y
R + SzLS

z
R −

1
4nLnR

)
= Jex

(
~SL · ~SR −

1
4nLnR

)
.

(3.13)

It can be easily expanded to larger spin chains by imposing superexchange inter-
actions Jexi between any two neighboring spins on lattice sites i and i+ 1

HQHM =
∑
i

Jexi
(
~Si · ~Si+1 −

1
4nini+1

)
. (3.14)

Combining all second-order tunneling paths therefore lead to an Hamiltonian that
has equal contribution from all three spin components (see second line of Eq. 3.13)
and hence contains the SU(2) spin-rotation symmetry.

Symmetries of the Heisenberg Hamiltonian

In order to characterize the eigenstates of the Heisenberg model, we will now
discuss the symmetries of HQHM. Both the Ising Hamiltonian and the XY Hamil-
tonian do not change the z-component Sz = ∑

i S
z
i of the total spin operator

~S = ∑
i
~S [Par10]8. Both HIsing and HXY and also the Heisenberg Hamiltonian

HQHM must therefore commute with Sz. Hence, any eigenstate |χ〉 of HQHM is also

8The XY Hamiltonian does not change Sz since it contains equal numbers of raising and lowering
operators.
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an eigenstate of Sz with
Sz |χ〉 = M |χ〉 , (3.15)

where M is an integer number between −N/2 and N/2 and N is the number of
spins in the system.
Furthermore, the fact that the Heisenberg Hamiltonian conserves the full spin-

rotational symmetry can be exploited. Since HQHM commutes with Sz it must also
commute with the other spin components Sx and Sy. As a consequence, HQHM

and ~S2 = (Sx)2 + (Sy)2 + (Sz)2 commute [Par10], which allows to define the total
spin quantum number S according to

~S
2
|χ〉 = S(S + 1) |χ〉 . (3.16)

Importantly, S is only a good quantum number for the Heisenberg Hamiltonian
and not for either the Ising or the XY model, separately.

3.2.3. Antiferromagnetism
Depending on their sign, magnetic interactions can either be antiferromagnetic
(AFM) (Jex ≥ 0) or ferromagnetic (FM) (Jex ≤ 0). Thereby, AFM (FM) interac-
tions reduce (increase) the energy of neighboring spins in a singlet configuration
(see Sect. 3.1.2) and favor the antiparallel (parallel) alignment of neighboring spins.
The ground state of a Heisenberg model with only FM correlations is generally
easy to determine, since it contains only spin-triplet correlations between any two
spins in the system. In this case, all individual spins are aligned in parallel leading
to a total spin quantum number of S = N/2.
In contrast, the AFM Heisenberg model typically has a much richer low-tem-

perature phase diagram, which depends not only on the interactions, but also
on the dimensionality of the system and the underlying lattice geometry [Aue94,
Sac08]. The difficulty of finding the antiferromagnetic ground-state is thereby
fundamentally connected to the exchange symmetry of fermions, which prohibits
to create completely antisymmetric spin states out of more than two spin-1/2
particles [Sak85]. As a result, the ground state of the AFM Heisenberg model is
formed by superpositions of singlet and triplet correlations, which generally makes
its description very involved.
Even without knowledge of its exact form, Lieb and Mattis could prove the

important result, that the ground state of an AFM Heisenberg model always has
the smallest total spin quantum number (S = |N↑−N↓|) out of all states [Lie62]9.

9The theorem requires that the underlying lattice is bipartite, which is true for spin chains, or
for simple cubic latices in higher dimensions.

42



3. Quantum magnetism with ultracold atoms

For equal numbers of spin-up and spin-down particles, the ground state of the
AFM Heisenberg model is therefore always a spin singlet with a total spin quantum
number of S = 0.
Importantly, the state with "perfect" antiparallel alignments of neighboring spins(
|· · · ↑ ↓ ↑ · · · 〉

)
, which is usually called the Néel state, is not the ground-state of

the quantum Heisenberg model. Since any permutation of neighboring spins would
destroy its ordering, the Néel state is not even an eigenstate of ~S or of the Heisen-
berg Hamiltonian (Eq. 3.14). In a homogeneous two or three-dimensional lattice
without frustration, the antiferromagnetic ground state of the Heisenberg model
can nonetheless have long-range alternating spin order, due to the spontaneous
breaking of the spin-rotational symmetry [Aue94, Mat01, Sac08]. However, the
"perfect" Néel order will also in these cases be destroyed by quantum fluctuation.
In one-dimensional systems, these quantum fluctuations prevent any spontaneous
breaking of the spin-rotational symmetry and no phase with long-range alternating
spin order exist [Mer66].

3.3. Assembling many-body spin systems
The experiments presented in this thesis, follow the premise of assembling many-
body spin systems from small and individually prepared components. When trying
to assemble the ground state of an antiferromagnetic Heisenberg Hamiltonian,
these components have to fulfill specific requirements.
A first idea could be to start from a product state of individually prepared

spin-1/2 particles and combine them by slowly introducing AFM superexchange
interactions. However, the lack of correlations between the particles in the initial
state will always make their combination non-adiabatic. Even for an initial state
prepared in Néel order, this would prohibit the formation of spin order in the final
state [Ho08].
This problem does not exist, when starting from individual components that

already possess the full spin-rotational symmetry of the final AFM state [Lub11].
The smallest system with a full spin-rotational symmetry is the two-particle spin
singlet, for which the spin state can be written as10

∣∣∣χ(0)
〉

= 1√
2
(
|↑L ↓R〉 − |↓R ↑L〉

)
. (3.17)

This spin singlet is the ground state of the two-site AFM Heisenberg Hamiltonian
10Note that here the state of the spin singlet is given in a spin basis. In Eq. 3.4, the spin singlet

was given in a Fock basis instead, which explains the opposite sign.
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Figure 3.4.: Connecting two separated spin-singlets. The red and gray lines show
eigenenergies of the four-site Heisenberg system as a function of the superexchange
interaction Jex2 between the two central sites. The energies and Jex2 are both given
in units of the superexchange energy Jex1 of the outer links. For Jex2 = 0, the
system consists of two independent two-site Heisenberg systems. In this limit, the
ground state is a product state of two two-particle spin singlets. For Jex2 = Jex1 ,
the homogeneous four-site Heisenberg model is reached. For comparison, the blue
line shows a state with perfect Néel order. This is the ground state of the Ising
Hamiltonian (Eq. 3.10).

(see Sect. 3.1.2) and as we will discuss in this section, it is a building block for
AFM ground states of larger spin systems [Mat01, Sac08, Lub11].

3.3.1. Combination of two spin singlets

The smallest spin system in which the adiabatic connection of spin singlets can
be demonstrated is a four-site Heisenberg spin chain. We assume fixed exchange
interactions (Jex1 ) between the outer sites and a variable exchange interaction (Jex2 )
between the two central sites and solve the systems by numerically diagonalizing
the corresponding Heisenberg Hamiltonian (Fig. 3.4). For Jex2 = 0, the spin chain
consists of two separated two-site Heisenberg systems and its ground state is a
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3. Quantum magnetism with ultracold atoms

product state of two-particle spin singlets in each of these double wells
∣∣∣Ψ(0,0)

2

〉
⊗
∣∣∣Ψ(0,0)

2

〉
= 1

2
(
|↑↓↑↓〉 − |↑↓↓↑〉 − |↓↑↑↓〉+ |↓↑↓↑〉

)
. (3.18)

This ground state has an energy of −2Jex1 and a gap of Jex1 to the first excited
state, which corresponds to the transformation of one of the spin singlets into a
spin triplet. When combining the two-site systems (Jex2 > 0), the spin singlets
are not localized anymore. At the same time, the ground state energy is further
reduced until it reaches a value of about −2.366 Jex1 in the four-site spin chain
with equal exchange couplings (Jex1 = Jex2 ).
Importantly, the four-particle ground state of this system is always nondegener-

ate for any value of Jex2 /Jex1 between zero and one. Starting from two individually
prepared spin singlets, it is therefore theoretically possible to connect the two-site
systems with an adiabatic ramp and reach the ground-state of the homogeneous
four-site spin chain with arbitrary fidelity [Lub11].

3.3.2. Combining antiferromagnetic spin systems
The adiabatic combination of two two-particle spin singlets is the minimum ex-
ample for the assembly of antiferromagnetic Heisenberg systems. The concept can
directly be extended to larger dimerized spin chains.
For any number of isolated dimers, the ground state of the whole system is

given by a product states of two-particle spin singlets in each dimer. Since each
of these spin singlets has a spin quantum number of S = 0, also the total spin
quantum numbers of the whole spin chain will be S = 0. In agreement with
Lieb-Mattis theorem, the initial ground state is therefore a spin singlet [Lie62].
Again, the excitation energy to the first excited state is given by the superexchange
energy (Jex1 ) in the individual dimers. This discrete energy gap always ensures the
possibility of an adiabatic combination of the dimers [Sac08]. The time t it takes
to adiabatically combine the dimers into a homogeneous spin chain thereby scales
with t ∝ N2, where N is the number of sites in the system [Lub11].
The same ideas can also be applied to two-dimensional dimerized lattices (see

Fig. 1.1). However, when combining individual spin singlets into an homogeneous
two-dimensional spin system, the ground state undergoes a quantum phase tran-
sition [Sac08]. Assuming that the exchange interactions between the dimers have
the same size in all directions, a critical value of Jex2 /Jex1 ≈ 0.52 can be calcu-
lated at which the system spontaneously breaks the spin-rotational symmetry and
acquires long-range spin order [Mat01, Sac08].
The inverse process of splitting up a many-body spin system into individual
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dimers and measuring the fraction of spin-singlets in these dimers was recently used
to measure the amount of antiferromagnetic correlations in a system of ultracold
atoms [Gre13, Mes15].

3.4. Realization of Heisenberg spin chains
The exact theoretical description of Heisenberg and Hubbard systems is only pos-
sible in few limiting cases. These cases include systems of small size, for which
the Hamiltonian can still be solved by numerically exact methods [Par10], or one-
dimensional systems, for which specific numerical and analytical methods could be
developed [Gia04]. However, away from these limits, many fundamental questions
about the low-temperature phases of these two fundamental models remain unan-
swered to this day. Interest in these questions was especially boosted by the obser-
vation of high-temperature superconductivity in cuprates with antiferromagnetic
interactions, which to this day remains not understood [Bed86, And87, Nor11]. So
far, it is still unclear if the Hubbard model suffices to explain this unconventional
superconductivity, or if more sophisticated models are needed.
Following the concept of quantum simulation, ultracold-atom experiments were

proposed to contribute to the solution of these problems [Fey82, Jak98]. In this
approach, the outstanding versatility of atomic systems is supposed to allow the
realization of specific quantum many-body Hamiltonians. From the experimental
investigation of those atomic system, new input into the theoretical models is
expected. The starting point for all experiments with fermionic atoms is thereby
given by the Hamiltonian

H =
∑

s={↑,↓}

∫
d3x ψ̂�

s(x)
(
− ~2∇2

2m + V0(x)
)
ψ̂s(x)

+ g3d

∫
d3x ψ̂�

↑(x)ψ̂�
↓(x)ψ̂↓(x)ψ̂↑(x),

(3.19)

of an interacting two-component Fermi system in second quantization. Here, ψ̂↑
and ψ̂↓ are the fermionic field operators for atoms in two different hyperfine states,
V0(x) is an external potential and g3D is the coupling constant between two atoms
in a spin-singlet configuration (see Eq. 2.15).
In this section, we will discuss two distinct methods for the realization of the

Heisenberg Hamiltonian in experiments with ultracold fermionic atoms. In both
methods specific external trapping potentials are used (see Sect. 4.3) and the
coupling constant g3D between the atoms is adjusted by using a magnetic Feshbach
resonance (see Sect. 2.2.3).
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In the first method (Sect. 3.4.1), ultracold atoms are trapped in the periodic
potential of an optical lattice [Gri00] and used to simulate the Hubbard model
[Jak98]. The Heisenberg Hamiltonian can then be realized by bringing the Hub-
bard system into the Mott-insulating regime (Sect. 3.2) [Dua03]. In Ch. 5 of
this thesis, the implementation of this method in our experiment using only two
fermionic atoms in a double-well potential is discussed [Mur15a]. For the sec-
ond method of simulating the Heisenberg Hamiltonian (Sect. 3.4.2)), ground-state
systems of few fermionic atoms in a strongly-elongated trap are brought into
the fermionization regime (Sect. 2.4) [Gir60, Deu08]. The atoms thereby from
a spin chain which is stabilized by the strong repulsion between the atoms and
the one-dimension trap geometry. The state of this spin chain is determined by a
Heisenberg Hamiltonian [Deu14]. This method was first realized in our experiment
[Mur15b] and is discussed in Ch. 6.

3.4.1. Realization of the Hubbard model
In order to realize the Hubbard Hamiltonian in an ultracold-atom experiment, the
atoms are usually trapped in an optical lattice. Optical lattices are conservative
periodic potentials, generated by the standing-wave intensity pattern of interfering
laser beams. Many different lattice geometries can be realized, but in their simplest
form, optical lattices have a potential given by V0(x) = ∑3

j=1 Vj,0 sin
2(kxj). Here,

k = 2π/λ is the wave vector and λ is the wavelength of the trapping light leading
to a lattice spacing of a = λ/2. The lattice depth Vj,0, can typically be changed
separately for each spatial direction by changing the intensity of the corresponding
laser beams, which allows the realization of one, two, and three-dimensional optical
lattices. Additionally, the trapping potential of an optical lattice usually has a slow
overall variation due to the inhomogeneous profile of the trapping beam.

Tight-binding and single-band approximation

The motion of atoms in an optical lattice can be separated into two parts: the vi-
brations of atoms within the individual wells and their tunneling between different
wells. By superimposing vibrational eigenstates of the individual wells that have
an equal number n of excitations, energy bands with a width proportional to the
tunneling matrix element between wells can be defined. The energy eigenstates
of noninteracting atoms that tunnel through the lattice are then given by Bloch
states [Ash76]. If tunneling between different sites of the lattice is weak, the sys-
tem can also be expressed in a real-space basis, by using the Wannier functions.
Thereby, each Wannier function wn(x−xi) is centered at an individual lattice site
with position xi and is orthogonal to all other Wannier functions. In this limit, the

47



3.4. Realization of Heisenberg spin chains

fermionic field operators of Eq. 3.19 can be expanded within the basis of Wannier
functions

ψ̂s(x) =
∑
i,n

ci,n,sw
n(x− xi), (3.20)

where the operator ci,n,s creates one fermion in spin state s and energy band n in
the Wannier state centered at xi.
In a sufficiently deep optical lattice, the Wannier functions are strongly localized

at the individual wells. In this limit, wn(x− xi) can be approximated by the n-th
vibrational eigenstate on site i with only small additional contributions from the
n-th eigenstates on neighboring sites. This is the so-called tight-binding limit,
which is an essential prerequisite for the Hubbard model. In this limit, energy
attributed to single-particle tunneling between different wells are much smaller
than the excitation energy within the wells, which leads to well-separated energy
bands. In the following, we will assume that the Fermi edge is within the lowest
energy band of the system and therefore only this band is populated (n = 0). This
so-called single-band approximation is necessary to obtain the standard Hubbard
Hamiltonian of Eq. 3.8, but can be omitted in extended Hubbard models.

Definition of the Hubbard parameters

Within the tight-binding approximation, the tunneling of noninteracting particles
in an lattice can be written by using Eq. 3.20 to express the first line of the Fermi
Hamiltonian (Eq. 3.8) within the Wannier basis

∑
i,j,s

∫
d3x c�i,sw

∗(x− xi)
(
− ~2∇2

2m + V0(x)
)
cj,sw(x− xj) (3.21)

Since the Wannier states in a deep optical lattice decay very rapidly with distance,
Eq. 3.21 is well approximated by only considering tunneling between nearest-
neighbor sites 〈i, j〉. By comparing Eq. 3.21 to the tunneling term of the Hubbard
model in Eq. 3.8, the tunneling matrix element J ti,j can be defined as

J ti,j =
∫
d3x w∗(x− xi)

(
− ~2∇2

2m + V0(x)
)
w(x− xj) (3.22)

When introducing interparticle interactions, the interaction energy in the system
can be expressed by writing the second line of Eq. 3.8 within the Wannier basis

∑
i,j,k,l

g3D

∫
d3x c�i,↑w

∗(x− xi)c�j,↓w∗(x− xj)

× ck,↓w(x− xk)cl,↑w(x− xl)
(3.23)
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Again, the tight-binding approximation can be applied to simplify the Hamilto-
nian. Approximately, only on-site interactions can be considered, since the density
overlap of particles on different lattice sites is vanishingly small. The on-site in-
teraction energy Ui of Eq. 3.8 can then be written as

Ui = g3D

∫
d3x |w(x− xi)|4 (3.24)

Similarly, the energy offset of particles on site i in a spatially varying lattice can
be calculated as εi =

∫
d3xVext(x) |w(x−xi)|2, where Vext(x) describes the overall

variation of the lattice potential.

Experimental realization

Instead of using an optical lattice in our experiment, we realize periodic potentials
of finite size, by generating arrays of partially overlapping microtraps (Sect. 4.3.2)
[Zim11, Les15]. Each of these microtraps is realized by the focus of a single Gaus-
sian laser beam [Gri00]. However, the formalism developed in the last section
is still valid in our experiment, since also here, the Wannier states are well ap-
proximated by the vibrational ground-states in the individual wells. Compared
to optical lattices, our method of creating periodic potentials is more versatile,
since position and depth of each well can be adjusted. However, this versatility
comes with the drawback that the necessary stability of the individual wells is
much harder to accomplish. Also, our current setup is limited to two-dimensional
arrays of approximately four by four wells.
In Ch. 5, we will describe the simulation of the two-site Hubbard model with

two fermionic atoms in a double-well potential. We will show that both the
tight-binding and the single-band approximation are fulfilled in our experiment
(Sect. 5.1.3) and experimentally calibrate the Hubbard parameters by using tun-
neling measurements (Sect. 5.2). By preparing eigenstates of the Hubbard model
and introducing strong repulsive interactions, we realize the two particle version
of a Mott-insulating state and demonstrate the connection between the Hubbard
and the Heisenberg Hamiltonian.

3.4.2. Heisenberg spin chains in the fermionization limit
In the special case of an one-dimensional system, Heisenberg spin chains can also
be realized in ultracold-atom experiments without an external periodic potential
[Deu14, Vol14, Lev15]. This method uses the fact that in the fermionization regime
of infinite repulsive coupling constants (see Sect. 2.4), atoms in an one-dimensional
system can not pass through each other. Instead, the atoms self-align in a quasi-
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periodic chain, much similar to a Wigner crystal of electrons [Mat04a, Mat04b].
Thereby, all states with an equal number of atoms N and an equal number of den-
sity excitations n, also have an equal density distribution and energy, independent
of their spin state (i.e. Fig. 2.9). For multi-component systems, this leads to the
formation of a degenerate ground state at g3D →∞ [Gir07, Deu08].
For strong, but finite repulsion, the single-particle wave functions of neighboring

atoms start to overlap, and the degeneracy of states with different spin distribu-
tions is lifted. The situation can directly be compared to the Mott-insulating
regime of the Hubbard model (Sect. 3.2.1), where also quasi-degenerate multiplets
of states were found for large repulsive interactions. Again, the state of the system
can be approximated by only its spin distribution and the energy splitting between
different spin states can be attributed to exchange processes. Since no sites of an
external lattice potential exist in the method, the spin state is simply defined by
the order of the spins along the atomic chain.
Equivalent to the case of the Hubbard model, an effective Hamiltonian can be

calculated by using perturbation theory around the limit of infinite interaction
strength [Deu14, Vol14]. Again, this effective Hamiltonian can be identified as
a Heisenberg Hamiltonian in the spin basis. We limit the discussion to systems
without density excitations (n = 0) and write the effective spin Hamiltonian of N
fermions as

H =
∑
i

E
(N)
F nini+1 + 2

∑
i

Jexi
(
~Si · ~Si+1 −

1
4nini+1

)
, (3.25)

Here, the first term adds a constant energy of E(N)
F , which is the energy of N

noninteracting identical fermions, to all eigenstates and the factor of two in front
of the second term has been introduced in order to stay consisted with the notation
in Ref. [Mur15b]. The exchange interactions in the limit of g1D → ∞ can be
calculated as

Jexi = N ! ~4

m2g1D

∫
dz1· · · dzNδ(zi − zi+1)θ(z1, . . . , zN)

∣∣∣∣∣∂ψF∂zi

∣∣∣∣∣
2

, (3.26)

where the Heaviside step function θ(z1, . . . , zN) is one for z1 < . . . < zN and zero
for any other permutation of atoms. The function ψF is the ground-state wave
function of N identical and noninteracting fermions, which can be calculated as
the Slater determinant of product states of the N lowest single-particle levels in
the system.
Unfortunately, the multi-dimensional integral in Eq. 3.26 can in practice only

be solved for small particle numbers. This problem can be circumvented, by ap-
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3. Quantum magnetism with ultracold atoms

proximating the exact exchange coupling of Eq. 3.26 by

Jexi = ~4π2n3
TF(z̃i)

3m2g1D
. (3.27)

Here, nTF(z) = 1/(π~)
√

2m(µ− V (z)) denotes the 1D Thomas-Fermi density
and z̃i is the center-of-mass position of atoms i and i+ 1 [Deu14, Mar15]. For the
special cases of an harmonic trapping potential, which is approximately realized
in our experiment (see Ch. 6), an analytical formula that closely approximates the
exact exchange couplings was found [Lev15].

Experimental realization

For the discussion of the realization of these Heisenberg spin chains in our exper-
iment (Ch. 6), two important things should be noted. First, the superexchange
interactions Jexi approximately depend on the third power of the local density
between the two interacting atoms and therefore on the trapping potential (see
Eq. 3.27). As we will see in Ch. 6, changing the potential shape couples different
states that have the same total spin quantum number and leads to a new set of
eigenstates in the spin chain. Second, the superexchange interactions are propor-
tional to the inverse 1D coupling constant 1/g1D. For a large, but finite positive
(negative) coupling constant of g1D/

√
N � 1 (g1D/

√
N � 1), the spin chains

therefore split up and have an antiferromagnetic (ferromagnetic) ground state.
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4. Experimental setup
In this section, we will introduce the experimental techniques that we use to deter-
ministically prepare ground-state systems of few fermionic atoms. Further, we will
describe how we can manipulate and detect the state of these systems in order to
realize and observe quantum magnetism. We will start this chapter by describing
the sequence of events in a typical run of our experiment. This can be seen as
an introduction to the experimental techniques and components that will later be
discussed in detail.

4.1. The experimental sequence
The measurements described in this thesis all follow a similar experimental se-
quence that can be divided into four major stages (Fig. 4.1): the collection of
atoms in a magneto-optical trap, the generation of a quantum-degenerate Fermi
gas, the preparation and manipulation of few-atom systems, and finally the count-
ing of atoms in the system. The course of events of this sequence is completely
automated and all devices (like laser shutters, power supplies, voltage-controlled
oscillators, and many more) are computer controlled with sub-millisecond time
resolution1. For a measurement run, this sequence is repeated over and over again
while only individual parameters are varied in order to isolate their effect on the
atomic system. For our measurements on few-atom systems it is often necessary to
repeated the sequence thousands of times in order to gain statistically significant
results. Therefore, the long-term stability of the experiment will be a recurring
theme throughout this chapter.
Stage 1) and 2) Generation of a degenerate Fermi gas: The starting point for
the preparation of few-atom systems in our experiment is a quantum-degenerate
Fermi gas (DFG) of 6Li atoms. We generate the DFG in two successive cool-
ing stages. First, we collect and cool about 108 atoms in a magneto-optical

1For the computer control of our experiment we use a ADwin Pro II from Jäger Messtechnik
with 32 digital input/output channels, 16 analog output and 8 analog input channels. Analog
channels can be set with 10 µs time steps, which allows the implementation of real-time PID
loops for the active stabilization of experimental parameters. Details on the computer control
can be found in Ref. [Lom08].
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Figure 4.1.: The experimental sequence. In stages 1) and 2) fermionic 6Li atoms are
collected and cooled to quantum degeneracy. Stage 3) contains the deterministic
preparation and manipulation of ground-state systems of few fermions, which are
performed in a small-scale dipole trap, called microtrap. All experiments described
in Ch. 5 and Ch. 6 are performed in this microtrap during the manipulation stage.
In stage 4) the atoms are transfered into a magneto-optical trap (MOT) and
counted in order to gain information about their state.

trap (MOT) [Met99]. Since temperatures and densities in the MOT are lim-
ited, we then use evaporative cooling in an optical dipole trap (ODT) to reach
the quantum-degenerate regime [Met99, Gri00]. These techniques allow us to
prepare a DFG of about 105 6Li atoms in a balanced mixture of the two lowest
hyperfine states (see Fig. A.1). The atomic samples have a final temperature of
T . 250 nK, which corresponds to a degeneracy parameter of T/TF ≈ 0.5 in the
ODT [Ser11a]. Since the experimental techniques for these initial cooling stages
are well-established [Met99, Ket08] and already discussed in several theses of our
group [Ser07, Lom08, Ott10, Lom11, Ser11a, Zür12a, Wen13a], we will only shortly
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summarize them in Sect. 4.2.
Stage 3) Preparation and manipulation of few-atom systems: To increase the
quantum degeneracy of the sample even further, we use yet another ODT, which
is created by a single, tightly-focused laser beam (Sect. 4.3) [Gri00]. The main
idea behind the use of this small trap, which we will call the microtrap, is that it
locally increases the Fermi temperature TF , while the temperature T of the sample
approximately stays constant. Using this so-called dimple trick [SK98] we reach a
degeneracy of T/TF ≈ 0.05, which results in a nearly unity occupation probability
on the lowest single-particle levels of the microtrap [Ser11a]. In Sect 4.4, we will
describe how we select only the atoms on these lowest trap levels to determinis-
tically prepare ground-state systems of up to ten atoms with a probability above
90 % [Ser11a, Ser11b, Zür12a]. Importantly, this preparation method not only
fixes the number of atoms in the trap, but also determines their state. Therefore,
also the exchange symmetry of the spin wave function of any two atoms in the
sample is determined, which is of great importance for the realization of quantum
magnetism in our experiment (see Ch. 5 and Ch. 6).
The actual experiments discussed in this thesis are all performed in one or

two microtraps during the state-manipulation stage of the sequence. While the
spin-chain experiments (Ch. 6) were performed in a single microtrap (Sect. 4.3.1),
which had already been used in previous experiments of our group [Ser11b, Zür12b,
Zür13b, Wen13b, Sal13]), the double-well experiments (Ch. 5) were only possible
after an upgrade of the experimental apparatus. This upgrade included amongst
other things the integration of a new high-resolution objective [Ser11b, Ber13]
for the creation of even smaller microtraps and the addition of an acousto-optic
deflector (AOD) to the optics setup of the microtrap [Kli12, Ber13]. The AOD
allows us to generate multiple partially overlapping microtraps and manipulate
their relative height and distance (Sect. 4.3.2).
Stage 4) Atom counting: Finally, after the experiments on the few-atom system
have been performed, we count the number of atoms in the system [Ser11a, Ser11b].
In combination with additional state-manipulation techniques the counting of
atoms allows us to gather information about the state of the system as discussed
in Sect. 4.5.

4.2. Experimental setup and initial cooling stages

4.2.1. The vacuum chamber
A mayor asset of ultracold-atom experiments is the outstanding isolations from the
environment that is primarily reached by performing such experiments on clouds
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4.2. Experimental setup and initial cooling stages

Figure 4.2.: The vacuum system including the magnetic field coils of the Zeeman
slower and the MOT. Figure taken from Ref. [Ser07].

of neutral atoms confined in an ultra-high vacuum environment. Fig. 4.2 shows
the vacuum chamber of our setup. All experiments are performed in the center of
the science chamber 5 and only rely on interactions of the atoms with AC and
DC electromagnetic fields. Two titanium sublimator pumps 1 , two ion pumps
2 and a non-evaporable getter coating on the walls of the science chamber are
used to ensure a pressure on the order of 10−12 mbar in the science chamber. To
insert 6Li atoms into the vacuum chamber, a solid piece of lithium is placed in a
small oven 3 and vaporized by heating the oven to 360◦C. At the end of the oven,
a collimating aperture forms a beam of hot gaseous atoms that enters the Zeeman
slower 4 . After being decelerated in the Zeeman slower, the atoms are collected
in the center of the science chamber by a MOT. The science chamber has the
shape of an octagon with six view ports on the side and two reentrant view ports
at the top and the bottom. The view port on the top of the science chamber allows
optical access with a numerical aperture of NA=0.65 and is completely covered
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by a high-resolution objective used for the creation of the microtrap (not shown
in Fig. 4.2). Around the reentrant view ports magnetic field coils that generate
a magnetic offset field at the position of the atoms are placed. We will call these
coils Feshbach coils, since they are used to control the interaction strength between
the atoms using a Feshbach resonance (Sect. 2.2.3).

4.2.2. Zeeman slower
After being evaporated, the atoms leave the oven with an average velocity of
above 1000 m/s. This is far above the maximum capture velocity of a magneto-
optical trap and hence the atoms have to be decelerated before reaching the science
chamber. This is achieved in the Zeeman slower by exposing the atoms to a
counterpropagating laser beam and an inhomogeneous magnetic field [Met99]. The
laser light is red detuned to the optical D2 transition in 6Li in order to compensate
the Doppler shift of the atoms moving towards the beam. When an atom absorbs
a photon from the laser beam its momentum is changed by ~k, where k is the
wave vector of the light field. Assuming that the following decay of the atom is
spontaneous, and therefore the outgoing photon is scattered in a random direction,
the net momentum transfer averaged over many scattering processes is ~k. Hence,
the motion of the atoms towards the laser light is eventually decelerated, which
changes the Doppler-shifted resonance frequency of the atoms. In order to keep
the atoms on resonance over a long distance, this change of the Doppler shift is
compensated by a position-dependent Zeeman shift created by the inhomogeneous
magnetic field.
In our experiment, the Zeeman slower has a length of 40 cm and allows to

reduce the longitudinal velocity of the atoms to approximately 60 m/s. The flux
of atoms that reach the capture region of the MOT is on the order of 1010 atoms/s
and about one percent of these atoms is actually trapped [Ser07]. A detailed
description and characterization of the Zeeman slower in our experiment can be
found in Ref. [Ser07]

4.2.3. Magneto-optical trap (MOT)
In a magneto-optical trap, atoms can be simultaneously cooled and trapped by
nearly resonant laser light [Met99]. As in the case of the Zeeman slower, the laser
light is slightly red detuned to the atomic transition and is therefore preferentially
absorbed by atoms that move towards the beam. If counterpropagating laser
beams are applied in all three spatial dimensions, atoms below a certain initial
velocity are efficiently cooled. However, without any position-dependent forces,
the atoms diffuse and eventually leave the trapping region of this so-called optical
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4.2. Experimental setup and initial cooling stages

molasses [Met99]. This diffusion can be avoided by adding a linear inhomogeneous
magnetic field B to the system, which has a point with |B| = 0 within the crossing
region of the laser beams. For suitable polarizations of the laser beams, the atoms
experience a restoring force that traps sufficiently slow atoms in the center of the
trap [Met99].
In our experiment, the MOT is realized by two MOT coils in anti-Helmholtz

configuration and three retroreflected laser beams that are red detuned to the
D2 transition of 6Li by about 6 Γ. Here, Γ = 2π × 5.87 MHz is the natural line
width of the D2 transition in 6Li. The MOT coils generate a magnetic quadrupole
field with a gradient of about 40 G/cm along the central axis. The laser light for
both the MOT and the Zeeman slower is generated by a tapered amplifier laser
system (TA100, Toptica photonics) and brought to the experimental setup using
optical fibers. A detailed description of the laser setup, including the frequency
stabilization and partitioning into separate beams can be found in Ref. [Ser07].
In our experiment, we obtain loading rates of about 108 atoms/s in the MOT for

an oven temperature of 360◦C. Since the deterministic preparation of low atom
numbers in out experiment is stable for initial atom numbers on the order of 107

or larger, we typically load the MOT for about two seconds. Although the MOT
is an efficient first stage for the capturing and cooling of atoms, the minimum
temperatures and densities that can be reached in a MOT are limited2. In our
experiment, the atoms in the MOT are cooled to a temperature of about 400 µK
and the phase space densities are on the order of 10−6 [Ser11a]. However, the
regime of quantum degeneracy is reached at phase space densities on the order
of one and is therefore still six orders of magnitude away. To achieve this vast
increase in phase space density, we transfer the atoms into an optical dipole trap
(ODT) and perform evaporative cooling as a second cooling stage.

4.2.4. Evaporative cooling in an optical dipole trap (ODT)
In evaporative cooling, the average temperature of an atomic sample is steadily
decreased by removing atoms with above-average energies from the sample. For a
gas of atoms in a conservative trapping potential, this can be realized by reducing
the depth of the potential and thereby releasing atoms from the high-energy tail
of the Boltzmann distribution. At the same time, elastic scattering processes in
the gas are needed to rethermalize the atomic sample at any time. The efficiency
of evaporative cooling is therefore strongly influenced by the elastic scattering rate
between individual atoms.

2The Doppler temperature, which sets the minimum temperature that can be reached in a
standard MOT setup, is 140 µK for 6Li atoms.
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Although this process reduces the number of atoms in the trap, it increases
the phase space density of the remaining atoms and is the standard experimental
tool to produce Bose-Einstein condensates or degenerate Fermi gases in ultracold-
atom experiments [Ket99, Ket08]. However, to reach ultracold temperatures with
fermionic atoms is slightly more involved, since for low enough temperatures a
gas of identical fermionic alkali atoms will become non-interacting (see Sect. 2.2),
which prevents thermalization. Therefore, evaporative cooling of fermionic atoms
requires a second distinguishable type of atoms in the system, which can either
be atoms in another hyperfine state, or even atoms of another species [Ket08].
However, also in this case, the collision rate of fermionic atoms is significantly
suppressed if the temperature falls below TF , since then the majority of low-energy
states is blocked by the Pauli principle. This prevents efficient thermalization
and typically limits the quantum degeneracy after evaporative cooling to T/TF ≈
0.5 [Hol00, McK11].
To realize a conservative trapping potential for evaporative cooling in our ex-

periment, we use an ODT [Gri00]. In such a trap, the potential is generated by
a spatially varying light shift in the ground state of the atoms. This light shift
∆E is induced by the interaction between the electric field of the laser light and
the induced electric dipole moment of the atoms and can for a sufficiently large
detuning be written as

∆E = 3πc2

2ω3
res

( Γ
ωres − ω

+ Γ
ωres + ω

)
I. (4.1)

Here, ωres is the resonance frequency and Γ is the natural line width of the atomic
transition, ω is the frequency of the laser light, and I is the local light intensity.
Following this formula, atoms feel a force toward regions of high intensity (low
intensity) if ∆ < 0 (∆ > 0) and therefore the laser is detuned to the red (blue) of
the atomic transition. Although both red and blue-detuned laser light allows the
trapping of atoms in specific spatial intensity patterns, dipole traps of red-detuned
laser light are more common due to the versatile possibilities of realizing intensity
maxima [Gri00].
In an optical dipole trap, the scattering of photons is usually an unwanted

process, since it leads to the heating of the atomic sample, or even the direct loss
of atoms from the trap. Luckily, the photon scattering rate drops off quadratically
with growing detuning, while the light shift only decreases linearly (Eq. 4.1). This
allows to ratio the ratio of scattering rate and potential depth by increasing the
laser detuning. But, the creation of a sufficiently deep dipole trap then needs a
high peak intensity of the trapping light.
Since we directly load atoms from the MOT into an optical dipole trap in our
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experiment, we need and ODT that is both deep and has a big trapping volume.
The combination of those properties can only be reached with a high laser power.
We therefore chose a continuous-wave fiber laser (YLR-200-LP, IPG Photonics)
operating at a wavelength of 1070 nm that has a maximum output power of 200 W
as laser for our dipole trap. The laser light is far red detuned from all atomic
transitions of the 6Li ground state and therefore allows for the trapping of atoms
in an intensity maximum. We create this maximum by superimposing the foci of
two laser beams under a shallow angle of about 14◦, which leads to a cigar-shaped
dipole trap with a waist of about 40 µm and an aspect ratio of about 10 [Lom11].
At full laser power, the trap depth is on the order of kB× 3 mK. This allows us to
transfer about 106 atoms into the ODT, which is approximately 1 % of the atoms
in the MOT.
Immediately after this transfer, we ramp the magnetic offset field to 760 G,

where the atoms have a positive scattering length of about 4200 a0, and start the
evaporation process by reducing the laser power. At the same time, we couple the
two energetically lowest hyperfine states with a radio-frequency pulse in order to
create a balanced two-component Fermi gas and thereby ensure thermalization.
Since for repulsive interactions, scattering between sufficiently cold atoms can
lead to the formation of molecular atom pairs [Joc03, Joc04, Lom08], we jump
the magnetic offset field to 300 G before the temperature of molecule formation is
reached. At 300 G, the sample is attractively interacting with a scattering length of
about −300 a0, which prohibits the production of molecules in a 3D system. After
further evaporation at low magnetic field, we eventually end up with a degenerate
Fermi gas of approximately 5×104 atoms in each of the two lowest hyperfine states
with a degeneracy parameter of T/TF . 0.5 [Ser11a].

4.2.5. The Feshbach coils
To create a magnetic offset field at the position of the atoms and thereby control
their interaction strength with a Feshbach resonance, we use a pair of coils that are
located around the view ports at the top and bottom of the science chamber. Due
to their purpose these coils are called Feshbach coils. Details about the design of
the Feshbach coils and the exact magnetic field profile can be found in Refs. [Ser07,
Lom08]. Both coils consist of 15 windings of 5×1 mm copper wire that is glued to
a water-cooled heat sink using diamond-filled epoxy. Each coil is connected to a
separate power supply (SM15-400, Delta Elektronika), which provides a maximum
current of 400 A. In their normal operation mode, the coils are close to a Helmholtz
configuration in order to generate a homogeneous offset field at the position of the
atoms. We actively control the sum and the difference of the currents through the
two coils using two current transducers as inputs and thereby stabilize both the
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offset value and the gradient of the magnetic field [Ber13]. This setup allows us to
generate peak values of the magnetic offset field of up to 1450 G. To generate large
magnetic field gradients, we can reverse the current through one of the Feshbach
coils and thereby create an anti-Helmholtz configuration. In the detection stage
of our experimental sequence, we use this to create magnetic field gradients of
up to 250 G/cm and thereby compress the volume of the magneto-optical trap
(Sect. 4.5).

4.3. Optical dipole traps for the realization of
quantum magnetism

Optical dipole traps play an essential role in the simulation of Hubbard physics
and quantum magnetism in ultracold-atom experiments [Jak05, Blo08b, Ess10].
Mostly they are used in the form of optical lattices, which are generated by the
standing-wave intensity pattern of counterpropagating laser beams and typically
consist of a few hundred lattice sites per spatial dimension [Gri00]. However,
for the few-atom experiments described in this thesis other trap geometries are
more favorable. For the realization of Heisenberg spin chains (Ch. 6), we trap the
atoms in the focus of a single far-red-detuned Gaussian beam (Sect. 4.3.1) [Gri00].
The resulting potential of this so-called microtrap is cylindrically symmetric and
strongly elongated along the axial direction [Fig. 4.3(a)]. This geometry will allow
us to prepare few-atom systems in the radial ground state of the microtrap and
thereby realize quasi-1D systems. For the simulation of two-site Hubbard physics
(Ch. 5), a double-well potential is realized by two partially overlapping microtraps
[Fig. 4.3(b)]. In Sect. 4.3.2, we will discuss our setup for the generation of multiple
microtraps, which was implemented during the course of this thesis.

4.3.1. The microtrap: Realization of quasi-1D systems

Potential shape of a microtrap

The focus of a single far-red-detuned Gaussian laser beam can be seen as the
conceptually simplest realization of an ODT [Gri00]. The spatial intensity distri-
bution of such a beam, which according to Eq. 4.1 is proportional to the potential
for ground-state atoms, is given by

I(ρ, z) = 2P
πw2(z) exp

(
− 2 ρ2

w2(z)

)
. (4.2)
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(a) One microtrap (b) Two overlapping microtraps

Figure 4.3.: Potential shape of a single microtrap (a) or of two partially overlapping
microtraps (b) forming a double well. The individual traps have an aspect ratio
of η ≈ 7. They are created by Gaussian beams propagating in z-direction and
focused to a waist of 1.6 µm. The two foci in (b) are placed at a distance of 2 µm.

Here, z is the propagation direction of the beam, ρ denotes the radial coordinate
and P is the light power in the beam. The 1/e2 radius w(z) can be calculated as

w(z) = w0

√
1 +

(
z

zR

)2
, (4.3)

where the beam waist w0 is given by the radius at the position of the focus (z = 0)
and the Rayleigh range is defined as zR = πw2

0/λ [Gri00]. The trap depth V0 for
ground-state atoms in this potential is given by the light shift at the position of
the maximum intensity (z = 0, r = 0) and can be calculated as

V0 = 3Pc2

ω3
resw

2
0

( Γ
ωres − ω

+ Γ
ωres + ω

)
, (4.4)

using Eqs. 4.1, 4.2, and 4.3.

Close to the potential minimum, the trap can be approximated by a cylindri-
cally symmetric harmonic potential (Eq. 2.18). In this approximation, the ax-
ial and radial trapping frequencies are given by ω|| = (2V0/mz

2
R)1/2 and ω⊥ =

(4V0/mw
2
0)1/2 [Gri00], which results in an aspect ratio (see Eq. 2.19) of the micro-
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trap of

η =
√

2πw0

λ
. (4.5)

The smallest value that can be reached for both the focal waist w0 and the aspect
ratio η depends on the numerical aperture of the focusing objective. Also, the ratio
T = wap/rap between the Gaussian beam waist wap at the entrance aperture of the
objective and the radius of this aperture rap influences these values [Ser11b]. For
T � 1 both w0 and η are minimized, but the intensity pattern in the focal plane is
not Gaussian anymore and instead given by an Airy function. In our experiment,
the ratio T is about 0.8, which sets theoretical lower limits of w0 ≈ 0.47λ/NA and
η ≈ 2.1/NA on the focal waist and the aspect ratio3.

Determination of trap parameters

To calibrate the trap parameters in our experiment, we measure the trap frequen-
cies ω|| and ω⊥ using trap-modulation spectroscopy. For these measurements two
atoms are prepared in the ground state of the microtrap, as described in Sect. 4.4.
Then, the potential is modulated either in depth or in position. If the modulation
frequency is equal to the trap frequency (for position modulation) or twice the
trap frequency (for depth modulation) atoms are transferred into excited states,
which can be measured as a depletion of the ground state (see Sect. 4.5). Other
trap parameters, like the aspect ratio and the trap depth, are calculated from the
measured trap frequencies. A detailed description of this calibration can be found
in Ref. [Zür12a]. All measured and calculated trap parameters can be found in
App. A.4.
Although the formulas derived in the last section theoretically allow the deter-

mination of all trap parameters from ab-initio calculations, these calculations are
typically inaccurate. The main reasons for this inaccuracy are wavefront errors
and imaging aberrations that influence the trap geometry. Although all optical
elements in the beam path of the trapping light have been aligned interferomet-
rically [Ber13], these aberrations are unavoidable, for example due to the finite
aperture and quality of the optical components. Since the trap parameters mea-
sured by modulation spectroscopy indicate a larger focal waist than we expected
from test measurements of the focusing objective, we conclude that the vacuum
viewports of the vacuum chamber are a major source of wavefront errors in our
experiment [Ber13].

3The diffraction limited numerical apertures of the two objectives used for the experiments
presented in this thesis can be found in App. A.4.
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Implementation of a high-resolution objective

The wish of performing experiments in a microtrap with a small waist and aspect
ratio lead to the design of a custom-made objective with a nominal numerical aper-
ture of 0.6 in our group that is described in detail in the PhD thesis of Friedhelm
Serwane [Ser11a]. This objective was tested and aligned as part of the Masters
theses of Vincent Klinkhamer [Kli12] and Andrea Bergschneider [Ber13] and imple-
mented in the experimental setup during an extensive upgrade of our experiment.
As a result, the experiments described in Ch. 5 and Ch. 6 are performed in different
microtraps. A list of the design parameters of both the old and the new focusing
objective and the corresponding trap parameters can be found in App. A.4.

4.3.2. Two microtraps: Realization of a double-well potential
After working with a single microtrap for several years [Ser11a, Ser11b, Zür12a,
Zür12b, Zür13b, Wen13a, Wen13b], we upgraded our experimental setup in early
2013 in order to generate finite-size periodic potentials realized by arrays of over-
lapping microtraps [Zim11, Les15]. The first measurements performed in the up-
graded setup are the experiments on double-well systems, which are presented in
Ch. 5. In this section we will explain how the double-well potential consisting
of two overlapping microtraps is generated and how the potential shape can be
changed.

Optical setup and acousto-optic deflector

Our optical setup for the generation of two partially overlapping microtraps is
shown in Fig. 4.4. Its main purpose is the generation and shaping of two trapping
beams and the stabilization of the overall light power. The infrared trapping light
(1064 nm) is provided by a single-mode solid-state laser (Mephisto NE, Innolight)
with relative intensity noise of RIN < 130 dB/Hz in the relevant frequency range
below 100 kHz [Nei13]. The power of the trapping light is actively stabilized
using the signal of a photo diode (blue section in Fig. 4.4) on which 50 % of the
trapping light is focused. Details on the power stabilization [Ser11a, Zür12a] and
the adjustment of the optical setup [Kli12, Ber13] have been discussed in previous
theses.
The centerpiece of the new optical setup is a two-axis acousto-optic deflector

(A2D-404AH4, IntraAction Corp.), which we use to split the trapping light into
two partially overlapping beams. In the acousto-optic deflector (AOD), the light
passes through a crystal and is deflected proportionally to the frequency of a radio-
frequency (RF) signal applied at the crystal. The efficiency of the deflection and
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Figure 4.4.: Optical setup for the generation of one or multiple microtraps. The
infrared light enters the experimental setup through an optical fiber (top right)
and is collimated with a 1/e2 diameter of (1.23± 0.02) mm. In the AOD the light
is deflected according to the power and frequency of one or multiple RF signals
applied at the AOD. For the double-well experiments, we apply two RF signals
with frequencies of 32 MHz and 38 MHZ, which leads to two partially overlapping
light beams. After the AOD, we block all light except for the first diffraction order
of the AOD and use two lenses that form a telescope to increase the size of the
beams to about 19.9 mm. In a non-polarizing 50 − 50 beam splitter half of the
light is deflected and focused on a photo diode. This signal is used as input for
an active stabilization of the overall light power in both trapping beams [Ser11b,
Zür12a]. The light which passes through the beam splitter is redirected on the
high-resolution objective (see App. A.4 for the design parameters of the objective)
and focused into the experimental chamber. Using the diagnostics setup (green),
a Michelson interferometer can be realized that enables us to interferometrically
align the objective in order to minimize wave front errors on the laser beam [Ber13].
To load atoms from the microtrap into the MOT (see Sect. 4.5), a beam of red
light (671 nm) is superimposed with the infrared light on a dichroic mirror (bottom
left). More details on the optical setup can be found in Refs. [Kli12, Ber13].

therefore the power of the deflected light beam depends on the power and the
frequency of the RF signal. The diffraction efficiency of our AOD has a maximum
at a frequency of about 28 MHz and stays above 50 % of its maximum value
between about 25 MHz and 45 MHz [Kli12]4.

4Unfortunately, the diffraction efficiency of the AOD shows additional fast modulations when
the RF frequency is changed, which have a periodicity of about 30 kHz and a relative height
of . 5 % [Kli12]. We assume that these modulation result from reflections of the RF sig-
nal within the AOD. However, since we will only work with fixed RF frequencies in our
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Figure 4.5.: Creation of a double-well potential. The trapping beam is split in
an AOD by applying two RF signals with different frequencies f1 and f2. The
beams are focused into the experimental chamber by a high-resolution objective.
The small differential angle between the beams, which depends on the frequency
difference of f1 and f2, leads to a shift d between the positions of the foci. The
relative power in the two beams, which depends on the relative power of the RF
signals, determines the relative depth of the wells.

We apply two RF signals at the same axes of the AOD (see next section for the
discussion of the RF setup) and block all light except for the first diffraction order
after the AOD (Fig. 4.5). For a difference ∆f of the frequencies of the RF signals
the two first-order beams have a small differential angle, which is translated by
the objective into a position difference of d ≈ 330 nm/MHz×∆f of the respective
foci. If the frequency difference is small enough to create partially overlapping
beams, a double-well potential can be realized in the focal plane. By changing the
relative RF power of the two signals, the relative light power in the two beams
can be changed, which modifies the relative depth of the two wells. Additionally,
by changing the overall light power in both trapping beams, the absolute depth of
the two wells and therefore effectively the height of the potential barrier between
the wells can be adjusted.
For the experiments described in Ch. 5, we used RF frequencies of f1 = 32 MHz

experiments on a double well, we are not effected by these modulations.
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Figure 4.6.: RF setup for the generation of a double-well potential. We use a two-
channel arbitrary waveform generator as stable frequency source to generate two
sinusoidal signals with frequencies of f1 = 32 MHz and f2 = 38 MHz and constant
power. The power of each RF signal is reduced in a controlled way by mixing it with
a DC voltage (V1 and V2). Both voltages can be set in the experimental control and
are provided by the ADwin. Additionally, each RF signal can be quickly turned
on and off with a power switch. Finally, the two signals are combined, amplified
and applied at the AOD.

and f2 = 38 MHz. We chose these values since the frequency difference of 6 MHz
corresponds to a distance of about 2 µm between the two wells of the double-well
potential. This distance leads to experimentally accessible oscillation frequencies
for atoms tunneling between the wells, which are on the order of 100 Hz at typical
light powers of about 150 µW (see Fig. 5.3).

Radio-frequency setup

In order to observe tunneling oscillations between two wells over multiple periods,
both the distance of the wells and their relative depth must be stable. Therefore,
one of the main concerns in implementing the setup that generates the RF signals
driving the AOD was to achieve an adequate level of stability. In Fig. 4.6, a sketch
of the final RF setup, which fulfills these requirements and allowed us to perform
the tunneling measurements presented in Ch. 5, is shown.
Since tunneling is extremely sensitive to the distance of the two microtraps,

the frequency stability of the RF signals is of major importance. We achieve the

67



4.4. Deterministic preparation of few-atom systems

necessary stability by using an two-channel arbitrary waveform generator, which
provides a frequency accuracy 2 ppm5. We set the output power on both channels
of the arbitrary waveform generator to a constant value and control the strength
of the RF signals by adjusting the control voltage on the mixers shown in Fig. 4.6.
Subsequently the RF signals are combined, amplified, and fed into the AOD.

Stability of the double-well potential

As shown in Ch. 5, we can use the tunneling dynamics of atoms between the
ground states of the two microtraps as a probe for the potential shape. This
allows us to precisely determine the relative power of the two RF signals that
generates a balanced double-well (see Sect. 5.2.3). We also estimate the amount
of fluctuations in the relative depth of the two wells using this technique. It
turns out that the main source of fluctuations are temperature-dependent drifts
of the diffraction efficiency of the AOD. These drifts are unavoidable, since we
initially prepare the atoms in only one microtrap and switching on the RF signal
of the second microtrap leads to heating of the AOD. This results in drifts of the
relative trap depth of approximately 300 Hz over several seconds. Since tunneling
frequencies between the traps are on the order of 100 Hz in our experiment, these
drifts would strongly limit the visibility of tunneling oscillations. Fortunately, the
drifts are reproducible in each experimental cycle and we can measure them using
the atoms as a probe. We compensate the drifts in the diffraction efficiency by
applying an exponential ramp to the relative power of the two RF signals. Using
this technique, the stability of our double-well potential is currently limited by
slow drifts in the relative depth of the two microtraps which are on the order of
about 10 Herz per day.

4.4. Deterministic preparation of few-atom systems
The basis for all experiments described in the next chapters are deterministically
prepared ground-state samples of atoms in a single microtrap. We will now explain
how we prepare these samples, starting from a quantum-degenerate Fermi gas of
about 105 6Li atoms in a large ODT (Sect. 4.2.4). The preparation technique
described in this section was developed in our group and published in Ref. [Ser11b].
We will first discuss the general idea of our preparation scheme, before explaining
details of its experimental realization6.

5In a first version of the setup, voltage controlled oscillators (ZOS-50+, Mini-curcuits) have
proven to be insufficient in frequency stability despite the usage of a stabilized control voltage.

6The experimental parameters listed in this section are for the current microtrap setup and
slightly differ from the parameters used for the experiments in Ch. 6. Further details on the
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4. Experimental setup

4.4.1. Preparation scheme
The goal of the preparation scheme realized in our experiment is to prepare
ground-state systems of up to about 10 atoms with a fidelity in the order of
90 % [Ser11b, Ser11a, Zür12a, Zür12b]. We achieve this goal by removing all
atoms from a quantum-degenerate Fermi gas, except for the atoms on the few
energetically lowest trap levels. According to the Fermi-Dirac statistics, these lev-
els have an occupation probability of nearly one for a sufficiently low degeneracy
parameter T/TF . Therefore, the number of atoms in the system can be precisely
determined by controlling the number of trap levels in the system.
However, the quantum degeneracy of T/TF ≈ 0.5 that we reach after evap-

orative cooling in the large ODT, only results in an occupation probability of
about 88 % per spin state on the lowest trap levels. Additionally, the trap fre-
quency in the large ODT is much too small to experimentally separate different
trap levels. We overcome this problem by using the large ODT as a reservoir and
superimpose it with a tightly-focused microtrap to create a dimple in the potential
(Fig. 4.7) [SK98, Ser11a]. Since the number of atoms that fit into the microtrap
is small compared to the number of atoms in the reservoir, the temperature of the
whole sample is not significantly influenced by this process. At the same time, the
depth of the microtrap in our experiment is approximately a factor of ten larger
than the depth of the reservoir. Therefore, the Fermi temperature of atoms in the
microtrap is ten times larger than before and the degeneracy parameter is reduced
to T/TF ≈ 0.05. Selecting only the atoms on the few lowest microtrap levels now
leads to a theoretical limit above 99.99 % for the probability of preparing up to
10 atoms.

4.4.2. Experimental realization of the deterministic preparation
In order to experimentally realize the preparation scheme described in the last
section, we start by slowly ramping on the microtrap, which is overlapped with
the large ODT. This ramp is slow enough to avoid significant heating [Zür12a].
During the ramp, the magnetic offset field is at 300 G, corresponding to a scattering
length of −300 a0, in order to sustain thermalization in the sample. At its final
value, the power in the microtrap is about P = 400 µW, which leads to a trap
depth of about kB×4.85 µK. We ramp the magnetic offset field to the zero-crossing
of the scattering length at 527 G and switch off the reservoir. At this point, the
microtrap contains about 1000 atoms.

experimental parameters for the preparation of few-atom systems in the old microtrap can
be found in Refs. [Ser11a, Ser11b, Zür12a].
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Figure 4.7.: Optical potential for the creation of highly-degenerate Fermi gases
(right) and resulting Fermi-Dirac distribution (left). Initially, the Fermi gas is
only in a large ODT, which acts as a reservoir. A microtrap is superimposed with
the ODT to create a dimple in the potential. As a result, the Fermi temperature
TF = EF/kB locally increased at the position of the microtrap and therefore
the degeneracy parameter T/TF locally decreases [SK98]. As indicated by the
Fermi-Dirac distribution (left), the occupation probability for atoms on the lowest
microtrap levels is almost one.

To spill atoms from excited states of the microtrap, we tilt the trap by applying
a magnetic field gradient along its axial direction (Fig. 4.8) until approximately
20 atoms remain. Since at 527 G, the 6Li atoms are well within the Paschen-Back
regime, the gradient has approximately the same effect on atoms in both of the
two lowest hyperfine states (see Fig. A.3). The combined optical (see Eq. 4.2) and
magnetic potential can be written as

V (z) = Voptical(z) + Vmagnetic(z) = pV0

(
1− 1

1 + (z/zR)2

)
− µmB′z, (4.6)

where V0 = kB × 4.85 µK is the initial depth of the optical potential at a light
power of (390±39) µW, p is the trap depth parameter, µm is the magnetic moment
of the atoms, and B′ = 30 G/cm is the strength of the magnetic field gradient7.
As shown in Fig 4.8(b), the combined potential has a barrier, which separates the

7Further trap parameters are listed in the Tab. A.4
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Figure 4.8.: The spilling process. (a) We start with a two-component sample of
about 1000 quantum-degenerate atoms (T/TF ≈ 0.05) in the microtrap. (b) We
apply a magnetic field gradient and thereby tilt the potential of the microtrap
and spill atoms from the trap. By reducing the light power in the microtrap, we
fine-tune the height of the potential barrier that separates the in-trap states from
the continuum of states outside of the trap. Atoms now leave the trap with a rate
that strongly depends on their energy. (c) After restoring the original trapping
potential, a well-defined number of atoms is left in the trap.

energetically lowest in-trap states from the continuum of states outside of the trap.
Since the magnetic field gradient needs too long to reach its steady state after a
ramp (on the order of 10 ms), we perform the last part of the spilling process by
lowering the optical trap depth to approximately 0.5V0. This effectively lowers
the potential barrier and thereby reduces the number of trap levels. Atoms with
energies above or marginally below the potential barrier now leave the trap, while
atoms with significantly lower energies remain. After 25 ms, we restore the original
microtrap geometry, be ramping the optical trap depth back to V0 and switching
off the magnetic field gradient [Fig. 4.8(c)].

In Fig. 4.9, the number of atoms in the microtrap (see Sect. 4.5.1) is plotted as a
function of the trap depth parameter p during the spilling process. The plot shows
broad plateaus for even atom numbers. From the center position of these plateaus,
we identify the trap depth parameters pN for the deterministic preparation of N
atoms. After a preparation with p = pN , each of the N/2 energetically lowest trap
levels is populated by two atoms in different hyperfine states. As shown by the
variance on the right side of Fig. 4.9, the atom-number fluctuations are strongly
suppressed for preparations with pN .

71



4.4. Deterministic preparation of few-atom systems

Trap depth parameter p Variance

M
ea
n
at
om
nu
m
be
r

0

2

4

6

8

0.45 0.50 0.55 0.0 0.5 1.0

Figure 4.9.: Mean atom number and atom-number fluctuations after the spilling
process. (left side) By changing the optical trap depth p during the spilling process,
the number of atoms that remain in the trap can be selected. Each shot is the
average of about 50 individual measurements. (right side) The fluctuations of the
atom number show a clear suppression at even atom numbers. At these values all
trap levels below a certain energy are populated with two atoms each, while all
atoms from energetically higher levels have been removed from the trap. For six
atoms a variance of σ2 = 0.12 is measured, which corresponds to a suppression
of σ2/ 〈N〉 = 0.02 = 17 dB compared to a system obeying Poissonian statistics.
The single-particle preparation fidelity, which was extracted from the probabilities
of preparing two, four, or six atoms with minimum atom-number fluctuations, is
(97.8± 0.6) %.

4.4.3. Deterministic preparation of a spin-1/2 system

Throughout this thesis, we use the two lowest hyperfine states of 6Li to real-
ize an effective spin-1/2 system. We define spin-up and spin-down states as
|↑〉 = |mS = −1/2,mI = 0〉 and |↓〉 = |mS = −1/2,mI = 1〉 (see Fig. A.1). Im-
portantly, the preparation scheme described in the last section also determines
the two-particle spin correlations in the system. This is remarkable, since without
interactions between spin-up and spin-down atoms, the deterministic preparation
for both components seems independent of each other. But, as we will discuss in
this section, the preparation of two-component ground-state systems together with
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the intrinsic antisymmetry of the fermionic wave function leads to the emergence
of simple rules for spin correlations.
Let us assume that the preparation lead to a noninteracting spin-balanced sam-

ple of N fermions, which is in the many-particle ground state of the microtrap.
Due to Fermi-Dirac statistics, the atoms have to occupy the N/2 energetically
lowest trap levels with one spin-up and one spin-down atom each. Since the to-
tal wave function of two atoms with the same orbital wave function can only be
antisymmetrized by an antisymmetric spin wave function, two atoms on the same
single-particle trap level are always in a spin-singlet configuration. The N atoms
therefore form N/2 spin singlets, which are uncorrelated from each other and can
only be distinguished by the excitation of their center-of-mass motion. The combi-
nation of N/2 spin-singlets with a spin quantum number of S = 0 each necessarily
leads to a total spin quantum number of S = 0 of the N-particle system.
When introducing interactions in this system, the single-particle trap levels are

not eigenstates of the atoms anymore. Therefore, the spin-singlet correlations can
no longer be attributed to fixed pairs of atoms, but are instead shared by all atoms
in the system. Still, the total spin quantum number of S = 0 is conserved8, which
is of major importance for the realization of quantum magnetism as discussed in
the next chapters.

Preparation of spin-imbalanced samples

To prepare spin-imbalanced ground-state systems, we first prepare a spin-balances
system and then remove a particular number of spin-down atoms in a second
spilling process. To do this, we change the magnetic offset field to 27 G, which is
in the crossover region between the Zeeman and the Paschen-Back regime. Here,
the atoms in state up have a vanishing magnetic moment as shown in the in-
set of Fig. A.2. The magnetic gradient does therefore only tilt the potential
of the spin-down atoms and they can be spilled from the trap. Afterwards the
spin-composition of the sample can be changed by radio-frequency or microwave
transitions between the different hyperfine states [Lom11, Zür12a].

4.5. State detection in one and two wells
In a single repetition of the experimental cycle, we can only measure the number of
atoms that are in the microtrap at the end of the sequence. However, by repeating

8The total spin quantum number can only be changed by introducing a coupling between the
spin and the spatial degrees of freedom. In Sect. 5.6, we will use such a coupling to introduce
oscillation between spin-singlet and spin-triplet states of two atoms in a double well.

73



4.5. State detection in one and two wells

Fluorescence signal normalized to atom number

C
ou
nt
s

0 2 4 6 8
0

20

40

60

80

Figure 4.10.: Detection of the atom number. Histogram of the integrated fluores-
cence signal of the MOT normalized to the number of atoms. The fluorescence
signal corresponding to two atoms (six atoms) has a standard deviation of σ = 0.11
(σ = 0.16), which leads to a separation of peak centers of about 9σ (6σ).

the experimental cycle over and over again and combining this measurement with
specific manipulation processes, additional information about the atomic state
can be extracted. We will first explain how we measure atom numbers in our
experiment before listing the manipulation processes that we used for the state
detection in this thesis.

4.5.1. Atom-number counting

To count the number of atoms, we release them from the microtrap, recapture them
in a MOT, and detect their fluorescence signal [Hu94, Ser11b, Hum13]. We imaging
the MOT on a CCD camera and integrate the fluorescence signal for 0.5 s. The
imaging optics has a numerical aperture of about 0.17, which leads in combination
with the quantum efficiency of the camera to the detection of approximately 1 %
of the emitted photons [Ser11b]. Finally, the pixel values in the region of the MOT
are integrated and normalized to determine the number of atoms [Ser11b, Hum13].
To maximize the signal to noise of this measurement, the MOT parameters are
optimized for a small trapping volume and a large fluorescence signal. We therefore
apply a magnetic field gradient of 250 G/cm and tune the detuning to a relatively
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small detuning of about −2 Γ [Ser11b]9. In Fig. 4.10 a histogram of the normalized
fluorescence signal corresponding to different atom numbers between zero and eight
is shown.

4.5.2. Additional state manipulation

By loading the atoms into the microtrap, and counting their number as described
in the last section, all information about the spatial state of the atoms in the mi-
crotrap, or their spin composition is lost. To gather these important information,
we repeatedly prepare the atoms in a certain state and measure the number of
atoms after different state-selective spilling processes. These processes are similar
to the spilling of atoms from the microtrap for the preparation of few-atom sys-
tems (Sect. 4.4.2). For certain measurements we apply combinations of several of
these spilling processes.

Measuring the number of spin-up and spin-down atoms

For a system of atoms in the two lowest hyperfine states, we can not only measure
the total number of atoms N , but also deduce the number of spin-up atoms N↑ and
spin-down atoms N↓. To do this, we apply a spilling pulse at 27 G as described for
the preparation of spin-imbalanced systems (Sect. 4.4.2). In this pulse we spill all
spin-down atoms from the microtrap, while the spin-up atoms remain. Afterwards,
we count the number of atoms as described before and thereby determine N↑. The
number of spin-down atoms is then calculated as N −N↑.

Measuring the population on single-particle trap levels

In a noninteracting system, we can measure the mean occupation number on single-
particle levels of the microtrap. To do this, we repeatedly prepare an atomic
state, remove all population above a certain trap level i by performing our spilling
technique, and finally count the number of remaining atoms. The mean number
Ni of remaining atoms in the microtrap corresponds to the sum of the populations
on trap levels 0 to i. While the population of the ground state is directly given by
N0, we can calculate the population on excited states as Ni −Ni−1.

9Although the maximum fluorescence signal would be reached at a detuning of −Γ/2, we use
a larger detuning to avoid the risk of loosing atoms due to the fluctuating frequency of the
laser light.
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Measuring the single-well populations in a double well

For atoms in a double-well potential, our atom-counting measurement determines
the number of atoms in both wells. To perform site-selective atom-number mea-
surements, we switch off one potential well before transferring only the atoms of
the other well into the MOT. For this method to work, we first decouple the two
wells by increasing the power in the double-well system to more than 1 mW. With
a duration of 2 ms, this separation is fast compared to typical tunneling rates in
our double-well system, but slow enough to avoid excitations. Then, we slowly
turn off the RF power that generates one of the wells, while keeping the overall
light power constant. To avoid the recapture of atoms in excited states of the
remaining well, we spill all population above the tenth excited trap level before
counting the number of atoms.
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This chapter describes the deterministic preparation and manipulation of one
isolated spin singlet consisting of two fermionic atoms in a double-well poten-
tial. Making use of our scheme for the preparation of few atoms in a single trap
(Sect. 4.4), we first prepare one spin-up and one spin-down atom in the ground
state of one well, before adiabatically changing the potential shape to reach the
ground state of a double well. We demonstrate full control over the double-well
system by independently adjusting the interparticle interactions, the tunneling
rate between the wells, and the tilt of the potential. We compare the influence
of these operations on the two-particle wave function to the predictions of the
Hubbard model and find excellent agreement. In particular, we introduce strong
repulsive interactions and observe the crossover of the two-particle system into an
effective spin model that is governed by the Heisenberg Hamiltonian.
The work presented in this chapter can be seen as a first step in a new approach

to the simulation of Hubbard physics in ultracold atom experiments [Jak05, Ess10].
While previous experiments mostly focused on the cooling of fermionic atoms in
a bulk system and the subsequent transfer of many atoms into an optical lattice,
we aim for a bottom-up approach instead. The idea of this approach is to ex-
tend the preparation scheme described in this chapter to arrays of isolated double
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wells. Each double well would then contain an individually prepared spin singlet
consisting of one spin-up and one spin-down atom. By adiabatically combining
the double wells, low-entropy phases of the Hubbard or Heisenberg model showing
antiferromagnetic spin correlations could be realized (see Sect. 3.3) [Sac08, Lub11].
Using this approach, we hope to circumvent the temperature limitations of current
optical-lattice experiments [McK11, Gre13, Har15], which have so far prevented
the observation of long-range spin correlations.

Overview

In Sect. 5.1, we will see that the two-site Hubbard model is easily solvable and
therefore offers an ideal test ground for the calibration of the tunneling and in-
teraction parameters and of the potential tilt. We realized this calibration using
tunneling experiments, which is the topic of Sect. 5.2. In Sect. 5.3, we will describe
the preparation of eigenstates in the double-well system. Despite the simplicity of
these two-particle states, they still shows similarities to the phases of the many-
body Hubbard model. By introducing strong repulsive (attractive) interactions,
we realize the two-particle analog of a Mott-insulating (charge-density-wave) state
(Sect. 5.4). In Sect. 5.5 we directly measure the kinetic energy in the two-atom
system as a function of the interparticle interactions. For increasing repulsive
interactions, we observe that the kinetic energy approaches the characteristic en-
ergy of superexchange interactions, which connect the Hubbard and the Heisenberg
model (see Sect. 3.1). Finally, in Sect. 5.6, we introduce a coupling between spatial
and spin degrees of freedom of two fully separated atoms and thereby introduce
oscillations between spin-singlet and spin-triplet states.
Parts of this chapter have been published in Ref. [Mur15a].

5.1. The two-site Hubbard model
The Hubbard model, which was introduced in Sect. 3.1.1, reduces the physics of a
two-component many-body system to only two fundamental processes, tunneling
of single particles between the neighboring sites of a lattice and interactions of
two particles on the same lattice site [Hub63]. With only two interacting atoms
and only one tunnel junction, the double-well system presented in this chapter
is the minimum working example of the Hubbard model and can be seen as its
fundamental building block.
In this section, we discuss the energy spectrum and the eigenstates of the two-

site Hubbard Hamiltonian (Eq. 3.3) for different values of the interaction strength
and the potential tilt. Furthermore, we will discuss why our double-well system

78



5. Two fermions in a double well

fulfills the tight-binding and single-band approximation (Sect. 3.4.1) and is there-
fore suited for the realization of Hubbard physics.

5.1.1. Hamiltonian of the two-site Hubbard model
To simplify the spatial wave function of a many-body system, the Hubbard model
assumes a discretization of space and confines the particle positions to the sites
of a periodic lattice. In the limiting case of only two sites, the basis states of
single-particle wave functions can be written as |L〉 and |R〉, which in our sys-
tem correspond to the atom being in the ground state of the left or the right
well1. All spatial two-particle wave functions can then be written within the basis
{|LL〉 , |LR〉 , |RL〉 , |RR〉} of single-particle combinations. Within this basis, the
Hubbard Hamiltonian (Eq. 3.3) can be written as

H =



U + 2∆ −J t −J t 0

−J t 0 0 −J t

−J t 0 0 −J t

0 −J t −J t U − 2∆


, (5.1)

with the tunneling matrix element J t, the on-site interaction energy U , and the
potential tilt 2∆ between the two wells (see Fig. 3.1 and Sect. 3.4.1)2.

5.1.2. Eigenstates of the two-site Hubbard model
Diagonalizing the two-site Hubbard Hamiltonian leads to four different eigenstates,
whose energies are shown in Fig. 5.1(a) for a symmetric double well (∆ = 0) as
a functions of U/J t and in Fig. 5.1(b) for a noninteracting system (U = 0) as
a function of the tilt ∆/J t. Since the Hubbard Hamiltonian commutes with the
permutation operator P , each of the eigenfunctions has a fixed exchange symmetry.
While |a〉, |b〉, and |c〉 are symmetric, state |d〉 is antisymmetric with respect to
exchange of the two particles. Due to the antisymmetry of the total fermionic wave
function, the two particles have to be in a spin-singlet configuration for states |a〉,
|b〉, and |c〉, while the spin wave function of state |d〉 belongs to a spin triplet
(see Sect. 2.1). However, since the Hubbard Hamiltonian contains no direct spin

1See Sect. 3.4.1 for a detailed discussion of the single-particle wave functions in the Hubbard
model.

2See footnote 3 on page 36.
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(a) Eigenstates in a symmetric double well
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Figure 5.1.: Solution of the two-site Hubbard model. (a) Energy and spatial wave
function of the four lowest eigenstates in a symmetric double well (∆ = 0) as a
function of the on-site interaction energy U . (b) Eigenenergies and eigenstates in
a noninteracting system (U = 0) as a function of the potential tilt ∆.
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dependence, we will only use the spatial wave function to identify the different
states.
The starting point for all experiments presented in this chapter are two atoms,

one spin-up and one spin-down, in the ground state of a single well (see Sect. 4.4).
The spatial wave function of this initial state is symmetric with respect to the
exchange of the two atoms (see Sect. 4.4.3) . Since we do not change this sym-
metry during our experiments, all measurements are performed on the spatially
symmetric states. Only in Sect. 5.6, we introduced a controlled coupling between
the position and the spin of the atoms by applying a spin-dependent magnetic
field gradient. This will allow us to observe oscillations between singlet and triplet
spin configurations.

5.1.3. Realization of the two-site Hubbard model
As discussed in Sect. 4.3.2, we realize a double-well system in our experiment
by creating two optical microtraps next to each other3. The individual traps are
cigar-shaped with a radial harmonic oscillator length of about 0.5 µm and an
aspect ratio of η ≈ 7. We couple the two microtraps along their radial direction
by placing them at a distance of approximately 2µm [see Fig. 4.3(b)]. The overall
light power Ptot in both trapping beams is stabilized and can be adjusted to change
the potential depth of both wells. Furthermore, the relative depth of the two wells
can be varied by changing the relative power of the RF signals used to create the
two trapping beams in an AOD (see Fig. 4.5 and Fig. 4.6).
To realize Hubbard physics in this potential, the tight-binding and the single-

band approximation, which are basic requirements for the Hubbard model (see
Sect. 3.4.1), have to be fulfilled.
The tight-binding approximation contains the assumption that single-particle

wave functions can be given in a basis of wave functions localized at the individual
lattice sites. As a consequence, the tunneling matrix element J t and therefore the
band width in a many-body system is much smaller than the excitation energy
between different Bloch bands. In our experiment, the lowest excitation energy
in the individual wells is given by ~ω||, where ω|| is the trap frequency along the
axial direction of the cigar-shaped traps. During the measurements presented in
this chapter, ω|| is about 2π×1 kHz and typical tunneling frequencies between the
wells are given by J t/h ≈ 100 Hz. We therefore conclude that the tight-binding
approximation is well fulfilled in our experiment.
The single-band approximation is the assumption that all population of a Hub-

bard system is contained in the lowest Bloch band, which is a superposition of
3The trap parameters of a single microtrap are listed in App. A.4
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the single-particle ground-states of the individual wells. To fulfill this condition,
we prepare the initial system in the ground state of a single well and limit both
the on-site interactions energy U and the potential tilt ∆ to values smaller than
the excitation energy ~ω|| in the individual wells. For the largest interaction en-
ergies used in this chapter of U ≈ h × 650 Hz we calculate a minimum overlap
of the interacting two-particle wave function in a single well and the respective
noninteracting ground-state wave function of approximately 92 %.

5.2. Calibration of the Hubbard parameters
The tunneling matrix element J t, the on-site interaction energy U , and the po-
tential tilt ∆ are the only three parameters of the two-site Hubbard model. Since
our goal is to express the results of our measurements within this model, we have
to calibrate these parameters for the specific conditions in our experiment. In
this section, we will describe the experimental calibration of all three parameters
from tunneling measurements. First we will study the uncorrelated tunneling of
noninteracting atoms to determine J t and ∆. Then, we introduce interactions
between the two atoms which correlates their tunneling dynamics and allows us
to calibrate the on-site interaction energy U . For the experiments described in
subsequent sections, these calibrations were used as inputs.

5.2.1. Tunneling measurements
In all tunneling measurements, we start from a noninteracting spin-singlet in the
ground state of a single well. This initial state is prepared by using the methods
described in Sect. 4.4. We switch on the second well while the overall light power
Ptot of the trapping beams is large enough to prevent tunneling between the wells
(J t ≈ 0). We thereby realize state |LL〉 with both atoms in the left well. By re-
ducing the overall light power Ptot of the trapping beams, we quench the tunneling
matrix element to a finite value and allow the atoms to tunnel between the wells.
For any on-site interaction energy U/J t and any tilt ∆/J t, the initial state |LL〉
can be expressed as a specific superposition of the double-well eigenstates |a〉, |b〉,
and |c〉 and hence the tunneling dynamics depends on the Hubbard parameters.
After a specific tunneling time, we quickly increase the overall light power Ptot

an thereby separate the two wells. We then measure the atom number in the right
well using the detection method described in Sect. 4.5. To detect the tunneling
oscillations we determine the mean atom number in the right well a function of
the tunneling time and obtain plots as shown in Fig. 5.2.
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(a) Tunneling without interactions
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(b) Tunneling with interactions
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Figure 5.2.: Tunneling with and without interactions in a balanced double well.
The data show the time evolution of the mean atom number in the right well after
initializing two atoms in the left well and abruptly connecting the wells with a
tunnel coupling. (a) For no interactions (U = 0), the atoms tunnel independently
and we can extract the tunneling frequency J t/h by a sinusoidal fit to the data
(blue line). (b) For an intermediate on-site interaction energy (U ≈ J t), we ob-
serve correlated tunneling dynamics of the two atoms. The blue curve shows the
predictions of the Hubbard model with all Hubbard parameters (J t, U , and ∆)
independently calibrated.

5.2.2. Calibration of the tunneling matrix element

If the two atoms do not interact, their tunneling dynamics between the wells is
uncorrelated resulting in sinusoidal oscillations of the atom number in each of the
wells [Fig. 5.2(a)]. Each point in this plot is the average of about 15 measurements,
which required a total measurement time of approximately 9 hours. To determine
the value of the tunneling matrix element J t, we fit the oscillations with a damped
sine wave resulting in values of J t/h on the order of 100 Hz and typical damping
times on the order of 100 ms. Repeating this measurement for different values of
the overall light power Ptot in the trapping beams during the tunneling dynamics
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(a) Calibration of J t
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Figure 5.3.: Calibration of the tunneling matrix element J t and the tilt ∆ from tun-
neling measurements. (a) Tunneling frequency J t/h of two noninteracting atoms
as a function of the overall light power Ptot in the trapping beams. Since the
potential depth is proportional to the light intensity (see Eq. 4.2), an increases in
Ptot causes an effective increase of the potential barrier between the two wells and
therefore a decrease of the tunneling frequency. (b) Effective tunneling frequency
of two noninteracting atoms as a function of the potential tilt. The tilt is con-
trolled by changing the relative power of the RF signals that control the depth
of the individual wells (see Fig. 4.5). The blue line shows a fit with the effective
tunnel coupling

√
J t2 + ∆2 expected for a two-level system.

allows us to calibrate the tunnel matrix element in our setup [Fig. 5.3(a)]. For the
experiments presented in this chapter, light powers of Ptot = 131 µW and Ptot =
186 µW were used resulting in tunneling frequencies of J t/h = (142.0 ± 0.5)Hz
and J t/h = (67.3± 0.5)Hz.

5.2.3. Calibration of the potential tilt
To calibrate the energy tilt ∆ between the two wells, we measure the effective
tunneling frequency J teff as a function of the relative power of the RF signals that
control the depth of the left and the right well. During this measurement, we keep
the overall light power in the trapping beams constant. For two noninteracting
atoms that tunnel independently between the ground states of the two wells, the
Hubbard model reduces to a two-level system. For each of the atoms, the effective
tunnel coupling J teff as a function of the energy difference 2∆ between the ground
state in the left and the right well is given by J teff =

√
J t2 + ∆2. Fitting this

formula to the measured tunneling frequencies allows us to calibrate the potential

84



5. Two fermions in a double well

(a)

-15
Tilt 2Δ / J t

T
im
e-
av
er
ag
ed
pr
ob
ab
il
it
y

U / J t

UU

-10 -5 0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

E
ne
rg
y
sh
if
t(
ħω
)

-1 / g (a ħω )
1D

-1

-0.4

0.0

0.4

0.8

-10 0 10

Figure 5.4.: Calibration of the on-site interaction energy. (a) Probability of single-
particle (green) and pair tunneling (blue) at a magnetic field of 740 G and a
tunneling matrix element of J t = (67.3 ± 0.5) Hz as a function of the tilt ∆.
At 740 G the two atoms have a scattering length of about 2974 a0. While pair
tunneling is resonant in a balanced double well (∆ = 0), conditional single-particle
tunneling occurs at a tilt of ∆ = −U/2. U is extracted from the central positions
of the Lorentzian fits to the data (green and blue lines) as U/J t = 10.05± 0.19.
(b) Interaction energy in units of the axial harmonic oscillator energy ~ω|| as a
function of the inverse 1D coupling constant −1/g1D (Eq. 2.22). Blue [green]
data point correspond to measurements at a tunneling matrix element of J t =
(67.3 ± 0.5) Hz [J t = (142.0 ± 0.5) Hz]. The orange line depicts the calculated
interaction energy of two atoms in one quasi-1D harmonic trap (Eq. 2.30). All
measured interaction energies are listed in App. A.3.

tilt ∆ and to precisely identify the relative RF power that generates a balanced
double-well potential.

5.2.4. Calibration of the on-site interaction energy
In an interacting system, the tunneling dynamics of two atoms becomes correlated
[Fig. 5.2(b)]. Thereby, the on-site interaction energy U effectively detunes the
energy of states with both atoms occupying the same well. Hence, for large enough
U and both atoms in one well, only pair tunneling between the states |LL〉 and
|RR〉 is possible in a balanced double-well [Win06]. However, single-particle
tunneling can be restored, when the on-site interaction energy is compensated by
a potential tilt of ∆ = −U/2 [Föl07, Sim11]. Measuring the amplitude of single-
particle tunneling for a given interaction strength as a function of the potential
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tilt therefore allows us to calibrate the on-site interaction energy U .
To perform this calibration, we again start with state |LL〉, but this time ramp

the magnetic field away from the zero-crossing of the scattering length at 527 G
to introduce interparticle interactions (see Fig. 2.2.3). For a given tilt ∆ of the
potential, we couple the two wells and let the system evolve for different hold
times. Finally, we measure the number of atoms in the right well. By averaging
the probability of finding one atom (two atoms) in the right well over different
hold times, we extract the strength of single-particle (pair) tunneling for a given
tilt ∆ and a magnetic field value B.
For a magnetic field value of 740 G and a tunneling matrix element of J t/h =

(67.3 ± 0.5) Hz the results of such a measurement are shown in Fig. 5.4(a) as a
function of the potential tilt ∆. By using the calibration between ∆ and J t, the on-
site interaction energy U can be extracted in units of J t by comparing the resonance
position of single-particle and pair tunneling. In Fig. 5.4(b) the results of these
measurements are shown for different interaction strengths and different values of
the tunneling matrix element. Because of the strongly-elongated potential shape
of the individual wells, we plot the interaction energies as a function of the 1D
coupling constant g1D, which characterizes the strength of the contact scattering
potential in a 1D systems (see Sect. 2.2.4). Thereby, g1D was determined by using
the calibration between the magnetic field and the 3D scattering length a3D shown
in Fig. 2.5 and by using Eq. 2.22 to relate a3D and g1D.
We confirm that the interaction energy is not affected by off-site interactions

between the wells by comparing the measured data to the calculated interaction
energy in a single well as determined by Eq. 2.30 [solid line in Fig. 5.4(b)]. Since
we find good agreement for both repulsive and attractive interactions, we use the
calculated values as a calibration for the on-site interaction energy.

5.2.5. Validity of the Calibrations

Using the calibrated Hubbard parameters we can fully describe the tunneling dy-
namics of two interacting atoms in our double-well potential as shown by the solid
line in Fig. 5.3(b) that has no free parameter.
We actively stabilize the total light power Ptot (see Sect. 4.3.2) and the magnetic

offset field (see Sect. 4.2.5), which leads to a good long-term stability of the cali-
brations of J t and U . However, the light power in the two trapping beams is not
stabilized individually and hence the calibration of the potential tilt ∆ relies on
the passive stability of the setup. As discussed in Sect. 4.3.2, this passive stability
is currently limited by temperature-dependent drifts of the diffraction efficiency of
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Figure 5.5.: Adiabatic passage of the double-well ground state |a〉 from ∆ � 0
to ∆ � 0. The system is initially prepared in state |LL〉, the tunneling matrix
element between the wells is J t = h×142.0±0.5 Hz, and the tilt is changed with a
velocity of approximately 4J t/100 ms. The green (blue) data points show the mean
atom number in the left (right) well as a function of the potential tilt. Each data
point depicts the average of about 130 individual atom-number measurements.
The green and blue lines depict the predictions of the Hubbard model [Fig. 5.1(b)].

the AOD, which are on the order of 10 Hz over the course of several days4.

5.3. Preparation of eigenstates in the double well
In order to simulate Hubbard physics in our system, we want to prepare the atoms
in the ground state of the balanced double well. This capability is also a necessary
requirement if we want to use the double well as a building block for larger ground-
state Hubbard systems.
To prepare the system in the noninteracting two-particle ground-state |a〉, we

again start with both atoms in the left well. As shown in Fig. 5.1(b), state |a〉
is approximately given by |LL〉 for a tilt of ∆/J t → −∞. We therefore tilt the
potential to a value of ∆ ≈ −5J t and then lower the light power to connect the
two wells. By slowly changing the potential tilt to ∆ = 0, we adiabatically follow
state |a〉 until reaching the ground state of the symmetric double well (∆ = 0). In
Fig. 5.5, we demonstrate the adiabaticity of this process by continuing the ramp

4We are currently working on the implementation of an active power stabilization for the
individual trapping beams to further increase the stability of our system.
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to ∆/J t � 0. All population that initially was in the ground state of the left well
is then transferred into the ground state of the right well. We conclude that the
system occupied the two-particle ground state at every time during the passage.
In a similar preparation scheme, we can also prepare the highest excited state
|c〉 within the ground-state multiplet. Since our two-atom system is well isolated
from the environment, this state is stable against decay into energetically lower
states. To prepare state |c〉, we again start from state |LL〉 but initially set a tilt
of ∆/J t � 0. Equivalent to the preparation of state |a〉, |LL〉 is now adiabatically
connected to the eigenstate of the balanced double-well [Fig. 5.1(b)].
After preparing noninteracting eigenstates of the double-well system, we adia-

batically introduce interactions by changing the magnetic field within 60 ms from
the zero-crossing of the 3D scattering length at 527 G to values between 300 G
(a3D ≈ −288 a0) and 740 G (a3D ≈ 2974 a0). According to the calibration of the
on-site interactions energy described in Sect. 5.2, this corresponds to interaction
energies between U/J t ≈ −1.3 and U/J t ≈ 10.1 for J t/h ≈ 67.3 Hz (between
U/J t ≈ −0.3 and U/J t ≈ 3.6 for J t/h ≈ 142.0 Hz)5.
We confirm the adiabaticity of the preparation process by preparing the system

in state |a〉 of the symmetric double well, ramping to the limit of strongly inter-
actions, waiting for different hold times, and finally reversing all ramps to bring
the system back into state |LL〉. Within our statistical uncertainties we detect no
heating due to the ramps in ∆ and U . The preparation fidelity of eigenstates in
the double-well is therefore limited by the preparation fidelity of two atoms in a
single well, which in our experiment is typically well above 90 % (see Sect. 4.4).

5.4. Occupation statistics in the double-well

In a first experiment on eigenstates of the double-well system, we measure the
distribution of two atoms between the wells as a function of the on-site interaction
energy U . We will see that the results for the two-particle ground state show
similarities to the metal to Mott-insulator transition of a many-particle Hubbard
system [Jör08, Sch08]. Additionally, we will investigate the distribution of atoms
in the excited state |c〉, in which a positive U leads to the formation of repulsively
bound pairs [Win06, Föl07]. Finally, we will discuss a particle-hole transformation
that connects the states |a〉 and |c〉 for any value of the interaction strength U .

5Note that both U and J t depend on the overall light power in the trapping beams.
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(a) Ground state |a〉
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Figure 5.6.: Occupation statistics as a function of the on-site interaction energy.
Data points show the probability of two atoms to occupy the same well (blue
points) or different wells (green points) in a symmetric double well. Open (filled)
symbols correspond to data taken at a tunnel coupling of J/h = 142 Hz (J/h =
67 Hz). The lines show the predictions of the Hubbard model. (a) For two atoms in
the ground state |a〉, repulsive interactions lead to a suppression of doubly-occupied
sites. This can be understood as the two-particle analog of the metal to Mott-
insulator transition [Jör08, Sch08]. For attractive interactions the onset of pairing
can be observed in the ground state. (b) For atoms in the excited state |c〉, we
observe the crossover into a paired state for repulsive interactions [Win06, Föl07].
The similarity of the curves in (a) and (b) can be explained by a particle-hole
symmetry between states |a〉 and |c〉 (see Sect. 5.4.4) [Ho09].

5.4.1. Measurement of occupation statistics
To measure the distribution of atoms in a two-particle state |Ψ〉 between the wells,
we quickly separate the wells by ramping up the overall light power. Then, we
measure the atom number in either the left or the right well (see Sect. 4.5). We
repeat this measurement about 300 times for each well to detect the probabilities
a0, a1, and a2 of finding zero, one, or two atoms in one of the wells. Using the
measurement in the left well as an example, these probabilities are given by the
projections

a0 =
∣∣∣ 〈Ψ|RR〉 ∣∣∣2,

a1 =
∣∣∣ 〈Ψ|LR〉 ∣∣∣2 +

∣∣∣ 〈Ψ|RL〉 ∣∣∣2,
a2 =

∣∣∣ 〈Ψ|LL〉 ∣∣∣2.
(5.2)
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Combining the probabilities measured in both wells, we define single occupancy
as the probability of both atoms occupying different wells (P1 = a1) and double
occupancy as the probability of both atoms occupying the same well (P2 = a0+a2).
In Sect. 5.4.2 and Sect. 5.4.3, we describe the measurements of single and double
occupancy as a function of U for the ground state and for state |c〉 of two atoms
in a symmetric double well.

Correction of occupation statistics

The probabilities of measuring zero, one, or two atoms in the individual wells
(Eq. 5.2) are affected by the finite experimental fidelity of both the preparation of
the initial state and the detection of the final state. Both the preparation fidelity
and the detection fidelity reduce the mean atom number in the double-well system
compared to an ideal measurement. Ideally, two atoms in two wells would lead
to a mean atom number per well of one. This allows us to determine the overall
fidelity p, by averaging the atom numbers detected in either the left or the right
well over all individual shots of a measurement run, which results in typical values
of p & 0.9.
For a symmetric double-well system, we correct the probabilities a0, a1, and a2

in the individual wells by

a2,corr = a2

p2

a1,corr = a1

p
− 2a2(1− p)

p2

a0,corr = a0 −
a1(1− p)

p
− a2(1− p)2

p2

(5.3)

The effect of this correction on the probabilities P1 and P2 of single and double
occupancy is . 5 % for all measurements presented is this chapter.

5.4.2. Ground-state systems
For no interactions (U = 0), the ground state of two distinguishable atoms in a
balanced double well (∆ = 0) is a combination of two uncorrelated atoms that
both populate the single-particle ground state |L〉 + |R〉. The two-particle wave
function of this state is an equal superpositions of all combinations of placing the
atoms in the left and the right well (state |a〉 at U = 0 and ∆ = 0 in Fig. 5.1).
For this state, equal probabilities of single occupancy and double occupancy are
expected, which we observe in the measurement shown in Fig. 5.6(a) at U = 0.
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Introducing repulsive on-site interactions increases the energy of the basis states
|LL〉 and |RR〉 and makes their population energetically unfavorable. We observe
this as a continuous decrease of the probability of double occupancy P2 in the
ground-state |a〉 as a function of U . In the limit of U � 0, the atoms predominantly
populate the states |LR〉 and |RL〉, which can be understood as a two-particle
analog of the Mott-insulating state.
For attractive interactions, the probability of double occupancy in the ground

state increases. We interpret this onset of pairing as the two-particle analog of
a charge-density-wave state, which in a many-body system is characterized by
alternating pairs and empty sites [Ho09, Ess10].

5.4.3. Excited-state systems
In the last section, we saw that the atoms in state |a〉 tend to form a bound pair for
attractive interactions. However, the strength of attractive interactions is limited
in our system by the maximum negative scattering length of approximately −290a0
that can be reached below the scattering resonance6. As shown in Fig. 5.1(b), we
can instead use state |c〉, which is the highest excited state of the ground-state
multiplet, to investigate the emergence of pairing in our system. The occupation-
statistics of state |c〉 clearly depict the crossover into a paired state for repulsive
interactions and therefore allow us to reach the charge-density wave regime in our
system.
The reason why pairing can be observed in state |c〉 despite repulsive interactions

can be understood from the level structure of states |a〉 and |c〉 in Fig. 5.1(a). Both
states are superpositions of the symmetric paired state

∣∣∣ΨP
+
〉
and the symmetric

state of single atoms in each well
∣∣∣ΨS

+
〉
, which are defined in Fig 5.1(a)7. For no

coupling between the wells (J t = 0), the energy of
∣∣∣ΨP

+
〉
is given by U , while the

energy of
∣∣∣ΨS

+
〉
is always zero. This means that

∣∣∣ΨP
+
〉
has a lower (higher) energy

than
∣∣∣ΨS

+
〉
for attractive (repulsive) interactions. Between the two regimes, the

two states have a perfect crossing at U = 0. For finite values of J t, the states∣∣∣ΨP
+
〉
and

∣∣∣ΨS
+
〉
are coupled and an anti-crossing opens up around U = 0. This

gives rise to the coupled eigenstates |a〉 and |c〉 of the Hubbard model. For strong

6Approximately three times stronger attractive interactions could be reached by using another
combination of hyperfine states. Also, it is technically possible to prepare a ground-state
system of two atoms above the scattering resonance and investigate the regime of strong
attractive interactions.

7Note, that state
∣∣ΨS

+〉 is symmetric under the exchange of the two particles, while state∣∣ΨP
+〉 is symmetric under the exchange of pairs and holes.
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interactions (|U |/J t � 1), the coupled states approach the bare states
∣∣∣ΨS

+
〉
and∣∣∣ΨP

+
〉
, which leads to identical occupation statistics in state |a〉 with attractive

(repulsive) interactions and state |c〉 with repulsive (attractive) interactions.

5.4.4. Particle-hole symmetry
The connection between states |a〉 and |c〉 can also be used to define a particle-hole
mapping between the states8. This mapping connects the wave functions of |a〉
and |c〉 for any value of U and can be defined as

|a〉 = 1√
2

( ∣∣∣ΨP
+
〉

+
∣∣∣ΨS

+
〉)

|c〉 = 1√
2

( ∣∣∣ΨP
+
〉
−
∣∣∣ΨS

+
〉)

∣∣∣ΨS
+
〉

= 1√
2

(
|LR〉+ |RL〉

)
←→

∣∣∣ΨP
+
〉

= 1√
2

(
|LL〉+ |RR〉

)
∣∣∣ΨP

+
〉

= 1√
2

(
|LL〉+ |RR〉

)
←→ −

∣∣∣ΨS
+
〉

= − 1√
2

(
|LR〉+ |RL〉

)
In this mapping, pairs and empty sites in one state are transformed into spin-up

and spin-down particles to generate the wave function of the other state. This
mapping explains why the curves in Figs. 5.6(a) and (b) are identical except for
exchanged probabilities of single-particle and pair occupancies. Furthermore, this
mapping allows to transform a charge-density-wave state with alternating pairs and
holes into a Mott-insulating state with alternating spin order and thereby reveals
the equivalence of these states within the Hubbard model [Ho09]. In the follow-
ing section, we will use this connection to measure the energy of superexchange
processes in state |c〉, although they are typically attributed to the ground-state
of the Hubbard model.

5.5. Second-order tunneling in the two-site Hubbard
model

In this section, we use trap-modulation spectroscopy to measure the kinetic energy
of state |c〉 as a function of the on-site interaction energy U . This allows us to
identify the crossover from the regime of single-particle tunneling at weak inter-
actions to correlated second-order tunneling at strong repulsive interactions. As
discussed in Sect. 3.1, second-order tunneling leads to antiferromagnetic superex-
change interactions in the Mott-insulating ground state of the Hubbard model

8Usually, a similar particle-hole transformation is defined between the attractive and repulsive
regime of the ground-state Hubbard model [Ho09].
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and thereby connects the Hubbard and the Heisenberg Hamiltonian [Aue94]. In
the excited state |c〉, second-order tunneling describes the correlated tunneling of
repulsively bound atom pairs [Win06, Föl07]. However, using the particle-hole
mapping described in the previous section, we can map pairs and holes in state |c〉
onto spin-up and spin-down atoms and again explain the second-order tunneling
as a superexchange process.
We will first discuss the effect of second-order tunneling on the energy of states
|a〉 and |c〉 (Sect. 5.5.1). Then, we will introduce trap-modulation spectroscopy
for double-well states (Sect. 5.5.2) and finally discuss the results of this measure-
ment (Sect. 5.5.3). Although second-order tunneling has been observed previ-
ously [Föl07, Tro08], the experiments in this sections are the first direct mea-
surement of the effect of second-order tunneling on the energy of eigenstates in a
system of ultracold atoms.

5.5.1. Second-order tunneling in a double well

In the regime of strong repulsive on-site interactions (U/J t � 1), the four states
of the two-site Hubbard model with ∆ = 0 separate into two doublets that are
set apart by U [Fig. 5.1(a)]. While the energetically lower doublet predominantly
comprises the singly-occupied states |LR〉 and |RL〉, the eigenstates of the upper
doublet are to good approximation superpositions of |LL〉 and |RR〉. Since single-
particle tunneling, which connects the two doublets is far off-resonant for U � J t,
atoms can only tunnel in a correlated way (Sect. 5.2.4) [Win06, Föl07, Tro08].
For |LR〉 and |RL〉 this correlated tunneling can be seen as an exchange pro-

cess during which the doubly-occupied states are virtually populated (Fig. 3.2).
The coupling between |LR〉 and |RL〉 can than be calculated from second-order
perturbation theory in J t/U and is given by the superexchange energy

Jex = 4J t2

U
. (5.4)

Since the atomic density in these Mott-insulating states is fixed to exactly one
atom per site, we can attribute the spin of the atoms to the well they occupy
and define a pure spin model (see Sect. 3.2.1 and App. A.1). The basis states
of the spin model are given by {|↓ ↑〉 , |↑ ↓〉}, where the first (second) entry in
each basis state corresponds to the left (right) well. Within this effective spin
basis, the energy splitting of different eigenstates is determined by the Heisenberg
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Hamiltonian (Eq. 3.14) [Aue94], which for a two-site model can be written as

H = Jex
(
~SL · ~SR −

1
4nLnR

)
= 1

2

−Jex Jex

Jex −Jex

 . (5.5)

As discussed in Sect. 3.1.2, the eigenstates of this Hamiltonian in a system of one
spin-up and one spin-down atom are the spin singlet

∣∣∣χS=0
〉

= 1√
2
(
|↓ ↑〉 − |↑ ↓〉

)
. (5.6)

and a spin-triplet state
∣∣∣χS=1

〉
= 1√

2
(
|↓ ↑〉+ |↑ ↓〉

)
(5.7)

whose energy is separated by Jex. The spatial wave functions of these two states
are the symmetric and antisymmetric superpositions (

∣∣∣ΨS
+
〉
and

∣∣∣ΨS
−
〉
) of the

single-occupied basis states |LR〉 and |RL〉, respectively [Fig. 5.1(a)].
Also for the doubly-occupied states |LL〉 and |RR〉 a second-order tunneling

process can be defined, which describes the simultaneous tunneling of both atoms.
Here, singly-occupied states are virtually populated and the coupling constant is
again given by the superexchange energy Jex [Aue94, Föl07]. Using the particle-
hole mapping discussed in the previous section, we can now map a pair of spins in
one well onto the single-particle state |↑〉 and an empty site onto |↓〉 [Ho09]. The
basis functions after this mapping are again given by |↓ ↑〉 and |↑ ↓〉 and also the
upper doublet can be characterized by a Heisenberg spin Hamiltonian. The spatial
eigenfunctions

∣∣∣ΨP
+
〉
and

∣∣∣ΨP
−
〉
, which are the symmetric and antisymmetric

superpositions of the double-occupied states |LL〉 and |RR〉, therefore have exactly
the same meaning as

∣∣∣ΨS
+
〉
and

∣∣∣ΨS
−
〉
for the singly-occupied states.

For both the lower and the upper doublet, the energy of the symmetric states
(
∣∣∣ΨS

+
〉
and

∣∣∣ΨP
+
〉
) is affected by second-order tunneling, while any tunneling

dynamics in the antisymmetric states (
∣∣∣ΨS

−
〉
and

∣∣∣ΨP
−
〉
) is forbidden. In the

Mott-insulating ground state, the sign of Jex is positive, which reduces the energy
of the antiferromagnetic spin singlet

∣∣∣ΨS
+
〉
by Jex compared to the spin-triplet

state
∣∣∣ΨS

−
〉
(see Sect. 3.1.2). For the upper doublet, the energy of the symmetric

state is increased by |Jex|, which can be explained by a ferromagnetic exchange
coupling (Jex < 0). The reason for this difference to the ground-state system is
that state

∣∣∣ΨP
+
〉
is coupled to an energetically lower state during the second-order

tunneling process, which inverts the sign of the superexchange interactions.
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Figure 5.7.: Example of trap-modulation spectroscopy at U/J t = 5.9 and ∆/h =
−22 Hz. Black data points depict the mean atom number in the right well as a
function of the modulation frequency f . The system is initially prepared in state
|c〉. The measured mean atom number in the right well is proportional to the
population transferred to state |b〉 during 200 ms of trap-depth modulation. The
central frequency of the resonance es extracted from a Gaussian fit (blue line) to
the data.

Importantly, the exchange of individual atoms in the ground-state doublet is for
the excited-state doublet replaced by the exchange of pairs and holes. Therefore,
both

∣∣∣ΨP
+
〉
and

∣∣∣ΨP
−
〉
, which are symmetric and antisymmetric with respect to

the exchange of pairs and holes, respectively, have the same symmetry with respect
to the exchange of individual atoms. This allows us to measure the energy differ-
ence between the two states by using trap-modulation spectroscopy as discussed
in the next section.

5.5.2. Trap-modulation spectroscopy
To observe the effect of first and second-order tunneling on the energy of a double-
well system, we measure the kinetic energy of state |c〉 as a function of the repulsive
interaction strength. We do this by using trap-modulation spectroscopy to deter-
mine the energy difference between state |c〉 and state |b〉. State |b〉 has a the same
interaction energy as |c〉, but no energy contribution due to tunneling9.
We start by preparing the system in state |c〉 of a symmetric double well with a

tunnel coupling of J t/h = 67.3 Hz and ramp the interaction strength to values be-
tween U/J t = −1.3 and U/J t = 10.1 (Sect. 5.3). Then, we sinusoidally modulate

9We can not use trap-modulation spectroscopy to measure the energy difference between states
|a〉 and |d〉, since this transition requires the coupling of spatial and spin degrees of freedom
(see Sect. 5.6).
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Figure 5.8.: Resonance frequency Ebc/h for transitions between states |b〉 and |c〉
as a function of ∆ measured by trap-modulation spectroscopy. The different colors
correspond to different on-site interaction energies. The corresponding lines show
fits to the data using the Hubbard model with J t as a free parameter. All data
points and curves were centered around the fitted value of ∆ = 0.

the overall light power Ptot in the trapping beams for a duration of 200 ms with
frequencies between f = 30 Hz and f = 300 Hz. The amplitude of these modula-
tions is small enough to limit the change of the tunneling coupling to 0.11J t. If
the frequency of the trap modulation matches the energy difference Ebc between
states |b〉 and |c〉, population is resonantly transferred between the states.
To detect if population has been transferred from state |c〉 to state |b〉 during the

trap modulation, we adiabatically switch off the interactions and tilt the potential
to ∆� 0. Then we measure the number of atoms in the right well. If the system
is still in state |c〉, the adiabatic ramps simply reverse the preparation scheme
presented in Sect. 5.3 and therefore transfer both atoms back into the left well
[Fig. 5.1(b)]. However, if the trap modulation transfered the system into state |b〉,
the final state at ∆� 0 has one atom in the right well, which we can detect with
high probability. For a fixed value of the interaction energy, we plot the mean
atom number in the right well as a function of the modulation frequency f and
extract the resonance frequency from a Gaussian fit to the data (Fig. 5.7).
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J ex =
4 J

2t

U

Figure 5.9.: Energy difference Ebc between states |b〉 and |c〉 measured by trap-
modulation spectroscopy. The data points show the energy difference between
the two states in a balanced double-well as a function of the on-site interaction
energy. For each point, Ebc(∆ = 0) and J t were extracted from the fits in Fig. 5.8.
The coloring of the data points corresponds to the color code of Fig. 5.8. The
blue line shows the prediction of the Hubbard model. In a noninteracting system
(U = 0), the energy difference Ebc is given by 2J t due to the uncorrelated single-
particle tunneling of the two atoms. For strong interactions Ebc approaches the
superexchange energy 4J t2/U (dashed line), which emerges in the system due to
correlated second-order tunneling.

For strong repulsive interactions, the energy difference between states |b〉 and
|c〉 strongly depends on the tilt ∆ between the wells. Therefore, the small residual
drifts in the relative depth of the two wells that appear in our experiment over the
course of several days (see Sect. 4.3.2), could strongly influence the outcome of this
measurement. To solve this problem, we measure the resonance frequency Ebc/h
as a function of the potential tilt for each value of the on-site interaction energy
U . Then, we fit these frequencies with a Hubbard model that uses U as input and
has the potential tilt ∆ as the dependent variable. J t is used as a free parameter
in this fit, in order to account for variations of the tunneling frequency due to the
trap modulation. Finally, the energy difference Ebc in a balanced double-well can
be extracted from the fit value at ∆ = 0. Fig. 5.8 shows all data points and fit
curves of the modulation spectroscopy measurement, which were centered around
∆ = 0.
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5.5.3. Results of the trap-modulation spectroscopy
The extracted values for the energy difference Ebc between stats |b〉 and |c〉 are
shown in Fig. 5.9. For U = 0, the atoms are uncorrelated and independently
delocalized between the two wells. In this limit, each atom raises the kinetic
energy of the system by J t. For increasing interactions, the motion of the atoms is
suppressed and finally in the limit of U � J t, the atoms only tunnel as pairs and
the kinetic energy in the system approaches the superexchange energy of 4J t2/U .
This measurement therefore confirms that state |c〉 at large repulsive interactions
simulates the physics of a ferromagnetic two-site Heisenberg model.

5.6. Singlet-triplet oscillations
Until now, all experiments presented in this chapter were performed on atom pairs
in a spin-singlet configuration. In this final chapter, we will lift this constraint and
introduce oscillations between spin-singlet and spin-triplet states [Tro10, Gre13].
This change of the exchange symmetry of the spin wave function is only possible
if simultaneously the symmetry of the spatial wave functions is adapted. This
can be realized by separating the atoms in space and adding an additional term
to the Hubbard Hamiltonian that depends on both the position and the spin of
the atoms. In the following, we will separate the atoms by bringing them into
the Mott-insulating regime and subsequently couple their position and spin with
a magnetic field gradient.

5.6.1. Theory of singlet-triplet oscillations
The influence of a magnetic field gradient on our double-well system in the Mott-
insulating regime can be included in the Heisenberg Hamiltonian of Eq. 5.5, which
is then given by

H = 1
2

−Jex + 2∆m Jex

Jex −Jex − 2∆m

 , (5.8)

Here, 2∆m describes an energy bias between state |↑ ↓〉 and |↓ ↑〉 that in our case
is given by the differential Zeeman energy 2∆m = (µ↑ − µ↓)(Bz

L − Bz
R). In this

equation, µ↑ and µ↓ are magnetic moments of spin-up and spin-down atoms (see
Fig. A.2), which are predominantly aligned along the z direction by the offset
magnetic field, and Bz

L and Bz
R are the z component of the magnetic field at the

position of the left and the right well, respectively.
Without any magnetic field gradient (∆m = 0), the eigenstates of Eq. 5.8 are

given by the spin singlet and the spin triplet states (Eq. 5.6 and Eq. 5.7), which
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Figure 5.10.: Singlet-triplet oscillations in a double-well potential. The blue (red)
data points show the probability of single-occupancy (double-occupancy) in the
left well, which correspond to triplet (singlet) spin-correlations between the two
atoms. The lines show sinusoidal fits to the data. The singlet-triplet oscillations
were performed at a magnetic offset field of 25 G. From the fitted oscillation
frequency of (12.53 ± 0.02) Hz and the differential magnetic moment of spin-up
and spin-down atoms at 25 G, the magnetic gradient between the atoms can be
calculated as (75.9± 0.1) mG/cm.

are separated by the superexchange energy Jex (see Sect. 3.1.2). If in contrast, the
Zeeman energy is much larger than the superexchange energy (∆m � Jex), the
eigenstates are approximately given by the spin-ordered states |↓ ↑〉 and |↑ ↓〉. By
quickly increasing ∆m from zero to ∆m � Jex, the singlet and triplet states are
therefore projected onto the spin-ordered basis states and the phase between |↓ ↑〉
and |↑ ↓〉 coherently oscillates with a frequency of νSTO = 2∆m/h [Tro10]. In the
next section, we will discuss the observation of these oscillations in our experiment.

5.6.2. Measurement of singlet-triplet oscillations
Unfortunately, strong repulsive interactions and a large differential Zeeman energy
are hard to realize simultaneously with 6Li atoms in the two lowest Zeeman sub-
levels. Repulsive interactions can only be reached at magnetic offset fields above
527 G, where the atoms are far in the Paschen-Back regime and therefore their
magnetic moments are nearly identical (Fig. A.3). We therefore perform the spatial
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separation of the atoms and the singlet-triplet oscillations at different values of the
magnetic field. First, we ramp the ground-state system to 740 G (U/J t ≈ 10.1),
which is within the Mott-insulating regime, and completely separate the two wells
by increasing the overall light power within 40 ms to Ptot = 900 µW. This separa-
tion is slow enough to ensure that no excitation to higher single-particle trap levels
occurs. Then, we quickly (within 12 ms) ramp the magnetic offset field to values
below 100 G and at the same time apply a magnetic field gradient10, 11. Although
the wells are still completely separated (Jex = 0), the relative phase between |↑ ↓〉
and |↓ ↑〉 will now start to oscillate. To stop the oscillations, we quickly reverse
the magnetic field ramps an bring the system back to 740 G.
To detect whether the system is in a spin-singlet or a spin-triplet configuration,

we slowly couple the two wells with a tunnel coupling at high magnetic field and
thereby return to the singlet and triplet basis states in the Mott-insulating regime.
Then, we drive an adiabatic passage to zero interaction strength and subsequently
tilt the potential to ∆ � 0. While this process transfers both atoms of a pure
spin-singlet state into the single-particle ground state of the left well, the final wave
function of a spin-triplet state has one atom in the ground state and one atom
in the first excited state of the left well. Hence, by measuring the probability of
double-occupancy and single-occupancy in the ground state of the left well, we
can determine the probability of singlet and triplet spin configurations.
In Fig. 5.10 these probabilities are shown as a function of the oscillation time at a

magnetic offset field of 25 G. The oscillations have a frequency of (12.53±0.02) Hz,
which allows us to precisely calibrate the gradient of the z component of the
magnetic field between the wells to ∂Bz/∂r = (75.9± 0.1) mG/cm.
It is interesting to note, that singlet-triplet oscillations in our experiment have

a damping time of about 2000 ms, which is approximately one order of magnitude
longer than the typical damping times of tunneling oscillations. This is due to
the fact that the relative phase between the basis states |↓ ↑〉 and |↑ ↓〉 is not
affected by drifts of the overall potential depth or the tilt between the wells, but
only by fluctuations of the differential magnetic field between the left and the
right well. In the field of quantum-information processing, such decoherence-free
subspaces are of particular importance for the storage of information between
different computational operations.

10This magnetic field gradient can either be applied with the Feshbach coils (Sect. 4.2.5), or
with the MOT coils (Sect. 4.2.3).

11The quadrupole magnetic field of the coils leads to a gradient of the z component of the
magnetic field between the two wells (|Bz

L −Bz
R| > 0), since the double-well potential is not

perfectly aligned with the symmetry axis of the magnetic field coils.
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atoms

In this chapter, we describe the realization of antiferromagnetic Heisenberg spin
chains using up to four fermionic atoms in two different hyperfine states in the
fermionization regime (Sect. 3.4.2). In contrast to the simulation of quantum
magnetism in the Mott-insulating state of the Hubbard model (Ch. 5) [Dua03,
Gre13, Har15], this method does not rely on the localization of single-particle
wave functions in an external periodic potential. Instead, a combination of the
Pauli principle and infinitely strong repulsive interactions forces the atoms to form
a chain along the axial direction of a strongly-elongated prolate optical dipole
trap (Sect. 4.3). The eigenstates of this chain are fully characterized by their
spin wave functions [Deu08, Mat08], which are governed by a Heisenberg Hamil-
tonian [Deu08, Mat08, Deu14, Vol14, Lev15]. The experiments presented in this
chapter constitute the first observation of quantum magnetism beyond nearest-
neighbor correlations in a system of ultracold fermionic atoms.

Outline

We start this chapter with an intuitive motivation of the theoretical concepts of
quantum magnetism in the fermionization regime (Sect. 6.1), which were formally
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introduced in Sect. 3.4.2. Afterwards, we discuss the spin-chain Hamiltonian for
our few-particle systems using the example of two spin-up and one spin-down
atoms. In Sect. 6.2, we describe the deterministic preparation of Heisenberg spin
chains consisting of up to four atoms.
The following sections describe two detection methods to identify the specific

state of the spin chains. First, in Sect. 6.3, we describe a tunneling technique
that allows us to measure the spin orientation of the outermost particle in the
trap. By comparing the results to a tunneling model for atoms in a spin chain,
we uniquely identify the state of the system. Second, in Sect. 6.4, we probe the
spatial wave function of the system by projecting one spin component on single-
particle trap levels. The resulting populations on the single-particle trap levels
reflect the symmetry of the spatial wave function and therefore, by measuring
these populations, we can again distinguish between different spin-chain states.
Both measurements reveal that we deterministically prepare the spin chains in
their antiferromagnetic ground state. Finally, in Sect. 6.5, we discuss how we can
use the tunneling of a single atoms to reach ferromagnetic spin-chain states.
Parts of this chapter have been published in Ref. [Mur15b].

6.1. Spin chains of ultracold atoms in the
fermionization regime

To realize a spin model, all states of the system must be fully characterized by
their spin wave function. In this section, we will motivate why this is true for
fermionic spin-1/2 atoms in the fermionization regime of infinitely strong inter-
actions (Sect. 6.1.2). We will see that for strong but finite interactions, the spin
model is still a good approximation and the system is governed by a Heisenberg
Hamiltonian. As an example, we will solve this Hamiltonian for two spin-up and
one-spin down atom first in a harmonic trap and then for more general trap ge-
ometries (Sect. 6.1.2).

6.1.1. The spin-chain picture
Wave functions for infinitely strong interactions

For infinitely strong repulsive s-wave interactions, the relative spatial wave function
between any two atoms in a system has to go to zero in order to ensure a finite
interaction energy. In a 1D environment, the atoms are therefore impenetrable
and their spatial ordering is fixed. As we have seen in Sect. 2.4, this is the regime
of fermionization, where the absolute of the spatial wave function of strongly-
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(a) S = 0, Sz = 0

(b) S = 1, Sz = 1 (c) S = 1, Sz = 0 (d) S = 1, Sz = −1

Figure 6.1.: Sketch of the spatial wave functions of two fermionic atoms in a har-
monic trap in the fermionization limit. (a) For two atoms in a spin-singlet con-
figuration, the relative spatial wave function between two atoms is symmetric. In
the fermionization regime, the infinitely strong interactions cause a kink in the
wave function and the atoms become impenetrable. (b-d) For two atoms in a
spin-triplet configuration, the spatial wave function is always antisymmetric and
therefore independent of the strength of the contact interactions. At fermioniza-
tion the absolute of all two-particle wave function is identical and the state can
fully by characterized by its spin wave function.

interacting atoms has to coincide with the absolute of the spatial wave function
of identical fermions [Gir60, Gir10]. However, for a multi-component system of
atoms, the internal structure of the atoms, i.e. their spin state, offers an additional
degree of freedom and the ground state of the system is degenerate [Deu08, Mat08].
Different states within this ground-state multiplet can now be distinguished by
their spin wave function. In Fig. 6.1 we demonstrate this fact for two atoms
in a harmonic trap. Although spin-singlet and spin-triplet states have the same
absolute spatial wave function, each of the four states has a different spin wave
function. This concept can be extended to systems of more than two atoms and
thereby allows to define a pure spin model (see Sect. 3.2.1 and App. A.1) [Deu08,
Mat08, Deu14, Lev15].

Exchange couplings at finite interactions

For strong but finite interactions (1� |g1D| <∞), the degeneracy in the ground-
state multiplet is lifted. In this case, two neighboring atoms with a symmetric
relative wave function are not completely impenetrable anymore and hence their
ordering in the trap can change (Fig. 6.2). Under the assumption that the spin-
chain picture is still valid, this can be described as an exchange process between
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(a) Tonks regime
(
− 1

g1D
< 0
)

(b) Super-Tonks regime
(
− 1

g1D
> 0
)

Figure 6.2.: Sketch of the spatial wave functions of two fermionic atoms in a spin-
singlet configuration for large but finite interaction strengths. Close to the limit of
fermionization, the atoms are not impenetrable anymore and can exchange their
position in the trap. (a) In the Tonks regime (−1/g1D < 0), this process lowers
the energy of a spin singlet. In a spin model such an energy shift is expressed by a
positive exchange coupling between the two spins. (b) In the super-Tonks regime
(−1/g1D > 0), the energy of two interacting atoms increases and can be described
by a negative exchange coupling.

two neighboring spins in the spin chain. As discussed in Sect. 3.2.2, such exchange
processes allow two spins in a singlet configuration to delocalize and thereby change
the energy of the system. In contrast, neighboring atoms with an antisymmetric
spatial wave function will always stay impenetrable and therefore spin triplets do
not contribute to a change of the energy. Following this argument, we conclude
that the state which has the largest energy shift for finite interactions must contain
the highest amount of spin-singlet correlations and therefore has the smallest total
spin (S = |N↑ − N↓|) of all states1. In the following, this state will be called the
antiferromagnetic (AFM) state (see Sect. 3.2.3).
In the Tonks regime of strong repulsive interactions, the energy of two atoms

in a spin singlet is smaller than in a spin triplet (see Fig. 2.8). The AFM state
is therefore the ground state, which according to Lieb-Mattis theorem [Lie62] is
the case for a positive exchange coupling (Jex > 0). For strong attractive inter-
actions, in the so-called super-Tonks regime, the interaction in a spin singlet raise
the energy of the systems and the AFM state is the highest excited state in the
multiplet. In this regime, the ground state is a ferromagnetic (FM) state with
spin-triplet correlations between all neighboring spins and a maximum total spin
of S = (N↑ + N↓)/2. The system can than be expressed as a spin-chain with
negative exchange couplings (J t < 0).

1In general, the spin-singlet correlations in such a state are not localized to any two neighboring
spins, but distributed over the whole system.
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6.1.2. Eigenstates and energies of three fermionized atoms

Spin-chain Hamiltonian

Since in a two-component system of ultracold fermions with s-wave contact interac-
tions, the SU(2)-symmetry of the individual atoms is conserved, the spin chains in
the fermionization limit are governed by the SU(2) symmetric Heisenberg Hamil-
tonian (see Eq. 3.25) [Mat08, Deu14]. For the example of two spin-up and one
spin-down atom this Hamiltonian can be written within the basis {|↑ ↑ ↓〉, |↑ ↓ ↑〉,
|↓ ↑ ↑〉} of all distinct spin permutations and is given by

H(3)
s = E

(3)
F 1 +


−Jex2 Jex2 0
Jex2 −Jex1 − Jex2 Jex1

0 Jex1 −Jex1

 . (6.1)

Here, E(3)
F is the energy of three noninteracting identical fermions and Jex1 (Jex2 )

is the exchange coupling between the left and the central (central and right) spin.
Following Eq. 3.26, the exchange couplings

Jexi ∝
n3

g1D
(6.2)

are proportional to the inverse 1D interaction strength and approximately propor-
tional to the local density cubed. While the latter leads to a dependence of the Jexi
on the trap geometry [Deu14, Vol14, Lev15], the proportionality to 1/g1D ensures
that Jexi > 0 (Jexi < 0) in the Tonks (super-Tonks) regime [Mat04a, Mat08, Deu14].

Eigenstates and energies in a harmonic trap

Diagonalizing the Hamiltonian in Eq. 6.1 leads to a multiplet of three states. Since
the exchange coupling depend on the local density in the trap, the eigenstates differ
for different trap geometries. We will first calculate the eigenstates in a harmonic
trap, before turning to the case of a tilted potential, which is important for the
tunneling measurements in Sect. 6.3.
In a harmonic trap, the density distribution is symmetric and hence, accord-

ing to Eq. 6.2, the two exchange couplings are equal (Jex1 = Jex2 ). In this case,
the eigenstates are the antiferromagnetic (AFM), the intermediate (IM), and the
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Figure 6.3.: Energies of two spin-up and one spin-down atom in the fermionization
regime in a harmonic 1D trap. The red lines show the linear solutions of the
Heisenberg spin-chain model, which are good approximations of the exact energies
(black lines) for |g1D| � 1 (see Fig. 2.9). In the Tonks regime below the CIR
(−1/g1D < 0), the antiferromagnetic (AFM) state (S = |N↑ −N↓| = 1/2) has the
lowest energy, while in the super-Tonks regime above the CIR (−1/g1D > 0) it is
the highest excited state of the multiplet. For any value of g1D, the noninteracting
ferromagnetic (FM) state (S = (N↑ + N↓)/2 = 3/2) has the same energy (E(3)

F =
N2/2 = 4.5~ω||) as three identical fermions.

ferromagnetic (FM) state, which are given by

|AFM〉 = 1√
6
(
|↑ ↑ ↓〉 − 2 |↑ ↓ ↑〉+ |↓ ↑ ↑〉

)
|IM〉 = 1√

2
(
|↑ ↑ ↓〉 − |↓ ↑ ↑〉

)
|FM〉 = 1√

3
(
|↑ ↑ ↓〉+ |↑ ↓ ↑〉+ |↓ ↑ ↑〉

)
.

(6.3)

The energies of these states are E(3)
F − 3Jex for the AFM state, E(3)

F − Jex for
the IM state, and E

(3)
F for the FM state as shown in Fig. 6.3. All three states

of the multiplet are degenerate at g1D = ±∞, where they have the same energy
(E(3)

F = N2/2 = 4.5~ω||) as three noninteracting identical fermions [Gir07]. Due to
the proportionality of the exchange couplings to 1/g1D, all spin-chain states have
linear energy shifts in 1/g1D, with slopes according to the Heisenberg model. As
shown in Fig. 6.3, the solutions of Eq. 3.25 are good approximations of the exact
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energies of the few-particle system if 1/g1D � 1 is fulfilled2.

Eigenstates and energies in an asymmetric trap

In Sect. 6.3 we will use a tilted trap to probe the spin distribution in our system
in a tunneling measurement. Since the density distribution in these measurements
is asymmetric, the exchange couplings are no longer equal and the eigenstates
and their energies are changed compared to the harmonic case. In the basis of
eigenstates in a harmonic trap, which were defined in Eq. 6.3, the difference in the
exchange couplings leads to a coherent mixing of the AFM and the IM state. The
FM state is decoupled due to its different spin symmetry3. The eigenstates in an
asymmetric trap can be written as [Mur15b]

|AFM ′〉 = cos(α/2) |AFM〉 − sin(α/2) |IM〉
|IM ′〉 = cos(α/2) |IM〉+ sin(α/2) |AFM〉
|FM ′〉 = |FM〉 ,

(6.4)

where the mixing angle α is given by

α = arctan
√

3
(
Jex1 − Jex2
Jex1 + Jex2

)
. (6.5)

For the tilted trap during our tunneling experiments, the exchange couplings Jex1
and Jex2 were calculated numerically by evaluating Eq. 3.26, leading to typical
values of α ≈ 20 ◦.

Spin densities

Although in the fermionization regime, the total density is the same for all states
of the system, the spin densities of the different states differ as shown in Fig. 6.4.
These continuous spin densities of atoms in the fermionization regime can be
mapped onto discrete probabilities of the individual spins in the spin chain to
point up or downwards [Deu08, Deu14]. For any given spin state |χ〉, the proba-

2For an arbitrary atom number N , the condition for the spin-chain regime is
√
N/g1D � 1,

which can be transformed into
√
NJex

i � ωax for all i, where ωax is the axial trapping
frequency. The spin-chain regime therefore gets more narrow for growing atom numbers.

3The ferromagnetic state of the (2, 1) system has a total spin of S = 3/2 while the AFM and
the IM state both have a total spin of S = 1/2.
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6.2. Preparation of antiferromagnetic Heisenberg spin chains

(a) Ferromagnetic (b) Intermediate (c) Antiferromagnetic

Figure 6.4.: Total density and spin densities of two spin-up and one spin-down
atom in the fermionization regime in a harmonic trap. The dark gray areas depict
the single-particle contributions to the total density (light gray). The dark green
and dark blue areas depict the single particle contributions to the spin densities
(light green for spin up and light blue for spin down). While the total density is
equal for all states in the fermionization regime, their spin densities differ.

bility Π(i)
m for the ith spin to be in spin state m can be calculated as

Π(i)
m =

∑
m1,...,mN ={↑,↓}

∣∣∣ 〈m1, ...,mN |χ〉
∣∣∣2 δm,mi

. (6.6)

These discrete probabilities of a spin chain in a harmonic trap are shown Fig. 6.5.
By multiplying the spin probability of the ith site with the continuous density
distribution of the ith of three noninteracting identical fermions in a harmonic
trap, the continuous spin-densities as shown in Fig. 6.4 can be recovered [Deu08].
In Sect. 6.3 we will use a tunneling measurement to detect the probability Π(N)

↓
of the outermost spin in a tilted trap to point up or down. As we will see, this
information is sufficient to distinguish between the different spin states of a (2, 1),
a (3, 1), and a (2, 2) system.

6.2. Preparation of antiferromagnetic Heisenberg
spin chains

To realize Heisenberg spin chains of N↑ spin-up and N↓ spin-down atoms, we start
by preparing noninteracting ground-state systems of atoms in the two energetically
lowest hyperfine states. We define spin-up atoms as |↑〉 = |mS = −1/2,mI = 0〉
and spin-down atoms as |↓〉 = |mS = −1/2,mI = 1〉 (see Fig. A.1). This prepara-
tion technique is explained in Sect. 4.4 and Ref. [Ser11b]. After the preparation
of the noninteracting system at 527 G, we ramp the magnetic offset field with a
constant rate to values close to the confinement-induced resonance at 780 G (see
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6. Heisenberg spin chains of few atoms

(a) Ferromagnetic (b) Intermediate (c) Antiferromagnetic

Figure 6.5.: Probabilities of the individual spins in a Heisenberg spin chain of
two spin-up and one spin-down atoms in a harmonic trap to point up (green)
or down (blue). Starting with the wave functions of the antiferromagnetic, the
intermediate, and the ferromagnetic state (Eqs. 6.3), the spin probabilities can be
calculated using Eq. 6.6.

Sect. 2.2.4 and Fig. 2.6) and thereby adiabatically increase the interaction strength
in the system. As we will show in the next sections, the systems will occupy the
respective AFM spin-chain state in the limit of strong repulsion and also stay in
this state when crossing the CIR.
Below the CIR, in the Tonks regime of strong repulsive interactions the ground

state of each multiplet is an AFM state of minimum total spin [Lie62]. The adia-
batic connection between two-component ground-state systems of noninteracting
fermions in a harmonic trap and the respective ground state in the limit of strong
interactions has been shown in numerical calculations [Gha13, Sow13, Lin14] and
by the investigation of the systems symmetries [Har14]. When crossing the CIR
to the super-Tonks regime [Ast05, Hal09, Gua10, Zür12b] without the presence of
an external symmetry breaking that couples the states, the system will stay in the
AFM state [Cui14], which then is the highest excited state of its multiplet. This
perfect crossing of the states at the position of the CIR can also be explained in
the spin-chain picture. For g1D → ∞, all exchange couplings Jexi are zero, (see
Eq. 6.2) and therefore the spin distribution is in the system is frozen.
It is important to note that this preparation scheme only works because the

initial noninteracting state already contains the necessary spin correlations. We
will illustrate this fact, using the (N↑ = 2, N↓ = 2) system.
The ground state of a four-site Heisenberg spin chain is a spin singlet of S = 0

[Lie62]. As we have seen in Sect. 3.2.3, this system can be created by adiabatically
combining two independent two-site Heisenberg spin chains, which both have a spin
of S = 0, respectively. A similar process happens when ramping the interaction
strength from the noninteracting initial state to the limit of strong repulsion. In
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6.3. Probing the spin distribution

the initial noninteracting state of the (2, 2) system, one spin-up and one spin-
down atom occupy each of the two lowest single-particle trap levels. Independent
of the trap level, the relative spatial wave function of two atoms on one level is
symmetric and therefore their spin wave function has to be antisymmetric. The
noninteracting ground state of the (2, 2) system can hence be seen as a state of two
independent spin singlets, which necessarily makes the four-particle system a spin
singlet, too. When ramping on the interaction strength, couplings between the
atoms on different trap levels emerge and the spin-singlet correlations distribute
between any two distinguishable atoms in the system. Still the total spin symmetry
of S = 0 of the four-particle system is conserved for any process that does not
contain an external symmetry breaking4.
In the next two sections, we will confirm these arguments by measuring the

states of the system in the spin-chain regime.

6.3. Probing the spin distribution

6.3.1. Tunneling measurements
To probe the spin distribution of the spin chains and thereby identify their state,
we measure the probability of the outermost particle in the trap to point up or
down. To do this, we use a tunneling measurement that exploits the fact that in
the fermionization regime the atoms are impenetrable. Hence, when we tilt the
trapping potential along its axial direction, only the outermost atom can tunnel
out of the trap at any time. The spin orientation of the atoms that remain in the
trap can then be measured and compared to a tunneling model. In this section,
we describe how this detection scheme allows us do determine the initial state of
the spin-chain before the tunneling process.
The experimental realization of this tunneling measurement is closely related to

the preparation scheme explained in Sect. 4.4. We apply a magnetic field gradient
of B′ = 18.92 G/cm along the longitudinal axis of the microtrap (see Eq. 4.6)
and thereby tilt the trap as shown in Fig. 6.6. This creates a potential barrier
between the in-trap states and the continuum of states outside of the trap. By
lowering the light power in the trapping beam, we effectively lower the height
of this potential barrier and thereby allow the outermost atoms to tunnel out of

4In the spin-chain regime, a differential magnetic field gradient between the two spin species
would be such an external symmetry breaking [Cui14]. However, since close to the position
of the confinement-induced resonance at about 780 G the 6Li atoms are deep in the Paschen-
Back regime (Fig. A.2), their magnetic moments are nearly identical (Fig. A.3). The spin
symmetry of the chains is therefore very robust.
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6. Heisenberg spin chains of few atoms

(a) Before tunneling (b) After tunneling

E

Figure 6.6.: Density distribution of three atoms in the fermionization regime before
(a) and after (b) the tunneling of one atom with energy E. The dark gray areas
show the single-particle contributions to the total density (light gray). In the
fermionization regime, the atoms are impenetrable and only the leftmost atom
can leave the trap in the tunneling process.

the trap. We carefully adjust the barrier height and the time until we stop the
tunneling process to let exactly one atom (for an initial (N↑ = 2, N↓ = 1) or
(3, 1) system) or two atoms (for an initial (2, 2) system) tunnel out of the trap5.
Finally, we measure the number of spin-up atoms that remain in the trap (see
Sect. 4.5) to deduce the spin orientation of the tunneled atoms. We define spin-
down tunneling as the process in which all spin-down atoms left the trap during
the tunneling process and the final in-trap state is only consisting of spin-up atoms.
By repeating this measurement at different values of the magnetic offset field, we
measure the probability P↓(−1/g1D) of spin-down tunneling as a function of the
inverse interaction strength as shown by the blue data points in Fig. 6.7.

6.3.2. Tunneling model
In order to understand the results of our tunneling measurement and thereby
identify the state of the spin-chain, we compare these results to a model for the
tunneling of atoms in the regime of strong interactions. This model was developed
in collaboration with Frank Deuretzbacher and Luis Santos in Ref. [Mur15b] and
will be explained in this section using the example of a (2, 1) system. We will first
explain how P↓ is calculated for tunneling at the position of the CIR and then
discuss the case of large but finite 1D coupling constants. The comparison of the
measured data and the tunneling model is the topic of Sect. 6.3.3.
The tunneling model assumes an initial N -particle state |i〉 and a final state
|f, t〉 ≡ |f〉 ⊗ |t〉 after the tunneling of one atom. Here, |f〉 is the final in-trap
state of N − 1 spins and |t〉 is the spin-orientation of the tunneling atom. Both
|i〉 and |f〉 are assumed to be eigenstates of the spin chain Hamiltonian defined

5A list of the trap parameters during this tunneling measurement can be found in App. A.5.
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6.3. Probing the spin distribution

(a) Probability of spin-down tunneling of (2, 1) System

(b) (3, 1) System (c) (2, 2) System

Figure 6.7.: Probability of spin-down tunneling for a (N↑ = 2, N↓ = 1), (3, 1),
and (2, 2) system as a function of the inverse interaction strength. For (2, 1)
and (3, 1) systems [(2, 2) systems], we let a single atom [two atoms] tunnel from
the trap and measure the probability that the spin of this atom [of both atoms]
points down. The blue and gray points show the measured probabilities of spin-
down tunneling. The red lines show the solutions of the tunneling model (see
Sect. 6.3.2) for the antiferromagnetic state (solid), the intermediate state (dotted)
and the ferromagnetic state (dashed). For the sake of clarity, only the theory of
the AFM states has been plotted for the (3, 1) and the (2, 2) system. The gray
points in the (2, 1) system indicate a resonance effect between the different stats
at the position of the CIR. The experimental data has been corrected for three
and four-body losses. The effect of this correction, which is on the order of few
percent and does not significantly alter the presented data is shown in Fig. A.4.
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(a) Ferromagnetic (b) Intermediate (c) Antiferromagnetic

Figure 6.8.: Probabilities of the individual spins of a (2, 1) spin chain in a tilted
trap to point up or down. The green (blue) points indicate the probability of the
individual spins to point up (down). The asymmetry of the density distribution in
the tilted trap of our tunneling measurements (Fig. 6.6) results in a difference of the
two exchange couplings in the system (Jex1 > Jex2 ). In contrast to the harmonic
case in Fig. 6.5, this leads to a coherent coupling of the antiferromagnetic and
intermediate state with a mixing angle of α ≈ 20 %.

in Eq. 3.25. In this notation, P↓ is the probability to tunnel into the final state
|f, t〉 = |↑ · · · ↑, ↓〉. In the following we will concentrate on the example of two
spin-up and one spin-down atom in the initial state.

Tunneling at Fermionization

Directly at the position of the CIR, the expected value of spin-down tunneling
P↓(0) in a (2, 1) system coincides with the probability Π(3)

↓ of the outermost spin
of the initial state to point down (see Eq. 6.6) [Deu14, Vol14, Lev15]. Since during
the tunneling process the trap is tilted (Fig. 6.6), the total density is asymmetric
and therefore the exchange couplings Jexi are unequal (Eq. 6.2). This asymmetry
will influence the spin composition of any spin chain with more than two atoms
and is therefore important for the initial (2, 1) system.
For a given trapping potential, the exchange couplings Jex1 and Jex2 can be numer-

ically calculated using the exact equation in Eq. 3.26. For typical trap parameters
during our tunneling measurement (see App. A.5), this results in a mixing angle
α of approximately 20◦ between the AFM and IM state of a harmonic potential
(Eq. 6.5). The resulting spin states have the spin probabilities shown in Fig. 6.8.
The probability Π(3)

↓ of the third spin to point down is approximately 8 % for the
AFM state, 59 % for the IM state, and 33 % for the FM state. We will compare
these calculations to our measurement results in Sec. 6.3.3.
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6.3. Probing the spin distribution

Figure 6.9.: Energies of two (green) or three (red) atoms in the limit of strong in-
teractions. The (2, 1) system is initially prepared in the noninteracting (−1/g1D =
−∞) ground state and afterwards ramped to strong interactions. Then, one atom
is allowed to tunnel out of the trap. The blue arrows indicate the predominant
tunneling channels in the Tonks (left) and the super-Tonks (right) regime for a
(2, 1) systems in the antiferromagnetic state.

Tunneling at finite interaction strength

Away from the limit of fermionization, the probability of spin-down tunneling is not
simply given by the orientation of the outermost spin anymore. This is due to the
energy splitting of the final state multiplet for finite values of −1/g1D. Tunneling
into final states with lower energy is now favorable as shown by the blue arrows
in Fig. 6.9. A change of the interaction strength therefore strongly influences the
measured probability of spin-down tunneling although the spin orientations are
approximately constant within the regime of strong interactions.
To include this fact in the tunneling model, the tunneling rates Ti,f (−1/g1D) for

specific tunneling channels |i〉 → |f〉 are calculated as a function of the interac-
tion strength. Ti,f (−1/g1D) strongly depends on the energy Ei,f (−1/g1D) of the
tunneling particle and can be written as

Ti,f ∝
∣∣∣〈i|f, t〉∣∣∣2 Ei,f e−2γ(Ei,f ), (6.7)

where the dependence of Ti,f and Ei,f on −1/g1D was omitted. The energy Ei,f
is given by the difference of the energies of the initial three-particle and the final
two-particle state (Ei,f = Ei−Ef ). Ei and Ef are calculated numerically by inter-
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polating between spin-chain solutions at −1/g1D = 0 and the weakly interacting
limits at g1D → ±0. [Gha15]. The energy-dependent tunneling parameters γ were
calculated by means of a WKB calculation [Mur15b].
Finally, the probability of tunneling from state |i〉 to state |f, t〉 is given by

Pi,f = Ti,f(∑
f ′ Ti,f ′

) , (6.8)

where the sum in the denominator is over all possible final states. Using Eq. 6.8,
the probability to tunnel into the spin-polarized in-trap state |f〉 = |↑ ↑〉, which for
the (2, 1) system is equivalent to spin-down tunneling, is calculated for an initial
AFM, IM, or FM state. The results of these calculations are shown as red lines in
Fig. 6.7(a).

Results of the tunneling model

We will shortly discuss the limiting values of the results of the tunneling model
for very weak and very strong interactions.
At the position of the CIR, where the interaction strength is infinite, all final

states are degenerate and the energy dependent terms drop out of equation Eq. 6.8.
In this case the sum in the denominator of Eq. 6.8 amounts to one and the proba-
bility of spin-down tunneling is given by Pi,f =

∣∣∣〈i| ↑ ↑, ↓〉∣∣∣2. According to Eq. 6.6,
this probability is equivalent to Π(3)

↓ and we retrieve the result that at the position
of the CIR, the probability of spin-down tunneling is equal to the probability of
the rightmost spin in the chain to point down.
Far above and far below the CIR, the energy dependent terms dominate the

result of the rate equations in Eq. 6.7 and strongly favor tunneling into final states
with lower energies. Below the CIR, the spin-singlet state

∣∣∣1/√2 (↑ ↓ − ↓ ↑)
〉
has

the lowest energy of all two-particle states and therefore tunneling of spin-up atoms
is enhanced. For both the AFM and the IM state of the (2, 1) system this leads
to a limiting probability of P↓ = 0 in the limit of weak repulsive interactions. For
the initial FM state P↓ stays finite since the spin-overlap to the final spin-singlet
state is zero.
Above the CIR, the FM two-particle states

∣∣∣1/√2 (↑ ↓ + ↓ ↑)
〉
and |↑ ↑〉 have

the lowest energy of their multiplet. The ratio between tunneling into these two
final states is determined by their respective spin-overlaps to the initial state. For
both the AFM and the IM state of the (2, 1) system, Eq. 6.8 predicts a probability
of 66.6 % to tunnel into state |↑ ↑〉 far above the CIR.
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6.3.3. Comparison of measurement and theory
The (2,1) system

To identify the state of the (2, 1) system as a function of the interaction strength,
we compare the measured values of spin-down tunneling [blue and gray data points
in Fig. 6.7(a)] with the theoretical predictions (red lines). The comparison clearly
shows that the (2, 1) system is in the AFM state both below (−1/g1D < 0) and
above the CIR (−1/g1D < 0). This confirms that the different spin-chain states
have a crossing at the position of the CIR that allows us to nonadiabatically
follow the AFM state. The trend of the blue data points, which crosses the CIR at
approximately 10 % is also in good agreement with the calculated probability of
about 8 % for the outermost spin in the AFM state to point downwards (Fig. 6.8).
However, the gray data points, which were taken at small positive values of
−1/g1D are significantly above the trend of the blue data points. We suspect that
this steep increase in the probability of spin-down tunneling close to the resonance
is due to a weak coupling between the different states of the (2, 1) system during the
tunneling process. Since at the magnetic field values that correspond to the gray
points, three-body trap losses were significantly increased, we expect a coupling
between the |AFM ′〉 and the |IM ′〉 state via an intermediate molecular state with
center-of-mass excitation to be the dominant coupling process. Coupling to these
molecular states close to the CIR is strongly enhanced in the anharmonic potential
of our tilted trap [Sal13].

The (3,1) and (2,2) system

Also for the (3, 1) system in Fig. 6.7(b), the general trend of the data points agrees
with the predictions of the tunneling model for the AFM state. However, above
resonance the data points are significantly below the theory. We suspect that
the reason for this discrepancy is that above the CIR the energy of the tunneling
particle was above the potential barrier in these measurements. In this case,
excited states of the final three-particle system would not be effectively suppressed
by the energy-dependent terms in the rate equations (Eq. 6.7). In Sect. 6.5, we
will see that for a larger barrier height during the tunneling process all excited
state are suppressed and the final state is purely ferromagnetic.
For the (2, 2) system two atoms were allowed to tunnel from the trap and the

probability of spin-down tunneling was defined as the probability of both spin-
down atoms leaving the trap. In the tunneling model, consecutive single-particle
tunneling was assumed. Again, the data points shown in Fig. 6.7(c) agree with
the theoretical prediction for the antiferromagnetic initial state.
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6. Heisenberg spin chains of few atoms

6.4. Probing the spatial wave function of the spin
chains

To independently confirm the results of the previous tunneling measurement,
we identify the state of strongly-interacting (2, 1) and (3, 1) systems by probing
their spatial wave functions. Specifically, we measure the projection of the spin-
down atom in an interacting system on single-particle trap levels. The resulting
occupation-number distribution on single-particle trap levels strongly depends on
the symmetry of the spatial wave function and therefore allows for the identifica-
tion of the state.

Projecting on single-particle trap levels

The relative spatial wave function of two distinguishable atoms at g1D → +∞ is
either symmetric with a cusp between the atoms or antisymmetric with a smooth
zero crossing (Fig. 6.1). Although both configurations result in the same energy,
the expansion of these wave functions in single-particle trap levels leads to very
different results. While the smooth zero crossing can be expressed by only con-
sidering the two lowest states in the trap, a sharp cusp can only be realized by
including highly excited trap levels. Since for any number of atoms the wave func-
tion of the ferromagnetic state has only smooth zero crossings between neighboring
atoms, and all other states can be generated by successively adding cusps6, the
expansion of the spatial wave function in single-particle trap levels is a distinct
measure for the state of the system.
To probe the occupations on single-particle trap levels, we project the wave func-

tion of the spin-down atom in a strongly-interacting (2, 1) or (3, 1) system on single-
particle trap levels. To do this, we first prepare the respective noninteracting sys-
tems and ramp them into the regime of strong interactions. Then, we remove the
spin-up atoms with a short pulse of light. The light is σ+-polarized and resonant to
the D2 transition of the spin-up atoms (|↑〉 = |j = 1/2,mj = −1/2; I = 1,mI = 0〉
to |j = 3/2,mj = −3/2; I = 1,mI = 0〉). We confirm that within our experimental
fidelity all spin-up atoms are removed from the trap by the light pulse, while only
3 % of the population of spin-down atoms is lost. With 15 µs, the pulse is much
shorter than the inverse trap frequency along the axial direction of approximately
1 ms, which sets the timescale of redistribution in the trap.

6States with different numbers of cusps are not necessarily orthogonal and have to be diagonal-
ized to construct an orthogonal basis.
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(a) (N↑ = 2, N↓ = 1) system
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(b) (N↑ = 3, N↓ = 1) system
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Figure 6.10.: Occupation-number distribution of the spin-down atom in strongly
interacting (2, 1) or (3, 1) systems. The wave function of the spin-down atom is
projected on single-particle trap levels by a short pulse of light. Blue circles denote
the measured population on different trap levels. Red and gray symbols show the
theoretical predictions for the AFM state (red circles), the FM state (gray squares)
and the intermediate states (gray diamonds). Both measurements were taken in
the super-Tonks regime above the CIR (−1/g1D = 0.586 ± 0.014 for the (2, 1)
system and −1/g1D = 0.536± 0.013 for the (3, 1) system).

Measuring the occupancies on single-particle trap levels

We measure the resulting occupation numbers on single-particle trap levels by
using the spilling technique that was introduced in Sect. 4.4. We spill all population
above a certain trap level i and measure the number of atoms that remain in the
trap (Sect. 4.5). Since we perform this measurement on the spin-down atom in
a (2, 1) or (3, 1) system, the measured atom number can either be zero or one.
By repeating this measurement several hundred times for each of the few lowest
trap levels, we detect the mean atom number Ni on trap levels 0 to i. While N0
directly reveals the mean occupancy on the ground state, we subtract Ni−1 from
Ni to obtain the mean occupancy on trap level i.
We correct the measured mean atom numbers Ni of spin-down atoms for the

finite fidelity of our experiment. To do this, we measure the mean atom number
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Nall in a trap that still contains many trap levels. Ideally, Nall should be one, but
due the finite fidelity of the preparation of the initial state and the detection of the
final atom number, we measure typical values of Nall ≈ 0.9. We correct each Ni by
dividing it by Nall. A comparison of corrected and uncorrected occupation-number
distributions can be found in App. A.5.

Comparison of experiments and theory

We compare the results of the occupation-number measurement (blue points in
Fig. 6.10) to theoretical predictions for the different states (red and gray symbols).
These predictions were obtained by numerical diagonalizations of the interacting
systems [Sow13, Deu14, Lin14] performed by Johannes Bjerlin and Stephanie Rei-
mann [Mur15b]. For both the (2, 1) and the (3, 1) system, the occupation-number
distributions clearly agree with the predictions for the respective AFM state. Since
the measurements were taken above the CIR (−1/g1D = 0.586±0.014 for the (2, 1)
system and −1/g1D = 0.536± 0.013 for the (3, 1) system), we conclude that both
systems follow the antiferromagnetic state throughout the whole fermionization
regime.

6.5. Tunneling into ferromagnetic spin states
So far, we only discussed the preparation and identification of AFM states. In
this section, we will describe how we can use the tunneling of a single atom to
generate two and three-praticle ferromagnetic states. To detect the FM states, we
will use the fact that in a system with only contact interactions, FM states are
always noninteracting.
The tunneling model described in Sect. 6.3.2 predicts that for the tunneling of

atoms out of the trap, final in-trap states with lower energies are favored. In the
super-Tonks regime of (−1/g1D > 0), the FM states have the lowest energy in each
few-particle system (Fig. 6.9). Far above the CIR, the tunneling channels leading
to FM final states therefore dominate all other tunneling channels. When starting
from a N-particle initial state, the tunneling of a single atom can therefore be used
to create a FM (N−1)-particle state, if the spin overlap of the initial state and the
final FM state is nonzero. Specifically, an initial (N↑ = 2, N↓ = 1) [(3, 1)] system
in the AFM state will tunnel into a FM two-particle [three-particle] in-trap state
for tunneling far above resonance.
For both the (2, 1) and the (3, 1) system, different FM final states are reached by

the tunneling of a single atom. The ratio between these final states only depends
on the respective spin overlaps as specified by Eq. 6.7 and Eq. 6.8. Here, the
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(a) Two-particle FM state
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Figure 6.11.: Ferromagnetic states. Measurement of the mean atom number per
trap level (blue circles) and expectations for the states of the ground-state multiplet
(red and gray symbols). (a) Final two-particle state of an initial (2, 1) system
after the tunneling of a single atoms at −1/g1D = 0.553± 0.015. (b) Final three-
particle state of an initial (3, 1) system after the tunneling of a single atoms at
−1/g1D = 0.553± 0.015. In both cases the mean atom number per trap level was
measured after ramping the coupling constant back through the fermionization
regime to g1D = 0.

probability of tunneling into the spin-polarized final state (|↑ ↑〉 for the final two-
particle system and |↑ ↑ ↑〉 for the final three-particle system) is identical to the
probability of spin-down tunneling. Therefore, the probability of an initial (2, 1)
[(3, 1)] system in the AFM state far in the super-Tonks regime to tunnel into the
spin-polarized final state is 66.6 % [75 %] (see Fig. 6.7). In the remaining 33.3 %
[25 %] of cases, the systems tunnel into the FM state that still contains one spin-
down atom [1/

√
2
(
|↑ ↓〉+|↓ ↑〉

)
for the final two-particle state and 1/

√
3
(
|↑ ↑ ↓〉+

|↑ ↓ ↑〉+ |↓ ↑ ↑〉
)
for the final three-particle state].

As for the previous experiments, we prepare noninteracting (2, 1) and (3, 1)
systems at a magnetic field of 527 G (Sect. 4.4). Afterwards, we ramp the magnetic
field to values above 1200 G, and thereby bring the systems into the super-Tonks
regime. As confirmed in the last sections, this ramp connects the noninteracting
few-atom systems to the respective AFM states in the spin-chain regime. We
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6. Heisenberg spin chains of few atoms

tilt the trapping potential of the (2, 1) [(3, 1)] system at an interaction strength
of −1/g1D = 0.553 ± 0.015 [−1/g1D = 0.495 ± 0.015] and thereby allow exactly
one atom to leave the trap. The trap parameter during this tunnel process is
p = 0.846± 0.025 for the (2, 1) system and p = 0.759± 0.023 of the (3, 1) system.7
After the tunneling process, we ramp the final (N − 1) particle systems back
through the fermionization regime and to 527 G. Then, we measure the mean
atom numbers on the few lowest trap levels (Sect. 4.5).
The results of this measurement are shown in Fig. 6.11. For both the initial

(2, 1) and (3, 1) system, the final (N − 1)-particle states have approximately one
atom on each of the (N − 1) energetically lowest trap levels. By comparing this
result to the gray and red symbols, which show the expected level occupancies for
the noninteracting states of the ground-state multiplet (see Fig. 2.8 and Fig. 2.9),
we conclude that both systems predominantly occupy the highest excited states
of their respective multiplet. In both cases, this highest excited state is connected
to the noninteracting ferromagnetic state. By letting a single atoms tunnel from
the trap, we have therefore prepared ferromagnetic states of two or three atoms.

7Importantly, the height of the tunneling barrier during the measurement of the (3, 1) system
is significantly higher than for the measurements on the (3, 1) system in Sect. 6.3. Tunneling
into the intermediate three-particle final states, which caused the deviation of the experi-
mental and theoretical values in Fig. 6.7(b), should therefore be strongly suppressed in this
measurement.
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7. Conclusion and Outlook
In this thesis, we reported on two separate experiments demonstrating the deter-
ministic preparation of magnetically ordered states in systems of few fermionic
atoms. Both experiments open up compelling possibilities of assembling quantum
many-body systems from individually prepared building blocks. They are there-
fore part of a novel bottom-up approach to the simulation of quantum many-body
systems with quantum gas experiments.
In the first experiment, we simulated the two-site Hubbard model by trapping

two fermionic atoms in a double-well potential (Ch. 5) [Mur15a]. To realize this
potential, a setup for the generation of arrays of optical microtraps was imple-
mented during the course of this thesis. Using tunneling measurements, we cal-
ibrated all parameters of the two-site Hubbard model, which allowed us to fully
predict dynamic and static properties of the system. Furthermore, we demon-
strated the deterministic preparation of ground-state Hubbard systems consisting
of two atoms in a spin-singlet configuration with a fidelity exceeding 90 %. Using
a magnetic Feshbach resonance, we introduced repulsive (attractive) interactions
between the atoms and observed the crossover into a two-particle Mott-insulating
(charge-density wave) state. In the regime of strong repulsion, where single-particle
tunneling is suppressed, we directly measured the influence of superexchange in-
teractions on the energy of the system. We thereby demonstrated the applicability
of the Heisenberg Hamiltonian, which emerges as an effective Hamiltonian in the
Mott-insulating regime of the Hubbard model.
In the second experiment, we realized a novel approach for the simulation of

antiferromagnetic Heisenberg spin chains with ultracold atoms (Ch. 6) [Mur15b].
In this approach, spin chains are created by introducing repulsive interactions
between atoms in a strongly-elongated trapping potential [Deu14, Vol14]. In the
fermionization limit of infinitely strong repulsion, the atoms self align in the poten-
tial [Gir60, Deu08, Mat08], comparable to electrons in a one-dimensional Wigner
crystal [Mat04a]. The spin distribution of the atoms and the energy splitting of
different eigenstates is then determined by a Heisenberg Hamiltonian. Following
these predictions, we deterministically prepared Heisenberg spin chains of up to
four atoms. We introduced two independent measurement techniques to test the
spin distribution or the spatial wave function of the atoms and concluded that
the spin chains form antiferromagnetic states. These measurements constitute
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the first observation of quantum magnetism with ultracold fermions that exceeds
nearest-neighbor correlations.
Since in the two experiments of this thesis, different systems were used to simu-

late the Heisenberg model, their combination reveals general properties of quantum
magnetism that are independent of its specific realization.
In both experiments, magnetism was observed in the limit of strong repulsive

interactions in atomic systems that were prepared in their motional ground state.
The repulsion lead to the separation of single-particle wave functions and thereby
to the formation of either a Mott-insulating or a fermionized state. In both cases,
the energy scale of spin excitations, which depends on the wave function overlap
of neighboring atoms vanished, while the energy scale of density excitations stayed
finite. This lead to a complete separation of spin and density degrees of freedom,
which allowed us to fully describe the atomic samples as pure spin systems. By
interpreting exchange processes between neighboring atoms as effective magnetic
interactions, we used the energy splitting between different states to simulate the
Heisenberg Hamiltonian. In both experiments, the specific properties of the sys-
tems that were used in this simulation only entered the Heisenberg Hamiltonian
by influencing the strength of the superexchange interactions.

Assembly of many-body Hubbard system

The experiments in this thesis reveal the compelling possibility of assembling
atomic quantum many-body systems from individually prepared building blocks.
Thereby, the double-well system of Ch. 5 can be seen as the fundamental build-
ing block of ground-state Hubbard or Heisenberg systems [Sac08]. By separately
preparing several of these double-well systems and adiabatically combining them
into a single lattice, low-entropy Hubbard systems of finite size could be realized.
Similar techniques could also be applied to optical-lattice experiments, in order to
generate even larger systems [Föl07, Lub11, Gre13].
In these ideas, the initial preparation of two atoms in the ground-state of a

single potential well [Ser11b], which was the starting point for all our double-well
experiments, plays a crucial role. For one, the atoms are directly prepared in a
spin-singlet configuration, without the need for any entanglement operations. This
is of great importance for the assembly of ground-state spin-1/2 systems, since it
ensures the existence of an adiabatic connection between the separated building
blocks and the combined system (see Sect. 3.3) [Lie62, Mat01, Lub11]. Further-
more, due to the dimple trick applied in the preparation scheme (see Sect. 4.4),
we selected only the lowest-entropy fragment of the atomic sample. This could be
an important key in circumventing the temperature limitations of current lattice
experiments with fermionic atoms [McK11].
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7. Conclusion and Outlook

Plaquette states

A first application of this approach in our experiment could be the generation of
eigenstates on a quadratic plaquette of four wells. For two spin-up and two spin-
down atoms in the system, the ground state on such a plaquette is the minimum
example of a s-wave resonating valence bond (RVB) state and given by∣∣∣χ0

L

〉
⊗
∣∣∣χ0
R

〉
+
∣∣∣χ0
T

〉
⊗
∣∣∣χ0
B

〉
, (7.1)

where |χ0
i 〉 are two-particle spin-singlet states and L, R, T , and B represent the

left, right, top, and bottom pair of wells. This s-wave RVB state is not the only
four-particle spin singlet on a plaquette. By exchanging only two atoms along one
of the four sides of the plaquette, the ground state could be transformed into the
d-wave RVB state ∣∣∣χ0

L

〉
⊗
∣∣∣χ0
R

〉
−
∣∣∣χ0
T

〉
⊗
∣∣∣χ0
B

〉
. (7.2)

Such RVB states, in which the singlet pairs fluctuate between different config-
urations, have attracted great attention in recent years due to their proposed
connection to high-temperature superconductivity [And87].
Although RVB states could already be prepared with ultracold bosonic atoms

in an optical-lattice experiment [Nas12], their realization in our experiment is still
a tantalizing goal. While for bosonic atoms, the s-wave RVB state is the highest
excited plaquette state and can only be generated by a series of state-manipulation
processes [Nas12], it would for fermionic atoms automatically emerge from the
combination of two ground-state double-well systems. This makes fermionic RVB
systems scalable in size. Additionally, our ability to deterministically prepare a
specific atom number would allow us to introduce a controlled amount of doping in
the system. Combining these two advantages, d-wave pairing of holes in a system
of six atoms on two coupled plaquettes could be observed [Tre06]. This is of
particular interest, since the condensation of d-wave pairs in slightly underdoped
antiferromagnetic materials is by many believed to be the fundamental mechanism
behind high-temperature superconductivity [And02].

Spin ladders

The spin-chain experiments of Ch. 6 present a second route for the assembly of
finite-size spin systems. Here, two or more spin chains of equal atom number could
be transversally connected with a tunnel coupling in order to simulate spin ladders
[Dag96, Gia04]. For weak enough couplings, the atoms still form spin chains
within the individual traps, but their state would be influenced by additional
superexchange interactions between neighboring chains. For a two-legged spin
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ladder consisting of only two coupled spin chains, the necessary potential for this
experiment is already given by the two overlapping microtraps used to generate
the double-well potential in Ch. 5.
Such spin ladders are intensively studied in solid-state physics, due to their pe-

culiar structure in between one and two-dimensional spin systems [Dag96, Gia04].
Remarkably, spin ladders consisting of either odd or even numbers of coupled spin
chains show fundamental differences. In odd-legged spin ladders of infinite length,
spin correlations along the individual chains only decay slowly with a power-law
dependence on the distance. In contrast, even-legged ladders show a much faster,
exponential decay of spin correlations. As a first experiment, two spin chains
could be adiabatically coupled and then quickly separated in order to project the
eigenfunction of the ladder system on spin-chain states. Using the identification
of individual spin-chain states demonstrated in Ch. 6 should then allow us to ob-
serve the loss of correlations along the individual spin chains dependent on the
transversal coupling strength in the spin ladder.
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A. Appendix

A.1. Basic definitions of a two-component spin
model

In this section, we compile the basic definitions of a spin model consisting of spin-
1/2 particles.

A.1.1. Spin operators for single spins
The Hamiltonian of a spin model is built from the spin operator ~S = {Sx, Sy, Sz}
that acts on the spin of the particle on one specific lattice site. Spin operators for
a spin-1/2 system can be defined from the creation and annihilation operators c�s
and cs for a fermionic particle in spin state s = {↑, ↓} as

~S = 1
2

∑
s,s′={↑,↓}

c�s ~σss′ cs′ . (A.1)

Here,

~σ = {σx, σy, σz} =

0 1

1 0

 ,
0 −i
i 0

 ,
1 0

0 −1

 (A.2)

are the Pauli matrices. The spin operator and its components follow the permu-
tation relations of angular momenta

[~S 2, Sα] = 0 ∀α and [Sα, Sβ] = εαβγ i~Sγ, (A.3)

where εαβγ is the totally antisymmetric tensor. Due to these commutation rela-
tions it is always possible to find common eigenvectors of ~S2 and one of the spin
components Sα. We, choose the z direction as the quantization axis and denote
the eigenstates of ~S2 and Sz as |s,m〉. The quantum numbers s and m are related
to the eigenvalues of state |s,m〉 as

~S 2 |s,m〉 = ~2s(s+ 1) |s,m〉 and Sz |s,m〉 = ~m |s,ms〉 . (A.4)
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A.1. Basic definitions of a two-component spin model

For a spin-1/2 system, there are two eigenstates for each spin, which are denoted
up (

∣∣∣12 , 1
2

〉
= |↑〉) and down (

∣∣∣12 ,−1
2

〉
= |↓〉). Additionally, raising (S+) and lowering

(S−) operators can be defined as

S± = (Sx ± iSy), (A.5)

which connect the two basis states according to

S+ |↓〉 = ~ |↑〉 S− |↑〉 = ~ |↓〉
S− |↓〉 = 0 S+ |↑〉 = 0.

(A.6)

A.1.2. Spin operators for multi-spin systems
Merging single spins into a multi-spin system follows the general rules for the
addition of angular momenta (i.e. [Sak85]). Thereby, the Hilbert spaces of the
individual spins (i.e. Vm and Vn for the spins on site m and n) are combined with
a tensor product (Vm ⊗ Vn). For a spin state |χ〉 of the combined Hilbert space,
we define the abbreviated notation

|χ〉 = |m〉 ⊗ |n〉 ≡ |mn〉 , (A.7)

where |m〉 and |n〉 are states of Vm and Vn, respectively. For each individual spin
in the system, a single-particle spin operator can be defined that only effects this
spin. Spin operators acting on different sites always commute.
For the whole multi-spin system, the total spin operator ~S, acting on the com-

bined Hilbert space, is obtained by summing up the individual spin operators

~S = {Sx,Sy,Sz} =
∑
n

{Sxn, Syn, Szn} . (A.8)

In the same way, raising and lowering operators S+ and S− can be defined that
act on the z component of the total spin.
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A. Appendix

A.2. Properties of 6Li

Figure A.1.: Zeeman splitting and hyperfine splitting in the 2S1/2 ground state of
6Li as a function of the magnetic field. At low magnetic field, the electronic spin of
S = 1/2 and the nuclear spin of I = 1 are coupled to either F = 1/2 or F = 3/2.
Above ∼ 50G, the system enters the Paschen-Back regime and S and I decouple.
In the Paschen-Back regime, the hyperfine splitting between different states with
mS = −1/2 has a value of ≈ 80 MHz. The two energetically lowest states are
denoted up (|↑〉 = |mS = −1/2,mI = 0〉) and down (|↓〉 = |mS = −1/2,mI = 1〉)
and are used throughout this thesis to realize a two-component Fermi system.

129



A.2. Properties of 6Li

Figure A.2.: Magnetic moment of spin-up atoms µ↑ and spin-down atoms µ↓ as a
function of the magnetic field. For zero magnetic field the magnetic moments of µ↑
and µ↓ are ±µB/3 respectively, where µB/h ≈ 1.40 MHz/G is the Bohr magneton.
For large magnetic fields both µ↑ and µ↓ approach −µB. (Inset) At about 27 G
the magnetic moment of spin-up atoms crosses zero.

Figure A.3.: Difference between the magnetic moments of spin-up and spin-down
atoms as a function of the magnetic field.

130



A. Appendix

A.3. Calibration of the on-site interaction energy
List of all measurements for the calibration of the on-site interactions energy U in
the Hubbard model (Sect. 5.2).

B (G) a3D (a0) −1/g1D (~ω||a||) U (~ω||) U (J t)

300 −288.1 6.23± 0.16 −0.08± 0.01 −1.41± 0.25
560 131.8 −12.98± 0.33 0.04± 0.01 0.67± 0.18
600 359.9 −4.62± 0.11 0.08± 0.01 1.37± 0.21
640 699.9 −2.28± 0.05 0.18± 0.01 3.31± 0.11
700 1637.1 −0.86± 0.02 0.35± 0.01 6.32± 0.09
740 2973.9 −0.38± 0.01 0.56± 0.01 10.26± 0.10

Table A.1.: Calibration of the on-site interaction energy in a double-well system.
Total light power Ptot = 1.5 V . Tunneling matrix element J t/h = (67.3± 0.5) Hz.

B (G) a3D (a0) −1/g1D (~ω||a||) U (~ω||) U (J t)

300 −288.1 6.87± 0.17 −0.03± 0.02 −0.20± 0.21
620 512.0 −3.55± 0.01 0.10± 0.04 0.71± 0.33
700 1637.1 −0.97± 0.02 0.33± 0.03 2.31± 0.21
740 2973.9 −0.44± 0.01 0.49± 0.03 3.46± 0.22

Table A.2.: Calibration of the on-site interaction energy in a double-well system.
Total light power Ptot = 1 V . Tunneling matrix element J t/h = (142.0± 0.5) Hz.
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A.4. The optical microtrap

A.4. The optical microtrap

old microtrap new microtrap

axial trap frequency 40.7 mm 20.3 mm
field of view (diameter) 200 µm 200 µm

max. diffraction limited NA 0.44 0.6
entrance aperture at max. NA 36 mm 24.4 mm

resolution 1.4 µm 1.08 µm
waist of focus 0.9 µm 0.72 µm

Table A.3.: Design parameters of the old and the new objective. The old (new)
objective was used to perform the experiments described in Ch. 6 (Ch. 5). The
focal waist was calculated for a homogeneous intensity distribution on the entrance
aperture. All parameters were taken from Ref [Ser11b].

old microtrap new microtrap

measured light power (265± 27) µW (390± 39) µW
axial trap frequency ω|| 2π × (1.234± 0.012) kHz ≈ 2π × 2.5 kHz
radial trap frequency ω⊥ 2π × (11.88± 0.22) kHz ≈ 2π × 16.5 kHz

aspect ratio ≈ 10 ≈ 7
calculated waist w0 1.838 µm 1.58 µm

calculated Rayleigh range zR 9.97µm 7.37µm
calculated trap depth V0 kB × 3.326 µK kB × 4.85 µK
calculated light power 291.5 µW 314.3 µW

Table A.4.: Measured and calculated trap parameters of the microtrap. The old
(new) microtrap was created with the old (new) objective and used to perform the
experiments described in Ch. 6 (Ch. 5). All parameters of the old microtrap were
taken from the supplemental material of Ref. [Zür12b]. Waist and trap depth
of the new microtrap have been calculated in a harmonic approximation using
the relations w0 = λη/

√
2π and V0 = mw2

0ω
2
⊥/4. The calculated power in the

microtrap was determined using Eq. 4.4.
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A. Appendix

A.5. Trap parameters
List of the parameters for the tunneling measurement on spin chains presented
in Sect. 6.3 and Fig. 6.7. The magnetic field gradient for all measurements is
B′ = 18.92 G/cm (see Sect. 4.4.2). To initiate the tunneling process, we ramp
down the intensity of the trapping light within a time tramp and thereby lower the
trap depth parameter p (see Sect. 4.4.2) from its initial value pinitial to a final value
pfinal. After a time tspill, during which atoms can tunnel out of the trap, we ramp
the power back to its original value to stop the tunneling process.

(2,1) System

# Magnetic field [G] pinitial pfinal tramp [ms] tspill [ms] −1/g1D [a||~ω||]−1

1 725.96± 0.5 0.829± 0.025 0.694± 0.021 4 200 −0.264± 0.013
2 751.01± 0.5 0.829± 0.025 0.708± 0.021 4 200 −0.130± 0.008
3 771.05± 0.5 0.829± 0.025 0.716± 0.021 4 200 −0.043± 0.004
4 783.08± 0.5 0.829± 0.025 0.719± 0.022 4 200 0.001± 0.003
5 786.58± 0.5 0.829± 0.025 0.711± 0.021 4 40 0.013± 0.003
6 796.10± 0.5 0.829± 0.025 0.711± 0.021 4 40 0.044± 0.002
7 806.12± 0.5 0.829± 0.025 0.711± 0.021 4 40 0.074± 0.002
8 851.21± 0.5 0.829± 0.025 0.729± 0.022 4 40 0.186± 0.004
9 951.42± 0.5 1.371± 0.041 0.749± 0.022 10 25 0.339± 0.010
10 1201.92± 0.5 0.871± 0.026 0.759± 0.023 4 40 0.495± 0.015

(3,1) System

# Magnetic field [G] pinitial pfinal tramp [ms] tspill [ms] −1/g1D [a||~ω||]−1

1 751.01± 0.5 0.871± 0.026 0.746± 0.022 4 200 −0.130± 0.007
2 771.05± 0.5 0.871± 0.026 0.746± 0.022 4 80 −0.043± 0.004
3 781.57± 0.5 0.871± 0.026 0.750± 0.023 4 40 −0.003± 0.003
4 951.42± 0.5 1.371± 0.041 0.801± 0.024 5 25 0.346± 0.009
5 1201.92± 0.5 1.371± 0.041 0.816± 0.024 5 25 0.502± 0.014

(2,2) System

# Magnetic field [G] pinitial pfinal tramp [ms] tspill [ms] −1/g1D [a||~ω||]−1

1 751.01± 0.5 0.996± 0.030 0.689± 0.021 5 25 −0.129± 0.008
2 771.05± 0.5 0.996± 0.030 0.694± 0.021 5 25 −0.044± 0.005
3 776.06± 0.5 0.996± 0.030 0.700± 0.021 5 25 −0.025± 0.004
4 781.07± 0.5 0.996± 0.030 0.696± 0.021 5 25 −0.007± 0.003
5 951.42± 0.5 1.371± 0.041 0.734± 0.022 5 25 0.337± 0.010
6 1201.92± 0.5 1.371± 0.041 0.741± 0.022 5 25 0.491± 0.015
7 1402.33± 0.5 1.371± 0.041 0.741± 0.022 5 25 0.539± 0.016
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A.6. Correction of spin-down tunneling

A.6. Correction of spin-down tunneling
We correct the probability for spin-down tunneling in spin chains (Sect. 6.3) for
three and four-body losses during the tunneling process or during the ramp of the
magnetic field. We identify the probability of these loss processes by measuring the
probability of finding zero atoms in the trap after the tunneling process. As shown
in Fig. A.4, the probability of spin-down tunneling is for all measurements only
slightly affected by this correction. A more detailed discussion of this correction
can be found in the supplemental material of Ref. [Mur15b].
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Figure A.4.: Corrected (blue) and uncorrected (black) values of the measurement
of spin-down tunneling in Sect. 6.3. The corrected data is shown in Fig. 6.7.
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A. Appendix

A.7. Correction of occupation-number
measurements

Corrected and uncorrected results of the occupation-number measurement in
Sect. 6.4. The data was corrected for the finite preparation and detection fidelity
of the experiments as explained in Sect. 6.4. The corrected data (blue) is shown
as blue data points in Fig. 6.10.

0 . 0 0 . 2 0 . 4
O c c u p a t i o n  P r o b a b i l i t y

0

1

2

3

4

5

0 . 0 0 . 2 0 . 4
O c c u p a t i o n  P r o b a b i l i t y

Tra
p L

ev
el

( b )( a )

( 2 , 1 ) ( 3 , 1 )

Figure A.5.: Corrected (blue) and uncorrected (black) values of the occupation-
number measurement in Sect. 6.4.
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