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Abstract:
This thesis reports on experiments conducted in a single layer, quasi two-dimensional, two-
component ultracold Fermi gas in the strongly interacting regime. Ultracold gases can be
used to simulate key aspects of more complicated systems like for example cuprates which
show high-Tc superconductivity.

The momentum distribution of a sample of bosonic dimers in a quasi-2D square lattice
geometry was measured to obtain the coherence properties. For shallow lattices, sharp
peaks in the momentum distribution, indicating coherence, were observed at zero mo-
mentum as well as at positive and negative lattice momenta along each axis. For deeper
lattices, heating impeded the ability to prepare a Mott-insulator.

A spatially resolved radio-frequency spectroscopy was employed for a quasi-2D Fermi
gas in the normal phase throughout the BEC-BCS crossover. The interaction induced
energy shifts were measured in the strongly interacting region where they can be on the
order of the Fermi energy and thus the local resolution is crucial. Furthermore, the onset
of pairing in the strongly interacting region was measured as a function of temperature and
it was shown that the fraction of free atoms decreases faster than expected from thermal
non-interacting theory. At last, the pairing gap was measured using an imbalanced sample.
On the BEC side it was found to be in very good agreement with two-body physics as
expected. In the strongly interacting regime, however, a deviation from two-body physics
indicates that here many-body effects play a role and thus further studies are required.

Zusammenfassung:
Diese Arbeit beschreibt Experimente die in einer einzelnen Lage eines quasi zweidimen-
sionalen, zweikomponentigen ultrakaltem Fermi Gas im stark wechselwirkenden Bereich
ausgeführt wurden. Ultrakalte Gase können benutzt werden um Schlüsselaspekte kom-
plizierter Systeme wie zum Beispiel Kupraten, welche Hochtemperatursuperleitung zeigen,
zu simulieren.

Die Impulsverteilung einer Probe von bosonischen Dimeren in einer quasi-2D quadratis-
chen Gittergeometrie wurde gemessen um die Kohärenzeigenschaften zu bestimmen. Für
flache Gitter wurden steile Peaks, die auf Kohärenz hinweisen, in der Impulsverteilung
sowohl bei Null-Impuls als auch bei positivem und negativem Gitterimpuls entlang jeder
Achse gemessen. Für tiefere Gitter verhinderte Heizen die Präparation eines Mott-
Insulators.

Eine ortsaufgelöste Radiofrequenz-Spektroskopie wurde für ein quasi-2D Fermi Gas in
der normalen Phase im gesamten BEC-BCS Übergangsbereich angewendet. Die durch
Wechselwirkung hervorgerufene Energieverschiebung wurde im stark wechselwirkenden
Bereich gemessen und gezeigt dass sie auf der Größenordnung der Fermi-Energie liegen
kann, was die Ortsauflösung unabdingbar macht. Desweiteren wurde das Einsetzen der
Paarung im stark wechselwirkenden Bereich als Funktion der Temperatur gemessen und
es wurde gezeigt, dass der Anteil freier Atome schneller abnimmt als von einer thermis-
chen, nicht-wechselwirkenden Theorie hervorgesagt. Als letztes wurde die Paarungslücke
mithilfe einer nicht ausgeglichenen Probe gemessen. Auf der BEC-Seite waren die Ergeb-
nisse in sehr guter Übereinstimmung mit der Zwei-Körper Physik. Im stark wechselwirk-
endem Bereich hingegen wurde eine Abweichung festgestellt die darauf hinweist dass hier
Mehrkörperphysik eine Rolle spielt was weitere Untersuchungen rechtfertigt.
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1. Introduction
The discovery of conventional superconductivity at the beginning of the last cen-
tury [Onn11] as well as the discovery of so-called high-Tc superconductors in cuprates
[Bed86, Wu87] have been important technological milestones as they enable to drive
currents with zero resistance. In conventional superconductors the critical tempera-
ture is on the order of a few Kelvin whereas for the more exotic high-Tc superconduc-
tors the critical temperature can reach up to 130 K [Sch93]. Thus, liquid helium has
to be used as a cooling agent for conventional superconductors, whereas the much
cheaper and easily producible liquid nitrogen can be used for high-Tc superconduc-
tors making them potentially a superior alternative in the future1. Examples for the
application of superconductors in technology range from the creation of sensitive
SQUID magnetometers to strong magnets which are used in Magnetic Resonance
Imaging (MRI) in medicine, for beam-steering in particle accelerators like the Large
Hadron Collider (LHC) at CERN or to confine the hot plasma in fusion reactor
experiments.
A fascinating aspect of superconductivity in metals as well as in these cuprate

systems is that the charge carriers are electrons which are fermionic. Supercon-
ductivity, however, is linked to the formation of long range phase coherence which
stems from bosonic degrees of freedom. This seemingly paradox was solved in the
fifties by Bardeen, Cooper and Schrieffer [Bar57] who showed that electrons with
an arbitrarily weak attractive interaction can form so-called ’Cooper’ pairs in mo-
mentum space which then condense. Hence, superconductivity in fermionic systems
is deeply connected to pairing. An intriguing question is whether the pairing and
condensation are two distinct phenomena happening at different temperature scales
or if they occur simultaneously. Or in other words, how does the superconducting
phase emerge from the normal phase?
In conventional superconductors which can be described by weakly coupled BCS

theory, the pairing and condensation occur simultaneously. Experiments conducted
with high-Tc cuprates, however, have shown a so-called ’pseudogap’ region in the
normal phase at temperatures T ∗ > Tc where a multitude of anomalies occur
[Joh89, All89, War89, Din96]. These are possibly connected to the superconducting
state and thus to fermionic pairing [Che05]. However, a thorough theoretical un-
derstanding of this pseudogap region in these cuprates is difficult as their physics
is very complex [Nor05, Nor11]. The parent compound of the cuprates is in a
Mott-insulating state and the charge carriers themselves are confined to quasi-two
dimensional planes and hence additional factors like doping play an integral part.
A common approach in physics to gain understanding of a phenomenon is to study

1Therefore, technological challenges like the critical current density in these materials have to be
solved.
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the simplest system where it occurs. For the case of superconductivity/superfluidity2

of a fermionic system this is a balanced mixture of interacting spin-up and spin-down
fermions. In the lab such a system can be created artificially using ultracold Fermi
gases in a trap. Such ultracold atomic systems have emerged in the last two decades
as an important tool to simulate quantum systems [Fey82, Blo12]. Neutral atoms
can be trapped in optical potentials allowing for a wide array of trapping geometries,
ranging from lattice structures to strong anisotropic trapping geometries effectively
creating lower dimensional systems. Furthermore, due to the low energies involved
in the scattering processes, the atoms can be described as structureless fermions or
bosons with a contact potential [Dal98]. Hence, the interaction in the system can
be described by a single parameter, the scattering length a which is also tunable
via magnetic Feshbach resonances [Ino98]. This simplifies the Hamiltonians in these
systems allowing for very good comparability to theoretical predictions.
Although the physics of such a two-component Fermi gas is much less complex

than that of the cuprates, it nevertheless shows already a rich phase diagram. At
positive scattering lengths, corresponding to repulsive mean-field interactions, the
atoms are bound in two-body dimers. As their size is small compared to the inter-
particle distance, they can be treated as bosons and thus can undergo a phase
transition into a superfluid Bose-Einstein condensate. At negative scattering lengths
the mean field interactions are attractive and the system can be described by BCS
theory. Here the fermions can form Cooper pairs in momentum space at the critical
temperature and condense. As the scattering length can be continuously tuned
by applying an external magnetic field, the experimental study of this so-called
BEC-BCS crossover transition is possible and has been done extensively for a 3D
system [Reg04, Bar04, Chi04, Zwi05, Gre05, Sch08a] as well as for a quasi-2D system
[Rie15b, Mur15, Boe16, Fen16, Mit16].
The most powerful technique to study pairing in a Fermi gas is radio-frequency

(rf) spectroscopy. Here a radio frequency pulse is applied to the sample to drive a
transition from one internal state to a previously unoccupied one. As the rf photon
has negligible momentum, the atom momentum is conserved and one obtains insight
into the single-particle spectral function A (k, ω). Thereby one can observe the
energy gap between paired and free atoms. Radio-frequency spectroscopy can be
done both momentum resolved, spatially resolved or averaged over the trap and has
been applied both for 3D [Chi04, Sch07a, Sch08b, Sch08a, Sch09, Gae10, Sag15]
as well as quasi-2D systems [Fel11, Frö11, Bau12, Frö12, Kos12, Som12, Zha12].
Using these techniques first clues of the existence of a pseudogap region both in
3D [Chi04, Gae10, Sag15] as well as in 2D [Fel11] have been measured, however a
definite picture has not yet been reached [Nga13, Mar15, Lev15, Mue17].
In this thesis a contribution to this ongoing research is done by investigating a

quasi-2D Fermi gas of 6Li using spatially resolved rf spectroscopy. Thereby we can
look at the response of locally homogeneous subsystems and disentangle density
dependent effects. We measure the interaction induced shifts for balanced mixtures
across the crossover region and reduce final state effects by employing two different
Fermi mixtures. Furthermore, we measure the onset of pairing in the crossover

2Phenomenologically a superconductor is just a charged superfluid.
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1. Introduction

region at large temperatures and compare it to expectations of thermal equilibrium
physics. At last, we investigate the pairing gap in an imbalanced mixture. On the
BEC side where the fermions form deeply bound molecules, a constant pairing gap
as a function of temperature was measured in accordance with the two-body binding
energy. In the strongly interacting region, a deviation of the pairing gap from the
two-body binding energy was observed although a clear temperature dependence as
predicted for a pseudogap has not been observed.
Apart from these rf spectroscopy measurements, also a superfluid in a shallow

2D square lattice geometry has been observed during this thesis using a momentum
imaging technique. These measurements were our first step towards realizing two-
dimensional lattice systems. Although some issues with unresolved heating remain,
we aim to realize low entropy two-dimensional systems like e.g. a Mott-insulator of
molecules.

Outline
This thesis is organized as follows: chapter 2 provides a brief introduction about the
theory of ultracold quantum gases. The ideal Bose and Fermi gas are introduced
and the low energy scattering both for two- and three-dimensions is derived. Subse-
quently the many-body physics of an interacting Fermi gas is explained on the basis
of the BEC-BCS crossover and the concept of the pseudogap is introduced. At last,
the behavior of particles in periodic potentials is discussed.
In chapter 3 a brief overview over the experimental setup used to produce a

single realization of a quasi two-dimensional, two-component ultracold Fermi gas
is presented. Next, the detection method using absorption imaging is explained
and a detailed description of its calibration is given. In this context also the newly
implemented technique to image two spin states in short succession is introduced.
In chapter 4 the experiments conducted in a quasi-2D lattice geometry are dis-

cussed. Here the in-situ momentum distribution of the sample is measured using a
time-of-flight evolution in a weak harmonic potential. The momentum distribution
contains information of the coherence of the system and we observe the system to
be in a superfluid state in shallow lattices. For deeper lattices heating was observed
which shows up as a loss of coherence.
In Chapter 5 experiments performed using spatially resolved rf spectroscopy in

the normal phase of a quasi-2D Fermi gas are discussed. The chapter starts with an
introduction to the basics of rf spectroscopy including the effects interactions have
on the observed lineshape and transition energies. Next, a qualitative picture of the
strongly interacting region by means of a BCS mean-field theory and its implication
in rf spectroscopy is given. Then our experimental procedure and the data analysis
are presented. At last our results are discussed which include the measurement of
the density and interaction dependent energy shifts, the investigation of the onset of
pairing at large temperatures in the strongly interacting region and the temperature
dependent evolution of the pairing gap both on the BEC side as well as in the
strongly interacting regime.
Chapter 6 then concludes with a summary of the results obtained in this thesis

and gives an outlook of what we plan to achieve in the future.
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2. Theory
The experiments in this thesis are performed with a quasi two-dimensional Fermi
gas in the strongly interacting regime. The reduced dimensionality is achieved by
confining the sample strongly along one axis, thus effectively suppressing excitations
along this dimension. This has similarities to solid state systems like graphene or
high-Tc cuprates, where the electron gas is also confined in two-dimensional planes
[Nor11, Jos13]. Furthermore, we also conducted experiments where the atoms are
in addition subject to an optical lattice in the plane of weak confinement.
This chapter summarizes the main principles needed to understand ultracold

atomic systems. It starts in section 2.1 by reviewing the conditions necessary to
enter the quantum regime and how there the fundamentally different behavior of
bosons and fermions shows up. Furthermore, the density profiles of non-interacting
samples in harmonic traps are discussed. Then, in section 2.2 interactions are in-
troduced and the low-energy scattering of atoms both in a 3D and 2D geometry is
reviewed. Additionally, the concept of Feshbach resonances as a means to change
the interaction strength in the sample is summarized and shown for the explicit case
of 6Li encountered in the experiment. This tunability of the interaction strength can
be used to explore superfluid phase transitions in a wide range of parameter regimes.
This is embodied in the so-called BEC-BCS crossover which smoothly connects the
limit of Bose-Einstein condensation (BEC) of molecular dimers with the BCS limit
where many-body Cooper pairs leads to the existence of a pairing gap and hence
superfluidity. This crossover is reviewed both for the 3D and 2D case in section 2.3
and the notion of pairing in the normal phase above superfluidity is discussed in
section 2.4. At last, the behavior of particles in periodic potentials and the Bose
Hubbard-model are presented in section 2.5.

2.1. Entering the Quantum Regime
In classical physics all particles are considered distinguishable. This means that
when looking for example at a scattering process between particles, it is possible
to keep track of the trajectories of each particle and the system can be described
by classical mechanics. This assumption however breaks down when entering the
quantum regime. Then identical1 particles become indistinguishable. This means
that when evaluating now e.g. at a scattering process, it is not possible to predict
which trajectory each particle took and one now has to take all possibilities into
account as shown in Figure 2.1. This is referred to as the superposition principle as
one has to add up the different possibilities linearly.

1Particles are said to be identical if they occupy the same internal state.
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2.1. Entering the Quantum Regime
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Figure 2.1.: For indistinguishable particles the two scattering processes are equiv-
alent and thus the wave function has to be symmetrized (anti-
symmetrized) in the bosonic (fermionic) case. The picture is adapted
from [Dal99].

The regime where this happens depends on the system properties. Whereas for
example quantum effects can be observed in metals already at room temperature, in
ultracold quantum gas systems one has to reach temperatures of the order 100 nK
before seeing these effects. This is due to the different densities and thus the inter-
particle spacing. In physics, each particle can be described by a quantum mechanical
wave function. The size of the wave function is of the order of the de Broglie wave-
length [Bro23] which is related to the particle momentum p via λdB = h/p. Hence
in a thermal gas, the size of the wave function of each particle is approximately

λdB = h√
2πmkBT

, (2.1)

where h is Planck’s constant, m is the mass of the particle and T is the temperature
of the system. For macroscopic systems where the mass of the involved particles
is large, the size of the wave function is negligible and classical physics can be
applied as a limiting case of quantum physics. In microscopic systems, however,
the extent of the wave function can become comparable to the interparticle spacing
when lowering the temperature. Then, the wave functions overlap and the particles
become indistinguishable. As stated earlier, the temperature where this transition
occurs depends on the interparticle spacing and hence the density of the system.
Since the interparticle spacing scales as n−1/3 in three dimensions, one can define
the phase-space density ρ3D = nλ3

dB as a parameter to quantify if the system is in
the quantum regime.
The indistinguishability of the particles has the consequence that all observables

in a system of N particles described by the wavefunction Ψ (x1, x2, ..., xN) have to
remain unchanged when interchanging particles via the operator Pi,j. This is e.g.
applicable for the density of the system which is given by n = |Ψ|2. Mathematically
this can be expressed as

|Pi,jΨ (x1, ..., xi, ..., xj, ..., xN)|2 = |Ψ (x1, ..., xj, ..., xi, ..., xN)|2

= |Ψ (x1, ..., xi, ..., xj, ..., xN)|2 , (2.2)

where xi is a representation of both the spatial coordinate as well as internal quan-
tum numbers of each particle [Wen13]. There are two eigenstates of the operator

6



2. Theory

Pi,j with eigenvalues ±1. These two eigenstates define two distinct classes of par-
ticles depending on if they are symmetric or anti-symmetric under the exchange of
particles. This is directly linked to the inherent spin2 of a particle [Pau40].

Fermions are particles with half-integer spin. They are the solutions with eigen-
value −1 and transform anti-symmetrically under the interchange of particles. This
has far reaching implications on their behavior. Imagine two particles occupying
the same state x. Then, according to equation 2.2, Ψ (x, x) = −Ψ (x, x) which can
be only fulfilled if Ψ (x, x) = 0. Hence two identical fermions can never occupy the
same state. This is known as the Pauli exclusion principle [Pau25].

Bosons are particles with integer spin. They are the solutions with eigenvalue
+1 and behave symmetrically under the exchange of particles. Hence no restriction
for the occupation of a single state exists and each state can be occupied by any
number of bosons.
In nature, all known constituents of matter like quarks, electrons and neutrinos

are fermionic. The force carriers like the photon, graviton or W and Z particles on
the other hand are bosonic. Composite particles like neutral atoms can be either
fermionic or bosonic depending on the total spin of their components. This can
be seen for example in lithium and its two isotopes. 6Li consists of 3 neutrons, 3
protons and 3 electrons which are all fermionic3. Hence the total spin is half-integer
and 6Li behaves as a fermion. 7Li on the other hand has 4 neutrons and thus the
overall spin is integer, making it behave like a boson. This is of course only valid if
the process we are investigating does not resolve the internal structure. In our cold
gas experiments, this is valid since the scattering occurs at low energies.
In the following we will now look at an ideal4 gas consisting of either bosons or

fermions in a harmonic trapping potential like we use them in the experiment. The
derivations can be found in many textbooks (e.g. [Lan81, Fet03]) and we will follow
the reasoning along the lines in [Wen13]. The analysis is done here both for the
3D and the 2D case. Interactions and their implications to the observed physics are
then introduced later in this chapter in section 2.2 and 2.3.

2.1.1. Distribution Functions in Harmonic Traps
In experiments, one often deals with large systems consisting of thousands of atoms.
There it is justifiable to assume the thermodynamic limit of large particle numbers
and use statistical mechanics [Lan96, Sch00, Fet03] to obtain insights about the sys-
tem. The system can then be described as a grand canonical ensemble with a volume
V , the chemical potential µ and the temperature T . The chemical potential µ fixes
the particle number N and can be thought of as the energy required to add a particle
at a fixed entropy and volume. In bosonic systems, adding a particle increases the
entropy and thus according to the definition of the chemical potential one has to
take energy out of the system in order to satisfy the fixed entropy restriction, leading
to the condition µ ≤ 0. For fermionic systems, however, due to the Pauli principle

2The spin of a particle is given in units of the Planck constant h. This is always implied when
talking about particle spin in this thesis.

3Protons and neutrons consist of 3 quarks each and are themselves fermionic.
4This means that no interactions are considered.
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2.1. Entering the Quantum Regime

µ > 0 is possible since e.g. at T = 0 all the lowest energy levels are occupied by a
single particle and hence putting a particle at the next lowest unoccupied state does
not increase the entropy but costs energy. The expected mean occupation number
〈n〉 of particles in each discrete energy state Ei is then given via the Bose-Einstein
and Fermi-Dirac distribution functions as

fboson ≡ 〈n〉boson = 1
eβ(Ei−µ) − 1 and ffermion ≡ 〈n〉fermion = 1

eβ(Ei−µ) + 1 , (2.3)

where β = 1/ (kBT ). Since the exponential function is strictly positive, one can
already see that for fermions the Pauli exclusion principle is fulfilled since ffermion ≤
1. In the case of bosons the behavior is different. We can set the ground state energy
E0 = 0 without loss of generality. To avoid the unphysical behavior fboson < 0, we
can see that the chemical potential has to be µ ≤ 0 as discussed above. This
implies a striking difference at low temperatures T → 0 as depicted in Figure 2.2
for particles in a harmonic oscillator. Whereas for bosons all particles occupy the
lowest state, for fermions each state is occupied only by a single fermion up to
the Fermi energy EF. Despite their different quantum statistics, both distribution
functions should converge into the classical Maxwell-Boltzmann distribution at large
temperatures. In this limit, the exponential function dominates and the second
term ∓1 in the denominator in equation 2.3 can be neglected. One then obtains the
thermal distribution function

fth = e−β(Ei−µ). (2.4)

Figure 2.2.: The ground state of a few particle system at T → 0 in a harmonic
potential is shown. In the bosonic case all particles occupy the lowest
state (a). In the fermionic case the Pauli exclusion principle forbids
this and each state is only occupied by a single fermion up to the Fermi
energy EF. Taken from [Wen13].

From the distribution functions one can then obtain the density distribution n (r)
in a harmonic trap. This is of importance as it can be measured in experiments using
e.g. absorption imaging techniques. Hence knowledge of the expected distribution
lets one infer many properties like the temperature, particle number or others. In
a three-dimensional geometry the spatial coordinates and of the particles and their
momenta are given as vectors r and p = ~k where k is the wave vector. The

8



2. Theory

trapping potential Vtrap (r) in terms of the harmonic trapping frequencies ωi is then
given as

Vtrap (r) = 1
2m

(
ωxx

2 + ωyy
2 + ωzz

2
)
. (2.5)

In such a system, the energies of the single-particle levels α = {nx, ny, nz} are given
by [Sch07b]

Enx,ny,nz = ~
∑
α

ωα

(
nα + 1

2

)
. (2.6)

Hence the spacing between energy levels is given by the harmonic trap frequencies ωi.
In most cases, the thermal energy kBT is much larger than the level spacing, making
a semi-classical approach viable. One then replaces the single-particle levels Ei by
the classical Hamiltonian H = ~2k2

2m + Vtrap(r) to evaluate the quantum statistical
distribution functions and performs an integral over the six dimensional phase-space
{r,k} instead of a sum over the discrete levels Ei. In a system of N particles, the
chemical potential µ is then defined via

N = 1
(2π~)3

∫
drdk f (r,k) , (2.7)

where 1/(2π~)3 is the density of states per unit volume. The real-space density distri-
bution is is then given by

n (r) = 1
(2π~)3

∫
dk f (r,k) . (2.8)

For a thermal gas, this results in a density profile

nth (r) = N

(2π)3/2 σxσyσz
e

(
1
2
∑

i

x2
i/σ2

i

)
, where σ2

i = kBT

mω2
i
. (2.9)

Hence for non-degenerate, non-interacting systems one can directly infer the particle
number and temperature by fitting a Gaussian profile to the measured density dis-
tribution if one knows the trap parameters ωi. The assumption of a non-interacting
thermal gas is also often used in the wings of the trap where the density and thus
interactions are small.

Ideal Bose Gas
To obtain the density distribution of the thermal gas, we made the assumption that
we can replace the discrete sum over all energy levels by an integral over the phase
space. However, as we have already discussed above the ground state in a Bose gas
gets macroscopically occupied for T → 0. Hence it makes sense to treat the ground
state separately from the rest of the states. We can then rewrite equation 2.7 as

N = N0 +Nexc = N0 + 1
2 (~ω̄)3

∫ ∞
0

dE
E2

exp [β (E − µ)]− 1 , (2.10)

9



2.1. Entering the Quantum Regime

where we introduced the density of states g3D (E) = E2

2(~ω̄)3 with the mean trapping
potential ω̄ = (ωxωyωz)

1/3. Evaluating the integral in equation 2.10, the number of
atoms in the excited state is given by

Nexc =
(
kBT

~ω̄

)3

Li3

(
exp

[
µ

kBT

])
, (2.11)

where Li3 (z) is the polylogarithmic function as defined in Appendix A.1. At large
temperatures the occupation of the ground state is negligible and N = Nexc holds.
The critical temperature Tc where the macroscopic occupation of the ground state
sets in is then given at the point where µ = 0. At this point N0 = 0 and we can set
Nexc = N . Plugging this into equation 2.11 then leads to

kBTc = ~ω̄
(

N

Li3 (1)

) 1
3

≈ 0.94 (~ω̄)N 1
3 , (2.12)

where the relation Li3(1) ≈ 1.202 was used. For temperatures T < Tc, the ground
state population N0 then grows as

N0

N
= 1−

(
T

Tc

)3
. (2.13)

This phase transition is called Bose-Einstein condensation (BEC) and was first ob-
served in 1995 [And95, Dav95].
In accordance to the derivation of the density distribution of the thermal gas in

equation 2.9, we can also derive an expression for the uncondensed part of a Bose
gas as

nB,th (r, T ) = 1
λ3

dB
Li3/2

(
exp

[
µ− Vtrap (r)

kBT

])
. (2.14)

Compared to the thermal Gaussian profile, the polylogarithmic function has an
increased weight at the center. This is often referred to as bosonic enhancement in
the literature. Hence at temperatures T < Tc, the gas can be described as the sum
of a condensed part nB,0 (r) and a thermal part nB,th (r). From the density profile
nB,th (r) in equation 2.14 we can also infer the maximum phase space density before
condensation occurs to be ρ3D,max = Li3/2(1) ≈ 2.612. The phase transition into
a BEC is also accompanied by spontaneous symmetry braking. This means that
the condensate part can be described by an effective single particle wave function
Ψ̂0 (r) =

√
n0 (r)eiφ with a spontaneously chosen constant phase φ. One can define

the first order correlation as [Had11]

g1 (r0 + r, r0) =

〈
Ψ̂† (r0 + r) Ψ̂ (r0)

〉
〈
Ψ̂† (r0 + r)〉〈Ψ̂ (r0)

〉 , (2.15)

where Ψ̂† (r),Ψ̂ (r) are the creation and annihilation operators for a particle at po-
sition r. Inside the condensate, the phase is constant and g1(r) = 1. Hence there
is no decay of first order correlations and the condensate has true long range order

10



2. Theory

resulting in a superfluid phase. This has to be contrasted to the case of a thermal
gas where the first order correlation decays exponentially on a length scale given by
the thermal de-Broglie wavelength λdB

5 and thus only short-range phase correlations
exist.

2D Case

In a two-dimensional system, there exists no BEC for a homogeneous system at finite
temperature. This has been shown on general grounds by Mermin and Wagner in
the sixties [Mer66, Hoh67]. This can be understood when deriving the 2D density
n2D

B,th in analogy to equation 2.8 via

n2D (r) = 1
(2π~)2

∫
dk f (r,k) . (2.16)

This then yields for a homogeneous 2D Bose gas

n2D
B,th = − 1

λ2
dB

ln
(
1− e

µ
kBT

)
. (2.17)

It can be seen that for all finite densities there exists a µ < 0 such that the equation is
fulfilled. Hence no phase transition into a BEC exists in a homogeneous 2D system.
This can be attributed to the increase in thermal fluctuations in two dimensions
which destroy long range phase coherence for non-zero temperatures6.
However, in 2D there exists another mechanism for a transition into a superfluid

topologically ordered phase. This is the famous Berenzinskii-Kosterlitz-Thouless
(BKT) phase7 [Ber72, Kos73] which relies on the ordering of thermally excited vortex
and anti-vortex pairs in the system. We will talk about this phase later in more
detail in section 2.3.1 when we discuss the BEC-BCS crossover in a two-dimensional
Fermi mixture.

Ideal Fermi Gas
In a fermionic system the behavior is very different compared to the bosonic case
due to the Pauli principle. In the case of a harmonic trapping potential in three
dimensions at zero temperature, the particles occupy the lowest energy levels one by
one up to the Fermi energy EF ≡ µ (T = 0, N). Using the density of states approach
in equation 2.10 together with the normalization in equation 2.7 then yields

N = 1
2 (~ω̄)3

∫ EF

0
dEE2 = E3

F

6 (~ω̄)3 or EF = (6N)1/3 ~ω̄. (2.18)

The Fermi energy can be interpreted as the natural energy scale of the system and
an indicator if the system is in the quantum regime. Therefore it is useful to define

5For typical experimental parameters this length scale is approximately a few µm.
6In a homogeneous 2D system there is still a BEC possible at T = 0.
7For their ground-breaking work, both J. M. Kosterlitz and D. J. Thouless were awarded with
the Nobel prize of physics in 2016.
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2.1. Entering the Quantum Regime

the Fermi temperature TF, Fermi momentum pF, Fermi wavevector kF and Fermi
radii xi,F as

EF = kBTF = p2
F

2m = ~2k2
F

2m = 1
2mω

2
i x

2
i,F. (2.19)

For homogeneous systems, the Fermi energy can also be directly derived from the
spatial density n3D (r) as

EF,3D = ~2

2m
(
6π2n3D

)2/3
. (2.20)

This is useful in experiments where one can infer from the measured local density
a local Fermi energy under the assumption that the potential varies smoothly such
that one can treat the gas locally as a homogeneous system and that no long range
order exists. This is referred to as the local density approximation (LDA).
Quantum effects start to play a role when the Fermi distribution ffermion starts to

deviate from the thermal Boltzmann distribution fth which usually happens when
the relative temperature T/TF becomes of the order of 1. The real space density
distribution nF (r, T = 0) can be again obtained from equation 2.8 when using the
chemical potential µ = EF as

nF (r, T = 0) = 8N
π2xFyFzF

1−
∑

i=x,y,z

x2
i

x2
i,F

3/2

. (2.21)

For temperatures T > 0, one can also derive a general expression for the spatial
density nF (r, T ) given by

nF (r, T ) = − 1
λ3

dB
Li3/2

(
− exp

[
µ− Vtrap (r)

kBT

])
. (2.22)

In order to make statements about how the density profile changes when reaching
the quantum degenerate limit, we have to know µ as a function of T/TF. This can
be achieved using the normalization condition in equation 2.7 and the definition of
EF in equation 2.19 which leads to the implicit definition of the chemical potential
as

Li3

(
− exp

[
µ

kBT

])
= − 1

6 (T/TF)3 . (2.23)

Solving this equation numerically as done e.g in [Wei09], we can plot the density
profile for different T/TF as can be seen in Figure 2.3. One can see that there is no
significant change from a thermal distribution when entering the quantum degen-
erate regime T/TF < 1. Only for temperatures T/TF � 1 we see deviations in the
wing of the cloud and at the center which come from the polylogarithmic function.
This makes thermometry in ultracold Fermi gases challenging as the information
about the temperature is encoded mostly in the wing of the cloud where the signal
strength is weak.
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Figure 2.3.: The simulated doubly integrated density distribution of a harmonically
trapped ideal Fermi gas is shown for temperatures T/TF = 0.8 (a),
T/TF = 0.4 (b) and T/TF = 0.005 (c) is compared to a Fermi fit (blue
line) or Gaussian fit (red dashed line) respectively. For temperatures
down to T/TF ≥ 0.4 both fits provide the same temperature and the
density profiles show no deviation from the thermal Gaussian profile.
Only for T/TF � 1 we see a clear deviation which is mostly pronounced
in the wings of the cloud. Adapted from [Wen13].

2D Case

In analogy to the 3D case, the Fermi energy of an ideal 2D Fermi gas can be obtained
by solving equation 2.16 for T = 0. This results in the Fermi energy EF,2D:

EF,2D = ~2

2m4πn2D. (2.24)

Hence in a two-dimensional gas the Fermi energy is proportional to the density. The
density distribution nF,2D (r) of a harmonically trapped 2D Fermi gas can again be
obtained by integrating out equation 2.16 using the Fermi-Dirac distribution. This
yields

nF,2D (r, T ) = 1
λ2

dB
ln
(

1 + e
µ−Vtrap(r)

kBT

)
. (2.25)

Similar to the 3D case the profile resembles again a thermal Gaussian profile down
to temperatures of the order T/TF ∼ 0.5. This makes thermometry also in 2D
systems a challenge as the relevant region for the temperature extraction is in the
low-density wing where the signal is small.

2.2. Tuning the Interactions
So far we only considered non-interacting systems. Although this makes the de-
scription of these system pretty straightforward, it does not capture the physical
world which relies on interactions. In ultracold atomic systems, due to a lack of
charged particles, these interactions are short-range which simplifies the physics
again. Theoretically, the interaction of particles at low energies can be modeled
by contact pseudo-potentials and all the scattering properties can be captured by a
single parameter, the scattering length a.
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2.2. Tuning the Interactions

In this section, the derivation for the scattering length both in three- and two-
dimensional systems is summarized. In addition the tunability of the scattering via
so-called Feshbach resonances is explained and the special case of 6Li used in our
experiment is highlighted. The existence of a Feshbach resonance comes along with
a universal bound dimer state and thus allows to effectively change the system from
bosonic dimers to free fermionic atoms in Fermi mixture experiments.

2.2.1. Elastic Scattering of Ultracold Atoms
In typical ultracold atom experiments, the samples are dilute and due to the short
range nature of the interaction only two-body collisions have to be considered. Be-
cause of the low energies involved, this scattering can then be described by a single
parameter, the scattering length a3D

8. The derivation of a3D can be found in many
textbooks(e.g. [Sak10, Bra03]) and will be sketched out in the following:
At low energies, the elastic scattering of two non-identical particles can be de-

scribed in a non-relativistic framework by the stationary Schrödinger equation for
the relative coordinates as[

− ~2

2mr
∇2 + Vint (r)− Ek

]
ψk (r) = 0, (2.26)

where mr = m1m2
m1+m2

is the reduced mass, r = r1− r2 is the relative distance between
atoms at r1 and r2, Vint (r) is the spherically symmetric potential meditated by the
van der Waals force between the atoms and Ek = ~2k2/ (2mr) is the energy of the
eigenstate ψk with a well-defined wave vector k. Due to the fast drop off of the van
der Waals force as r−6, the potential can be considered to have a finite range reff .
For distances r � reff , the wave function then satisfies the free-space Schrödinger
equation and can be written as the sum of an incoming plane wave eikz and an
outgoing spherical wave eikr/r as

ψk (r) ∝ eikz + fk (θ) e
ikr

r
. (2.27)

Here the incoming particles are assumed to have momentum along the z-axis and
fk (θ) is the scattering amplitude which only depends on the polar angle θ due to
the symmetry of the system. From the scattering amplitude one can then obtain
both the differential and total cross section as

dσk

dΩ = |fk (θ) |2 and σk,tot =
∫

Ω
|fk (θ) |2dΩ, where 0 ≤ θ < π. (2.28)

So far the derivation assumed non-identical particles. For identical particles, how-
ever, one cannot differentiate between certain scattering events as depicted in Figure
2.1. Hence the wave function has to be correctly symmetrized (anti-symmetrized)
for the bosonic (fermionic) case which leads to differential cross sections of(

dσk

dΩ

)
bosons

= |fk (θ) + fk (π + θ) |2 (2.29)

8We explicitly introduce the scattering length here as a3D to emphasize that we will later deal
with lower dimensional systems.
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for identical bosons and(
dσk

dΩ

)
fermions

= |fk (θ)− fk (π + θ) |2 (2.30)

for identical fermions.
As an ansatz to obtain the scattering amplitude, one can expand the wave function

into a series of Legendre polynomials as

ψk (r, θ) =
∞∑
l=0

Rl,k (r)Pl (cos θ) . (2.31)

Plugging this ansatz into equation 2.26 then separates it into a radial and a spherical
part. In the limit r � reff the solutions for Rl,k are identical with the free-space
solutions apart from phase shifts δl,k which scale as k2l+1. Hence at large scales the
only effect elastic collisions have is introducing a phase shift in the wave function.
The scaling of δl,k can be interpreted as the centrifugal barrier. For angular momenta
l > 0, the introduced phase shifts only become relevant if the energy of the incoming
particles lies above the centrifugal barrier Ec. Otherwise collisions only occur in the
isotropic s-wave (l = 0) channel. In 6Li this centrifugal barrier is on the order of
T ∼ 7 mK and thus we only have to consider s-wave interactions in our experiments.
Therefore the scattering amplitude is isotropic and can be expressed as [Sak10]

fk,l=0 = 1
k cot δ0 − ik

. (2.32)

Since s-wave scattering is independent of the polar angle θ this leads together
with equations 2.29 and 2.30 to the fact that low-energy scattering is enhanced for
identical bosons and non-existent for identical fermions resulting in the fact that
identical fermions are non-interacting at low energies. Hence when working with a
fermionic system, one has to either use different internal states or different species
to have interactions present.
The scattering amplitude thus only depends on the wave vector k and the phase

shift δ0 and it is possible to describe the whole scattering process by a single param-
eter, the scattering length a3D. This can be achieved by expanding k cot δ0 in k as

k cot δ0,k = − 1
a3D

+ 1
2reffk

2 +O
(
k4
)

(2.33)

which leads to
a3D −−→

k→0
−tan δ0

k
(2.34)

in the case of kreff � 1 which is usually fulfilled in ultracold atom experiments as
reff is identical to the van der Waals range rvdW up to a numerical factor on the
order of 1. This leads to a total scattering cross section of

σk,tot = 4πa2
3D

1 + k2a2
3D

(2.35)

for the case of non-identical particles. In the limit of weak interactions ka3D � 1
the total cross section becomes energy independent with σk,tot = 4πa2

3D. Hence the
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2.2. Tuning the Interactions

scattering length directly gives a measure for the strength of interactions. In the
limit of strong interactions ka3D � 1 the total cross section reduces to σk,tot = 4π/k2

and is thus explicitly energy dependent. This is also called the unitary regime. In a
fermionic system, the typical momentum scale is given by the Fermi momentum kF
and thus 1/kFa3D can be used to describe the scattering strength. For |1/kFa3D| � 1
one is in the strongly interacting regime and the Fermi energy EF becomes the only
relevant length scale. Here all relevant system properties are characterized by the
Fermi energy EF rescaled by numerical factors [Car03, Ku12]. On the other hand
for |1/kFa3D| � 1 one is in the weakly interacting regime.
In low energy scattering, the internal structure of our neutral atoms does not

get resolved and one can treat them as either bosonic or fermionic when describing
scattering. In a similiar fashion, if the de Broglie wavelength λdB = 2π/k is much
larger than the effective range of the interaction potential reff , then the exact short-
distance behaviour of the potential does not get resolved and one can treat the
potential effectively as a contact potential. Theoretically, the potential can then be
modeled as a pseudo-potential of the form

Vint (r) = 4π~2a3D

mr
δ (r) ∂rr, (2.36)

where the partial derivative regularizes the potential to avoid divergences in three
dimensional systems [Hua57, Hua87]. This simplifies the theoretical description of
neutral atomic systems considerably while still being exact. This can be for example
used to calculate the interaction energy for a weakly interacting system in a mean-
field picture. Looking at a sample of N atoms in a volume V at a density n = N/V ,
one can derive the interaction energy experienced by a single atom by summing up
the contributions from all the other atoms in the volume. This results in a mean-field
interaction energy [Wei09]

Eint,mf = g3Dn = 4π~2a3D

mr
n. (2.37)

Thus, the sign of the scattering length a3D determines whether the experienced
mean field shift is repulsive (a3D > 0) or attractive (a3D < 0). Note however that
the underlying microscopic van der Waals interaction is always attractive even when
the overall effect on a test particle is repulsive.

Treatment of Scattering in a Two-Dimensional System

Similar to the three dimensional case, the scattering problem in two dimensions
can be solved working with the 2D Schrödinger equation [Lev15]. In an analogous
fashion to the 3D derivation, one obtains for the two-dimensional s-wave scattering
amplitude f2D (k)

f2D (k) = −4
cot δ0 (k)− i . (2.38)

For elastic scattering, the low energy behavior of the phase shift δ0 (k) is given by
[Ran90]

cot δ0 (k) = − 2
π

ln (1/ka2D) +O
(
k2
)
, (2.39)
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where a2D > 0 is now the scattering length in two dimensions. Inserting this back
into equation 2.39 yields

f2D (k) = −4
2
π

ln (ka2D)− i . (2.40)

From this it is clear that the scattering behavior is remarkably different from the
3D case. For vanishing collision energies the scattering amplitude now goes to
zero instead of going to the scattering length as in the 3D case. Also there is
no unitary regime where the scattering length diverges and the scattering cross
section is only momentum dependent as in 3D. As we will later see, this can be
attributed to the presence of a bound dimer state at all scattering lengths a2D.
Furthermore, the repulsive or attractive nature of the mediated interaction is now
not determined by the sign of the scattering length but the value of ln (ka2D). In
a Fermi gas the energy scale for the momenta is given by the Fermi momentum kF
which is directly connected to the density n of the system. Hence one can now also
profoundly influence the physics of the system by changing only the density. This
is of importance in the context of the BEC-BCS crossover in 2D systems which is
discussed in section 2.3.1.

Influence of the Strong Axial Confinement

In the real world, the notion of a two dimensional system is of course superfluous.
However, when the confinement width of particles in one direction is much smaller
than both the thermal wavelength and the interparticle spacing, the transverse mo-
tion is effectively frozen out and the system can be described in a 2D framework
[Pet00, Mar10]. Hence equation 2.40 still holds. However there is one subtlety in
the quasi-2D case. The length scale of the tight confinement9 is given by the har-
monic oscillator length lz =

√
~/mωz which is typically on the order of 500 nm in

our experiments. The effective range of the two-body interaction is however on the
order of the van der Waals range which is typically rvdW ≈ 3 nm. Thus, the two-
body interactions are not effected by the confinement and the microscopic scattering
process has to be described in three dimensions. Taking this into consideration, one
can arrive at an expression for the two-dimensional scattering length a2D which now
explicitly depends on a3D [Pet01, Lev15]

a2D = lz
√
π/B exp

(
−
√
π

2 lz/a3D

)
e−

1
2 ∆w(k2

0l
2
z/2), (2.41)

where B ≈ 0.905 [Pet01, Blo08] and ∆w (x) is a correction dependent on the relevant
momentum scale of the system k0 [Boe16]. In a many-body system this momentum
scale is given by ~k0 =

√
2mµ̃ and therefore k2

0l
2
z/2 = µ̃/~ωz. The correction can

be neglected if k0lz � 1. Note that there are also other definitions of a2D in the
literature which deviate slightly [Pet01, Blo08]. In this thesis, however, only equation
2.41 is used.

9We define it to be along the z-direction in the rest of this thesis.

17



2.2. Tuning the Interactions

2.2.2. Feshbach Resonances in Atomic Physics
In atomic systems, one can often make use of magnetic Feshbach resonances [Fes58]
to change the scattering length by simply applying a homogeneous magnetic offset
field. In this section the underlying physics will be summarized and the special case
of 6Li will be discussed in detail. The ability to tune the scattering length also gives
access to universal dimer states whose properties are solely determined by the mass
and the scattering length. These will be discussed both for the 3D and quasi-2D
systems at the end of this section.

Principle of Feshbach Resonances

Although low-energy scattering can be described simply by the scattering length
a3D without relying on the exact form of the interaction potential Vint, the value of
a3D can still be greatly influenced by it. This can be seen for example if a weakly
bound dimer state of the potential exists close to the continuum. The interaction is
then resonantly enhanced which leads to a large positive scattering length [Lan81].
Similarly, if there is a (virtual) bound state slightly above the continuum the scat-
tering length is large and negative. This phenomenon is sometimes referred to as
accidental fine-tuning and can e.g. be seen in 6Li, where the scattering length at
large magnetic fields is large and negative (see section 2.2.2).
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Figure 2.4.: Sketch of the open/closed channel model for scattering (a). If the parti-
cles in the open channel can couple to the closed channel, a bound state
of the closed channel can be brought to coincide with the open channel
continuum by changing the magnetic field. The scattering is then res-
onantly enhanced and the scattering length diverges at the resonance
position B0 as shown in (b). The coupling also leads to an avoided cross-
ing between a molecular state and the free scattering state (c). Hence
one can adiabatically go from a system of molecules to free particles and
vice versa by ramping the magnetic field across the resonance. Taken
from [Wen08].

These bound states can also be tuned by applying external magnetic fields and
thus resonantly enhanced scattering can be achieved. This principle is used in
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magnetic Feshbach resonances which have been discussed both theoretically [Fes58,
Moe95, Pet02, Pit03] and experimentally [Ino98, Chi10] in great detail. Hence we
will give here just a short qualitative picture motivated by Figure 2.4 (a). The
scattering process can be described in an open/closed channel model. Imagine two
particles with energy slightly above the continuum threshold of their respective
interparticle potential (black curve). The particles can then come close together,
be repelled by the strong short-range repulsion and separate again. Hence such a
channel is called an open or scattering channel. However there also exist different
scattering channels with differing initial spin configurations which can have a larger
continuum threshold (red curve). If particles initially in the open channel can couple
to this channel, they cannot separate again in this channel. Hence it is called a
closed channel and particles have to couple back to the open channel making this
a second-order process. The closed channel can now e.g. support a bound state
close to the energy of the scattering particles and if there is a magnetic moment
difference ∆µ between the channels, one can tune this bound state to be in the
vicinity of the continuum threshold of the open channel. The scattering becomes
then resonantly enhanced, diverging at a magnetic field where the bound state lies
exactly at the continuum (see Figure 2.4 (b)). In the vicinity of the Feshbach
resonance the scattering length a3D is then given as a function of the magnetic field
B as [Moe95]

a3D (B) = abg ·
(

1− ∆
B −B0

)
, (2.42)

where abg defines the background scattering length, ∆ describes the width of the
resonance and B0 gives the position of the resonance.

6Lithium as a Special Case
6Li is a fermionic isotope with a single electron in the outer shell. Therefore it has an
electron spin S = 1/2 and its nuclear spin is I = 1 leading to a hyperfine splitting
(∆HF = 228 MHz) of the ground state with total spins F = 1/2 and F = 3/2
[Geh03]. When applying a magnetic field, the Zeeman shift lifts the degeneracy
of the magnetic sublevels and the energy levels of the ground state can be seen in
Figure 2.5 a). Already for magnetic fields above 30 G the electron spin and nuclear
spin mostly decouple which leads to a splitting up into two triplets (mS = 1/2 and
mS = −1/2 with sublevels mI = 0,±1) whose behavior is dominated by the electron
spin. We label these states as |1〉 to |6〉 from low to high energy accordingly. The
upper branch is referred to as the low-field seeking states since they minimize their
energy at low fields. The lower branch are the high-field seeking states, lowering
their energy at large magnetic fields in return. In the experiment we use only binary
mixtures of the high-field seeking states |1〉 − |3〉 since these do not undergo spin-
changing collisions when preparing binary mixtures. Binary mixtures are needed
since identical fermions do not interact at low-energies and hence distinguishable
particles are needed to introduce interactions.
The scattering lengths a3D

12 , a3D
13 and a3D

23 for the different mixtures have been calcu-
lated using a coupled channel method in combination with a precise determination
of the resonance positions using rf spectroscopy [Zü13]. The results are depicted in
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Figure 2.5.: a) Zeeman shifted energy levels of the 6Li electronic ground state 22S1/2.
Our experiments are usually performed at large magnetic fields B >
500 G where electron and nuclear spin decouple. We use binary mixtures
of the lowest three hyperfine states labeled as |1〉, |2〉 and |3〉. b) The
scattering length in units of the Bohr radius a0 is given for all three
possible binary mixtures of the high-field seeking states as a function of
the applied magnetic offset field in Gauss. In this thesis we use both
the 12-mixture as well as the 13-mixture.

Figure 2.5 b). All three mixtures show a broad Feshbach resonance in the vicinity
of 800 G which is experimentally accessible. The results are shown in Table 2.1.
For large magnetic fields, the background scattering length abg is dominated by the
scattering length of the triplet channel which is resonantly enhanced due to the exis-
tence of a virtual bound state slightly above the continuum [Joc04]. This leads to a
large negative background scattering length on the order of abg ≈ −2000 a0. Hence
there is a small range of scattering lengths which are not experimentally accessible
in 6Li(see red opaque area in Figure 2.5 b)).
As explained in section 2.2.1, the two-dimensional scattering length does not di-

verge at the resonance position and is always positive. However, the two-dimensional
interaction strength given by ln (kFa2D) changes its sign in the vicinity of B0, de-
pending on the density of the system.

Scattering channel B0 [G] ∆ [G]
|1〉 |2〉 832.2 262.3
|1〉 |3〉 689.7 166.6
|2〉 |3〉 809.8 200.2

Table 2.1.: Position B0 and width ∆ of the three lowest scattering channels of 6Li as
determined in [Zü13].
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Universal Dimer States

The existence of a Feshbach resonance is accompanied with a bound dimer state.
In a 3D system, the bound state is only present for positive scattering lengths
a3D > 0 and the binding energy goes to zero directly at the resonance (see Figure
2.6). When the scattering length a3D is much larger than the effective range reff of
the interparticle potential, the binding energy of this dimer becomes universal and
is a simple function of the scattering length and the reduced mass of the particles
[Pet04]

EB,3D = ~2

2mra2
3D
. (2.43)

This dimer state is not in the vibrational ground state10 of the system and thus can
potentially relax into deeper lying states releasing a lot of energy in the process.
This leads inevitably to particle losses in the trap. However it was shown [Pet03a,
Pet04, Pet05] that these relaxation processes are strongly suppressed in fermionic
systems, making the dimers stable on experimental timescales.
In the 2D framework the situation is slightly different. Here a2D > 0 is true for all

magnetic fields and thus a dimer state exists for all interaction strengths ln (kFa2D)
(see Figure 2.6). The dimer binding energy is similar to the 3D case defined as
[Lev15]

EB,2D = ~2

2mra2
2D
. (2.44)

However, once again the axial extent lz of the strongly confined dimension has
to be taken into account when one wants to obtain the binding energy under real
experimental conditions. The dimer energy EB,q2D can then be calculated11 via the
transcendental equation [Pet01, Blo08, Lev15]

lz
a3D

=
∫ ∞

0

du√
4πu3

1−
exp

(
−EB,q2D

~ωz
u
)

√
1

2u (1− exp (−2u))

 . (2.45)

In Figure 2.6 one can see that this solution interpolates between the 3D regime for
deeply bound dimers and the true 2D regime for weakly bound dimers. This can be
intuitively understood when considering that the 3D dimer size is on the order of the
scattering length a3D. Hence for lz/a3D � 1 the dimer size is much smaller than the
axial confinement and hence the system feels no perturbation, hence approaching
the 3D case. For lz/a3D ≤ 1 however the influence of the tight confinement becomes
stronger and the binding energy EB,q2D approaches the true 2D binding energy EB,2D.
This behavior has been experimentally verified in two independent experiments using
rf spectroscopy [Som12, Bau12]. Note that the confinement induced binding energy
EB,q2D has no direct connection to the scattering length a2D.

10Hence they are also often referred to as Halo molecules due to their size being much larger than
the underlying interaction potential.

11If the assumption (reff/lz)2 → 0 is fulfilled. This is true in our system where lz ≈ 500 nm and
reff ≈ 3 nm.
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Figure 2.6.: The binding energy of the universal dimer is depicted as a function of
lz/a3D for the 2D (red dashed line), quasi-2D (blue dash dotted line)
and 3D (green) case using equations 2.41,2.43,2.44 and 2.45. The axial
confinement length is set to lz = 551.2 nm. Due to the strong confine-
ment, the continuum energy of both the 2D and quasi-2D case is shifted
by 0.5hνz. Hence this shift is added in this plot in order to compare
the 3D and 2D case. For large dimer binding energies, the size of the
dimer is negligible compared to the confinement length and the quasi-
2D solution converges towards the 3D solution. Close to the resonance
lz/a3D = 0, the influence of the confinement length becomes important
and the quasi-2D solution interpolates between the 3D and 2D solutions.
Above the resonance, a dimer state only exists in the two-dimensional
systems. Hence it is often referred to as confinement induced.

2.3. Strongly Interacting Fermi Gases as a Tunable
Many-Body System

Fermions provide an interesting playground for many-body physics. At low tem-
peratures, the Pauli principle excludes interactions between identical particles, thus
necessitating the usage of mixtures, either in the internal state of the species or
by using different species. This absence of interactions between identical fermions
makes binary mixtures stable on long timescales [Pet03a] also in the strongly in-
teracting regime as three-body losses are suppressed since always two of the three
involved particles in a scattering process are identical. Together with the existence
of Feshbach resonances, this enables the creation of strongly correlated systems
which is not possible in purely bosonic systems as three-body losses set in at larger
interaction strengths.
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2. Theory

The prime example of such a rich phase-diagram is the BEC-BCS crossover in a
3D Fermi mixture. There, a phase transition to a superfluid state below a critical
temperature Tc exists at all interaction strengths. However, the underlying princi-
ple of this superfluid transition changes fundamentally when crossing the Feshbach
resonance from a weakly repulsive to a weakly attractive system. The theoretical
groundwork of the BEC-BCS crossover was done [Eag69, Leg80] and experimentally
it was studied in detail in [Bar04, Reg04, Chi04, Zwi05, Gre05, Sch08a] and has been
summarized in various review articles [Ket08, Gio08]. The principle of the BEC-
BCS crossover is depicted schematically in Figure 2.7 a) and will be here shortly
summarized.

a)

b )

Figure 2.7.: a) The underlying mechanism of the pair formation changes as one
crosses the Feshbach resonance. In the BEC regime, atoms of opposite
spin form deeply bound dimer states which can undergo Bose-Einstein
condensation. In the unitary regime where the scattering length di-
verges, the pairing is a many-body phenomenon and the pair size is
on the order of the inter-particle spacing. In the BCS regime for weak
attractive interactions, BCS theory describes the system and the atoms
form Cooper-pairs in momentum space. Taken from [Gub13]. b) Ex-
perimental data from [Zwi05] showing vortex cores in all regimes when
stirring the sample. This is a clear sign of superfluidity and shows that
the BEC-BCS crossover is smooth. Taken from [Zwi05].

On the repulsive side of the Feshbach resonance (a3D > 0), a universal dimer
state exists whose size scales with the scattering length. For weak interactions, the
dimer is deeply bound and its size is much smaller than the inter-particle distance.
The dimer scattering can then be treated as purely bosonic and the system can be
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described by the Gross-Pitaevskii equation [Pit03]. Similar to the non-interacting
case, the system then undergoes a phase transition to a Bose-Einstein condensate
below a critical temperature Tc. This is often referred to as a molecular BEC
(mBEC).
On the attractive side of the Feshbach resonance (a3D < 0), no dimer state exists

and the system consists of free atoms. However, superfluidity is connected to long
range coherence in the system which only exists for bosons as fermions cannot occupy
the same state. Thus, fermionic pairing is a necessity for superfluidity. Although
there is no dimer state available, Bardeen, Cooper and Schrieffer12 showed that in
such a system so-called Cooper pairs can be formed in momentum space at arbitrarily
weak interactions [Bar57]. These Cooper-pairs are formed by atoms with opposite
spin and momentum. Note that this pairing mechanism, unlike the simple two-body
phenomenon for the dimer state on the BEC side, relies on the presence of the filled
Fermi sea below the Fermi surface and is thus is often referred to as many-body
pairing. This many-body pairing leads to a zero-temperature energy gap in the
excitation sprectum close to the Fermi surface of the form [Gor61]

∆0 ≈ (2
e

)7/3EF exp
[
− π

2kF |a3D|

]
. (2.46)

It was shown [Gio08] that below a critical temperature kBTc = (eγ/π) ∆0 the system
is superfluid. Furthermore, in the limit of a3D → 0−, the critical temperature for
the onset of superfluidity coincides with the critical temperature for Cooper-pair
formation T ∗.
In the unitary limit close to the Feshbach resonance, the scattering length di-

verges and for kF |a3D| � 1 it exceeds the inter-particle distance. Here, no analytic
solution exists for the many-body system but one can extend the standard BCS
theory into the unitary regime to get a qualitative understanding [Eag69, Leg80].
It shows that there is still a superfluid state below a critical temperature Tc. Ex-
perimentally, this was studied e.g. in [Reg04, Bar04, Chi04, Zwi05, Gre05, Sch08a]
and it was shown that the size of these pairs is on the order of the inter-particle
spacing. An interesting aspect of the unitary regime is that the scattering cross
section there is independent of the scattering length (see equation 2.35). Hence, the
inter-particle spacing d ∼ 1/kF becomes the only relevant length scale. Therefore,
all thermodynamic properties of the system only depend on the Fermi energy EF
and the degeneracy T/TF [Gio08].

2.3.1. BKT Transition and the 2D BEC-BCS Crossover
The situation in a two-dimensional system has some subtle differences compared
to its 3D counterpart. First of all there now exists a two-body dimer state at all
interaction strengths, whose binding energy approaches zero in the limit of weak
attractive interactions. Furthermore, the scattering length does not diverge at the
Feshbach resonance and thus no unitary regime exists in two dimensions. Never-
theless, the crossover from a system with bosonic degrees of freedom in the form
12Their theory is commonly referred to as BCS theory.
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of dimers into a system with fermionic degrees of freedom in the form of atoms is
still present at finite temperatures due to the vanishing bound state energy of the
dimers on the attractive side of the resonance.
In the limit ln (kFa2D) � 1 where deeply bound dimers form on the repulsive

BEC side, the condensation of these dimers into a BEC with true long-range order
is not possible at finite temperatures [Mer66]. Nevertheless, there still exists a phase
transition into a superfluid state in the form of a topological phase transition. This is
the famous Berenzinskii-Kosterlitz-Thouless (BKT) transition which was predicted
theoretically in the seventies [Ber72, Kos73] and for which both D. Thouless and J.
Kosterlitz were awarded a Nobel prize in 2016. It can be qualitatively understood
when looking at the thermal vortex excitations of the system [Had11]. Vortices are
topological excitations around which the phase θ of the wave function circulates
by a multiple of 2π. They also carry a quantized angular momentum and thus can
only be produced in pairs of opposite rotation when no additional transfer of angular
momentum into the system takes place. These thermal vortices lead to a scrambling
of the phase and thus suppress any long range order in the phase. However, below
a critical temperature TBKT, the system becomes superfluid as vortices of opposite
rotation form bound pairs and thus their influence on the phase almost cancels out.
This leads to so-called quasi long-range order (QLRO) in the system and can be
seen as an algebraic decay of the first order correlation function [Had11]

g1 (r) = ns

(
r

ξ

)−1/(nsλ2
T)
, (2.47)

where ns is the superfluid density and ξ is the healing length. The critical temper-
ature Tc in the limit ln (kFa2D) � −1 can be calculated as [Pet03b, Pro01, Pro02]

Tc

TF
= 1

2

[
ln C

4π + ln (ln (4π)− 2 ln (kFa2D))
]−1

, (2.48)

where C = 380± 3 is obtained from quantum Monte Carlo simulations. The BKT
transition was observed in superfluid Helium films [Bis78] as well as in quasi-2D
ultracold Bose gases [Had06, Krü07, Cla09, Des12].
In the limit ln (kFa2D)� 1, where the dimer state energy is negligible, the system

can be described as free fermions and BCS theory can be applied. Including the so-
called Gor’kov-Melik-Barkhudarov (GMB) corrections to account for particle-hole
fluctuations around the Fermi surface, this leads to a critical temperature [Pet03b,
Bot06, Lev15]

Tc

TF
= 2eγ−1

πkFa2D
, (2.49)

where γ ≈ 0.577 is the Euler constant.
Whereas these two limits are well understood theoretically, the interesting region

of strong interactions is difficult to describe theoretically due to the increased role
of quantum fluctuations in two dimensions. Since in both limits the critical temper-
ature increases monotonically as one approaches the crossover, one expects to find
a maximum in Tc as shown schematically in the phase-diagram in Figure 2.8 a).
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To obtain a qualitative insight into the crossover, one can again apply zero tem-
perature BCS mean field theory across the whole regime [Lev15]. In contrast to
the 3D case where the crossover point from the BEC side to the BCS side is natu-
rally given by the unitary regime where the binding energy approaches zero and the
scattering length diverges, there is no divergence of the 2D scattering length and a
bound state exists for all interaction strengths. Here, it makes sense to define the
crossover point in terms of the chemical potential µ. A necessary condition for the
formation of a Fermi surface is µ > 0 and thus it is natural to define the crossover
point by this condition. In mean-field theory this crossover point corresponds to
ln (kFa2D) = 0. However, a more accurate QMC calculation yields the crossover
point to be at larger values ln (kFa2D) ' 0.5 [Lev15], indicating that strong correla-
tions influence the existence of a Fermi surface significantly. Note that this can also
have large implications when perturbing away from the strict 2D limit EF � ~ωz, as
the chemical potential can be strongly modified even for weak interactions [Lev15].
This can potentially result in larger critical temperatures when operating between
the strict 2D and 3D limit [Fis14].
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Figure 2.8.: a) A sketch of the expected two-dimensional phase diagram. The critical
temperature is given by the black line and the red dashed line indicates
the condition µ ≈ 0 which is a necessary condition for a Fermi surface to
exist. The blue dashed line is a BCS mean-field prediction which indi-
cates the onset of pairing according to the Thouless criterion. Adapted
from [Lev15] b) Measured phase-diagram of the critical temperature in
the BEC-BCS crossover in quasi-2D [Rie15a]. The phase transition was
observed by measuring the zero momentum density in the pair momen-
tum distribution as a function of temperature and interaction strength.
The black dots are the experimentally determined critical temperatures
including the error. The color scale indicates the non-thermal fraction
in the sample. This can be non-zero even above the critical temperature
due to Bose-enhancement.

In our group we investigated this transition into a superfluid in the BEC-BCS
crossover by measuring the momentum distribution of an inhomogeneous, trapped
sample [Rie15a, Mur15]. We observed condensation into a low-momentum phase
and were able to extract the critical temperature well into the crossover regime up
to ln (kFa2D) . 2. This is depicted in the phase diagram in Figure 2.8 b). The ob-
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served critical temperatures in the crossover regime where indeed considerably larger
than in the 3D case and showed the largest values in the crossover regime. Further-
more, from the momentum distribution we extracted the g1-correlation function and
observed an algebraic decay below the critical temperature (see Figure 2.9).
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Figure 2.9.: Observation of the BKT phase transition in a strongly interacting quasi-
2D Fermi gas. In a) the first order correlation function obtained from a
Fourier transform of the momentum space distribution is shown at two
interaction strengths in the crossover for different temperatures. Below
a critical temperature Tc, the form of the correlation decay changes from
an exponential form to an algebraic form as predicted by BKT theory.
This is further shown in b) where the χ2-value of the fits are shown.
One can clearly distinguish the region where the decay is described by
an exponential from the region where the decay is algebraic. Taken from
[Mur15].

2.4. Pairing in the Normal Phase
Superfluidity can be interpreted as an instability of the normal phase [Nor05] and
hence to better understand its origin it is instructive to investigate the normal phase
in more detail. In BCS theory, the emergence of a superfluid phase starts right at the
point where (many-body) Cooper pairing occurs and leads to a gapped excitation
spectrum. This means that the energy ∆gap is required to remove a particle from the
paired system leading to a gap with vanishing weight in the density of states right
at the Fermi surface. The instability in the normal phase is therefore the instability
of the Fermi surface towards pair formation [Alt10]. On the BEC side, the binding
energy of the two-body dimers is EB � kBTc and thus dimer formation already sets
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in far above the critical temperature Tc. The instability in the normal phase is then
driven by the pairing of vortices of opposite rotation as described in section 2.3.1.

An open question which is not yet fully understood regards now the pairing mech-
anism in the strongly interacting fermionic regime. Are many-body pairing and su-
perfluidity distinct phenomena such that one can have many-body pairing already
above the critical temperature Tc or does one necessitate the other? In high-Tc
cuprates it was shown that it is indeed possible to have a gap at a finite tem-
perature above Tc in an underdoped system without establishing long range order
[Din96]. This behavior is referred to as a pseudogap and theoretical investigations
imply that this is also expected to occur in strongly interacting atomic Fermi gases
[Bau14, Lev15, Mar15]. The pseudogap is then defined by a significant suppression
of spectral weight at the Fermi surface starting to form at a crossover temperature
T ∗ > Tc [Bau14]. This results in a gapped excitation spectrum already above Tc with
a minimum at a finite momentum k. As this definition of the pseudogap requires the
existence of a Fermi surface, the chemical potential µ has to fulfill µ > 0. To under-
stand the pseudogap at least on a qualitative level, its emergence can be illustrated
by considering a complex order parameter of the form ∆(r) = |∆(r)| eiθ(r) [Fel11].
For temperatures below the critical temperature for BKT, quasi-long range order is
established, leading to a superfluid gap ∆gap = 〈∆〉. Above the critical temperature,
quasi-long range order is destroyed by thermal vortices and 〈eiθ(r)〉 = 0. However,
the modulus 〈|∆ (r)|〉 remains finite up to the crossover temperature for pairing T ∗
leading to a pseudogap ∆pseudogap = 〈|∆ (r)|〉 > 0. This is in contrast to standard
weak-coupling mean-field BCS theory where the destruction of the superfluid gap is
synonymous with pair breaking and thus T ∗ = Tc. In general the pseudogap regime
is expected to be particularly large in two dimensions due to the increased role of
quantum fluctuations.

Experimentally, pairing above the critical temperature has been observed in quasi-
2D systems in the BEC-BCS crossover region [Fel11, Som12]. However due to the
existence of a bound state at all interactions strengths in 2D systems, observing
pairing alone does not unambiguously identify a pseudogap region. In [Som12]
the observed pairing energies up to ln (kFa2D) < 0.5 are consistent with the two-
body binding energy and hence do not show any indication of many-body effects.
However it does not probe the region where one would expect µ > 0 and thus a
remnant of a Fermi surface to be present. Additionally the temperature regime
where the data was taken is on the order of T/TF ≥ 1 and hence one is not in the
temperature regime one would expect a pseudogap to show up. Similarly the results
presented in [Fel11] are in a regime 0 < ln (kFa2D) < 0.8 and hence there is not
unambiguously a Fermi surface present [Lev15]. Furthermore, the physical feature
used to extract the pseudogap regime can also be reproduced by a thermal virial
expansion [Nga13]. This motivates further studies presented in this thesis towards
a better understanding of the strongly interacting regime.
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2.5. Particles in Periodic Potentials
Apart from the freedom to change the dimensionality of the system in ultracold
gases, one can also introduce periodic potentials to mimic solid state systems. In
the course of this thesis we therefore investigated a superfluid Fermi gas in a lattice
potential. The lattice potential is created by counter-propagating, red-detuned,
far off-resonant laser beams which interfere resulting in a standing wave and thus
a periodic potential. This section provides a short overview about the behavior
of particles confined in a periodic potential as can be found in text books like
[Ash76, Lew12] and it furthermore introduces the Hubbard model which is widely
used both in condensed matter physics as well as in utracold gases to describe the
lattice physics when adding interactions.

2.5.1. Non-Interacting Particles and Band Structure
For a non-interacting particle its motion in a 1D lattice potential V (x+ d) = V (x)
with periodicity d is described by the stationary Schrödinger equation(

p̂2

2m + V (x)
)
ψ = Eψ. (2.50)

This breaks the continuous translation symmetry of the Hamiltonian compared to
a particle in free space but replaces it with a discrete translational symmetry such
that the Hamiltonian is invariant when shifted by multiples of the periodicity. This
leads to a set of eigenfunctions ψn,q which can be written according to the Bloch
theorem as [Ash76]

ψn,q(x) = eiqxun,q(x), (2.51)

where un,q(x+ d) = un,q(x) is a function representing this translational periodicity,
n is the band index for the n-th solution of the Schrödinger equation and q is the
quasi-momentum of the particle. The function un,q(x) can be expressed using a
discrete Fourier Series as

un,q(x) =
∞∑

l=−∞
c(l)
n,qe

ilkLx, (2.52)

ψn,q(x) =
∞∑

l=−∞
c(l)
n,qe

i(lkL+q)x, (2.53)

where the quasi-momentum q is restricted to the range q ∈
(
−kL

2 , kL
2

]
in units of the

reciprocal lattice vector kL = 2π/d. The solutions of the wave function are hence
plane waves with momentum q differing by integer multiples of the lattice vector.
For shallow lattices only the terms l = 0,±1 play a role in the expansion.
In the experiment, the optical trapping potential in one dimension is created by

a standing wave resulting in a potential of the form

V (x) = V sin2
(
πx

d

)
= 1

2V
(
1− cos (kLx)

)
. (2.54)
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Putting this potential into equation 2.50, the Schrödinger equation can be solved
numerically in Fourier space by taking only a finite number of Fourier coefficients
into consideration [Lew12]. This results in a band structure as depicted in Figure
2.10 for two different lattice depths. The most striking feature is the opening up
of a band gap at the edge of the Brillouin zone. Thus, if a band is completely
filled with fermions, a finite energy (the band gap) is needed to create excitations.
The system is then insulating and accordingly called a band insulator. Near the
center of the Brillouin zone at q = 0, the dispersion relation is almost quadratic
with an effective mass m∗. Increasing the depth of the lattice potential restricts
the movement of particles and leads to an increase in the band gap as well as an
increase in the effective mass m∗, resulting in a rather flat dispersion relation. This
indicates that the system may be described by an array of independent confining
wells with degenerate energy. There the energy of the lowest bands can be estimated
by approximating each lattice site by a harmonic confinement with a trap spacing
~ω = 2

√
V Er where Er = ~2k2

L
2m is the recoil energy of the lattice photons. This

approximation tends to overestimate the energy as the real potential is not harmonic
and residual tunneling will lower the energy.
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Figure 2.10.: Numerical band structure calculation of a 1D lattice. For (a) V = 3 Er
and (b) V = 15 Er the lowest three bands are plotted. In the vicinity
of q = 0 the dispersion relation is harmonic with an effective mass m∗
and the bands are separated by the band gap. For deeper lattices, the
effective mass increases and the bands become rather flat as m∗ →∞.
This also increases the band gap. Taken from [Bay15].

All these considerations can be extended also to higher dimensional lattices like the
2D square lattice we set up in the experiment. Here the problem is separable in each
dimension and the dispersion relations is simply the sum of the 1D lattice dispersion
relations. However a difference exists when looking at the higher bands. For the 2D
lattice there exist for example momenta qx, qy where solutions for nx = 1, ny = 2
are degenerate to solutions for nx = 2, ny = 1 and hence these different bands touch
each other. Hence there is no band gap between higher bands whereas the band gap
between the lowest band and the first excited band still exists.
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2.5.2. The Hubbard Model in Deep Lattices
The model of non-interacting particles in a lattice in the previous section was de-
scribed in the basis of delocalized Bloch waves. This is an intuitive basis in a shallow
lattice where the particles can move more or less freely but is not a good basis when
describing deep lattices where the particles are more localized and tunneling deter-
mines the movement. There the description of particles localized to specific lattice
sites becomes more adequate which can be expressed in the basis of so-called Wan-
nier states [Wan37] which are constructed from the Bloch wave functions as

wn(x− xi) = 1√
N

∑
q

e−ıqxiψn,q(x). (2.55)

Here xi represents the coordinate of a particle localized to a lattice site i, N is the
number of lattice sites and n is the band index. In our 2D lattice, the energy gap
between the first and second band is on the order of tens of kHz for deep lattices
and thus exceeds all other energy scales in the system. Thus, in our case we can
only consider the lowest band in the following. Note however that in the direction
perpendicular to the lattice, our harmonic confinement is only on the order of several
kHz and thus excitations in this direction are still possible. Thus, a more appropriate
model would be a system of weakly coupled 1D tubes.
In the following the application of this model to a 1D lattice of interacting bosonic

particles is given. The annihilation (creation) of a particle at a position x is then
given by the bosonic field operator

ψ̂(†) (x) =
∑

i
b̂

(†)
i w(†) (x− xi) , (2.56)

where b̂(†)
i denotes the annihilation (creation) operator of a particle localized at

lattice site i obeying the commutation relation
[
b̂i, b̂

†
i

]
= δij. The two forces driving

the dynamics in the lattice are the kinetic energy of the particles due to tunneling
across lattice sites and the interaction between particles. Depending on the depth
of the lattice and the ensuing localization of the particles, these can be limited to
nearest-neighbor tunneling and on-site interactions which is known as the Bose-
Hubbard model

H = −J
∑
<i,j>

b̂†i b̂j + U
∑
i

n̂i(n̂i − 1). (2.57)

Here the term J describes the nearest-neighbor tunneling across adjacent lattice
sites < i, j > and U describes the on-site interaction energy given by the boson
number operator n̂i = b̂†i b̂i at each site. This can be seen sketched in Figure 2.11.
The applicability of this model relies on the wave function overlap between particles
at neighboring lattice sites to be small. This can be estimated by approximating
each lattice site by a harmonic potential with harmonic oscillator length aon-site =√
~/(mωon-site) and comparing this to the lattice spacing d. In our system aon-site � d

for lattice depths V & 2.5Er and thus there we can apply the Hubbard Model. Note
that in this model we explicitly did not consider an external confining potential
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2.5. Particles in Periodic Potentials

Figure 2.11.: Sketch of particles in a periodic potential obeying the Hubbard model.
This model is based on two assumptions: only particles on the same
lattice site interact resulting in the on-site energy U . Particles can
tunnel only to adjacent lattice sites with a tunneling rate given by J .
Taken from [Bay15].

which is present in the experiment. This introduces a lattice site dependent energy
offset εi and thus both the chemical potential µ as well as the on-site trapping
frequency change locally. We neglect this in the following derivation.
The tunneling probability J can be calculated as [Lew12]

J = −
∫
dx w† (x− xi)

[
~2∇2

2m + V (x)
]
w (x− xi) (2.58)

whereas the on-site interaction U is given by

U = g
∫
dx |w (x)|4 (2.59)

where g is the coupling strength.
Although the Hubbard model only has two parameters in the tunneling prob-

ability J and the on-site interaction U , its ground state can nevertheless change
drastically when changing the ratio U/J . In the limit of weak interactions U � J ,
the particles minimize their energy by delocalizing over the whole lattice resulting
in a macroscopic occupation of the Bloch state with quasi-momentum q = 0. The
system is then a superfluid with a fixed phase relation and can be written as a wave
function [Blo08]

|ψSF〉 = 1√
N !

(
1√
M

∑
b†i

)N
|0〉, (2.60)

where N is the particle number and M is the number of lattice sites. Thus, the
particle fluctuation at each lattice site is maximal. Increasing the repulsive interac-
tion U now suppresses particle fluctuations at each site as it becomes energetically
unfavorable to simultaneously have more than one particle per site. Then the sys-
tem properties become strongly dependent on the filling factor of the lattice. In
case of unity filling where the particle number is equal to the number of lattice sites
N = M , the system turns into an insulator in the limit U � J and each lattice
site is exactly occupied by one particle with no number fluctuations present. This
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2. Theory

state is known as the Mott-insulator (MI) and its wave function can be written in
the limit U/J →∞ as a product of Fock states [Blo08]

|ψMI〉 =
M∏
i=1

b†i |0〉. (2.61)

To create an excitation in the MI the energy U is required, making this state an
insulator. The MI persists also for large finite U/J where the ground state is no
longer a product state. It can be characterized by its incompressibility κ = ∂n

∂µ
=

0. By changing the filling factor of the lattice one can drive the system from a
superfluid to a Mott-insulator as is depicted in the zero temperature phase diagram
in Figure 2.12. For any non-integer filling of the lattice, the system is in a superfluid
state as the excess atoms delocalize to minimize their energy and are hence highly
mobile. Therefore by changing the chemical potential µ via the density one can
access different MI regimes with a fixed integer occupation number of atoms per
site. This is important in the context of experiments as these usually employ an
overall harmonic trapping potential in addition to the lattice. Thus, µ changes across
the lattice and one can observe the coexistence of different filling factors inside the
trap [Bak10]. The critical value for the phase-transition from a superfluid to a Mott-
insulator for a 2D square lattice with unity filling has been calculated in mean-field
theory to be (U/J)c = 23.2 [Zwe03] whereas QMC calculations yield (U/J)c = 16.2
[Wes04].
In the lattice experiments performed in this thesis, the two-body binding energy

EB is much larger than the other energy scales in the system and thus we expect
the Bose-Hubbard model to give a valid description in this regime. In principle one
can also access the Fermi-Hubbard model by using free atoms instead of bosonic
molecules. There, for a half-filled band one can create the fermionic Mott-insulator
where each lattice site is occupied by one spin state. For a fully filled band, each
lattice site is occupied by a spin up and spin down fermion and the system is a band
insulator.

33



2.5. Particles in Periodic Potentials

Figure 2.12.: Schematic zero-temperature phase diagram for the homogeneous Bose-
Hubbard model. The density is controlled by the chemical potential µ
which sets the filling of the lattice. Depending on µ and the ratio J/U
one is thus either in a superfluid state or in Mott-insulating state with
fixed integer mean atom number per site. Taken from [Blo08].
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3. Experimental Setup and Tools
This chapter provides an overview on how we prepare and probe our degenerate
Fermi gas systems. The preparation procedure has been described in more detail in
previous work [Wen13, Rie15b, Bay15] and thus will be only summarized briefly in
section 3.1. The probing of our system is done using an absorption imaging method.
The main principle as well as the calibration of our imaging system are described in
detail in section 3.2.

3.1. Preparation of a Degenerate Quasi-2D Sample
In this section all the steps required to produce our ultracold sample are briefly ex-
plained. Since the detection method is destructive, a new sample has to be prepared
for each experimental cycle. A typical cycle of the experiment lasts between 10-15 s.

Vacuum Chamber
In order to achieve the temperatures required to reach quantum degeneracy (∼
100 nK), the atoms have to be isolated extremely well from the environment. Hence,
the experiments have to be conducted inside an ultra high vacuum (UHV). The
vacuum setup of our apparatus can be seen in Figure 3.1. The pressure, which is
measured next to the main chamber (4), is approximately 1 · 10−11 mbar and it is
sustained via a combination of ion-pumps (6) and titanium sublimators (3) next
to the main chamber and the oven (1). The main chamber, a spherical octagon,
is additionally coated with a non-evaporable getter coating (NEG), reducing the
pressure at the location of the atoms furthermore. It provides the required optical
access for trapping, cooling and detection via six horizontal viewports1 (numerical
aperture NA ≈ 0.15) and two vertical re-entrant viewports (NA ≈ 0.88). More
detailed information on the vacuum setup can be found in [Rie10].

Zeeman Slower and Magneto-Optical Trap
In the oven 6Li is heated up to about 350 ◦C. Apertures the direct the resulting
atomic gas towards the Zeeman slower (2). Inside the Zeeman slower, atoms are
decelerated from an initial longitudinal velocity on the order of 1500 m/s to a final
velocity of about 50 m/s using laser cooling. For this purpose a resonant laser beam
is directed counter-propagating the atomic beam. This leads to absorption and
subsequent re-emission of photons. Since re-emission of photons is a spontaneous
process and hence isometric, this leads to a net momentum transfer slowing down the

1All viewports are anti-reflection coated for the wavelengths used in the experiment.
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3.1. Preparation of a Degenerate Quasi-2D Sample

atoms. Since the deceleration also leads to a spatially varying Doppler shift along the
Zeeman slower, a spatially varying magnetic field is applied to compensate this by
Zeeman shifting the internal energy states of the atoms [Met02]. In our experiment
we use a decreasing field configuration. This way, the anti-Helmholtz configuration
of the magneto-optical trap (MOT) coils can sustain the Zeeman slower field all the
way to the trap position. This leads to a compact design and a very good capture
efficiency in the MOT.

(1)

(2)

(3)

(4)

(5) (5)

(6)

(6)

Figure 3.1.: Technical drawing of the vacuum chamber. A small sample of 6Li is
heated up in the oven (1). The evaporated atoms then enter the Zeeman
slower (2) where they are decelerated by a directed resonant laser beam
entering through the window at (3). The atoms are then trapped and
investigated in the main chamber (4). The vacuum is sustained by a
combination of titanium sublimators (5) and ion pumps (6). Taken from
[Rie10].

After this initial drastic reduction in velocity, the atoms can now be trapped inside
a MOT. A combination of three retro-reflected near resonant laser beams along three
orthogonal directions (red arrows in Figure 3.2) and a magnetic quadrupole field is
used to trap the atoms at the zero-crossing of the magnetic field. This is achieved
by red-detuning the laser with respect to the resonance and choosing polarizations
in such a way that photons are only absorbed from the counter-propagating beam
when the atoms drift away from the center of the trap [Met02]. This leads to both
a dampening force and a restoring force towards the trap center hence also reducing
the temperature. However, the achievable temperature is fundamentally limited
[Foo04] by the process of scattering. The minimal achievable temperature is the so-
called Doppler temperature TD and in the case of 6Li is roughly 140µK. The MOT
lifetime is approximately 23 minutes and thus confirms our very low background
pressure.
The required laser light for the steps mentioned above is provided by a tapered

amplifier seeded with a diode laser (Toptica TA pro, 200-350mW depending on the
life cylce of the amplifier chip). In the experiment, we make use of the 6Li D2
line which couples the 22S1/2 ground state to the 22P3/2 excited state and has a
wavelength of roughly 671 nm. The hyperfine splitting of the excited state is not
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3. Experimental Setup and Tools

Figure 3.2.: Technical drawing of the main chamber including the MOT beams (red
arrows). The linear gradient needed for the MOT is provided by a set
coils in anti-Helmholz configuration (blue). The large homogeneous off-
set field needed for adjusting the scattering properties in the experiment
is produced via a set of coils in near Helmholtz configuration (green)
close to the atoms. All coils are mounted on water-cooled copper heat
sinks (brown). Taken from [Wen13].

resolved but the ground state splitting is roughly 228 MHz. Hence, one has to use
two laser frequencies labeled cooler and repumper to avoid the accumulation of
atoms in an unaddressed dark state. To achieve the required frequency stabilization
on the order of 10−8, the TA is beat-offset locked [Sch99] to a separate spectroscopy
laser. More details on the spectroscopy laser and the laser setup can be found in
[Rie10, Sim10, Peh13].

Optical Dipole Trap and Evaporative Cooling
The achievable phase-space density in the MOT is still several orders of magnitude
away from the quantum degenerate regime and hence a different kind of trapping
potential is needed which does not rely on resonant photon scattering. One solution
is the use of optical potentials [Gri00]. The working principle of an optical dipole
trap (ODT) is as follows: although neutral atoms initially do not possess an electrical
dipole moment, a far detuned laser beam can induce an electric dipole moment. This
induced dipole moment then orients itself in the external laser field to minimize its
energy. Depending on the chosen detuning the atoms hence are either trapped in (red
detuned) or repelled from (blue detuned) the intensity maximum2. Hence, trapping
can be achieved by simply focusing a red detuned laser beam. The non-resonant
scattering scales as I∆2 with the detuning ∆ and the intensity I whereas the trap
depth scales as I/∆. Therefore, by choosing a large detuning and large laser power,
it is possible to create a trap which is deep enough to trap atoms directly from the
MOT without being limited by non-resonant scattering.
In the experiment we use an IPG photonics fiber laser (YLR-200-LP-WC) which

provides 200 W at a wavelength λ ≈ 1068 nm. The setup is such that we produce
an elliptic beam with an aspect ratio of 1 : 5 using a cylindrical telescope and focus

2Since the trapping is a second order process, the trap depth is proportional to
∣∣E2
∣∣
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3.1. Preparation of a Degenerate Quasi-2D Sample

it into the chamber. After the chamber, we collimate it again, turn the polarization
by 90 degrees to avoid interference using a λ/2 − waveplate and refocus the beam
back into the chamber. There it intersects horizontally with itself under an angle of
12 ◦, producing a surfboard shaped potential with an aspect ratio of 1/ωx : 1/ωy :
1/ωz ≈ 8.3 : 44 : 1 determined from the harmonic trapping frequencies ωi. More
information on the setup of the ODT can be found in [Boh12].
To transfer the atoms from the MOT into the ODT, we ramp down the intensities

of the MOT beams. At the end of this ramp, the dipole laser output is ramped
quickly to 200 W. Thereby we end up with roughly 106 atoms in the ODT. Switching
off the cooler beams slightly before the repumper beams ensures that the atoms
accumulate in the energetically lower |F = 1/2〉 hyperfine manifold of the 22S1/2

ground state. Thus, when increasing the magnetic offset field, we end up with a
binary mixture of atoms in the hyperfine states labeled |1〉 and |2〉. By additionally
using a long incoherent rf pulse to drive the transition between these states, we
create a balanced fermionic mixture as a starting point.
To reach quantum degeneracy, we use a forced evaporation technique. By contin-

ually lowering the trap depth, the hottest atoms are lost while the rest of the sample
can re-thermalize via elastic scattering. This relies on sufficiently high scattering
rates between the atoms which can be achieved by ramping the magnetic offset field
to the vicinity of the broad Feshbach resonance in 6Li. Hence, by loosing particles
we can decrease the temperature and thus increase the phase-space density until we
reach quantum degeneracy. Depending on the sign of the scattering length, one ei-
ther ends up with a mixture of fermionic atoms (attractive interactions) or diatomic
molecules (repulsive interactions) which eventually condense into a molecular BEC
(mBEC). During the course of this thesis we always chose the latter. Thus, we end
up with roughly 50,000-100,000 atoms per spin state at temperatures on the order
of 100 nK.

Magnetic Field Coils

In the experiment, magnetic offset and gradient fields are used both for trapping
as well as manipulating the scattering length via Feshbach resonances. Here, we
want to give a short overview about the two coil setups we use throughout the
experimental sequence.
The MOT coils are two circularly symmetric coils mounted in an approximate

anti-Helmholtz configuration which produces the quadrupole field needed for the
first trapping step in the MOT (blue part in Figure 3.2). Each coil consists of four
axially stacked layers of 25 windings of Kapton coated wire and is mounted onto
water cooled copper heat sink. The maximal achievable magnetic field gradient is
approximately 85 G/cm at a current of 70 A and the direction of the gradient field
can be inverted using a logic circuit. This is used in later stages of the experiment
to apply a gradient field which counters the gravitational force experienced by the
atoms as well as to apply a strong gradient to achieve a spatial dependent rf tran-
sition frequency in tomographic measurements. We can stabilize the gradient to a
relative precision of approximately 10−3 by measuring the current through the coils
with a current transducer and using it as the feedback for a digital PID loop.
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The Feshbach coils are used to produce the large magnetic offset fields on the
order of 1000 G needed to access the Feshbach resonances in our 6Li system. In order
to reduce the required currents, they are mounted directly on top of the viewports
in the vertical direction as can be seen by the green part in Figure 3.2. How-
ever, with our current setup of 33 windings, we still need to operate with currents
on the order of 100 A which leads to considerable heating of the coils. Therefore,
the coils are directly glued onto custom-designed water cooled heat sinks using a
thermally conducting but electrically isolating diamond filled epoxy. This allows
us to operate the coils at 120 A continuously without exceeding a temperature of
50 ◦C. The coils are set up with a slightly larger distance than the Helmholtz
criterion. This produces a magnetic field saddle in the horizontal plane and an
anti-confinement in the vertical plane. The saddle potential has a trap frequency
of approximately ωr,mag = 2π × 12.2 Hz at 700 G and its magnetic field dependency
is ωr,mag (B) = 0.46

√
B [G]. This confinement increases the weak optical one in

the horizontal plane and it is an important ingredient for our radial momentum
imaging technique [Mur14]. The anti-confinement in the vertical direction is usually
negligible compared to our optical trapping frequencies. The stabilization of the
magnetic field is done by measuring the current through the coils with a current
transducer and using a digital PID feedback loop with a precision of 16 bit and a
speed of 100 kHz to control the voltage of the power supply. For magnetic field crit-
ical measurements like the rf measurements described in chapter 5, we can increase
the precision of the regulation with a differential amplifier circuit. Therefore, we
take the difference from the current transducer signal and a high precision reference
voltage and amplify it with a differential amplifier. This increases the dynamical
range and we can achieve a magnetic field stability of up to 1 mG, which corre-
sponds to a relative stability on the order of 1.25 · 10−6. More information on the
stabilization can be found in [Pre14].

3.1.1. Standing Wave Trap (SWT)
In order to reach the quasi-2D regime as described in section 2.2.1, one needs to
introduce a large anisotropy in the trapping potential. In our setup, this is achieved
by transferring the atoms from the crossed-beam ODT (CBODT) into a strongly
anisotropic optical potential formed by one interference maximum of a standing-
wave dipole trap (SWT). In this section we will discuss the conditions which need
to be fulfilled to reach the quasi-2D regime. We will then introduce our setup and
present the transfer protocol. At last we summarize the relevant measurements to
prove experimentally that we fulfill these conditions. All of this can be found in
more detail in [Boh12, Nei13, Rie15b].

The Quasi-2D Regime

In a harmonic trap, the strength of the confinement determines the trapping fre-
quency ω and thus the energy needed to populate the excited levels. For a 3D trap
where one of the axes has a much stronger confinement3 ωz � ωx,y, the radial levels

3In our case we define this always to be the z-axis
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will be populated first before any excitation along the axial level occurs. Therefore,
if both the chemical potential µ < ~ωz and the temperature κBT < ~ωz, then all
excitations appear only in the radial plane and the atoms are in their axial ground
state. The system can then be treated effectively in a 2D framework. Thus, to reach
this regime, we have to reduce both the atom number as well as the temperature.
For T = 0 we can calculate the maximal atom number before any excitation in the

z-axis occurs by counting the number of possible radial excitations before acquiring
any axial excitation. This is given by the relation

nx~ωx + ny~ωy < ~ωz, (3.1)

where nx,y is the number of the populated level in the radial plane. The maximum
number of atoms per spin state in the axial ground state can then be calculated as

Nmax = 1
2nx,maxny,max = ω2

z
2ωxωy

. (3.2)

This formula does not account for the effect of interactions, finite temperature or
trap anharmonicities. However, these effects do not change the basic need for a
large anisotropy in the trapping potential. In our trap geometry we reach an aspect
ratio ωz/ωr ≈ 314 : 1 and thus we can at most have ≈ 49, 000 atoms per spin state
in order to reach the quasi-2D regime.

Experimental Setup

The schematic on how we produce the trap can be seen in Figure 3.3 a). A single
elliptical laser beam with wavelength λ = 1064 nm and aspect ratio 1:8 is focused
with a f = 900 mm lens and directed under a 45 ◦ angle into our custom made
interferometer box. There it is split using a 50/50-beamsplitter and the resulting
beams are then directed towards our experimental chamber using two 1/2”-mirrors
where they intersect under an angle of 14 ◦. This intersection leads to an interference
pattern and thus a stack of optical potentials as can be seen in b) as the green discs.
The distance between the potentials is approximately 4.4µm which is much larger
than the typical harmonic oscillator length of lz ≈ 550 nm in the axial direction.
Therefore, tunneling between the layers can be neglected.
At typical experimental parameters, the axial trap frequency is ωz ≈ 2π×6.95 kHz

and the trap frequencies in the radial plane are ωx ≈ 2π × 23.4 Hz and ωy ≈ 2π ×
21.2 Hz including the magnetic confinement from the saddle point potential of the
Feshbach coils. This results in an aspect ratio ωx : ωy : ωz ≈ 1.1 : 1 : 327 and thus we
can trap up to 49, 000 atoms per spin state while still being in the quasi-2D regime.
To avoid parametric heating in the trap, we use a 50 W NUFERN SUB-1174-22
fiber amplifier which is seeded by an Innolight Mephisto-S 500NE solid state laser
at 1064 nm with low intensity-noise profile. More information on the laser setup can
be found in [Nei13].
In order to transfer the sample from the CBODT into a single layer of the SWT

optimally, one has to match both the relative axial position of these traps as well as
the axial extension of the sample. To reduce the axial extension in the CBODT, we
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a ) b )

Figure 3.3.: a) CAD drawing of the custom made interferometer box. An elliptical
beam enters the case under an angle of 45 ◦. It is then split by a 50/50-
beamsplitter and the two resulting beams are directed towards the main
experiment chamber using two 1/2 ” mirrors. The beams then intersect
under an angle of 14 ◦ in the vertical plane and the resulting interference
pattern leads to a stack of optical potentials with a large aspect ratio
(green discs in b)). By means of an appropriate transfer protocol, we
are then able to load almost all atoms into a single potential layer.

flattened the trap in the axial direction by using an elliptical beam with an aspect
ratio of 1:5 [Boh12]. In addition, we perform the evaporation on the repulsive side
of the Feshbach resonance where molecules form and we end up with a mBEC.
This reduces the size of the cloud compared to a Fermi gas considerable due to the
absence of the Fermi pressure. To further reduce the axial size, we modulate the
frequency of the horizontal AOM of the CBODT beam to create a time-averaged
potential in the horizontal plane [Rie15b]. This effectively reduces the axial size and
in addition leads to a better mode overlap between the inital flattened cigar-shaped
CBODT potential and the round SWT potential. To optimize the positional overlap
between the two traps we can adjust the axial position of the mBEC in the CBODT
by applying a gradient with the MOT coils of up to ±6 G/cm. Thereby we can fine
tune the vertical position to a precision on the order of the width of one layer.
The total transfer protocol is shown in Figure 3.4. At the beginning of the transfer,

we increase the trap depth in the CBODT to reduce the size. We then reduce the
magnetic field to decrease the repulsive inter-particle interactions and thus increase
the density. We then apply the gradient to shift the cloud in the axial direction and
modulate the CBODT to increase the mode overlap between the traps. We then
ramp up the power of the SWT and ramp down the power in the CBODT trap
before we switch it off. With this scheme we can transfer up to 90 % of the atoms
into a single layer.
After the transfer, we apply a second evaporative cooling scheme. This has several

advantages: first of all the sample is cooled again and thus any heating occuring in
the transfer process can be reduced. Secondly, we can set the final atom number in
a more controlled manner as any losses in the transfer process can be offset. The
evaporative cooling is realized by a spilling technique. We apply a strong magnetic
field gradient on the order of 30 G/cm while simultaneously reducing the trapping
potential. Thereby hot atoms lost from the central layer are quickly pulled away by
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0CBODT mod. amp. 0

Helmholtz field 795 G 730 G 795 G

~ 500 nK
SWT depth 0

grav. comp. grav. comp.B field gradient transfer gradient

~ 4 mWCBODT power 0
~ 350 mW

~ 1800 ms

Figure 3.4.: Schematic of the transfer protocol. The CBODT trap as well as its
modulation amplitude is ramped up to compress the sample and create
the time-averaged potential. At the same time, the magnetic field is
reduced to decrease the repulsive inter-particle interactions. By apply-
ing a magnetic field gradient, the sample is shifted along the z-axis to
achieve the optimal overlap with a single layer of the SWT potential. At
last the power in the SWT is ramped up while the power in the CBODT
is reduced before it is switched off. We then adjust the magnetic field
offset again to the desired value. Taken from [Rie15b]

the gradient and cannot be trapped in adjacent layers. After this spilling process we
ramp up the trap potential again and turn off the magnetic field gradient. Hence,
by adjusting the final trap depth during the spilling we set the final atom number as
well as the temperature. We typically end up with ≈ 35.000 atoms at a temperature
of ≈ 70 nK.

Loading a Single Layer

In order to optimize the transfer procedure, we need a method to experimentally
measure the transfer efficiency into a single layer. This is challenging as the distance
between individual layers is only ∆z ≈ 4.4µm and therefore to resolve this optically
one would need an imaging setup with high enough resolution. However, high res-
olution always results in a small depth of focus. This is a limiting factor since the
weak confinement in the horizontal plane leads to samples with diameters on the
order of 300µm. Thus, even with the required resolution in the z-axis, our sample
is then much larger than the depth of focus and we could not resolve the distance
between the layers by optical means.
To circumvent this, we use a method which relies on radio frequency tomography.

It has been described in detail in [Nei13, Rie15b] and will be shortly summarized
here. After the transfer of our mBEC sample into the SWT, we polarize the sample
by illuminating it with a short imaging pulse resonant to the atoms in state |1〉. As
the transfered momentum of the photons is much larger than the trap depth, these
atoms are then lost from the trap. For our evaporation scheme where we end up
with a molecular sample we cannot set the interaction strength to zero by means of
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the Feshbach resonance as the molecules can relax into deeply bound states and are
then lost from the trap. Thus, the imaging pulse to remove one of the spin states
also transfers momentum to the remaining atoms and heats the sample, which can
be either in state |2〉 or |3〉 depending on the prepared mixture. To minimize this
heating, which is small compared to the trap depth, we ramp the magnetic field
to 1100 G, across the resonance, where we have free atoms and the interaction is
reduced4. We then apply a strong magnetic field gradient of about 70 G/cm along the
z-axis using the MOT coils. This gradient leads to a spatial dependent shift in the
resonance frequency of the rf transition between state |2〉 and |3〉 of about 45 Hz/µm.
Thus, the splitting between neighboring layers is approximately ∆νrf ≈ 200 Hz and
can be resolved in our setup. However, this large gradient also leads to losses in the
trap, predominantly in the central layer. To minimize these, we ramp up the trap
depth of the SWT to the maximum feasible value, which increases the trap depth by
a factor of roughly 1.4. We then scan the applied rf frequency and take an absorption
image of the transferred atoms along the horizontal imaging axis for each frequency.
To improve the signal-to-noise ratio, we average the signal at each frequency over
10 repetitions. Additionally, we use long rf pulses with τrf = 25 ms such that the
Fourier limit is well below 200 Hz. From a Gaussian fit we then obtain the number
of transferred atoms at each frequency. This is shown exemplary in Figure 3.5 for
the optimized transfer parameters in the 13-mixture. The blue line is a fit of three
Gaussian profiles with identical width σ but different position and amplitude. The
grey lines are the individual Gaussian profiles. From the fits we obtain that the
majority of transferred atoms is in the central layer and only ≈ 10 % of atoms is in
adjacent layers. The frequency resolution of the rf transition is ≈ 80 Hz and thus
we are just on the edge of being able to resolve the individual layers. Note that we
perform the rf tomography before we do the final spilling inside the SWT. This will
remove particles predominantly in the central layer. Hence, we underestimate the
fraction of atoms in adjacent pancakes. This is further discussed in section 5.3.7.
This can be improved by doing the rf tomography after the spilling process, but has
the disadvantage of a worse signal-to-noise ratio.
The rf tomography relies on a high magnetic field stability as shifts in the magnetic

offset field during the measurement would lead to a loss of resolution. This is
achieved with the differential offset amplifier circuit described above in the coil
section. We measured the long-term magnetic field stability to be better than 1 mG
and thus our frequency stability is on the order of 10 Hz [Rie15b].

Reaching the Quasi-2D Regime

To verify experimentally whether we are in the quasi-2D regime, we perform a
measurement of the axial momentum distribution as described in [Dyk11]. We
ramp the sample across the resonance to the attractive side and weak interactions
which are limited by the background scattering length of 6Li. For the 13-mixture
this is already achieved at B = 1100 G whereas we have to ramp to 1400 G for the
12-mixture. We then switch off the SWT and let the sample expand for 3 ms. Due

4Note that this still corresponds to about a3D ≈ −2000 a0 as the background scattering length in
6Li is dominated by the triplet state.
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Figure 3.5.: Typical rf tomographic measurement for a sample initially in the 13-
mixture. The fitted atom number is plotted against the applied rf fre-
quency. A dominant peak is visible which stems from atoms in the
central layer. However, also two smaller peaks on each side can be
identified which arise from a small number of atoms in the two adja-
cent layers. To estimate the relative population in each layer, a sum of
three Gaussian profiles with identical width σ is fitted (blue line). The
grey lines indicate the individual Gaussian profiles. From this one can
estimate that around 90 % of the atoms are in the central layer.

to the strong confinement the sample expands rapidly along the z-axis and thus
scattering during the expansion can be neglected. We then image the sample from
the side and fit its size along the vertical axis with a Gaussian profile. We perform
this measurement for different final spill depths and measure the atom number at
each spill depth additionally with our calibrated top-down imaging. From these
two measurements we then obtain the plot depicted in Figure 3.6. Here the axial
width σz after the time-of-flight is plotted versus the atom number in the trap. At
low atom numbers the width stays constant until it starts to grow rapidly above a
threshold of roughly 50.000 atoms. This behavior can be understood when looking
at the evolution of a non-interacting atom in the axial ground state. The ground
state of an harmonic oscillator can be described by a Gaussian wave packet. A
dispersing Gaussian wave packet keeps it Gaussian form with a time-dependent
increasing width σz (t) of the form [Sch07b]

σz (t) =
√

~
2mLi

( 1
ωz

+ ωzt2
)
. (3.3)

In the case of our experimental parameters ωz ≈ 6.95 kHz and t = 3 ms, this results
in a width of σz ≈ 45.5µm. Our experimentally determined plateau deviates less
than 1 % from this estimation and thus treating the expansion as non-interacting
is well justified. As the Gaussian wave packet in the ground state has minimal
dispersion and initial size, the observed increase in σz at larger atom numbers can
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be attributed to a gradual population of excited levels in the axial direction. To
estimate the point where this starts to happen, we fit both the plateau and the
slope linearly (blue lines). We then define the threshold as the intersection of the
two lines. This yields Nmax ≈ 55, 000 atoms which is roughly what we expect. The
larger observed number could be due to the fact that we overestimate our atom
number by at least 10 % due to atoms in adjacent layers. In our experiments we
typically prepare around 35, 000 atoms per spin state and hence we are well below
this limit and thus assume that our systems behaves quasi-two dimensional.
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Figure 3.6.: The axial Gaussian width σz for a 3 ms time-of-flight is plotted versus

the atom number in the trap. Below a threshold atom number Nmax,
all atoms are in the axial ground state and σz shows a plateau. For
N > Nmax, a gradual increase in the population of axial excitations
then leads to an increase in σz. Each data point is an average of ∼ 15
individual measurements and the error bars represent the standard error
of the mean (SEM). The gray dash dotted line is the expected width of
the axial ground state from theory. The blue lines represent linear fits
to the plateau as well as the slope. From an extrapolation of these two
fits we obtain a threshold atom number of Nmax ≈ 55, 000 atoms per
spin state.

Note that this measurement only works for weak interactions and cannot be per-
formed in the strongly interacting regime. However, due to the increased attractive
interactions on the BCS side as well as the molecule formation on the BEC side,
this gives us a lower bound for the threshold atom number as these effects reduce
the energy in the system.

3.1.2. Lattice
In addition to the SWT we also have a square lattice setup which can be additionally
switched on to impose a lattice geometry onto the atoms in the single layer. The
experimental setup and first experiments are described in detail in [Bay15]. Here
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3.1. Preparation of a Degenerate Quasi-2D Sample

we give a quick overview as we use the lattice to determine the magnification of our
top-down imaging system in section 3.2.3.
The principal idea of the lattice setup can be seen in Figure 3.7 a). Two (almost)

retro-reflected infrared beams (yellow) are crossed othogonally to produce a square
lattice in the xy-plane. Together with the strong axial confinement due to the SWT
this then creates a 2D lattice. The lattice beams in each arm are actually not retro-
reflected but cross under a small angle of ≈ 14 ◦ as can be seen in Figure 3.7 b).
As we use the same infrared laser source (λ = 1064 nm) as for the SWT, this leads
to a lattice spacing d = λ

2 cos Φ = 536 nm. Similar to the SWT, we use elliptical
beams with an aspect ratio 6.7 : 1 in the vertical axis. This allows us the decrease
the focal spot size in the vertical direction and we end up with a focal spot size of
40µm× 270µm.
In order to avoid any interference between the different lattice arms and the

SWT, we detune each arm by passing the laser beam through an AOM. Thereby
we also stabilize and control the laser power in each arm. The used frequencies
are +100 MHz for the SWT, +110 MHz for lattice 1 and −100 MHz for lattice 2.
Additionally, also the polarization is chosen such that the lattice 1 beam is vertically
polarized whereas the lattice 2 beam and the SWT beam are horizontally polarized.
More information on the setup can be found in [Bay15].

14°f=500mm

f=300mmf=300mm

a ) b )

Figure 3.7.: a) Sketch of the combination of the SWT beams (green) and the lattice
beams (yellow). The interference of the SWT beams leads to a stack of
round anisotropic potentials. Together with interfering retro-reflected
lattice beams this leads to a square lattice potential for the atoms (red).
b) The lattice beam configuration is not retro-reflected but set up under
a small angle 14 ◦.

3.1.3. Preparation of a 13-Mixture
The experimental scheme described so far results in the preparation of a degenerate
Fermi mixture in the hyperfine states |1〉 and |2〉. Although the tunability of the
Feshbach resonance is very similar for all mixtures, it is sometimes advantageous to
prepare the sample in a different mixture. This can be seen e.g. in chapter 5, where
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we use rf transitions to gain insight into the system. There, one has to consider not
only the interactions in the initial state but also the interactions in the final state
after the transfer. Thus, it is useful to start with a mixture where the final state
interactions are weak. Another aspect is that the hyperfine state |3〉 is best suited
for detection purposes as its imaging transition is closed for all magnetic fields and
thus one does not have to deal with dark state decay. This will be discussed in
section 3.2.3.
Therefore, we also prepare a balanced |1〉-|3〉 mixture in our experiment in some

cases. The overall preparation scheme is very similar to the case of the |1〉-|2〉
mixture but deviates at the start of the evaporative cooling. After reducing the
laser power to 40 W, we keep it constant and ramp the magnetic field to a value
of 560 G. Since we are still at large temperatures, no molecules have formed yet
and thus this ramp does not lead to losses. We then perform a Landau-Zener
passage5 [Lan32, Zen32] to transfer the population adiabatically from state |2〉 to
state |3〉. The principle of Landau-Zener passages can be understood in a dressed
state picture [Dal85] as an avoided crossing. At the beginning of the passage, the
applied rf frequency ωrf = ω0 − |δ| has a large detuning δ � Ω compared to the
resonance frequency ω0 where Ω is the Rabi frequency. The initial state can then be
written as a dressed state of the form |d−〉 = c2 (δ,Ω) |2〉 − c3 (δ,Ω) |3〉 with c2 = 1
and c3 = 0. If one now sweeps the frequency adiabatically across the resonance up
to the end frequency ωrf = ω0 + |δ|, the dressed state evolves and the coefficients
are now c2 = 0 and c3 = 1. Thus, one transfers all population into the previously
unoccupied state.
Optimizing the ramp speed, detuning and applied rf power, we are then able to

transfer roughly 90 % of the atoms in state |2〉 to state |3〉. Note that we cannot
balance the |1〉-|3〉 mixture with a long incoherent rf pulse as we cannot drive a
direct transition between these states. Furthermore, since the transfer efficiency is
not perfect, we will lose a part of the atoms in three-body collisions between the
three different states. Therefore, the evaporation scheme for the |1〉-|3〉 mixture is
not as efficient. The evaporation is performed analogously to the |1〉-|2〉 mixture by
reducing the trapping potential and setting the magnetic field close to the Feshbach
resonance which is now at a magnetic offset field B ≈ 690 G. Similarly to before,
we then end up with a mBEC in our optical dipole trap, which is then the starting
point for the experiments.

3.2. Detection of Ultracold Gases
All our experiments are conducted inside a UHV-chamber to avoid any contact of
the sample with the environment. Thus, for probing the system one can only rely on
optical methods. Different methods like absorption imaging, fluorescence imaging
or phase-contrast imaging [Ket99] have been developed. Methods like absorption
and fluorescence imaging rely on resonant light scattering and are thus inherently
destructive. Other methods like phase-contrast imaging use non-resonant light and

5The advantage of the Landau-Zener passage compared to a π-pulse, where one directly drives
the transition on resonance, is that it is less sensitive to drifts in the system.
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are non-destructive. All these methods have their specific strengths and weaknesses
and are used throughout the quantum gas community.
In this work the absorption imaging technique was applied. At its core, absorption

imaging measures the transmittance of a sample from which the column density
along the imaging axis can be deduced. The section starts by recalling the basic
principle of absorption imaging and the deduction of the column density from such
measurements in 3.2.1. Subsequently, our experimental imaging setup including the
laser stabilization is presented in 3.2.2. Then, a detailed description of our imaging
calibration is given in 3.2.3 and the construction of the density profiles from the
raw camera images as well as the estimation of the ensuing density uncertainty due
to the imaging calibration is shown in 3.2.4. At last, an extension of the setup is
presented which allows to image two hyperfine states in quick succession and thus
obtain the full information on the system. This option was not utilized yet in this
thesis but provides exciting possibilities for future experiments.

3.2.1. Absorption Imaging
To perform absorption imaging, one shines in a resonant laser beam onto the atoms
and images the shadow caused by partial absorption of the beam onto a cam-
era. Comparing an image Iabs (x, y) where atoms are present to a reference im-
age Iref (x, y) without atoms one can then infer the column density of the sample
along the imaging axis6. For a 3D sample, the attenuation of the imaging beam
with intensity I along the sample can then be described via the Lambert-Beer law
[Bee52]

dI

dz
= −n3D (x, y, z)σ (I) I, (3.4)

σ (I) = σ0

1 + I/Isat
, (3.5)

where n3D is the atomic density, σ is the intensity dependent scattering cross section
for resonant light, which at low intensities reduces to σ0 = 3 ∗ λ2/2π, and Isat is the
saturation intensity. The saturation intensity Isat depends on the transition and for
the D2-line used in the experiment Isat = 2.54 mW/cm2 [Geh03].
In the low intensity limit I � Isat, the scattering cross section is constant and

equation 3.4 can be solved using the constraints I (z = −∞) = Iref and I (z =∞) =
Iabs which results in

ncol (x, y)σ0 = − ln
(
Iabs (x, y)
Iref (x, y)

)
, (3.6)

where ncol (x, y) =
∫
n3D (x, y, z) dz is now the column-integrated 3D density. In

this limit, only relative intensities are of importance. This makes this method very
suitable since an exact camera calibration is not needed as long as it operates in
a linear regime. However, this limit also has some drawbacks. In order to not be
limited by photon-shot noise on the camera, one has to illuminate the sample for

6We set the imaging axis to be along the z-axis for the rest of this section.
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long exposure times. Since 6Li atoms have a small mass, the recoil momentum is
vrec ≈ 0.1 m/s [Geh03] and thus the atoms are accelerated out of the focal plane. In
addition, they acquire a Doppler shift and due to the isotropic re-emission they also
acquire momentum in the orthogonal plane, leading to a decreased resolution. Also
for very dense samples the transmitted light can be very small.
The above considerations require us to use large intensities I ∼ Isat in our ex-

periments. Then the intensity dependence of the scattering cross section cannot be
ignored and the solution to equation 3.4 is

ncol (x, y)σ0 = − ln
(
Iabs (x, y)
Iref (x, y)

)
+ Iref (x, y)− Iabs (x, y)

Isat
. (3.7)

This effectively adds a correction term to the low intensity solution. In this term
the absorption and reference image intensities are now relative to the saturation
intensity. Therefore, we now have to calibrate how our camera counts translate into
intensity and an exact knowledge of the camera properties is required. Note that
the term ncolσ0 is commonly referred to as the optical density (OD).

2D Case

The derivation in equation 3.7 relied on the fact that the intensity of the incoming
laser beam is continually reduced as it passes through the atomic cloud. In our
experiments, however, we have a strongly confined sample in the z-direction with an
axial extent lz on the order of 500 nm. Therefore, all atoms within the plane should
experience a similar imaging intensity, making the above ansatz questionable at best.
Here we show an alternative derivation using a probabilistic ansatz as introduced in
[Yef11, Hun11].
For N atoms inside a small area A, the number of scattered photons Nsc is given

by Nγτ , where γ = σI/ (~ωL) is the scattering rate and τ � 1/Γ is the illumination
time. In this case ωL describes the laser frequency and Γ is the linewidth of the
transition. Hence, when illuminating the area with N0 incident photons, the number
of transmitted photons Nt is then given as Nt = N0 − Nγτ . Using the definition
of γ and the fact that n = N/A, we can then convert this into an equation for the
transmitted intensity It as

It = I0 − nσI, (3.8)
where I is now an effective intensity determining the scattering rate σ. In addi-
tion, the probability of transmitting an incident photon in this area is given by
(1− σ/A)N . If the optical density nσ . 1, then this can be approximated by e−nσ
which leads to

It

I0
= e−nσ. (3.9)

In our experiments we typically have nσ . 0.3 and thus this approximation is
justified. Using equation 3.8 and 3.9 as well as the definition of the scattering cross
section in equation 3.5, we can then eliminate the effective intensity and end up
with

nσ0 ≈ − ln
(
It

I0

)
+ I0 − It

Isat
(3.10)

which is identical to equation 3.7 derived for a 3D sample.
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3.2.2. Experimental Imaging Setup
In order to perform absorption imaging, our laser source has to fulfill several criteria:
first its linewidth has to be narrow compared to the linewidth Γ = 5.872 MHz of
the used imaging transition. Furthermore, its frequency has to be adjustable over a
wide range on the order of GHz as the resonance frequency for the transition tunes
with the magnetic field. At last, the frequency stabilization has to be fast on the µs
timescale in order to allow us to adjust the frequency during the imaging. This is
needed to compensate for the Doppler effect during imaging which effectively drives
the atoms out of resonance. The Doppler-compensation is described in more detail
in section 3.2.3.
In the experiment we therefore use a Toptica DL100 Pro diode laser, which is

beatoffset-locked [Sch99] to a spectroscopy laser which is frequency stabilized to the
D2-line, exciting atoms from the F = 3/2 hyperfine ground state at zero magnetic
field. A sketch of the setup is shown in Figure 3.8 a). A small part of the laser
output is separated for the beatoffset-lock using a glass window. The main part of
the laser output passes an acousto-optic modulator (AOM), where its frequency is
shifted by 80 MHz, and a laser shutter before it is coupled into an optical fiber which
transfers the laser output to the experiment. The AOM is used mainly as a switch
to control the imaging pulse duration on a microsecond level. The shutter is added
to minimize stray light.
The beatoffset-lock scheme was described in detail in [Bak14, Kra15, Ste16]. It

enables us to control and stabilize the laser frequency on an accuracy level of ∆f/f ∼
10−10. To do this, the imaging laser beam is overlapped with the spectroscopy beam
on a photodiode. The resulting beat-signal with frequency fbeat is then mixed with
the frequency output fDDS of a direct digital synthesizer (DDS), which acts as a
programmable frequency source. After low-pass filtering, the resulting signal is then
split and a phase shift is introduced using a delay line before the signals are mixed
again. Subsequently, the signal passes another low-pass filter which results in a
constant error signal

Uerr = cos (2π∆φ) , (3.11)

where the phase shift ∆φ is proportional to the frequency difference ∆f = fbeat −
fDDS. Therefore, using this signal as a feedback for the imaging laser stabilization,
we can adjust the laser frequency by changing fDDS. The PID-feedback is done via
the Toptica Digilock module. It converts the analog error signal to a digital one with
an analogue-digital converter (ADC). The slow part of the signal is fed7 to a piezo-
controller which sets the diode laser frequency by tuning the angle of the external
cavity grating. This enables long-term stability but cannot correct for changes on
timescales < 100µs. To correct for changes on smaller timescales, the fast changing
part of the error signal is fed to diode laser current with a sampling rate of 100 MHz.
For a sudden change in frequency of 20 MHz, the regulation only needs about 1µs to
adjust its frequency within 90 % [Ste16]. This is important for the frequency ramps
on the order of 1 MHz/µs we drive in the experiment to compensate for the Doppler
effect. This shows that the laser frequency can follow these frequency ramps without

7This is done with a DAC with a sampling rate of 100 kHz.
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Figure 3.8.: a) Imaging laser setup. The laser output is frequency shifted by an
AOM, which also acts as a switch, and coupled into an optical fiber.
Additionally, a laser shutter is used to reduce the amount of stray light.
A small fraction of the laser output is branched off and overlapped
with a spectroscopy laser on a photodiode. The resulting beat signal is
mixed with the frequency output of a direct digital synthesizer (DDS)
and using shown electronic circuit an error signal is produced. The
error signal is then fed into a Toptica Digilock module and used for
the control loop of the laser output frequency. b) Imaging setup in the
experiment. Both the MOT beam (green) as well as the imaging beam
(red) are overlapped with a polarizing beam splitter (PBS) and pass a
λ/4-waveplate in order to create the required circular polarization. After
passing the chamber, another λ/4-waveplate transforms the polarization
back to linear and a MOXTEK reflective polarizer transmits the imaging
beam but reflects the MOT beam. The atoms are then imaged with an
AVT Stingray F-145B camera using a combination of a f1 = 80 mm
and f2 = 190 mm achromatic lenses. This results in an experimentally
calibrated magnification of M ≈ 2.14.
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a delay. Apart from the responsiveness, the combined feedback loop also achieves a
frequency stability of approximately 120 kHz [Ste16], which is much narrower than
the transition linewidth Γ = 5.872 MHz for the D2-line. Therefore, our assumption
of resonant scattering is well fulfilled.
The imaging setup we use for the top-down imaging along the z-axis is displayed

in Figure 3.8 b). The imaging beam is overlapped with the MOT beam using a po-
larizing beam splitter (PBS) cube. Subsequently, both beams pass a λ/4-waveplate
which results in the σ−-polarization needed for imaging. It then passes through the
vertical viewport of our main experiment chamber where parts of it are scattered
by the atom cloud. The viewport is anti-reflection coated and has a reflectivity
R ≈ 0.3 %. After exiting through the opposite viewport, the beam passes another
λ/4-waveplate and a MOXTEK reflective polarizer. This combination, reverts the
polarization of both the imaging and MOT beam to a linear one and the imaging
beam is transmitted through the MOXTEK whereas the MOT beam is reflected. To
image the atom distribution onto a CCD-camera, we then use the combination of a
f1 = 80 mm and a f2 = 190 mm achromatic lens as depicted. As a camera we use
an AVT Stingray F145-B which is characterized in section 3.2.3. This setup gives
us a magnification of roughly M ≈= f2/f1 = 2.38. In section 3.2.3 we will see that
the experimentally deduced value is slightly smaller.
All optical elements between the atomic plane and the camera can cause reflections

and thus reduce the light power which reaches the camera. We experimentally
calibrate the losses by measuring the imaging beam power with a commercial power
meter8 in front of the main chamber and directly in front of the camera. Taking into
account the reflectivity of the viewport, we then obtain the factor T = 0.77± 0.03.
This factor is needed when converting the measured counts on the camera into an
intensity.
The achievable spatial resolution is limited by the numerical aperture NA ≈ 0.14

to dmin = 2.9µm. The depth of focus is estimated by zDoF = 4λ
NA2 ≈ 137µm and is

therefore much larger than the spatial extent of the cloud along the z-axis.

3.2.3. Imaging Calibration
In our experiments, the only available observable we have is the integrated density
distribution ncol (x, y) we obtain from absorption imaging along the line of sight. It is
therefore crucial to carefully calibrate all the factors which influence its calculation.
Here we give a detailed description of the calibration of our imaging system in the
vertical direction. The other directions are not calibrated as we only use them for
alignment purposes. This section starts with the camera characterization which is
needed to convert the measured counts on the camera into an intensity. Next our
determination of the imaging magnification M is given. Afterwards we discuss how
the Doppler effect influences the imaging and how we experimentally compensate
for that. Next, we calibrate the influence of experimental imperfections, for example
non-perfect polarizations of the laser beams, and how we can account for this. At
last, we debate how decay into a dark state affects the imaging in 6Li for some of

8Thorlabs S121C which has a measurement uncertainty of 3 % at this wavelength range.
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the hyperfine states.

Camera

In the experiment we use CCD cameras to take the images. The CCD sensor chip
consists of an array of photosensitive pixel, where incoming light leads to a charge
build-up inside a potential for each pixel. The sensitivity of each pixel to the incom-
ing light is characterized by its quantum efficiency η = Ne−/Nph, where Nph denotes
the number of incoming photons and Ne− describes the number of created electrons.
After light exposure, the chip pixels are then read out sequentially and the charge
output of each pixel is amplified with a gain g = Ne−/Ncount and digitalized with an
analogue-to-digital converter (ADC). Here Ncount denotes the respective number of
counts after conversion given in the unit ADU . Therefore, to obtain the number of
photons per pixel one can use the relation

Nph = gNcounts

η
. (3.12)

From this information and knowing the magnification of the imaging system, one
can then determine the incoming intensity of the imaging laser beam.
When analyzing the number of counts on the camera, one also has to take into ac-

count the readout noise σread and dark current idark. The readout noise is generated
in the ADC and sets the lower end of the achievable dynamical range. Experimen-
tally it can be determined from dark images9 taken with minimal exposure time
τmin. The upper end of the dynamical range is limited by the full well capacity,
which sets the saturation limit for each potential well. The dark current idark stems
from thermally excited electrons.
For imaging in the vertical axis we use a ’Stingray F145B’ CCD-camera from

AVT. It has a Sony ICX285 sensor with 1388 × 1038 pixels with a pixelsize of
6.45µm×6.45µm and a 14bit ADC. Its output is converted to a 16bit image, which
corresponds to a maximal count of 65535 ADU. The camera characterization was
performed in our group [Pim16] and will be recapped here. The readout noise and
dark current can be obtained by taking images with different exposure times τexp
without illuminating the sensor. From a linear fit of the mean counts over the chip
as a function of exposure time, one obtains a dark current of

idark = (7.573± 0.048)× 10−6 ADU
µs .

The readout noise is determined from a dark image with minimal exposure time by
taking the standard deviation of the counts over the chip. Using the gain calibration,
the readout noise is given as

σread = 8.7 e−.
To calibrate the gain g of the camera, one repeatedly illuminates the camera with
a homogeneous light source for different exposure times τexp. This is also known
as the photon transfer curve (PTC). Experimentally, we achieve the homogeneous

9No light on the camera.
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illumination by the combination of a LED diode and a diffuser. For each exposure
time, we then extract the variance σ2

counts and mean number of counts Ncounts by
averaging over the whole sensor. Hence, a single image is already sufficient since
one averages over roughly 1.4 million pixels. To relate the variance to the mean,
one then uses the fact that the detected photoelectons caused by the the incoming
uncorrelated light obey a Poisson distribution and thus the variance scales as

σ2
e− = Ne− . (3.13)

This relation can then be used to obtain the variance of the count number is given
by

σ2
counts = σ2

e−

g2 = Ne−

g2 = Ncounts

g
. (3.14)

Therefore, in the shot-noise limited region, the gain g can be directly inferred from
the linear slope when the variance versus the mean number of counts is plotted.
When averaging the signal from the whole sensor, however, this region is quite

small. This is due to non-uniformity of the illumination and slight variations in
the sensitivity of each pixel which leads to differences in the mean count number
of each pixel. This is often referred to as flat field noise and it leads to a linear
contribution σF = kNcounts to the noise. In order to get rid of this, we expand the
procedure slightly. We take a series of images at the same settings and calculate the
mean count number for each pixel individually. Thereby we create a map showing
us subsets of pixels with a similar mean count number. We then obtain a PTC by
calculating the variance over these subsets instead of over the whole sensor. In this
way, we obtain a shot-noise limited region for a large dynamic range as can be seen
in Figure 3.9. We measure a gain of

g = (0.3206± 0.0002) e−

ADU .

In principal one can also extract a ’gain map’ by measuring the gain for each
pixel individually by taking a large amount of images at each exposure time and
calculating the variance and mean for each pixel separately. However, this requires
very long measurement times and thus our approach is a good trade-off. Since each
region still consists of more than 10.000 pixels on average, we only need a few images
to have very good statistics. Furthermore, a CCD camera contains in general only
one10 amplifier and thus the gain is the same for each pixel. This is in contrast to
CMOS cameras where each pixel has its own amplifier and a determination of the
gain map is necessary.
At last we determine the quantum efficiency of the sensor. Therefore, we use

a collimated laser beam of known power P which is fully captured by the camera
and illuminate the sensor for different exposure times τexp. We convert the detected
counts on the camera into photoelectrons by applying our gain calibration and com-
pare the integrated count number Ne− over the chip with the number of photons
10There are also CCD cameras with more amplifiers where parts of the image are sent to different

amplifiers.
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Figure 3.9.: Photon transfer curve for the Stingray F145-B camera. Each subset of
data points (grey) corresponds to images taken at a certain exposure
time. By applying a statistical approach, we bin together pixels with
the same mean count number and derive the variance separately for
each binned region. Thereby we circumvent flat field noise and obtain
a linear slope (blue line) from which we directly obtain the camera gain
g.

from the laser beam given by Nph = Pτexpλ/hc. The quantum efficiency η is then
simply given by the ratio η = Ne−/Nph and we obtain

η = 0.373± 0.012,

where the error is dominated by the uncertainty in the power determination of
the laser beam using a commercial power meter. Note that this calibration was
performed for different exposure times and thus we extracted η from a linear fit
between number of detected photoelectrons Ne− and the exposure time τexp.
All the aforementioned results are also summarized in Table 3.1.

Symbol Value Meaning
σread 8.7 e− Readout Noise
idark (7.573± 0.048)× 10−6 ADU/µs Dark current
g (0.3206± 0.0002) e−/ADU Gain
η 0.373± 0.012 Quantum Efficiency

Table 3.1.: Summary of the camera characterization.

Magnification

To determine the magnification of the imaging system, one needs a known reference
length to compare the image to. This is similar to pictures of crime scenes where
a ruler is put next to the object of interest to have a length scale to compare
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the object to. In our case, we can make use of the horizontal square lattice set
up in the experiment. We start with a 2D condensate on the BEC side of the
resonance where we have deeply bound dimers. By pulsing the lattice beams on
for a short time, discrete multiples of the lattice momentum ~kL are transfered
to a fraction of the sample. This mechanism is commonly referred to as Kapitza-
Dirac scattering [Kap33]. As the transfered lattice momentum is much larger than
the initial momentum, one can see the diffracted parts separate in a time-of-flight
measurement. This time evolution is shown in Figure 3.10 a) for three different
time-of-flights (tof). Note that here, the atoms do not expand in free space but
inside a weak harmonic confinement, which is due to the magnetic field saddle of
the Feshbach coils. This leads to a mapping of the momenta to real space positions
at a time τ corresponding to a quarter of a trapping period T [Mur14]. This mapping
only works for ballistic expansion as any scattering during the time-of-flight would
perturb it. In our case of a strongly interacting sample this assumption is of course
not fulfilled. However, we can use several techniques to circumvent this. First of
all, the strong confinement along the z-axis leads to a fast expansion along this
axis after switching off the trap. This reduces the density on a short time scale
and thus reduces scattering. Furthermore, shortly before the release we quickly
ramp the magnetic field to smaller values to quench the interaction strength. This
combination then reduces scattering drastically and the expansion can be treated as
ballistic. The results can be clearly seen in the center image where the diffraction
peaks are in focus. For larger times the peaks are then re-focused to the trap
center. A thorough quantum mechanical treatment of this evolution shows that at
τtof = T/4, the position x(τ = T/4) in the absorption image is directly related to
the initial momenta k(τ = 0) via

k(τ = 0) = x(τ = T/4)
(
mω

~

)
. (3.15)

Therefore, we can measure the initial momentum population from the absorption
image taken at T/4. In Figure 3.10 b) the relative distance between two opposite
momentum peaks with k = ±kL is plotted as a function of time. From a parabolic
fit (red line) one can extract the T/4 time experimentally as the maximum distance
before the peaks get re-focused towards the center. This is also used to calibrate
the magnetic trapping frequency in the experiment.
The lattice momentum ~kL = ~2π/dlattice is given by the lattice spacing dlattice =

λ/(2 · cosφ), where λ is the laser wavelength and φ is the angle between the beams
creating the standing wave trap. In the experiment dlattice ≈ 536 nm and the
beams cross under an angle of ∼ 7 ◦. We can estimate the relative uncertainty
∆dlattice/dlattice of the lattice spacing to be smaller than 1 % when assuming a large
angle uncertainty of at most 3 ◦. Thus, we can use the lattice momentum as our
’ruler’ to obtain the magnification M .
The distance between two opposite momentum peaks ±~kL in the absorption

image is given by
d(τ = T/4) = dpixel · Lpixel/M, (3.16)

where dpixel is the distance in pixels and Lpixel = 6.45µm is the camera pixel size.
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Figure 3.10.: a) A time-of-flight series is shown for a molecular BEC after a square
lattice was pulsed on. The time evolution takes place inside the weak
harmonic confinement of a magnetic field saddle potential. For a short
time-of-flight (tof) of 4 ms the diffraction peaks with lattice momen-
tum kL from each lattice arm as well as mixed order terms between
lattice arms separate. At tof = 24 ms, the diffraction peaks as well
as the non-diffracted part in the center are in focus and the evolution
has reached its turning point. For longer times the peaks are then
re-focused towards the center of the trap. b) The relative distance
between the peaks with momentum ±~kL is plotted as a function of
the time-of-flight. The turning point, and thus the trap frequency of
the harmonic confinement can be obtained from a parabolic fit (red
line) around the maximum. From the distance between the peaks at
tof = T/4 we can also deduce the magnification M . Adapted from
[Bay15].

Using equation 3.15, we can then solve for M and obtain

M = dpixel · Lpixelmω

2~kL
= 2.14± 0.06. (3.17)

Hence, our experimentally determined magnification is approximately 10 % smaller
than what was expected from the imaging system parameters.

Doppler Effect

The scattering of photons during the imaging process leads to a momentum transfer
to the atoms along the imaging axis. Due to the light mass of 6Li, each absorbed
photon adds a recoil velocity vrec ≈ 0.1 m/s, thus accelerating the atoms. This
results in a Doppler shift of roughly 150 kHz per absorbed photon and thus even
scattering of only a few photons leads to a detuning of the transition on the same
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order as the linewidth Γ = 5.87 MHz [Geh03]. Hence, during the imaging the atoms
are acquiring a detuning ∆f , which effectively reduces the scattering cross section
σ0. This leads to a decreased signal and an underestimation of the atom number.
To correct for this one can either incorporate this time dependent change of the
scattering cross section into the derivation of the optical density [Muk16] or adjust
the imaging frequency during the imaging pulse.
In the experiment, we opt for the latter by applying a linear ramp of the laser

frequency during the exposure. To calibrate the required ramp speed, we proceed as
follows. In order to determine the resonance frequency as precisely as possible, we
use the shortest experimentally implementable exposure time τexp = 1µs and image
an atomic sample at 900 G11. We then scan the imaging laser frequency to obtain the
absorption profile like shown in Figure 3.11 a). From a Lorentzian fit (blue line) we
can extract the resonance position as well as the linewidth Γexp = 7.44 MHz of the
transition. The linewidth Γexp is broadened compared to the natural linewidth since
we operate at intensities close to the saturation intensity. Using this experimentally
determined resonance frequency, we then go back to our usual exposure time of
τexp = 8µs and apply a linear frequency ramp during imaging. We then scan the
applied slope ε and plot the atom number versus the slope as shown in Figure
3.11 b). We can see that we maximize the detectable atom number at a slope of
ε = 0.765 MHz/µs, which we obtain from a parabolic fit to the data (blue line). The
flatness of the slope can be understood when considering that the cross section σ
scales with the detuning δ as [Met02]

σ = σ0

1 + s0 + (2δ/Γ)2 , (3.18)

where s0 = I/Isat is the relative intensity. Therefore, in the limit of low intensities
s0 → 0, a detuning of 1 MHz leads to a reduction in σ of 10 %. However, in the
experiment we operate at s0 ' 1 and therefore this reduction is much smaller as the
s0 term dominates over the detuning term. As we can see from the fit, a change
of 0.1 MHz/µs in the slope changes the detected atom number by less than 2 %,
making the Doppler compensation a very robust technique.
From both measurements we can obtain an estimate of s0. For the linewidth,

the intensity broadening is given by Γexp = Γtheory ·
√

1 + s0 [Met02], which results
in s0 = (0.61± 0.1). From the slope α we can estimate the scattering rate γ as
γ = α/∆frec where we used the Doppler shift ∆frec ≈ 150 kHz per absorbed photon.
The scattering rate is also defined as12

γ = Γ
2

s0

1 + s0
. (3.19)

Therefore, by inserting our measured scattering rate into equation 3.19 we can solve
for s0 and obtain s0 = 0.38± 0.07. Here the error was not taken from the parabolic
11We chose this field in order to have free atoms and no molecules as on the BEC side. The binding

energy of the molecule leads to a shift in the resonance frequency which has to be accounted
for in the first scattering process. After the first scattering, the molecule is broken apart and
the ensuing scattering is from free atoms.

12Note that here Γ = 2π × 5.872 MHz is the linewidth in angular frequency.
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Figure 3.11.: a) Lorentzian absorption profile for a short exposure time τexp = 1µs.
The changing cross section is neglected here in the atom number cal-
culation and thus it drops away from resonance. The blue line is a
Lorentzian fit and we obtain for the intensity broadened linewidth
Γexp = (7.44± 0.26) MHz. b) The atom number assuming a con-
stant scattering cross section is plotted versus the applied slope for the
Doppler compensation. The detected atom number can be increased
when applying a frequency ramp during the 8µs long imaging pulse.
There is an optimum for which the atoms stay in resonance during the
imaging. We obtain this optimal slope ε = (0.765± 0.007) MHz/µs
from a parabolic fit to our data (blue line).

fit but instead we estimated ∆α = 0.1 MHz/µs. Within their errors, both methods
roughly agree and they can give us a first estimate of s0. For the final image acqui-
sition, we obtain s0 directly from the reference images using our camera calibration.
The scattering of photons does not only lead to a detuning but also to an accel-

eration of the atoms along the imaging direction. This leads to a displacement ∆z
during the imaging pulse. From the scattering rate γsc, the constant acceleration asc
can be deduced and hence the displacement can be calculated via ∆z = 0.5 · ascτ

2
exp.

In our experiments, we use an exposure time τexp = 8µs and s0 ≈ 1. Hence, the
scattering rate is roughly γsc ≈ 9 photons

µs , which leads to a mean acceleration of
0.9µm/µs2 when considering the recoil velocity of vrec = 0.1 m/s. This results in a
displacement of ∆z ≈ 28µm during the pulse which is small compared to the depth
of focus zDoF = 137µm and thus this does not influence our spatial resolution for
in-situ measurements.
However, the re-emission of photons in the scattering process leads to an isotropic

momentum kick. In the plane orthogonal to the imaging axis, this can be modeled
by a random walk. For our typical imaging settings, we scatter around 70 photons
per atom and the random walk distance can be estimated to 5µm which effectively
limits our total imaging spatial resolution to around 6µm [Kle16].

Experimental Imperfections

In our derivations we used theoretical values for the scattering cross section σ0 and
the saturation intensity Isat so far. However, the experimental values can deviate
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due to imperfections in the imaging beam polarization and other effects [Rei07] and
therefore effective values σ∗0 and I∗sat have to be calibrated. The deviations can be
incorporated via a scaling factor α∗ which leads to σ∗0 = σ0/α

∗ and I∗sat = α∗Isat. We
can use this directly in the derivation of equation 3.7 and end up with the modified
equation

ncol (x, y)σ0 = −α∗ ln
(
Iabs (x, y)
Iref (x, y)

)
+ Iref (x, y)− Iabs (x, y)

Isat
. (3.20)

To calibrate α∗ we prepare a sample in the 13-mixture and image state |3〉 at a
magnetic offset field of 1000 G for three different imaging intensities. The state |3〉
is used since its imaging transition is closed and we do not have dark state losses as
will be discussed in the next section. For each intensity, we determine the resonance
frequency and optimal Doppler compensation slope as described above. We take 20
shots for each intensity and determine the right side of equation 3.20 from a mean
of the central 3 × 3 pixel area for each individual image. The value of α∗ in this
case is a free parameter and we perform this calculation for a large set of α∗. If the
imaging is calibrated correctly, the detected optical density OD = nσ0 should be
independent of the used imaging intensity. Hence, to determine the right value of
α∗, we have to calculate for which α∗ the standard deviation of the optical density
at the different intensities is minimal.

a ) b )

Figure 3.12.: a) The peak optical density as calculated from equation 3.20 is plotted
versus the imaging intensity for different values α∗. The right panel
shows the same calculation for a finer scale of α∗. b) For α∗ ≈ 1.08
the optical density has the minimal standard deviation.

This calibration is summarized in Figure 3.12. For each intensity, we also calculate
the standard deviation of the central OD from the 20 individual shots. We can see
that we obtain the minimal standard deviation for α∗ = 1.08 ± 0.06. The error is
estimated by looking for what values the OD behaves monotonously versus I/Isat
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as can be seen in the left panel in a). Within its error α∗ ≈ 1 and thus our imaging
setup is well set up.

Decay into Dark State

So far we always assumed a closed transition for the imaging cycle, meaning that
when the atom spontaneously decays from the excited state it ends up in its initial
state and can be re-excited. However, this assumption does not hold for all lowest
hyperfine states |1− 3〉 in 6Li. This was discussed extensively in [Bec16]. Here we
will give a brief summary and show how we can correct our images for this effect.
The six lowest hyperfine ground states |1− 6〉 of 6Li were shown in Figure 2.5 a)

and can be calculated analytically [Hou98, Geh03] in the basis |mJ,mI〉 as

|1〉 = A+ |1/2, 0〉 −B+ |−1/2, 1〉 ,
|2〉 = A− |1/2,−1〉 −B− |−1/2, 0〉 ,
|3〉 = |−1/2,−1〉 ,
|4〉 = B+ |1/2,−1〉 − A+ |−1/2, 0〉 ,
|5〉 = B+ |1/2, 0〉 − A+ |−1/2, 1〉 ,
|6〉 = |1/2, 1〉 , (3.21)

where we omitted the spin amplitudes J = 1/2 and I = 1. The coefficients are
given byA± = 1/

√
1 + (Z± +R±)2 /2, B± =

√
1− A±, Z± = (µn + 2µe)B/A22S1/2±

1/2 and R± =
√

(Z±)2 + 2, where A22S1/2 = 152.1368407 MHz is the magnetic dipole
constant and µn/e labels the magnetic moment of the neutron and electron respec-
tively. The coefficients A± and B± are plotted in Figure 3.13 a). Already at magnetic
fields B above 300 G, the contribution |A±|2 to the states is less than 2 % and con-
verges towards 0 at higher fields. Thus, each state can be very well approximated
by a single basis state as indicated in Figure 2.5 a). The admixture of different basis
states |mJ,mI〉 can be understood in terms of a coupling between the nuclear spin I
and the angular momentum J of the electrons. At low external magnetic fields B,
this coupling is well approximated by eigenstates of the total angular momentum
~F = ~J + ~I. When both spins ~J and ~I are parallel, the total angular momentum ~F
couples in the same way to the field ~B as both spins would do if they are decoupled.
This is the case for the states |3〉, |6〉 and therefore they do not have any admix-
tures. Their magnetic moments µ = ∂E

∂B
are constant and they have a linear Zeeman

shift for all magnetic fields B. In contrast, all other ground states have a coupling
dominated regime at magnetic fields . 10 G which then crosses over to the decou-
pled Paschen-Back regime at larger fields. In between these regimes, the magnetic
moment µ changes considerably and can also change sign. At large magnetic fields,
the magnetic moment is dominated by the electron spin and is almost constant.
For the imaging transition we use the D2-line which excites the ground state

atoms into the excited state 22P3/2 manifold. We use σ− polarized light and thus
the selection rules for the transition are [Dem10]

∆J = 1, ∆mJ = −1 and ∆mI = 0. (3.22)
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Figure 3.13.: a) The state coefficients used to calculate the ground state levels are
plotted versus the applied magnetic field. The used states |1〉 and
|2〉 are superpositions and can be described by a single basis state
|mJ,mI〉 for large fields. b) The loss probability to decay into a dark
state is shown for the states |1〉 and |2〉. Although they are below
0.005 % for fields above 600 G, the effect is still observable when taking
absorption images. Note that state |3〉 does not have any dark state
losses. Adapted from [Bec16].

With these selection rules, starting from the three lowest hyperfine states including
the admixtures we excite the transitions

|1〉 → |3′〉 = |−3/2, 1〉 ,
|2〉 → |2′〉 = |−3/2, 0〉 ,
|3〉 → |1′〉 = |−3/2,−1〉 , (3.23)

where |e′〉 indicates the excited states which are labeled from smallest to largest
energy as well. Here we used the large field approximation for the excited states. Due
to the angular momentum L = 1, the orbit of the outer electron does not have much
overlap with the nucleus. Therefore, the coupling is weak and the decoupling of the
spins already sets in at fields . 1 G which is considerably smaller than the magnetic
field for which the ground states with L = 0 decouple. Thus, this approximation is
valid for the fields we operate at in this thesis.
For the spontaneous decay from the excited state, only ∆mJ = +1 is allowed and

thus we can write the decayed into state as a superposition of the initial states as

|1′〉 → |−1/2, 1〉 = |3〉 ,
|2′〉 → |−1/2, 0〉 = −B− |2〉 − A− |4〉 ,
|3′〉 → |−1/2,−1〉 = −B+ |1〉 − A+ |5〉 . (3.24)

Combining equation 3.23 and 3.24, we can deduce that we only have a closed transi-
tion when imaging state |3〉. For the state |1〉 and |2〉 we have a finite probability to
decay into state |5〉 and |4〉 respectively, which is dark to the excitation. This loss
probability ploss reduces as the magnetic field is increased as can be seen in Figure
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3.13 b). At the magnetic fields we operate the probability for these states to decay
into a dark state is less than 0.005 %. However, this still has an effect since we
scatter ≈ 70 photons per atom and once an atom decays to a dark state it does not
scatter photons anymore for the rest of the exposure time τexp.
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Figure 3.14.: a) The mean number of scattered photons Nsc is simulated and com-
pared to the maximal number of scattered photons N0

sc as a function
of magnetic field for both states. The exposure time τexp = 8µs and
s0 = 1 are fixed which results in N0

sc ≈ 66. At larger fields, decay into
the dark state becomes suppressed and hence the ratio increases. b)
Here the ratio is simulated in dependence of the exposure time at a
fixed magnetic field of 700 G and s0 = 1. For larger exposure times,
the probability of decaying into a dark state increases and thus the
ratio decreases.

This dark state loss results in a reduced number of average photon scattering
events per atom. We estimate this effect numerically by simulating the repeated
scattering process from an atom. At each out of N0

sc maximal scattering events, we
acquire a random number 0 < p < 1 and compare it to the loss probability ploss (B).
If p < ploss (B) the atom decays into a dark state and no further scattering events
take place. Otherwise the next scattering event happens. Repeating this process
100.000 times then gives us an average number of scattered photons Nsc per atom.
In Figure 3.14 the ratio Nsc/N

0
sc is shown both for a fixed exposure time τexp = 8µs

in dependence of the magnetic field a) and at a fixed magnetic field B = 700 G
for different exposure times b). These simulations assume a fixed intensity s0 = 1
to calculate the scattering rate. As expected, at larger magnetic fields the ratio
increases as the branching ratio into the dark state converges to zero. Similarly, for
longer exposure times the ratio reduces as the probability that an atom decays at
least once into a dark state increases. In the experiments in this thesis we work at
magnetic fields between 600 − 1000 G and thus the scattering reduction can reach
up to 16 %.
In order to correct for these losses, we proceed as follows: from the experimentally

acquired absorption image Iabs (x, y) containing the atoms and the reference image
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Iref (x, y) without atoms, we deduce the amount of scattered counts as

Isc (x, y) = Iref (x, y)− Iabs (x, y) , (3.25)

which directly relates to the amount of average scattering events. As our imaging
beam profile is large compared to the sample and the relative change in intensity
over the area of the atoms is less than 10 %, we assume a constant relative intensity
s0,mean to calculate the scattering rate γmean and simulate the relative amount of
scattered photons (Nsc/N

0
sc)mean. Using this factor we correct the scattered images

as

I∗sc (x, y) = Isc (x, y) ·
(
Nsc

N0
sc

)−1

mean
. (3.26)

Note that we calculate s0,mean directly from the reference image using our camera
calibration.
With this corrected scattered image we then obtain a modified absorption image

I∗abs (x, y) = Iref (x, y)− I∗sc (x, y) . (3.27)

Subsequently, we then perform the steps outlined in section 3.2.4 to obtain the
density n2D. The application of this correction method can be seen in Figure 3.15.
Here images were taken for a 13-mixture at 700 G and an average was performed. In
the left panel in the lower row, the integrated x-profiles without dark state correction
are shown. As expected, the measured density is larger for state |3〉 (blue) than state
|1〉 (red) since it does not suffer from dark state decay. However, after correcting
for the dark state decay in state |1〉 we find very good agreement between the two
profiles (right panel, lower row) which verifies our correction.

3.2.4. Image Composition and Error Estimation
In this section, our method to acquire density profiles is explained and the uncer-
tainty in the acquired densities is estimated. The experimental implementation of
absorption imaging is shown in Figure 3.16. In each experimental cycle, three im-
ages are recorded with the camera as shown in a). The first image is the absorption
image Iabs(x, y), where the atom sample is present and thus part of the imaging
beam pulse is scattered. Subsequently, a reference image Iref(x, y) is taken with the
same imaging pulse but without atoms present. Since the recoil of the scattered
photons is much larger than the trap depth, the imaging is destructive and one just
has to wait a sufficient time before taking the reference image. In our case the tim-
ing between these images is roughly 88 ms13. At last, a background image is taken
where no imaging pulse is applied. This background image Ibg is used to eliminate
the effect of the camera dark current and readout noise as well as background light
from the signal.
From the background subtracted raw images, we calculate both terms in equation

3.7 individually as is shown in the first two images in b). The first term only depends
on the relative intensity and thus no further input is needed. To account for possible
13The reason for this is explained in section 3.2.5.
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Figure 3.15.: The average density profiles for a 13-mixture are shown for both states
in the upper row. In the lower row, the integrated x-profiles are shown
without (left) and with (right) the dark state decay correction applied.
Without the correction the integrated density in state |1〉 is smaller
as one underestimates the density due to the decreased number of
scattered photons during the imaging. After applying the correction,
however, both profiles match very well. Taken from [Kle16].

intensity fluctuations in the laser power, we take the computed mean value in the
region without atoms and subtract it. Due to the nature of the logarithm, this is
identical to rescaling the reference intensity to the absorption intensity. For the
second term we have to convert the counts on the camera into an intensity using
the conversion factor

fconv = h · (c/λ) · g
η · (Apixel/M2) · T · τexp

, (3.28)

where h is Planck’s constant, c is the speed of light, λ is the imaging laser wavelength,
Apixel is the pixel area and the rest of the constants are defined as previously. To
account for power fluctuations of the laser in this case too, we rescale the reference
intensity to the absorption intensity in the region without atoms. At last one can
add these terms to obtain the overall optical density as shown in the last panel.
Both the absorption image as well as the reference image show structure on the

imaging beam. From comparisons of the beam profile in front of the main chamber
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Figure 3.16.: The process of our image acquisition is demonstrated for a single ex-
periment cycle. In a) the raw images are shown: the absorption image
is taken first, when atoms are present. After ≈ 88 ms, the reference
image is taken where no atoms are present due to the destructive na-
ture of the first pulse. At last, a background image is acquired with
the same settings but without the imaging laser pulse on. Using the
raw images one can then obtain the optical densities from equation
3.20 as shown in b). The first image shows the logarithmic part. The
second image shows the absolute difference Iref − Iabs normalized with
respect to the saturation intensity Isat. At last the sum of these two
contributions is shown.

and at the camera position, we know that this structure is due to reflections and
interference effects on different surfaces in the imaging path. As a result the image
on the camera does not accurately represent the beam profile in the atomic plane
and introduces another error source. To get some insight on the structure, for the
reference image both cuts along the x- and the y-axis through the center of the cloud
are plotted in Figure 3.17. From Gaussian fits one can see that the overall behavior
of the beam is described by a Gaussian profile accurately but local deviations are
visible due to the aforementioned interference effects. From a 2D Gaussian fit, we
can estimate that the overall intensity changes by less than 10 % over the size of
our samples. These static fringes, however, add local fluctuations with a standard
deviation on the order of 11 %. For the logarithmic term in equation 3.20 this
does not play a role as only the relative signal is of importance. Unfortunately,
the absolute intensity difference Iref(x, y)− Iabs(x, y) in the second term is directly
influenced by this structure and thus results in a local over- or underestimation of
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the optical density. Note that these fringes are static and depend mainly on the
laser frequency.
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Figure 3.17.: A cut along the x-axis (blue circles) and y-axis (red circles) for the ref-
erence image through the center of the atomic cloud is plotted. One can
see that the counts fluctuate around a Gaussian profile (fitted lines).
This structure is caused by reflections and interference on multiple
surfaces in the imaging path.

To estimate the effect each of our imaging calibration uncertainties have on the
determination of our local density, we take a typical dataset used in chapter 5 and
analyse the density in two 3 × 3-regions, one at the center of the cloud where the
density is highest and one in the wing of the cloud where the density is lower. This
can be seen in Figure 3.18, where the mean density is shown for this dataset. In
the zoomed in part below the image, the analyzed regions at the center (black) and
further out (red) are depicted. We now vary each of the calibrated parameters in
section 3.2.3 within their error, calculate the mean density in the 3× 3-regions and
deduce the relative errors |n− n0| /n0. This is listed in Table 3.2. Apart from the
camera gain which can be neglected as an error source, the rest of the contributions
show a similar effect on a few percent level. The largest contributions are the
magnification M and the imaging imperfections, given by the parameter α∗ with
2.3 % and 3.15 % respectively.
In the table we did not consider the structure we see on the imaging beam so

far. By fitting a 2D Gaussian profile to the beam, we estimated the local deviations
from this profile to be on the order of 10 %. Performing the same error calculation
as before results in a relative error of 4.5 %. In principle, as these fringes are static
and only depend on the laser frequency, assuming a perfect Gaussian beam profile it
should be possible to correct this structure and smooth the measured beam profiles
with a reference mask. However, this has several drawbacks: first of all, the imaging
laser frequency changes with the magnetic field and thus this would require to take
a mask at each setting, making it a cumbersome procedure. Furthermore, although
the beam profile in front of the main chamber has definitely less structure, it is
nevertheless not a perfect Gaussian and thus this assumption would introduce new
systematic errors. This is especially important for example, when looking at atomic
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Figure 3.18.: To estimate the different error contributions, we take a subset of our
typical experimental data containing 30 images whose mean density
profile n2D(x, y) is shown here. We then take a 3 × 3 region at the
center (black rectangle) and a 3× 3 region at the wing (red rectangle)
to analyze the effect of the uncertainties in our calibration. These
regions can be seen in the zoomed in part of the image.

noise correlations as we plan to do in the future. Therefore, we do not attempt to
correct this structure but add it to our imaging uncertainty.
To estimate the error due to the Doppler effect, we cannot directly use equation

3.20, as it is based on the assumption of a resonant imaging pulse. However, from the
experimental results when changing the slope ε of our Doppler compensation ramp,
we can infer that the absorption imaging process shows only a weak sensitivity for
deviations of ε on the order of up to 1 MHz/µs. From the data we estimate that this
results in a relative change of the atom number and thus the local density n of less
than 2 %.
For the two hyperfine states |1, 2〉, we also have to take the dark state decay and

its correction into account. As we explained before, for the correction of the dark
state decay we assume a mean relative intensity s0,mean across the sample. From the
reference image profile, we can estimate the error in s0,mean to be on the order of
10 %. However, this uncertainty only results in a small change in the relative amount
of scattered photons Nph/N

0
ph and thus this changes the density by less than 1 %.

Hence, we can neglect this effect when calculating the overall error and take the
same error for all hyperfine states.
Assuming that all these individual error sources are independent, we can then

obtain a total error estimate for our density measurement as(
∆n
n

)
≈ 7 %. (3.29)

In our 2D systems, since the local Fermi temperature TF and local Fermi energy
EF are proportional to the density, this directly results in an uncertainty T±7%

F and
E±7%

F .
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Parameter ncenter [1/µm2] |ncenter−n0|
n0

[%] nwing [1/µm2] |nwing−n0|
n0

[%]
standard n0 1.011 - 0.539 -

T = 0.77± 0.03 0.994 / 1.025 1.7 0.531 / 0.548 1.6
η = 0.3726± 0.012 0.997 / 1.025 1.5 0.533 / 0.546 1.2
g = 0.3206± 0.0002 1.011 / 1.01 - 0.539 / 0.539 -
M = 2.14± 0.06 1.035 / 0.987 2.4 0.531 / 0.527 2.2
α∗ = 1.08± 0.06 1.043 / 0.979 3.2 0.557 / 0.521 3.3

Table 3.2.: Error estimation of the local density n. For the densities cells, the first
value is calculated with positive error and the second one with negative
error. For the relative error, the mean is taken.

In general, the choice of the intensity used for imaging depends on several factors.
First of all it sets the exposure time needed to obtain a good signal-to-noise ratio.
Here one is limited by the large recoil momentum of 6Li and thus it is difficult to
reach the low intensity limit without being affected by a reduced spatial resolution.
To obtain for example the same number of counts as with the current settings for a
relative intensity s0 = 0.1, the imaging pulse would have to be 80 ms long. Although
the scattering rate at this intensity is only ≈ 1.6 photons/µs, this would still lead
to a displacement of 512µm along the imaging axis and thus the sample would be
accelerated out of the depth of focus. On the other side, the scattering rate saturates
at large s0 � 1 and thus increasing the intensity further can reduce the required
imaging pulse duration for the same signal strength while simultaneously reducing
the displacement of the atoms along the imaging axis during the pulse. However,
increasing the intensity beyond the saturation limit also shifts the relative influence
of the two terms in equation 3.20 towards the second term. Thus, the uncertainty in
the imaging is then dominated by this term and the uncertainty in the determination
of n increases. In the experiment, we therefore chose a value of s0 ≈ 0.914 as a good
experimental trade-off between these considerations. To optimize this in future
experiments, one has to measure the shot-to-shot fluctuations in the density as a
function of the used intensity [Hue17].

3.2.5. Imaging Two Hyperfine States within an Experimental
Cycle

In our experiments, we use a binary mixture of atoms in different hyperfine states.
Thus, to get the full information about the system, an absorption image of both
states within the same experimental realization of the system is required. This is
especially true when working with imbalances or looking at spin-spin correlations.
In order to achieve this, both technical as well as physical solutions have to be

found. First of all, imaging one state removes it from the trap. Thus, the remaining
atoms in the other state will re-distribute on a time scale given by the trap frequency.
14Note that in the presentation of the Doppler compensation older data was used where we had a

smaller s0.
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Therefore, the time interval between taking the two images has to be on a much
smaller timescale. This requires the laser frequency stabilization to be fast enough
to change the frequency by up to 160 MHz in between the two images when imaging
state |1〉 and state |3〉. Furthermore, the camera itself has to be able to take two
images successively on this timescale.
The camera used in the experiment has a method called ’interline transfer’. This

means that each pixel has a storage pixel next to it which does not receive any input
light. Thus, instead of reading out the camera chip, each pixel can transfer its charge
to this storage pixel and the next image can be taken immediately afterwards. This
allows us to take two images within ≈ 130µs. With our frequency stabilization of
the laser, we can follow jumps in the frequency of 20 MHz within a microsecond
[Ste16] and thus this is ample time to change the resonance frequency from imaging
one state to the other while doing the interline transfer.
In conclusion, we only have to adapt the imaging procedure slightly from the case

of imaging only one state. After taking the first absorption image, we ramp the
laser frequency within 70µs to the resonance frequency of the second imaged state.
During this time we also perform the ’interline transfer’. Subsequently we take the
second absorption image. For the reference image, we follow the same procedure.
This is because the static fringes we observe on camera depend on the frequency
and thus taking only one reference for both states would lead to a structure on
the background. This can be seen in Figure 3.19 where we took images without
atoms and shifted the laser frequency for the reference image. Already for shifts
on the order of 80 MHz one can clearly see a structure on the background which
gets even more pronounced for larger shifts. Since in 6Li the difference in resonance
frequency between two neighbouring states is on the order of 80 MHz, this would lead
to unwanted structure in the images when taking only a single reference image. At
last, a single dark image is taken without imaging light. Here there is no difference
between these two and thus one is enough.
The two state imaging gives us a useful tool to investigate the imaging process. We

can for example check the Doppler shift the atoms acquire during the imaging pulse.
For this we imaged the state |3〉 two times in succession and adjusted the starting
frequency for the second image such that we see the most signal. This is shown in
Figure 3.20. The optimal relative detuning of the second image is approximately
8 MHz. This matches the slope ε = 1 MHz/µs we calibrated as the optimal Doppler
compensation ramp. However, we observe that the atom number in the second
image is smaller by approximately 10 %. The reason for this is not yet understood.
We can also use the two-state imaging to compare our preparation fidelity with

our detection fidelity. Therefore, we take a balanced mixture of two hyperfine states
and image both states successively. After correcting for the dark state decay, we
can then look at the correlation between the atom number in each experimental
realization. This is plotted in Figure 3.21. A linear fit (blue line) to the data shows
that the atom numbers after the correction match within ≈ 2 %. We do a principal
component analysis (PCA) to find the axis where the data shows the least variance.
This corresponds to the blue line and it gives us a measure of how much the atom
number varies between the two images within the same realization which is a measure
of our detection fidelity. On the other hand, the variance of the data along the blue
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Figure 3.19.: Optical density without atoms for different frequency shifts of the
imaging laser in the reference image compared to the absorption im-
age. One can clearly see the structure evolving for larger shifts. This is
due to the frequency dependence of the interference due to reflections
in the imaging system.
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Figure 3.20.: The state |3〉 is imaged twice in the same cycle. For the second image
we adjust the relative detuning of the start frequency compared to the
first image. We see an optimal detuning at ≈ −8 MHz which matches
the Doppler compensation slope we applied for both images.
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line gives us insight of how much the atom number of each preparation varies. This
results in a detection uncertainty of ∆det ≈ 6 % and a preparation uncertainty of
∆prep ≈ 14.6 %. The detection uncertainty is very close to what we estimated from
our imaging calibration. We can conclude that we are limited by our preparation to
obtain better experimental reproducibility. Note that the preparation uncertainty
also depends on the final spilling depth in our standing wave trap.
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Figure 3.21.: The atom number in state |3〉, imaged first, is plotted against the atom
number in state |1〉, imaged second. One observes a strong correlation
indicating a good detection fidelity. A linear fit (blue line) to the data
shows that the detected atom numbers for both states after correcting
for dark state decay are within ≈ 2 %. From a principal component
analysis we can estimate the detection uncertainty to be ∆det ≈ 6 %
and the preparation uncertainty to be ∆prep ≈ 14.6 %.

However, when investigating strongly interacting systems one has to be careful.
Even for moderately weak interactions, we see that removing atoms from one state
heats up the system. Thus, momentum is transferred which can lead to a change of
the density distribution already within this 100µs timescale. This was not studied in
detail yet but first experiments observing the superfluid peak in momentum imaging
show that the density distribution is considerably broadened for the state imaged
second. Hence, this has to be considered in future experiments.
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4. Superfluidity in a Shallow
Quasi-2D Square Lattice

In this chapter we discuss experiments performed in a two-dimensional square lattice.
These experiments have been described in more detail in [Bay15] and hence only
a short review is given here with an emphasis on the experimental limitations we
encountered.
The starting point for these experiments was a superfluid sample prepared in the

SWT on the BEC side of the Feshbach resonance as described in [Rie15a, Mur15]
where the atoms are fully paired into dimers and can be treated as bosons. By
ramping up the retro-reflected lattice beams and keeping the axial confinement from
the SWT, we transfer the sample into a two-dimensional square optical lattice. We
observed a superfluid of strongly interacting bosonic molecules in a shallow lattice
using a momentum imaging technique [Mur14] similar to the 3D optical lattice case
in [Chi06]. For deeper lattices we encountered heating which destroys the superfluid
phase. These experiments mark our first step towards our goal of creating low
entropy states like the bosonic Mott-insulator in two-dimensional lattice geometries.
This section is organized as follows: first the momentum imaging technique used

to observe the superfluid is introduced in 4.1. Subsequently our observations of a
superfluid in the shallow lattice are presented in 4.2. At last the possible sources of
heating and schemes to mitigate these in the future are discussed in 4.3.

4.1. Probing the Momentum Distribution of a
Strongly Interacting Gas

We touched on the momentum imaging method already briefly when discussing our
magnification calibration in chapter 3. The basic idea of the momentum imaging
technique is to, instead of letting the particles evolve in free-space during the time-
of-flight expansion, let them evolve in a weak harmonic trapping confinement in the
horizontal plane. This is fulfilled naturally in our experiment as we always have a
weak harmonic saddle point potential due to the magnetic Feshbach field coils. In
the classical case the trajectory x(t) of a particle moving in a harmonic potential is
given by

x(t) = x0 cos (ωt) + p0

mω
sin (ωt) , (4.1)

where x0 and p0 are the initial position and momentum of the particle, m is its mass
and ω is the harmonic trapping frequency. After letting the system evolve for a
quarter of the trap period T = 2π/ω, the initial momentum p0 is mapped onto the
position x (T/4) and vice versa. Thus, by simply doing absorption imaging after a
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time-of-flight of τtof = T/4 one obtains the in-situ momentum distribution of the
cloud. This classical argument can also be shown to work in a quantum field theory
framework [Mur14]. In our experiment the trapping frequency of the weak magnetic
confinement is on the order of ωmagn ≈ 2π × 10 Hz and hence results in a 25 ms
time-of-flight to achieve this mapping which is experimentally feasible.

The assumption of a ballistic expansion seems to be at odds with the strongly
interacting systems we are studying. However, several factors resolve this issue.
First of all the system geometry with the strong axial confinement leads to a rapid
initial expansion along the z-axis when switching off the trap. This leads to fast
decrease in density and hence a reduction in the scattering rate. An estimation
of the amount of scattering events taking place during the expansion yields that
less than 10 % of the sample scatter once [Mur14]. In addition, approximately
150µs before the release, the magnetic field is quickly ramped towards the zero-
crossing of the scattering length at 527 G1. This reduces the scattering during the
expansion while ensuring that the many-body wave function of the system has no
time to adapt and thus remains unaffected. Using these techniques we were able
to investigate the momentum distribution of a quasi-2D Fermi gas in the strongly
interacting region and observe the phase transition into a condensed phase with a
macroscopic occupation of low momentum states [Rie15a, Mur15].

Although the fast expansion along the z-axis quenches the interactions and thus
enables this momentum imaging technique, it also poses a problem when imaging
the sample along this axis. Due to the long time-of-flight the sample expands con-
siderably and reaches an axial width of several hundred microns. This is larger than
the depth-of-focus of the imaging system and thus reduces the resolution. To cir-
cumvent this we pulse on the modulated ODT beam after letting the sample expand
for 100µs to reduce the density. Tuning the duration of the pulse and the depth of
the ODT beam such that τpulse = Tz,ODT/4 we can effectively stop the expansion of
the sample in the z-axis. As the radial trap frequency of the modulated ODT beam
is on the same order as the magnetic saddle point potential and Tz,ODT � T , this
only weakly perturbs the radial expansion and the T/4 time with this additional
stopping pulse can be found experimentally. Thereby the sample is still in focus
after 25 ms which increases the resolution as well as the signal strength.

For the momentum distribution of a superfluid in a quasi-2D square lattice one
expects to observe additionally to a large occupation of low momenta also an in-
creased occupation of momenta with multiple of the lattice momentum kL. These
peaks are challenging to observe as the particles have a large transverse momentum
kL and thus have a larger scattering rate at the beginning of the expansion when
the sample is still dense. Thus, to reduce this scattering rate we turn off the SWT
50µs before we release the particles from the lattice such that the sample already
expands in the z-axis and reduces its density.

1This is for the 12-mixture which was used in this experiment.
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4.2. Observation of a Superfluid in the Quasi-2D
Square Lattice

The first observation of the transition from a superfluid to a Mott-insulator state has
been done in a three-dimensional lattice system using rubidium at small scattering
lengths [Gre01]. There the transition was identified by observing the disappearance
of sharp peaks in the lattice momentum distribution. For a strongly interacting
Fermi gas in a three-dimensional lattice a similar result was obtained using lithium
in [Chi06]. Here we report on the observation of the superfluid state in a shallow
quasi-2D square lattice geometry.
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Figure 4.1.: a) 3D image of the averaged momentum distribution over 20 images
of a superfluid sample released from a lattice with depth V = 4.5 Er.
b) To obtain information about the system both the atom number in
the central condensed part (Nc) with zero-momentum as well as the
atom number in the part with lattice momentum kL (Np) is extracted.
This can be seen in c) and d) where the integration of the black region
of interests is shown along the x-axis. For the central part a bimodal
Gaussian distribution is fitted to differentiate the condensed part from
the thermal background. In the lattice peak only the condensed part is
visible and thus a single Gaussian is fitted. Adapted from [Bay15].

To transfer the sample from the SWT into the lattice, we linearly ramp up the
lattice potential to its final depth on a timescale of 50 ms at a magnetic offset field
of B = 730 G where the molecule-molecule 3D scattering length is 1500 a0. As the
overall harmonic confinement of the lattice in the radial plane is stronger than that
of the SWT, density has to be redistributed during the ramp up which limits the
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speed one can use for the ramp and can introduce heating [Son16]. After the lattice
is ramped up, the momentum distribution is obtained using the imaging technique
described previously. For shallow lattices this leads to a momentum distribution as
can be seen in Figure 4.1 a) as a 3D image and in b) as a 2D projection. There is
a large peak at zero-momentum as well as four additional equidistant peaks along
the lattice directions. These stem from the expansion of the lattice ground state
into plane waves with integer multiples of the lattice momentum kL as described in
equation 2.53 in combination with the macroscopic occupation of low momentum
states in the condensate. Here we cannot observe higher orders as they are on the
one hand outside the range of our imaging system and their occupation would be
furthermore suppressed compared to the ±kL peaks and thus very challenging to
resolve.
From such momentum distributions we can extract the condensed fraction both

in the central peak as well as in the four lattice peaks. The central region has a
thermal background and thus to extract the condensed part we employ a bimodal
fit as can be seen in d). To obtain the condensed part from the lattice peaks we
choose to fit only the upper right peak with a Gaussian as it is consistently the most
visible and no thermal fraction could be distinguished from the noise background
there as can be seen in c). The stark difference between the lattice axes are possibly
due to a calibration issue between the lattice arms.
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Figure 4.2.: The measured number of atoms in the upper right lattice peak is mea-
sured as a function of the hold time of the sample in the lattice for
different lattice depths. One observes that the half-life time τ decreases
considerably when increasing the lattice depth. Note that this is not
atom loss but a loss of coherence due to an increase in temperature
which stems from heating in the sample. Taken from [Bay15].
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When increasing the lattice depth to drive the transition into a Mott-insulating
state one expects these peaks to disappear as each particle is then localized to a single
site and thus has broad Gaussian momentum distribution. The resulting momentum
distribution from the lattice is then just the incoherent sum of these individual
momentum distributions. Qualitatively, we observe this behavior when increasing
the lattice depth. However, this broadening of the momentum distribution can
also be a sign of heating which destroys the superfluid phase and results in a similar
thermal momentum distribution. To investigate this we measured the lifetime of the
superfluid in the lattice at different lattice depths by holding the sample for differing
times in the lattice before releasing and measuring the number of atoms Np. The
result can be seen in Figure 4.2. We observe a decay in the lattice momentum peak
which is strongly dependent on the lattice depth. For shallow lattices on the order
of V = 2.6 Er the half-life time is τ = 75 ms and it is reduced drastically when
increasing the lattice depth further such that at V = 4.5 Er it is already down to
τ ≈ 15 ms. This limits our ability to prepare and probe the Mott-insulating state.
The source of this heating is not yet understood and will be discussed in the next
section.

4.3. Heating in the Lattice
In optical traps fluctuations in the laser power or positional instabilities can lead to
parametric heating [Geh98] as particles can be excited to higher trap levels. The
heating rate scales with the trapping frequency as ω2 and thus this is especially
important for lattices where in our setup the on-site trapping frequencies can reach
up to 100 kHz.
To establish if the observed heating is a single particle effect and does not stem

from many-body physics, we prepared a polarized sample by removing one spin
component with a resonant imaging pulse. After holding the sample for a variable
time either in the SWT only or in a combination of the SWT and the lattice with
a depth of 40 Er, we measured the vertical width of the sample after a short time-
of-flight of 3 ms. The result is shown in Figure 4.3. In the SWT we do not observe
significant heating as the width is constant for all hold times. In the combined trap
including the lattice we observe an overall larger width which is expected due to
the increased confinement. But here we also see an increase of the width over time
indicating the presence of a heating mechanism already for a non-interacting sample
which points towards technical noise.
That this heating manifests itself in the z-axis is not surprising as this axis rapidly

becomes the axis of weakest confinement when turning on the lattice beams. This
is due to the axial confinement ωz ≈ 2π× 7 kHz being fixed by the SWT and having
negligible influence from the lattice beams. For deep lattices, as it is the case here,
the band gap exceeds h · 100 kHz and thus band excitations are suppressed. To
confirm this, we also checked for radial excitations using a band-mapping technique
[Blo08]. There we did not observe any increase in population of higher bands within
our resolution. From this measurement of the polarized sample we also observe
that the timescale where the increase in axial width occurs is much longer than
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Figure 4.3.: The Gaussian width of the sample in the z-axis after a time-of-flight of
3 ms is shown as a function of the holdtime in the trap. This was done
both for a polarized sample in the SWT only (black squares) and for a
polarized sample in the combined potential of the SWT and the lattice
with depth 40 Er (blue circles). Whereas for the SWT no increase in
the width is observable on a 2 s timescale, the width in the combined
trap increases significantly on this timescale, indicating the presence of
a heating mechanism.

the timescale in the coherence measurement in the previous section. This might
be partially explainable by energy arguments when one considers that the axial
trapping frequency corresponds to an energy ~ · ωz/kB ≈ 300 nK and thus already
a small population transfer of atoms into excited states as measured in Figure 4.3
can heat the sample considerably upon thermalization and lead to the observed
loss of coherence. Even at the more shallow lattices used in the coherence loss
measurements in Figure 4.2 where the band gap is small compared to ~ · ωz, the
excitation energy needed to excite particles around the condensed part q = 0 is on
the order of 4 Er which is much larger than ~ · ωz considering the molecular recoil
energy Er,molecules = 0.5Er,atom = h · 14.5 kHz (see numerical calculations in Figure
2.10) and thus the same argument that the axial confinement is weakest applies
here. Apart from these single-particle effects, the strong interactions present in the
molecular sample can also lead to interaction energies on the order of the axial
confinement and thus it is not yet clear if solving these single particle heating effects
due to noise will be enough to prepare a low entropy Mott-insulator.
During the course of this thesis we examined the relative intensity noise (RIN)

of our laser. The power stabilization is done by measuring the transmitted beam
power behind a mirror with a photodiode and using this signal as feedback for a
PID-loop to control the rf power of an AOM. Improving the PID-loop by replacing
the digital version with a faster analogue one we were not able to improve on the
heating despite some decrease in RIN. We also tested exchanging the seed of the fiber
amplifier with an Innolight Mephisto laser which has reduced RIN compared to the
Innolight Mephisto S version we employ. Although we measured a reduction of RIN
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after the fiber amplifier of 10 dB we did not observe any significant improvement
in the heating rate. Another possibility could be phase noise as we do not actively
stabilize the phase. This might be an issue in the lattice arms as there the travel
distance of the retro-reflected beam is up to 1 m before it interferes in the experiment
chamber. This could be tested in the future by setting up an interferometer.
In the immediate future, we will implement a high numerical aperture objective

in combination with a spatial light modulator (SLM) into the setup. Thereby we
can project a wide variety of potentials onto the atom plane [Hol14]. We will then
revisit these heating questions and hopefully resolve them.
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5. Pairing in the Normal Phase of a
Quasi-2D Fermi Gas

In previous work in our group we investigated the phase transition to a superfluid
throughout the two-dimensional BEC-BCS crossover [Rie15a, Mur15]. Superfluidity
emerges from an instability in the normal phase and hence - to understand its origin
- a better understanding of the normal phase is required. In high-Tc cuprates it has
been shown that some effects like the suppression in the static magnetic susceptibility
which occur in the superfluid phase, already set in at temperatures T ∗ larger than
Tc [War89, All89, Joh89]. This part of the phase diagram is known as the pseudogap
region. However, in these materials effects like doping and the underlying lattice
structure play an important role and hence the influence of pairing is not easy to
separate [Che05].
Here, ultracold Fermi gases can provide further insight. In these systems the inter-

action between the particles is tunable via Feshbach resonances and the superfluid
phase transition is inherently connected to pairing as long-range phase coherence
requires a bosonic degree of freedom. Depending on the interaction, these pairs
can be either two-body dimer states or (many-body) Cooper-pairs in momentum
space. On the BEC side where the binding energy of these dimers EB is much larger
than the thermal energy kBT , these pairs are trivially formed above the critical
temperature Tc and the ensuing phase transition is well understood. In the weakly
attractive fermionic limit where BCS theory is applicable, the pairing temperature
for Cooper pairs is identical with the critical temperature. This leaves the question
what happens in the strongly interacting crossover region around the Feshbach res-
onance. Is there a pseudogap phase with preformed Cooper pairs already above the
critical temperature or is the normal phase a Fermi liquid with well-defined quasi-
particles [Zwi16]? In three dimensional systems, theoretical models predict such a
pseudogap phase above the critical temperature at unitarity [Che09b, Mag09, Pie09].
Momentum-resolved rf spectroscopy experiments [Gae10] showed for example back-
bending in the dispersion relation near kF similar to the BCS case. However, the
existence of back-bending far from kF is predicted to be a universal feature of Fermi
gases with contact interactions and thus is not unambiguously a sign of a pseudogap.
Moreover, thermodynamic measurements of the specific heat of the system above Tc
showed no signal of a pseudogap [Ku12].
In a two-dimensional system, the pseudogap region is expected to be enhanced

compared to the 3D case due to the increased role of quantum fluctuations [Mar15].
Similarly to the 3D case, momentum-resolved rf spectroscopy revealed signs of back-
bending in the spectra for a quasi-2D system [Fel11]. However, a theoretical model
using a high-temperature Virial expansion can reproduce these spectra [Nga13] and
thus the evidence for a pseudogap is not conclusive. Furthermore, rf spectroscopy
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measurements studying the evolution from a 3D to a 2D system [Som12] showed
that the pairing gap measured up to interaction strengths of ln (kFa2D) < 0.5 is
still in agreement with the binding energy of simple two-body dimers which exist at
all interaction strengths in two dimensions. This supports the argument of [Lev15]
obtained from QMC calculations that a pseudogap is only expected for ln (kFa2D) >
0.5 where remnants of a Fermi surface are present and the chemical potential µ > 0.
Note however that there are also T-matrix calculations which predict this transition
from a molecular to a pseudogap regime to happen already at interaction strengths
ln (kFa2D) ≈ 0− 0.1 [Mar15] and thus it is still an open question.
In general, rf spectroscopy is a very sensitive tool to study pairing as demonstrated

e.g. in 3D systems in [Chi04, Sch07a, Sch08b, Sch08a, Sch09, Gae10, Sag15] as well
as in quasi-2D systems [Fel11, Frö11, Bau12, Frö12, Kos12, Som12, Zha12]. During
the course of this thesis we studied the pairing in a quasi two-dimensional system in
the BEC-BCS crossover using a spatially resolved rf spectroscopy technique similar
to [Sch08a]. The local rf response is crucial as our system is inhomogeneous and
hence both the relative temperature scale T/TF as well as the interaction strength
ln (kFa2D) vary considerably when comparing the high-density center of the cloud
to the low-density wings. From theoretical predictions [Fis14], we expect to see
a gapped excitation spectrum: a paired branch indicating either the population of
dimer states or many-body Cooper pairs and an unpaired branch. In a spin balanced
system the unpaired branch can only be excited thermally whereas in a slightly
spin imbalanced mixture the excess atoms of the majority can populate this branch
additionally. The energy difference between these branches then gives us access to
study the pairing gap as a function of interaction strength and temperature. In this
thesis we employed both approaches. We took an imbalanced dataset to investigate
the pairing gap in the crossover region and a balanced dataset to study the onset of
pairing at high temperatures and the interaction induced density dependent energy
shifts in the rf spectra.
This chapter is organized as follows: first the basic principles of spatially resolved

rf spectroscopy are summarized in section 5.1. Then mean-field BCS theory as a
qualitative description of the crossover is discussed in section 5.2. Subsequently the
experimental methods, calibrations and systematics to obtain the spatially resolved
rf spectra are presented in section 5.3. Our experimental results are discussed next.
We start by investigating the initial state interaction induced shifts as a function
of interaction strength by looking at the rf spectra of balanced samples in section
5.4. Next we investigate the onset of pairing at large temperatures T/TF > 1 in the
crossover regime in section 5.5. At last, we use an imbalanced mixture to estimate
the pairing gap as a function of interaction strength and temperature in section
5.6 and identify a region where the system cannot be described simply in terms of
two-body physics and thus many-body effects play a role.

5.1. RF Spectroscopy as a Tool
In 6Li the three lowest hyperfine states used in the experiment have a level spacing
on the order of ∆E ≈ h · 80 MHz and differ in their nuclear spin projection mI.
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Therefore, by applying a resonant oscillating radio frequency field, we can flip the
nuclear spin and drive transitions between neighbouring states. This is exemplary
shown in Figure 5.1 a). If one starts with a non-interacting atom in state |3〉 (red),
one can drive a transition to state |2〉 (blue) by applying a rf pulse with energy
Efree−free. However, if the atom in state |3〉 is initially paired1, its energy is lowered
and hence a smaller energy Ebound−free is required to flip its spin. This difference in
the required rf frequency can be measured in experiments, making rf spectroscopy
a very good tool to probe pairing as well as interactions as the involved transitions
between different states are very sensitive to such shifts.
This section covers the basics of rf spectroscopy and its application in our 6Li

system. It starts by introducing coherent as well as incoherent rf transitions in sec-
tion 5.1.1 and 5.1.2. Next interaction effects which can shift the observed resonance
positions are motivated in section 5.1.3 and the lineshape of the rf spectrum is dis-
cussed in section 5.1.4. Then the concept of locally resolved rf spectroscopy as a
means to obtain information from homogeneous subsamples in our inhomogeneous
trap is explained in section 5.1.5. At last the specific situation in our 6Li system is
presented in section 5.1.6.

| 3 >

| 2 >

| 1 >

Δ E < 0

Efree-freeEbound-free

a )  1 3 - m i x t u r e

Δ E > 0

Ebound-free Efree-free

b )  1 2 - m i x t u r e

Figure 5.1.: These sketches show the transition scheme in our 6Li system. In a) the
case for the 13-mixture is shown. The bound-free transition is shifted to
smaller energies with respect to the free-free transition. In b) the case
for the 12-mixture is shown. Here the energy shift of the bound-free
transition is positive compared to the free-free transition.

5.1.1. Coherent RF Transitions
In the case of a non-interacting system without decoherence or dephasing, the appli-
cation of rf pulses to obtain population transfer can be described in the framework
of Rabi oscillations [Bra03]. Here the assumption is a two-level system {|g〉 , |e〉}
where a harmonic perturbation V (t) ∝ sin (ωt) is applied. In our case the two

1In this case a dimer with an atom in state |1〉 is sketched.
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level system consists of either a {|2〉 , |3〉} or {|1〉 , |2〉} combination of the hyperfine
states, which we call in the following 12- or 13-mixtures, and the harmonic pertur-
bation is the rf pulse which can be approximated for a long pulse by a plane wave
~Brf (t) = ~B0 cos (ωrft).
This coupling then leads to a superposition2 ψ (t) = cos

(
Ωt
2

)
|g〉 + sin

(
Ωt
2

)
|e〉

between the states, and the population oscillates with the Rabi frequency Ω. This
behavior can be seen in Figure 5.2 b) where the population in state |2〉 is plotted
versus the applied pulse duration τrf . The Rabi frequency can then be extracted
from a damped3 sine fit (blue line). In general, the Rabi frequency depends on the
coupling between the magnetic field and the magnetic moment µs as

Ω ∝ µs ~B0~es, (5.1)

where ~es is the spin axis. Hence, we can adjust the Rabi frequency experimentally
by changing the rf power Prf we put into the rf coil as

∣∣∣ ~B0

∣∣∣ ∝ √Prf .
So far we assumed the driving oscillating field to be on resonance. If the field

is off-resonant with a detuning ∆ωrf , the effective Rabi frequency Ωeff increases as
Ωeff =

√
Ω2 + ∆ω2

rf and the observed contrast in the population oscillation decreases
as (Ω/Ωeff)2. This determines the lineshape of the coherent rf transition to be
Lorentzian. This can be seen in Figure 5.2 a). Here the loss of atoms in state |2〉
is plotted versus the detuning when applying a 25 ms long, weak rf pulse. The blue
line is a Lorentzian fit which nicely reproduces the data. Due to the long pulse
duration, the width of the rf transition is mostly given by our achievable magnetic
field stability. From the experimental data we can also notice that the population
oscillation gets damped with an exponential decay constant τdecoherence ≈ 20 ms. This
is due to magnetic field inhomogeneities which lead to variations of the resonance
frequency over the sample and hence to decoherence.
So far only the spin degree of freedom was included in the derivation. However,

for a general treatment also the spatial degree of freedom has to be included. The
transition can then be described in terms of a wave function for the initial state
|Φi〉 and the final state |Φf〉. The Rabi frequency is then proportional to the wave
function overlap regarding the rf operator R̂F as

Ω ∝ 〈Φf | R̂F |Φi〉 . (5.2)

The momentum of the rf photon is negligible compared to the atom momentum and
thus for systems where the spin and spatial degree of freedom separate, the spin
Rabi frequency Ωs as derived before is then modified by the spatial wave function
overlap as

Ω ∝ Ωs 〈Ψspatial,f |Ψspatial,i〉 . (5.3)

This can lead to a reduction of the Rabi frequency and thus the coupling decreases
when driving for example bound-bound transitions.

2Here we assume the atoms to be initially in state |g〉 at t = 0.
3The damping is due to decoherence in the sample.
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Figure 5.2.: a) State |2〉 population versus detuning ∆f for a pulse duration τ =
25 ms in a polarized sample. One can see a loss feature at resonance
with a FWHM ≈ 180 Hz obtained from a Lorentzian fit (blue line). b)
Rabi oscillations in a polarized sample of state |2〉 atoms. By tuning
the applied pulse duration τrf , population is transferred in a two-level
system and oscillations are observed. Due to decoherence, the contrast
reduces for longer times and the Rabi frequency Ω can be extracted
from a damped sine fit (blue line).

5.1.2. Incoherent RF Transitions in Interacting Systems
In the experiment we are interested in strongly interacting Fermi gases and thus
the previously described coherent framework is not applicable. When one starts
e.g. with a 12-mixture and drives the transition from state |2〉 into state |3〉, then
scattering between the superposition state ψ = α |2〉+β |3〉 and the atoms in state |1〉
quickly lead to decoherence, thus destroying the superposition. Since the scattering
rate in our system in the strongly interacting regime is on the order of kHz, the
timescale of decoherence is now below milliseconds. In order to still make predictions
about the driven transition, we use Fermi’s Golden rule [Sch07b] and consider a
linear response of the system. The transition rate Γ is then given by

Γ (ω) = πΩ2∑
k
A|2〉 (k, ξk − ~ω) f (ξk − ~ω) , (5.4)

where A|2〉 (k, ε) is the spectral function of the interacting state |2〉, f(x) is the Fermi
function and ξk = ~2k2/2m − µ is the fermion dispersion relation measured from
the chemical potential µ. The spectral function describes the probability to find
a single particle excitation with both momentum k and energy ~ω [Gia13] and it
has to be calculated by a suitable many-body approach. Hence, the sum basically
integrates over all initial momentum states which can be transferred via an rf photon
into a different internal state with the same momentum. To account for the initial
occupation we have to multiply by the Fermi function.
Interactions can also lead to pairing in the system. This will influence the form

of the spectral function and results in an energy shift ∆E in the observed transition
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rate. Let us consider for example a dimer with binding energy EB. Then, to drive the
transition of one constituent atom into a third, unoccupied state, the rf photon has
to additionally bring up the energy required to break the dimer. Hence, the observed
resonance frequency νres = νfree−free + νB is shifted. This makes rf spectroscopy a
sensitive tool to probe pairing in the system.

5.1.3. Interaction Shifts
In the previous section we did not consider the effect interactions have on the ob-
served rf transitions, apart from the pairing. Interactions can lead to an energy
shift in the observed rf transitions and are thus a source of systematic error. In the
literature these energy shifts are either known as Hartree shifts or clock-shifts and
only occur when driving a rf transition into a third state [Ket08].
Both interactions in the initial as well as in the final state can affect the observed

rf transition energy. When driving e.g. the transition |3〉 → |2〉 in a 13-mixture, the
initial interaction in the 13-mixture as well as the final state interactions between the
transferred atoms in state |2〉 and state |1〉 will play a role. However, the interaction
between state |2〉 and state |3〉 does not affect the transition as the system is in a
superposition state during the pulse duration [Ket08].
In section 5.2 we showed that the pairing dissociation peak occurs at positive

energies ~ · ωrf > 0 for the 12-mixture and at negative energies ~ · ωrf < 0 in the
13-mixture. The Hartree energy shift for an initial 12- or 13-mixture respectively is
then given by

∆EHartree,12 = EH,final − EH,initial and ∆EHartree,13 = EH,initial − EH,final (5.5)

where EH,initial is the energy shift due to the initial state interaction and EH,final is
the energy shift due to the final state interaction. We now adopt the convention to
define the pairing dissociation peak to be at positive energies also in the 13-mixture.
Then we can write the Hartree shift for all cases as

∆EHartree = EH,final − EH,initial. (5.6)

In general, the description of the strongly interacting regime is challenging and an
analytic formula for the Hartree shift does not exist. In the weak coupling regime
|ln (kFa2D)| � 1, however, the energy shifts can be described in a mean-field picture.
There the energy shift ∆E = g2D ·n is proportional to the density n with a coupling
constant g given by [Blo75]

g2D = − 2π~2

m ln (kFa2D) (5.7)

and thus one can also write the energy shift in terms of the Fermi energy as

∆EHartree,mean−field = − EF

ln (kFa2D) . (5.8)

For the strongly interacting region |ln (kFa2D)| ' 1 this mean-field formula di-
verges and is not applicable. From the existence of a bound state at all interaction
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strengths in a two-dimensional system and the absence of a divergence in the scat-
tering length a2D, we know that the two limits have to be smoothly connected. For
a two-body system one can calculate the change in energy in the crossover region
analytically and obtain

∆EHartree,interpolated = − ln (kFa2D)(
ln (kFa2D)2 + π2

)EF (5.9)

which converges in the limits |ln (kFa2D)| � 1 towards equation 5.8. We use this
as a first estimate to compare our measured Hartree shifts to in section 5.4. For a
better comparison one would have to apply QMC or Luttinger-Ward calculations.

a ) b )

Figure 5.3.: a) Interaction induced Hartree shift given in units of the Fermi energy
EF as a function of the interaction strength ln (kFa2D) for the different
models. b) Plot of the zero-momentum spectral function of the Fermi
polaron taken from [Sch12]. A broad repulsive polaron with positive
energy and a narrow attractive polaron with negative energy exist. The
white dashed lines are from the mean-field theory in equation 5.8 and
are not applicable in the strongly interacting regime.

For the final state interactions one has to additionally consider that only a fraction
of the atoms are transferred into the final state. Thus, the final state system can be
often described as a minority interacting with a sea of majority atoms and hence a
Fermi polaron model is more suitable [Zha12, Sch12, Nga12]. The zero-momentum
spectral function of the Fermi polaron in two-dimensions has been calculated in
[Sch12] using a T-matrix approach and result in two branches: a broad and thus
short lived repulsive polaron branch with positive energy for negative (extending to
small positive) ln (kFa2D) and a narrower attractive polaron branch with negative
energy for positive (extending to small negative) ln (kFa2D). The graph from [Sch12]
is shown in Figure 5.3 b). Here the branches are shown in red and the white dashed
lines are the perturbative theory. One can see that the repulsive polaron energy in
the strongly interacting region is bounded to energies smaller 2EF.
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In the weak coupling limit EB/EF → ∞, the repulsive polaron branch can be
calculated as [Nga12]

Erep
polaron = 2EF

ln (EB/EF) . (5.10)

For the strongly interacting region this leads to a divergence and thus cannot be
applied. To estimate the repulsive polaron energy in this regime we use a heuristic
function which describes the maximum of the spectral function obtained from T-
matrix calculations [Sch12] as [Ens17]

Erep
polaron = 2EF

1 + ln (1 + exp [− ln (2 · EF/EB)]) , (5.11)

which gives a valid approximation at least in the regime ln (kFa2D) < 0.
The attractive polaron is approximated in the weak coupling limit EB � EF by

[Zha12]

Eattr
polaron = − 2EF

ln (2EF/EB) = − EF

ln (kFa2D) . (5.12)

This approximation is within 2 % of a more rigorous T-matrix calculation in the
regime ln (kFa2D) ≥ 5 which is the final state regime we operate in for the 12-
mixture. Note that all these derivations are done in a true two-dimensional system
and thus do not consider the quasi-2D regime. This is important as on the BEC
side, the binding energy approaches the 3D binding energy and thus the relation in
equation 2.44 between a2D and EB does not hold. Thus, to calculate the final state
repulsive polaron shift we use the quasi-2D binding energy obtained from equation
2.45. The different interaction models are shown Figure 5.3 a) as a function of the
interaction strength.
For the measurements described in this thesis, the knowledge of the interaction

shift is important in the case where we only observe a single branch in our rf spec-
trum. In the case where we observe both the pairing branch as well as the thermally
(or by imbalance) populated free-free branch, we are only interested in the relative
distance between these peaks as the interaction induced shift is for both branches
the same. In general, 6Li is challenging to use for rf measurements as there exists
no non-interacting final state, unlike e.g. in 40K. However, this can also be useful if
one is interested in the study of such final state effects.

5.1.4. Lineshape
The rf transition rate Γrf (ω) contains the information about the spectral function
of the state. In a two-body system it can be derived at all interactions strengths.
However, in a many-body system the description becomes challenging especially in
a 2D system where a bound dimer state exists at all interaction strengths. Still, one
can find a universal relation for the large frequency rf tail in the 2D system [Lan12]

Γ (ω)→
ln2

(
E
′
B/EB

)
Ω2C

4mω2
[
ln2

(
ω/E

′
B

)
+ π2

] , (5.13)
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where E ′B is the dimer energy of the final state, EB is the dimer energy of the initial
state and C is the Tan contact of the system. The Tan contact [Tan08] is related to
the universal power-law tail nσ (k) → C/k4 of the momentum distribution of each
spin state and there exist other relations linking it to thermodynamic properties
of the system as well. Thus, a measurement of the large frequency tail can also
give access to the contact [Frö12]. From the formula we can see that in the high-
frequency tail we obtain the simple scaling Γ (ω) ∼ 1/ω2 if

∣∣∣ln (ω/E ′B)∣∣∣ � π or if
the final state interactions are negligible.
For a two-body system consisting of dimers one can obtain a general expression

for the transition rate Γ (ω) as [Lan12]

Γ (ω) =
πEBΩ2 ln2

(
E
′
B/EB

)
4mω2

(
ln2

[
(ω − EB) /E ′B

]
+ π2

)Θ (~ω − EB) . (5.14)

Here, the possible bound-bound transition between EB and E ′B occurring at δ(~ω−
EB + E

′
B) has been ignored. For the data taken with the 13-mixture the bound-

bound transition is shifted far away from the region of interest and can be measured
independently. In the 12-mixture, the final state binding energy is E ′B < 1 Hz and
thus much smaller than typical system temperatures on the order of kBT/h ≈ 2 kHz.
Hence, the transition rate there is highly suppressed and can be neglected.
The lineshape of the transition rate is thus strongly dependent on the final state

dimer also for the bound-free transition. This can be seen in Figure 5.4, where the
rf lineshape obtained from equation 5.14 is plotted for a fixed initial state dimer
energy EB = 10 kHz for three different final state dimer energies E ′B. We can see
that the final dimer energy has a very strong effect on the lineshape and the drop off
of the large frequency tail. This affects also the relation between the observed peak
energy Epeak and the threshold energy EB. This is plotted in the inlay where the
ratio between the peak and the threshold energy is plotted as a function of the ratio
EB/E

′
B. The peak has a maximal shift from the threshold at around EB/E

′
B ' 0.3,

where the corresponding lineshape has the most pronounced high frequency tail. For
small final dimer energies E ′B on the other hand, the lineshape gets very narrow with
a fast drop off. As the ratio between the peak position and the threshold energy
can reach up to 20 %, we cannot rely on the peak position as an estimate for the
threshold energy.
In the experiment the rf lineshape is also affected by our experimental rf frequency

resolution as well as interactions. The frequency resolution is in our case limited by
the Fourier limited width of the rf pulse due to our short pulse lengths of τ = 4 ms
which leads to a frequency resolution of σrf ≈ 220 Hz4. This leads to a broadening of
the lineshape which can be simulated by convolving the lineshape with a Gaussian
profile of width σrf . This is shown in Figure 5.5 for two different settings. In
general this will shift the observed peak to larger frequencies and blur out the sharp
threshold. Thus, to determine the threshold energy experimentally we include this
convolution in the modeling of our measured spectra. In addition other final state
effects can effect the lineshapes as well.

4We apply a square pulse and use the time-bandwidth product ∆t ·∆ν ≥ 0.886 to estimate the
frequency resolution.
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Figure 5.4.: Dependence of the rf lineshape on the final state dimer energy. The
threshold function equation 5.14 is plotted for 3 different values of final
state interactions for an initial state dimer energy EB,i = 10 kHz. For
deeply bound final state dimers (blue line), the lineshape is very broad
and the peak position ωpeak is shifted upwards compared to the thresh-
old position ωth. When the final state dimer energy gets smaller (red,
yellow), the lineshape becomes narrower and the peak position ωpeak
approaches the threshold position ωth. The ratio ωpeak/ωth is shown as
a function of the initial to final state dimer energy ratio EB,i/EB,f in
the inset where we again set EB,i = 10 kHz. For EB,i/EB,f ∼ 1, the
peak is shifted by up to almost 20 % compared to the threshold. For
EB,i/EB,f � 10, the peak position approaches the threshold position.
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Furthermore, possible many-body effects in the strongly interacting region can
additionally alter the lineshape. For this, however, we do not have a suitable model
as a theoretical description in this regime is challenging. The modeling of our
experimentally measured lineshapes is described in more detail in 5.3.8.

a ) b )

Figure 5.5.: The experimental rf resolution leads to a convolution of the rf lineshapes.
This is shown here for two examples in the 12-mixture where the final
state binding energy is negligible. This corresponds to a) B = 844 G
and b) B = 1002 G. The blue line is the model from equation 5.14
and the red dashed line is the same model convoluted with a Gaussian
profile with our experimental frequency resolution σrf = 220 Hz. One
can see that the convolution leads to a shift of the observed peak to
larger frequencies which depends strongly on the form of the rf tail.

5.1.5. Spatially Resolved RF Spectra
In section 2.3.1 we discussed how the physics changes in our 2D Fermi mixture
when changing the interaction strength ln (kFa2D). As the interaction strength is
explicitly density dependent, it changes in our inhomogeneous samples as we move
from the center with higher density to the low density wings. This is also the case
for the relative temperature T/TF as in a 2D system, TF is directly proportional to
the density n2D. Therefore, in the wings of the sample the system is non-degenerate
and behaves as a thermal gas. Hence, it is necessary to locally probe the system to
avoid averaging over different physical regimes which can potentially hide relevant
features. Such locally resolved measurements have been performed e.g. in a 3D
system in [Sch08a]. Here we explain the procedure for a 2D system.
In the normal phase, there is no long-range phase coherence present and since

our potential is smooth we can use the local density approximation (LDA). Then at
each point r in the trap we describe the system as homogeneous with density n2D (r),
relative temperature T/TF (r) and interaction strength ln (kFa2D) (r). This is shown
exemplary in Figure 5.6. In the upper panel, radial density profiles are plotted
corresponding to images where a rf pulse was applied (blue,green) and a reference
where no rf pulse was applied (orange). Depending on the applied frequency, only
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parts of the sample are transferred which shows up e.g. as a ring in the image when
taking the difference between the rf sample and the reference as shown in the inlay.
In the lower panel the evolution of the local variables T/TF (r) and ln (kFa2D) (r) is
shown across the sample. The relative temperature T/TF (r) is lowest in the center
where the density and thus TF is maximal. In contrast, the interaction strength
ln (kFa2D) (r) decreases when going towards the wing as kF is reduced.
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Figure 5.6.: The upper panel shows different radial density profiles: the blue and
green profiles have been taken with an applied rf pulse. One can see
that the density is locally reduced compared to the reference profile
(orange) where no rf pulse has been applied. From these profiles one
can infer the locally transfered density as shown in the inlays. In the
lower panel the local variables T/TF (r) and ln (kFa2D) (r) are plotted
versus the radius. One can see that the relative temperature increases
as one approaches the wings of the sample. The interaction strength
however decreases in the low density region. This highlights again the
need to resolve the rf spectra spatially.

To ensure that the rf probing is only done locally such that the atoms have no
time to redistribute inside the trap during the rf pulse, we apply rf pulses which
are short compared to the trapping period. We then image the sample directly at
the end of the pulse and obtain thus a local rf response n2D (r, ω) as was shown
in Figure 5.6. Subsequently, we then compare this density to a reference density
n2D,ref (r) taken at the same conditions without application of the rf pulse. From
this we infer the fraction of transferred atoms as

I (r, ω) = (n2D,ref (r)− n2D (r, ω))
n2D,ref (r) . (5.15)

This can then be plotted as a rf spectrum as showcased in Figure 5.7. In section 5.3.5,
we will give a more detailed explanation on the limits of our achievable frequency
resolution.
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5. Pairing in the Normal Phase of a Quasi-2D Fermi Gas

Note that the transfer of atoms into a third state leads to three-body losses. How-
ever, these occur however on timescales longer than the rf pulse duration and thus
we do not observe an influence of this loss process in the rf spectra. Furthermore,
the spectra obtained with this method are momentum integrated and hence we do
not have direct access to the single particle spectral function A (k, ω). Performing
a momentum resolved spectroscopy like e.g. in [Fel11], however, averages over the
inhomogeneous sample, thus introducing again the problem of the different tem-
peratures and interactions strengths across the sample. In future experiments this
can be resolved by preparing homogeneous systems and then performing momentum
resolved spectroscopy.

Figure 5.7.: RF spectrum of an imbalanced mixture on the BEC side. One can differ-
entiate between a free-free transition around ∆ν = 0 and the bound-free
transition with dimer binding energy EB (red dashed line). Due to the
local resolution one can observe the density dependent interaction shifts.

5.1.6. The 6Li System
In the experiment we use the three lowest hyperfine states of 6Li. There exists a
broad Feshbach resonance for all binary mixtures in close vicinity to each other (see
Figure 2.5 b)). Thus, when performing rf spectroscopy one has to consider both
initial and final state interactions. Large final state interactions then complicate the
description of the system and should be avoided. In our 6Li system we can minimize
these final state effects by preparing either a 12- or 13-mixture depending on the
initial interaction strength we want to realize.
This is depicted in Figure 5.8 where both the 3D scattering length (upper panel)

as well as the corresponding quasi-2D interaction strength ln (kFa2D) for a typical
experimental Fermi momentum kF ≈ 3.5µm−1 in the trap center (lower panel) are
shown as a function of the external magnetic offset field B in the regime we use in
the experiment.
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Figure 5.8.: In the upper panel the 3D scattering length in units of the Bohr radius
is plotted versus the magnetic offset field for both the 12- and the 13-
mixture. On the BCS side of the 13-resonance the interaction strength
in the 12-mixture increases. On the BCS side of the 12-resonance, the
interaction in the 13-mixture is limited to the background scattering
length. In the lower panel the 2D interaction parameter ln (kFa2D) is
plotted as a function of the magnetic offset field. Adapted from [Rie15b].

In the experiment we want to explore the strongly interacting region around
ln (kFa2D)initial ∼ 0. When starting in the 13-mixture, the final interaction strength
is ln (kFa2D)final < −6 up to magnetic fields of around B ≈ 700 G. Hence, there the
assumption of a weakly coupled final state is valid. For magnetic fields larger than
B ≈ 700 G one approaches the region of strong interactions and thus final state
influences become important. This can be seen when looking at the rf spectra in
this regime in section 5.4.
For an initial 12-mixture, the final state interactions in the 13-mixture begin to

saturate towards ln (kFa2D)final ≈ 6 above the Feshbach resonance in the 12-mixture
at B12 ≈ 832 G. This is due to the 3D background scattering length having a
large negative value a3D,bg ≈ −2000 a0. Thus, when operating above the Feshbach
resonance we can again assume the weak coupling limit to be an adequate description
of the final state interaction. Here we do not consider the interaction in a 23-mixture
as it has no influence on the transitions we use during these experiments.

5.2. Mean-Field Treatment of the Crossover Region
For the crossover region in a quasi-2D system there is no complete theory describing
the normal phase and thus the expected pseudogap behavior. Advances have been
made [Fis14, Mar15] but a complete picture is still missing. Here we will present
the often used mean-field BCS approach to motivate the expected rf spectra in the
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5. Pairing in the Normal Phase of a Quasi-2D Fermi Gas

crossover region.
Technically, mean-field BCS theory only describes the superfluid phase in the

weakly attractive limit and does not incorporate the notion of a pseudogap. How-
ever, when extending the theory into the strongly interacting regime one can still
extract a critical temperature. It is however much larger than the experimentally
observed critical temperatures and thus it is assumed that this temperature now
does not signal the onset of superfluidity but rather the onset of many-body pairing
and thus gives an estimate of the crossover temperature T ∗. Note however that
this ansatz does not incorporate quantum fluctuations which play an increased role
in two dimensions and thus the obtained results are not expected to show good
agreement with experiments but rather aim to give an intuitive picture.
In zero-temperature mean-field BCS theory, the spectral function ABCS (k, ω) of

the ground state shows two branches which can be associated with the population
of many-body pairs in the lower branch and the thermal excitations which break up
the pairs in the upper branch. The single-particle dispersion relation for these two
branches is then given by [Zwe16]

E
(±)
k,BCS = µ±

√
η2
k + ∆2 (5.16)

with ηk = ~2k2

2m − µ being the free particle dispersion and ∆2 = 2EBEF being the
excitation gap where EB is the two-body dimer energy as defined in equation 2.45.
On the BCS side the excitation gap ∆ can be written as ∆ =

√
∆2

sc + ∆2
pg, where ∆sc

is the superfluid gap and ∆pg is the pseudogap. On the BEC side where µ = −EB/2
at zero temperature the gap vanishes. The BCS single-particle dispersion from
equation 5.16 is plotted in Figure 5.3 a) as the blue (red) curve where also the free
particle dispersion Efree = ~2k2

2m is given as the green curve. At zero temperature
the system is fully paired and only the lower branch (blue) is occupied. For finite
temperatures, also the upper branch can be thermally excited if the temperature is
on the order of the excitation gap ∆.
The rf response of the system at low temperatures can then be explained as

depicted in Figure 5.3 b). Here the system is paired and the lower BCS branch is
dominantly occupied as indicated by the blue line. The upper excited BCS branch
in contrast is only thermally populated with most of the population occuring around
k = kF where the excitation gap is minimal. In addition the free particle dispersion
of the initial state |i〉 is given as the green dashed line and the free particle dispersion
of the final state |f〉 is given as the green line. For the following we presume that
Ef > Ei and that the energy offset between these states is Efree−free = ~ · ωfree−free.
The minimal rf energy required to break a pair and transfer an atom from the lower
BCS branch to the final state |f〉 is then given at k = 0 and results in a rf transition
energy threshold ~ · ω+

th relative to Efree−free with

ω+
th =

√
µ2 + ∆2 − µ > 0. (5.17)

Using the relation µ = EF−EB/2 we can derive ~·ω+
th = EB at zero temperature. For

the thermally excited atoms in the upper branch, the situation is slightly different.
There the required rf transition energy is now bounded at both sides. The maximal
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Figure 5.9.: a) Single-particle dispersion relation E(±)
k,BCS (red/blue) for zero temper-

ature BCS theory (∆ = 0.3EF) as well as the dispersion relation Ek for
free particles (green). They indicate the energy required to remove or
add a single particle. The excitation gap ∆ is defined in BCS theory as
the minimal energy required to place an excitation in the system and
is thus given by the minimal distance between the chemical potential
µ and the upper BCS branch (red). b) Sketch of the rf response when
driving the system from an initial state |i〉 into a final state |f〉. The
minimum required energy to break a pair in the lower BCS branch and
project it onto the free final state is given by ~ · ωth = EB + Efree−free.
In contrast the energy required to drive an atom from the excited BCS
branch to the free final state is reduced by the excitation gap ∆.
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required energy for the rf transition approaches Efree−free at k � kF, resulting in
∆ω < 0 relative to the free-free transition. On the other hand the minimal required
energy is again given at k = 0 and results in the threshold

ω−max = −
√
µ2 + ∆2 − µ = −2EF < ω < 0 (5.18)

at zero temperature. Note that this definition only applies in the fermionic regime
for µ > 0 and that this peak coincides with the free-free peak once the excitation
gap ∆ = 0. On the BEC side at large temperatures there will be an equilibrium
between dimers and free atoms and thus the upper branch will just be the free
particle excitations at ω = 0. This is depicted in Figure 5.10. In a) the BEC side
is shown. There, one expects a bound-free branch with threshold energy EB and a
free-free branch at ω = 0. In contrast on the BCS side (b)) we expect the free-free
branch to be modified at temperatures where the excitation gap starts to open up.
Then most of the weight of this peak is shifted to negative frequencies at −∆ as the
thermal excitations mostly populate the momentum states k ≈ kF. The threshold
of the bound-free branch is still at EB as in the BEC case. Thus, the distance
between these peaks is a measure of the excitation gap ∆. However, the exact
relation between the peak of the negative frequency branch and the excitation gap
depends strongly on the thermal population and thus a quantitative determination
of the excitation gap is difficult [Che09a]. However, the occurrence of a shift towards
negative frequencies is still a strong sign to determine whether a pseudogap region
is present or not.

0

0

Δ

E
B

RF Frequency

RF
 R

es
p

on
se BCS-Regime

0

0

E
B

RF Frequency

RF
 R

es
p

on
se BEC-Regime

Figure 5.10.: Sketch of the expected lineshapes for the different regimes. On the
BEC side (left panel) there is no gapped excitation spectrum and thus
one expects to see a peak at zero detuning indicating the free-free
transition and a peak with threshold at EB indicating the dissociation
of the bound dimer pairs. On the BCS side (right panel), however,
thermal excitations are still subject to many-body effects for a non-zero
excitation gap ∆ and thus the free-free branch is shifted to negative
frequencies. The shift of the transition gives an estimate of ∆. The
exact form and peak position depend however on the population of the
free atom branch.
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To increase the visibility of the unpaired particle branch, one can also introduce
a small spin imbalance into the system. Thereby the excess atoms of the majority
will populate the upper branch and thus mimic the thermal occupation, under the
assumption that the presence of a small imbalance does not change the dispersion
relation. This was first done in a 3D system [Sch08a] and is applied in this work as
well.
The above derivations all assumed the zero temperature limit of BCS theory

where the free atom branch would not be populated. One can extend these to
finite temperatures [Bab98] which results in a temperature dependent excitation
gap ∆ (T/TF) as well as a temperature dependent µ (T/TF). However, these results
can only give a qualitative description of the expected physics like the temperature
dependent gap and the single particle excitations around the Fermi momentum. For
quantitative results they cannot be relied on as they do not incorporate quantum
fluctuations which play an important role especially in two-dimensional systems.
Note that the picture painted above for the rf transition assumed that the final

state energy Ef > Ei. In our 6Li system this is the case if we for example start with
the 12-mixture and drive the transition from state |2〉 to state |3〉. However, if we
start in the 13-mixture and drive the transition from state |3〉 to state |2〉, the signs
are changed and the bound-free peak occurs now at negative frequencies. This has
to be considered when investigating our rf spectra in the following sections.

5.3. Experimental Implementation and Methods
This section covers the experimental implementation and the methods we use to an-
alyze the data. It starts with the data preparation in subsection 5.3.1 and the way
we tune the interaction strength and temperature in the system in subsection 5.3.2.
Next, our method to imbalance the system is introduced in subsection 5.3.3 and the
determination of the free-free peak as a reference for our measurements is discussed
in subsection 5.3.4. Subsequently, the limitations of our frequency resolution are
debated in subsection 5.3.5 and the thermometry of our samples is explained in sub-
section 5.3.6. At last, the atom number in adjacent layers is discussed in subsection
5.3.7 and the modeling of the rf lineshapes is explained in subsection 5.3.8.

5.3.1. Data Preparation
In order to obtain a good signal-to-noise ratio for the rf spectra, we have to average
over a large enough data set. Hence, at each magnetic field of interest we take at
least 50 shots for each applied rf frequency as well as for the reference image. For
each rf frequency subset, we calculate the density profile for each shot as described
in section 3.2. We then integrate along the x- and y-axis respectively and perform
a Gaussian fit to obtain the center of the cloud. Subsequently, we shift all images
such that their centers are at the same position to account for trap center fluctuation
we see in our experiment on the order of 6µm along the standing wave trap beam
direction. We then obtain the atom number for each shot by integrating over the
region containing atoms.
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In section 3.2.5, we showed that our imaging detection fidelity is higher than the
preparation fidelity. Therefore, we use the previously obtained atom number to
post-select our data such that we only consider shots which are within 20 % of the
mean atom number. Thus, we avoid any outliers in the preparation to influence our
results.
We then average over the remaining data and perform an elliptical average to

account for the non-ellipticity in our horizontal trap frequencies of ωx : ωy = 1.1 : 1.
Thus, we end up with an averaged radial profile n2D (r). From these radial profiles
we then obtain the rf spectra I (r, ω) = n2D,ref(r)−n2D(r,ω)

n2D,ref(r) at each magnetic field.

5.3.2. Tuning the Interaction Strength and Temperature
In order to access the phase diagram, we need to tune both the relative temperature
T/TF as well as the interaction strength ln (kFa2D). Equation 2.24 shows that in a
2D system, the Fermi energy EF and thus also TF scales linearly with the density
n. Similarly, also the interaction strength is density dependent as kF scales with the
square root of the density n. Therefore, in our inhomogeneous trapping potential
we sample over a trace of the phase diagram as we go from the center of the cloud
towards the wing. This can be seen in Figure 5.6, where both the relative tempera-
ture T/TF as well as the interaction strength ln (kFa2D) are plotted as a function of
the radial distance from the trap center (lower panel). This emphasizes the need to
resolve the rf response locally, as otherwise one would average over different parts
of the phase diagram as shown in Figure 5.6.
To access the crossover in the interaction strength, we change the magnetic offset

field we apply with the Feshbach coils. Thereby we can make use of the broad
Feshbach resonances present in 6Li and can go from the BEC side with ln (kFa2D) ≤
−1 to the BCS side with ln (kFa2D) ≥ 1. This can be seen in Figure 5.11 A for
the 13-mixture. The relative temperature T/TF in comparison already changes from
T/TF ' 0.1 to T/TF > 1 as we go towards the wing of the trap. To investigate the
normal phase just above the superfluid transition, this is already sufficient. However,
to study the onset of pair formation in the gas, as done in section 5.5, we need to
achieve larger temperatures. We accomplish this by modulating the trap depth of
our standing wave trap sinusoidally by 10 % with twice the trapping frequency ωz for
a varying time τshake. After applying the modulation, we hold the sample for 200 ms
to ensure re-thermalization. We check that no atoms are lost due to this procedure.
This leads to an increase in T/TF as shown in Figure 5.11 B. At last, we can also
tune the system by changing the final evaporation depth in the standing wave trap.
Thereby we change both the absolute temperature T as well as the density n and
thus TF and kF. The result can be seen exemplary in Figure 5.11 C, where a smaller
trap depth indicates less atoms and thus a reduced density.

5.3.3. Creating Spin Imbalance
A part of the experiments were performed in a spin imbalanced sample in the 13-
mixture. Our current evaporation scheme revolves around producing a molecular
BEC in the ODT by performing the evaporative cooling on the repulsive side of
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the Feshbach resonance and subsequent transfer into a single layer of the SWT (see
chapter 3.1). Thus, we end up with a spin balanced sample in the SWT and have
to introduce a spin imbalance at this stage. Therefore, we again use a Landau-
Zener passage as described for the preparation of a 13-mixture. By adjusting the
parameters such that we reduce the transfer efficiency, we can transfer a small part
of the atoms from state |1〉 to state |2〉 at a magnetic field of B = 1000 G where the
atoms are unpaired and the interaction is relatively weak. The atoms transferred
to state |2〉 are then lost in three-body collisions which reduces the overall atom
number but results in an imbalance with the majority of atoms in state |3〉 and the
minority in state |1〉. This is shown in Figure 5.12 for three different settings of
the ramp speed in our Landau-Zener passage. The radial density profiles show that
by increasing the amount of transferred atoms, we increase the local polarization
ploc = n|3〉−n|1〉

n|3〉+n|1〉
as shown in the inlays in the plots. As we operate in the normal

phase, we do not observe a phase separation into a balanced core and a polarized
wing as one observes in a superfluid [Sch08a, Mit16] but rather see a constant local
polarization only increasing slightly in the wings of the sample. For the experiments
performed in section 5.6 we used a setting close to B with a local polarization on the
order of 10− 15 %. We can also see the limitations of this imbalance scheme. When
creating larger imbalances, one looses a considerable amount of atoms in three-
body collisions. This loss process introduces heating and thus limits the achievable
temperatures to about T/TF ≥ 0.5.
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Figure 5.12.: Majority (|3〉) and minority (|1〉) radial density profiles after introduc-
ing spin imbalance using a Landau-Zener passage with varying ramp
speed. For lower ramp speed A the introduced imbalance increases at
the cost of increased atom loss. For larger ramp speed C the losses are
small and the system is only slightly imbalanced. In the experiment
we use the setting shown in B. The inlays show the local polarization
ploc as a function of the radius in pixel, resulting in A: ploc ≈ 0.2, B:
ploc ≈ 0.1 and C: ploc ≈ 0.05 across the sample. As we operate in the
normal phase, we do not observe a phase separation with a balanced
core.
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5.3.4. Determination of the Free-Free Transition

In order to obtain a reference frequency for our experiments, we measure the bare
rf transition νfree−free of a non-interacting sample. This can be achieved by using a
polarized sample, since identical fermions do not interact at low energies. Exper-
imentally, we do this by ramping our sample across the Feshbach resonance to a
magnetic field of 1100 G where the interaction for both the 12-mixture as well as the
13-mixture is weak. We then pulse on the imaging beam for 8µs and set it to be
resonant to state |1〉. This removes the atoms in state |1〉 from the trap while still
keeping the atoms in the other state trapped. Due to the weak interactions present,
the remaining atoms are nevertheless heated up. However, this has no influence on
the determination of the free-free resonance position.
To determine the free-free resonance positions we then use a long rf pulse (τrf =

25 ms) at low power and scan the applied rf frequency. Thus, we obtain a precise
determination of νfree−free as can be seen exemplarily in Figure 5.1 a).

5.3.5. Frequency Resolution

In order to resolve the local response of the system, we have to make sure that the
perturbation we introduce by transferring population into an unoccupied state has
no time to evolve in the trap. Hence, we want to use rf pulses which are short
compared to the trapping period and image the sample directly after applying the
pulse. However, short rf pulses lead to a Fourier limited frequency resolution and
therefore we have to find a good trade-off.
To investigate this experimentally, we prepare a 12-mixture at B ≈ 854 G and

record the rf spectrum for different pulse durations τrf as can be seen exemplary
in Figure 5.13 A. For all applied rf pulse durations, the density dependence of the
bound-free transition is readily visible and one can observe qualitatively that the
observed maximum shift decreases for longer rf pulse durations. For each pulse
duration we adjust the rf power such that a similar fraction of atoms is transferred.
This leads to Rabi frequencies between 60 Hz for the longest and 240 Hz for the
shortest τrf and hence the effect of power broadening is small compared to the
Fourier limit. Binning the spectra over two pixels and taking a cut at a fixed radius,
we can then compare the peak positions and widths of the bound-free transition.
This is shown in B for the peak FWHM and in C for the peak position. One can
see that for short rf pulses on the order of 1 ms, the width increases as the Fourier
limit there is on the order of 1 kHz. Although the Fourier limit decreases for longer
pulse durations, we see the FWHM increase for longer times which we attribute to
diffusion of particles during the application of the rf pulse. We find a minimum
at around τrf ≈ 4 ms which is the value we use throughout this thesis. The peak
position, which indicates the interaction induced Hartree shift, seems to be relatively
constant for short durations. There are some outliers at around 6− 8 ms which we
neglect. For longer pulse durations the observed peak position decreases. Hence, we
argue that for short pulse durations the observed peak is not influenced by diffusion
and gives reliable results.
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Figure 5.13.: Influence of the rf pulse duration on the measured rf response spectra
measured at 854 G. In A the spectra are shown for rf pulse durations
of 2 ms, 4 ms and 10 ms. Along the cuts marked as the shaded area
in the spectra, the lineshape is obtained and in B the FWHM and in
C the peak position are determined from fits. It can be stated that
τrf = 4 ms gives a good trade-off between frequency resolution and the
effect of diffusion on the sample.
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5.3.6. Thermometry
The relevant energy scale of the system is given by the Fermi energy EF and therefore
the relevant temperature scale is given by T/TF. The Fermi temperature TF can be
obtained directly from the density n assuming the local density approximation. To
determine the absolute temperature T in the sample, we fit a reference equation of
state (EOS) n (µ, T ) to the outer region of the cloud. The EOS of a 2D Fermi gas
in the BEC-BCS crossover was determined in [Boe16, Fen16] and we will use the
temperature determination as shown in the supplementary material of [Boe16] in
this work.
To interpolate between the bosonic and the fermionic limit of the 2D BEC-BCS

crossover, a second order virial expansion for a homogeneous system is used. It is
defined by

nvirial
0 = (1/λT)2 {ln

(
1 + eβµ

)
+ 2b2e

2βµ} (5.19)
where

b2 = eβεB −
∫ ∞
−∞

ds
exp (−es/ (2π))

π2 + (s− ln (2πβεB))2 (5.20)

is the interaction induced correction to the second virial coefficient [Cha13, Nga13].
This equation becomes exact in the whole 2D BEC-BCS crossover for a small fermion
fugacity z = eβµ. In the bosonic limit of βεB � 1, the fermion fugacity z → 0 and
b2 ' eβεB and equation 5.19 approaches the Boltzmann formula

nboltzmann
0 =

(
αeff/λ

2
T

)
eαeffβµ̃, (5.21)

with the limit αeff = 2 indicating the bosonic case of deeply bound molecules. Here
the two-body binding energy εB is defined as

εB = ~2

ma2
2D,0

e∆w( µ̃0
~ωz ), (5.22)

where ∆w (x) is the filling correction to the scattering introduced in section 2.2.1
and µ̃ = µ+ εB/2.
As βεB becomes smaller, the virial expansion approaches the ideal Fermi gas for-

mula. Comparing this to Luttinger-Ward (LW) and quantum Monte-Carlo (QMC)
simulations shows that this leads to an overestimation of the temperature when us-
ing the virial expansion. On the other hand we can use the Boltzmann formula with
an interaction dependent coefficient αeff as a lower bound for the temperature. The
parameter αeff interpolates here between the bosonic limit of molecules with mass
m = 2mLi and the fermionic limit of free atoms with mass m = mLi. Thus, we take
the average between these two methods to obtain our temperature

T = Tvirial + Tboltzmann

2 . (5.23)

In order to fit our obtained density profiles n (r) with this EOS of a homogeneous
system, we apply the local densitiy approximation (LDA). This assigns a local chem-
ical potential µ (r) = µ0−V (r) to each position in the trapping potential V (r). We
can then locally approximate the atom density as

n (µ, T, r) = n0 (µ0 − V (r) , T ) . (5.24)
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Figure 5.14.: Thermometry of a single shot. First, to obtain the central µ̃0 we fit
a Thomas-Fermi model to the central part of the cloud (red line).
The temperature is then determined by fitting two reference EOS to
the wing of the data (grey dots), namely a virial expansion and a
Boltzmann function. Both are shown as a single blue line as the ob-
tained density profiles do not differ significantly. From this we can
then extract a temperature estimate as the average between the virial
expansion and the Boltzmann model.

In order to obtain the most accurate value for µ̃0 to determine εB from equation
5.22, we fit a Thomas-Fermi model of the form

n (µ, T ) = c · (µ̃0 − V (r)) (5.25)

to the central part of the cloud. This is justified when the the parameter c is
independent of temperature and fitting range [Boe16]. This improves the signal-to-
noise ratio compared to the value µ̃0 obtained from the Boltzmann fit in the wing
where the signal is smaller. This fitting procedure is depicted exemplary in Figure
5.14. Here, the Thomas Fermi fit and its fit range is shown as the red line and both
the Boltzmann fit and the virial expansion fit are shown as the blue line in the wing.
The obtained results for the temperature determination of both the virial expan-

sion and the Boltzmann model are shown in Figure 5.15 a) in the crossover region.
Here we show the result of the Boltzmann model both in the bosonic limit where
αeff = 2 and in the fermionic limit where αeff = 1. Up to ln (kFa2D) ≤ 0.5, the virial
fit as well as the bosonic Boltzmann fit agree very well. As ln (kFa2D) increases,
we then observe that the bosonic Boltzmann fit yields larger temperatures than the
virial expansion. This is expected as αeff is reduced in the crossover region. At large
ln (kFa2D) ≈ 2, the virial expansion gives an upper limit of the temperature whereas
a Boltzmann fit with αeff ≈ 1 yields a lower limit for the temperature. To obtain an
interaction dependent αeff , we hence interpolate between 1 ≤ αeff ≤ 2 in this region.
This is depicted in Figure 5.15 b). This interpolation scheme is similar to the one
deployed in [Rie15b].
The results of such fits to individual realizations in a measurement run at different

interactions strengths ln (kFa2D) are shown in Figure 5.16. In the BEC limit, the
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Figure 5.15.: a) Temperature estimation from both the virial expansion as well as
the Boltzmann fit at different interaction strengths ln (kFa2D). Close
to the BEC side, both the virial expansion (green diamonds) and the
bosonic Boltzmann model (red dots) yield the same result. In the
crossover region, the bosonic Boltzmann model overestimates the tem-
perature and the virial expansion can be considered as an upper bound
of the temperature. The lower bound is then a Boltzmann model with
interaction dependent αeff which converges to the fermionic Boltzmann
model (blue dots) at large positive scattering lengths. b) We interpo-
late 1 ≤ αeff ≤ 2 in the crossover region between 0.5 ≤ ln (kFa2D) ≤ 2.
This interpolated value is then used to obtain the lower bound of the
temperature in this regime.
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temperatures obtained from both methods are identical and the average is trivial.
In the crossover, however, the temperatures obtained from both methods differ and
the virial expansion is used as an upper bound whereas the Boltzmann fit is a
lower bound. The spread in the measured temperatures is between 15− 20 %. This
uncertainty is mainly due to the fitting and does not depend on the preparation of the
sample. We checked this by dividing each image in two parts and taking the radial
average over each half. The obtained fitted temperature differences between the two
halves then show the same spread. In addition, when comparing the temperature
obtained from one half of one image with the temperature obtained from the other
half of the next image, we observe the same behavior. Therefore, we take the average
temperature of each dataset as the temperature estimate and use the standard error
of the mean as the temperature uncertainty.

ln(kFa2D) = 2.16ln(kFa2D) = 1.08ln(kFa2D) = -0.95

a ) b ) c )

Figure 5.16.: Fitted temperatures with both the virial fit (black crosses) as well as
the Boltzmann fit (blue circles) with the effective parameter αeff used
from Figure 5.15 b) for three different interaction strengths on the BEC
side a), in the crossover b) and on the BCS side c). The mean averaged
temperature as well as the standard error of the mean are given as the
blue dashed line with the shaded area.

5.3.7. Atoms in Adjacent Layers
From the rf tomography results in section 3.1.1 we know that a fraction of at least
10 % of the atoms is transferred into adjacent layers of the central SWT potential.
This results in an overestimation of the local density n and thus it influences our
determination of both the Fermi energy EF as well as the relative temperature
T/TF. We can also detect the population of adjacent layers in our locally resolved rf
spectra. This gives us another measurement to estimate this fraction and it provides
furthermore insight into the size of the sample in the adjacent layers. Note that the
results presented here were obtained for the data taken with the balanced samples.
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For the imbalanced samples we reduced the atom number before the transfer into the
SWT and thus there the population of atoms in adjacent layers is further reduced.
In Figure 5.17 A the spatially resolved rf spectrum is shown for a sample in the 12-

mixture at a magnetic offset field of B ≈ 854 G. Here we show the total transfered
density in order to make the contribution from the adjacent layer better visible. One
can distinguish the bound-free branch above the binding energy EB (red dashed line)
with a density dependent transition frequency. Below the white dashed line which
serves as a guide to the eye, one observes a second smaller branch which also lies
above the binding energy. This branch we identify with atoms in adjacent layers.
The arguments for this assumption are the following: The observed energy shift of
this additional feature is larger than the calculated confinement induced binding
energy EB for all magnetic fields where we have the necessary rf frequency resolu-
tion to separate the bound-free and the free-free branch. This indicates that the
atoms in the adjacent layers are paired as well at these fields although their relative
temperature is larger due to the smaller density. Furthermore, the radial extent of
this second branch is reduced, as one would expect for a distribution of a small atom
number in adjacent pancakes. At last, it cannot stem from unpaired atoms in the
central layer as then one would have to observe a much stronger contribution in the
wings where the relative temperature T/TF is large.
To estimate the systematics in our determination of the local density, we bin the

rf spectra over two pixels along the radius and look at the lineshapes at a fixed
radius. Such lineshapes are plotted for the rf spectrum shown in A at three different
radii in Figure 5.17 B. We observe a bimodal structure where we attribute the large
peak to the bound-free transition in the central layer and the smaller peak to the
bound-free transition in the adjacent layers. When approaching the wing of the
sample, one observes that both peaks shift to smaller frequencies and the lower
peak cannot be identified for larger radii. The density dependence of the frequency
shift is due to interaction effects which depend on the density and the interaction
strength. Ultimately, we are interested in these density dependent shifts and they
will be analyzed later on in section 5.4. From the relative weight of these two peaks
we can infer the population ratio between the central layer and the adjacent ones.
Therefore, we fit the lineshapes using a sum of two Gumbel distributions (orange
line) with identical form as defined later on in section 5.3.8. From the relative
weight of the two peaks we can then infer the fraction of density in the central layer,
pcentral, as a function of the radius. This is plotted in C for the data shown here at
B = 854 G in the 12-mixture (red squares) as well as for data taken at B = 682 G in
the 13-mixture (blue circles). Furthermore, the average of these two measurements
is shown as the green diamonds. In the center, the fraction of atoms in the central
layer is on the order of 80 % and it smoothly increases as one approaches the wing
of the sample. Note that the fitting procedure breaks down at some point in the
wing and thus we set the observed fraction there to pcentral = 1.
The interaction strength at the center of the sample for these fields is ln (kFa2D) ≈

0.54 for the 13-mixture and ln (kFa2D) ≈ 1.5 for the 12-mixture. Hence, both are on
the attractive side where the density profiles only change marginally. On the BEC
side the density distribution is more narrow and thus there the size of the adjacent
layers is also reduced. For our determination of the interaction induced energy shift
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Figure 5.17.: A RF spectrum at B = 854 G in the 12-mixture. The red dashed
line indicates the energy shift due to the confinement induced bound
state EB. The white dash dotted line is a guide to the eye to separate
the main contribution in the central layer from the smaller one of
the adjacent layers. The black crosses (circles) are the peak positions
from fits to the central (adjacent) layer. B Vertical cuts along three
different radii r = 14.5 px, r = 30.5 px and r = 44.5 px. The fitted line
(orange) is the sum of two Gumbel distributions with identical form
but independent peak position and amplitude. C Fraction of density
in the central layer pcentral as a function of the radius for data obtained
at B = 854 G in the 12-mixture (red squares) and at B = 680 G in
the 13-mixture (blue circles). In addition the average of these two is
plotted as the green diamonds. The central layer fraction is smallest
in the trap center where pcentral ≈ 0.8.
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in section 5.4, we will thus use this estimated fraction of atoms in the central layer
as a systematic error on the density determination.

5.3.8. Modeling the Spectra
Here the modeling of our lineshapes as it was done for the balanced dataset in section
5.4 is described. For the imbalanced datasets where we observe both the bound-free
as well as the free-free peak the modeling is described directly in section 5.6.
To obtain the threshold energy at each radial position in the cloud, we first bin the

spectra over two pixels along the radius to improve the signal-to-noise ratio. We then
model the spectra according to the following procedure: For interactions strengths
ln (kFa2D) ≤ 0.8 we use the 13-mixture, where the initial dimer energy is large
compared to the thermal energy in the system, EB ≥ kBT . Therefore, we assume
the system to be describable in terms of two-body dimers and use equation 5.14 to
model our spectra. This assumption might break down in the strongly interacting
region around ln (kFa2D) ∼ 0.5, however as we do not have a prediction for the
lineshape based on a many-body model this is the most reasonable approach. Due to
the small repulsive scattering length a3D

12 for the final state, it supports deeply bound
final state dimers E ′B > 100 kHz. Thus, we end up with ratios 0.03 < EB/E

′
B <

0.07 and observe strongly asymmetric rf lineshapes with a long rf-tail. From the
considerations in section 5.1.4 we know that the observed peak position can deviate
by up to 20 % from the threshold position, which can be even increased due to the
finite frequency resolution as well as other final state effects. We therefore model
our observed lineshapes using an adapted version of equation 5.14,

Γmodel (ω) = A

(ω − ω0)2
(
ln2

[
(ω − Eth) /E ′B

]
+ π2

)Θ (ω − Eth) , (5.26)

where we convolve the lineshape with a Gaussian profile of width σ, which is a free
fitting parameter as the width is also affected by interaction effects. Here we treat
ω as an energy via E = ~ω = hf and we fix the final dimer energy E ′B to the theory
calculation. Since we measure the energy ω relative to the previously determined
free-free energy, we introduce the free parameter ω0 since the energy threshold is
now relative to the interaction shifted free-free energy ~ ·ω0 and leave the threshold
energy Eth as a free fitting parameter as well. As a comparison to extract the peak
position, we also fit a Gumbel distribution of the form

ΓGumbel (ω) = Ae−
ω−ωpeak

α
−βe−

ω−ωpeak
αβ

, (5.27)

which can describe the asymmetric data quite well.
In Figure 5.18 A and B we show the experimentally measured lineshape and the

corresponding fits at a fixed radius both for the magnetic fields B ≈ 672 G and
B ≈ 682 G, corresponding to a central interaction strength of ln (kFa2D) ≈ −0.24
and ln (kFa2D) ≈ 0.54 respectively. For the data in A, we do not resolve the atoms in
the adjacent pancake and hence we fit a single peak to it5. This is likely due to the

5This was only the case for the data at two magnetic fields, namely B ≈ 662 G and B ≈ 672 G.
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A: 672G B: 682G

C: 844G D: 894G

Figure 5.18.: Spectral lineshapes for the 13-mixture at A: ln (kFa2D) ≈ −0.24 and at
B: ln (kFa2D) ≈ 0.54 as well as for the 12-mixture at C: ln (kFa2D) ≈
1.26 and D: ln (kFa2D) ≈ 2.16. The black dashed vertical line indicates
the position of the confinement induced binding energy EB without
considering Hartree shifts. In the case of the 13-mixture, the blue line
is a fit using the model function from equation 5.26 and the red dashed
line is a fit using a Gumbel function (equation 5.27). In the case of
the 12-mixture, the blue line is a fit using the Gumbel distribution
from equation 5.27 and the red dashed line is a Gaussian fit around
the peak position. For all the lineshapes except in A where it is not
resolvable, the sum of two contributions was fitted to account for atoms
in adjacent layers.

fact that the interaction shift is small compared to the binding energy which makes
a separation of the peaks hard to observe. Since our preparation scheme is the same
for all fields, we still assume the systematic error in the density determination as
before. For the data in B, both peaks can be identified and thus we adapt our fit to
consist of a sum of the model function with independent interaction shifts ω0 but
the same convolution width σ. We observe that our model describe the data quite
well and gives us a reliable method to extract the threshold energy in this regime.
The fitted convolution width σ is on the order of 700 Hz and thus higher than the
Fourier limited resolution of ≈ 220 Hz. This is most likely due to the final state
being a repulsive polaron which broadens the transition. From the fits we obtain an
uncertainty of Eth ≈ 5 %.
For the data taken in the 12-mixture we take a slightly different approach. There,

the dimer energy in the final state is minuscule (E ′B < 1 Hz) and thus the ratio EB/E
′
d

111



5.4. Determination of Initial State Interaction Shifts

ranges from EB/E
′
B ≈ 800 in the crossover regime at B ≈ 844 G to EB/E

′
B ≈ 30

in the BCS limit at 1000 G. Thus, assuming again an initial dimer state and using
equation 5.14, we can expect the lineshapes to be much narrower and less asymmetric
as discussed in section 5.1.4. The validity of this assumption is not clear in the
crossover regime and it breaks down far on the BCS side where one expects a free-free
transition which we experimentally cannot differentiate from a bound-free transition
due to our limited frequency resolution and the small binding energies. There we
measure very symmetric lineshapes which can be fitted by a Gaussian profile with
width σ = 220 Hz which fits very well with our experimentally limited frequency
resolution. Since in this regime the thermal energy is much larger than the binding
energy kBT/EB � 1, we expect the initial state to be a Fermi liquid with free atoms
[Frö12] which is consistent with our interpretation of an interaction shifted free-free
transition.
As the model function used on the 13-mixture did not provide robust fit results in

the crossover region for the 12-mixture and it is not expected to be applicable far on
the BCS side, we use a heuristic approach by fitting a Gumbel distribution (equation
5.27) as well as a Gaussian profile around the peak to the data. We then estimate
the shift of the peak from the threshold from simulations of equation 5.14 convoluted
with the experimental frequency resolution. This assumption is reasonable in this
regime as the final state attractive polaron has a narrow lineshape and we measure
experimentally the widths of the peaks to agree very well with our experimental
frequency resolution for magnetic fields B ≥ 872 G. This estimation yields a shift
of the peak energy compared to the threshold energy of about 200 Hz at B ≈ 844 G
and 90 Hz at B ≈ 894 G.
In Figure 5.18 C and D we show the experimentally observed lineshapes and the

corresponding fits for the magnetic fields B ≈ 844 G and B ≈ 892 G, corresponding
to a central interaction strength of ln (kFa2D) ≈ 1.26 and ln (kFa2D) ≈ 2.16 respec-
tively. In both cases, a double peak structure due to atoms in adjacent trap layers
is visible. The lineshapes in C show an asymmetry, indicating that here the initial
state still consists of paired atoms. In D the lineshape is very symmetric, suggesting
that here the signal is due to a free-free transition. The uncertainty on the deter-
mination of the peak is on the order of 20 Hz and thus the main source of error is
the systematic overestimation of the threshold energy when equating it to the peak
position.

5.4. Determination of Initial State Interaction Shifts
Initially, we started investigating rf spectra in the crossover regime for balanced
samples close to the critical temperature Tc. There we mostly observe only one
branch in the rf spectra. Far on the BEC side the binding energy EB is much larger
than the thermal energy kBT and thus only the bound-free branch is occupied. Far
on the BCS side, the binding energy is negligible and cannot be resolved. There
the observed branch is identified as the free-free branch. In the crossover region,
for most of our data we observe only one peak, indicating that pairs are already
formed at considerably high temperatures as discussed in section 5.5. As we thus
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do not have a reference to compare to we could not use this data to extract a
pairing gap. However, comparing the measured density dependent energy shift of
the visible branch relative to the free-free transition energy of a polarized sample,
we can estimate the density dependent interaction induced shifts. Such shifts have
been measured previously [Frö11], however there the signal was averaged over the
inhomogeneous trapping potential as well as over multiple traps and thus different
densities contributed. In our case we have the advantage of (almost) all atoms being
in a single trap in combination with the locally resolved spectra. Thus, we can use
a local density approximation (LDA) to obtain the rf response of homogeneous
subsamples and can directly look at the evolution of the Hartree shifts as a function
of density and interaction strength in the trap. This is especially important in quasi-
2D systems where one can drive the crossover physics by changing the density of the
sample. However, as we use 6Li we do not have access to non-interacting final states
and thus our calculation of the initial interaction shift relies on theoretical models
for the final state interactions. This is especially a problem on the repulsive side of
the Feshbach resonance as there the binding energy EB for true 2D and quasi-2D
systems differ and thus theoretical models for the final state which are done for a
2D system might deviate from the experimental situation.
As was shown in section 5.1.6, we can decrease final state effects by choosing an

appropriate initial state mixture of 6Li. Thus, we took rf spectra both for the 13-
mixture extending from the BEC side at a central ln (kFa2D) ≈ −1 up to the far BCS
side with ln (kFa2D) ≈ 3.6 (see Figure 5.19) as well as for the 12-mixture starting in
the crossover region for ln (kFa2D) ≈ 1.26 up to the BCS side with ln (kFa2D) ≈ 3.6
(see Figure 5.20). These measurements were performed with roughly 30.000−40.000
atoms per spin state, corresponding to a central Fermi energy of EF ≈ h · 10 kHz.
As our axial trapping frequency is ωz = 2π × 6.9 kHz, the experiments are in the
quasi-2D regime with EF/ (~ωz) ' 1.
From these rf spectra one can get a qualitative understanding of the BEC-BCS

crossover. For a non-negligible two-body binding energy EB, the rf transition energy
in the low-density wing approaches EB which is plotted as the red dashed line in the
rf spectra thus showing that at large temperatures the physics can be explained by
two-body physics. In the high-density center we observe strong density dependent
shifts which are due to interaction effects both in the initial and final state. The
contribution of these final state effects becomes evident when comparing the rf
spectra on the BCS side ln (kFa2D)initial > 2 between the data taken in the 13-
mixture and in the 12-mixture. There the initial state interaction is comparable but
the final state interaction changes drastically.
This can be seen e.g. when comparing the data taken at B = 782 G in the 13-

mixture with the data taken at B = 1002 G in the 12-mixture. There the final state
interaction strength is ln (kFa2D)final ≈ −0.7 and ln (kFa2D)final ≈ 5.7 respectively.
Whereas the final state for the 13-mixture is strongly interacting, the final state
for the 12-mixture is still in the weak coupling regime. This results in different
interaction shifts at the same density and initial interaction strength. This is shown
exemplary in Figure 5.21 A where a cut for both mixtures at a radius corresponding
to ln (kFa2D)initial = 3.36 and EF = 6.5 kHz is shown. As the system is far on the BCS
side one expects it to be a Fermi-liquid resulting in symmetric lineshapes and thus
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Figure 5.19.: Spatially resolved RF spectra for a balanced 13-mixture in the
crossover region. The red dashed lines indicate the confinement in-
duced binding energy EB. In the low density limit at large radius where
the expected interaction shift is small and the temperature T/TF > 1,
the observed rf transition energy approaches the two-body binding en-
ergy. In the high-density limit, interaction shifts both in the initial
and final state lead to a density dependent shift in the observed rf
transition energy.
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Figure 5.20.: Spatially resolved RF spectra for a balanced 12-mixture in the
crossover region. The red dashed lines indicate the confinement in-
duced binding energy EB. In the low density limit at large radius where
the expected interaction shift is small and the temperature T/TF > 1,
the observed rf transition energy approaches the two-body binding
energy. In the low density limit at large radius where the expected
interaction shift is small and the temperature T/TF > 1, the observed
rf transition energy approaches the two-body binding energy. In the
high-density limit, interaction shifts both in the initial and final state
lead to a density dependent shift in the observed rf transition energy.
Far on the BCS side (ln (kFa2D) ≥ 2) the two-body binding energy EB
is negligible and cannot be resolved.
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A C

B

Figure 5.21.: A Radial cut through the rf spectrum at ln (kFa2D)initial = 3.36 with
EF = 6.5 kHz. Due to the different final state interactions the observed
interaction shift differs. B Difference in the final state interaction
shift in units of the Fermi energy between the 12- and 13-mixture
for identical initial state interaction strength. C Gaussian width of
the free-free peak in the 13-mixture as a function of the final state
interaction strength. The increase in the observed width corresponds
to a decrease in the lifetime of the final state polaron [Nga12].

the peak positions can be directly compared. The difference ∆E between the peaks
which corresponds to the difference in the final state interaction shift is plotted in
B as a function of the initial state interaction strength and one observes a deviation
∆E ∼ 0.5 EF and thus a substantial difference in the final state interaction shifts
in this regime. This behavior can be explained by the existence of a final state
repulsive polaron when starting in the 13-mixture. This increases the final state
interaction energy shift substantially as was shown in Figure 5.3 a). The presence of
the polaron can also be seen by the increasing width of the peak for the 13-mixture
which is shown in Figure 5.21 C as a function of the interaction strength in the
final state. As the repulsive polaron is not the ground state of the system it has
a short lifetime and can decay further for example into a molecular state or into
the attractive polaron branch depending on the system [Nga12]. This results in
a broadening of the transition which we can directly observe as our experimental
rf resolution is smaller. From the measured widths on the order of 1 kHz we can
estimate a lifetime τ ∼ 1 ms which is in agreement with measurements performed for
the repulsive polaron in a quasi-2D system [Kos12]. Furthermore, we observe that
the lifetime decreases as ln (kFa2D)→ 0− as is expected [Nga12]. For the 12-mixture
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the final state is most likely a stable attractive polaron state. There we measure a
constant width of the peak which is in very good agreement with our experimental
rf frequency resolution of 220 Hz.
It is interesting to note that we observe a positive energy shift ∆EHartree > 0

as defined in equation 5.6 at all interaction strengths and for both mixtures we
investigated. This fact already gives us some insights into the interaction induced
energy shifts in the different regimes. In the 13-mixture the final state is most
probably a repulsive polaron as discussed above and thus in this regime EH,final > 0
holds. For the initial state however we pass the zero-crossing in the interaction
strength ln (kFa2D) and thus we expect to see a change in the sign of the initial state
interaction energy EH,initial. Thus, we can deduce EH,initial < EH,final in this regime.
In the 12-mixture, the interaction strength both for the initial and the final state
is ln (kFa2D) < 0 throughout our data. Hence, to observe a positive ∆EHartree, the
attractive initial state interaction energy has to be stronger than the attractive final
state interaction, |EH,initial| > |EH,final|.
To get a more quantitative insight about the interaction shifts we do the fol-

lowing: to limit the final state interactions to the weak coupling regime we use
the data taken in the 13-mixture for magnetic fields B ≤ 692 G corresponding to
ln (kFa2D) < 0.8 and the data taken in the 12-mixture for magnetic fields B ≥ 844 G
corresponding to ln (kFa2D) > 0.8. There the final state interaction strength is lim-
ited to ln (kFa2D) < −6 and ln (kFa2D) > 4 respectively and hence one can use the
weak coupling approximations as an estimate for the final state interaction shifts.
With this estimate we then calculate the initial state interaction shift from our
experimentally determined threshold energy Eth as

EH,initial = −Eth − EB − EH,final

EF
(5.28)

where we used the the theoretically calculated dimer energy EB. By interpolating
our data to a fixed temperature T/TF, we obtain the initial state interaction shift as
a function of interaction strength as shown in Figure 5.22. Here we use red (blue)
data points to differentiate between data taken in the 13-mixture (12-mixture). The
dominant error in equation 5.28 stems from the determination of the Fermi energy
and thus the density. For the error bars we thus consider the uncertainty on the
order of 7 % in the imaging calibration as described in chapter 3 as well as the
systematic overestimation of the atom number of up to 20 % due to a small number
of atoms in adjacent layers as described in section 5.3.7. The error in the estimation
of ln (kFa2D) is small and can be neglected in the plots.
For both temperatures T/TF = 0.25 a) and T/TF = 0.5 b) one observes that the

initial state interaction shift Einitial crosses over from a positive to a negative shift
in energy as one proceeds from the BEC side to the BCS side. When approaching
the weak coupling regimes ln (kFa2D) � 1, the data seems to converge towards
the perturbative (blue dashed line) and interpolated (black dashed line) Hartree
shift at least on the BCS side. In the strong coupling regime a matching with
the interpolated Hartree shift from equation 5.9 is not observed although it is also
not expected as this interpolation does not take into account the strong interactions.
Here further theoretical input is required. Another question is how the finite lifetime
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Figure 5.22.: The initial state interaction shift Einitial in units of the Fermi energy
EF is plotted as a function of the interaction strengths for two tem-
peratures a) T/TF = 0.25 and b) T/TF = 0.5. It was calculated by
subtracting both the dimer binding energy EB as well as the final
state interaction energy Efinal obtained from a theoretical model from
the measured threshold energy Eth. The data at each magnetic field
was interpolated to match the temperature. The data points in red
were obtained from the 13-mixture whereas the data points in blue
are extracted from the 12-mixture. The black dashed line indicates
the Hartree energy obtained from the interpolation in equation 5.9
whereas the blue dashed line is the perturbative approach in equation
5.8.

of the final state in the 13-mixture influences the transition as our rf pulse duration
τ = 4 ms is on a similar order as the estimated lifetime.
In conclusion we find that interaction effects can lead to considerable shifts of the

transition energy on the order of up to half the Fermi energy EF. As these shifts are
highly density dependent it is crucial to separate the rf response from different parts
of an inhomogeneous trap. Furthermore, these shifts also depend on the interaction
strength. As the interaction strength in a quasi-2D system depends on the density
itself, this separation is even more important in 2D systems. Experimentally we
observe that with our combination of a single layer quasi-2D system and the spatially
resolved rf spectroscopy using short pulse durations, we are able to study the density
dependent evolution of the interaction shifts. This is an improvement compared to
previous experiments [Frö11] where the signal was averaged over the inhomogeneous
trap and several layers. When employing a theoretical model for the final state
interaction shifts we can deduce the initial state interaction shift and find a smooth
behavior when crossing over from the BEC to the BCS side. For a more quantitative
analysis further theoretical input is required. Future experiments can improve on
this technique by employing a uniform trap. This would improve the signal-to-
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5. Pairing in the Normal Phase of a Quasi-2D Fermi Gas

noise ratio and one could potentially use longer rf pulses improving the frequency
resolution. Furthermore, by using 6Li we were limited by final state interactions
being present at all initial interaction strengths in the crossover. This complicates
the study of the interaction shifts and could be avoided by using atomic species like
e.g. 40K where the final state interaction is negligible.

5.5. Onset of Pairing at High Temperatures in the
Crossover Region

In this section we investigate how pairing sets in at large temperatures in the
crossover region. Far on the BEC side where we have EB � kBT , we observe that the
system is fully paired also when heating it up considerably. In the crossover region
where EB ' kBT , however, we observe a co-existence of the bound-free and free-free
branch when heating the system and we can investigate this onset experimentally.
For this purpose we performed a local rf spectroscopy with a balanced sample in

the 12-mixture at B ≈ 844 G with a central interaction strength ln (kFa2D) ≈ 0.8
and Fermi energy EF = h · 4.8 kHz which was heated up such that the relative
temperature in the center was on the order of T/TF ≈ 1.2 with a Boltzmann factor
kBT/EB ≈ 6.49. Note that the interaction strength in the sample varies and reaches
ln (kFa2D) ≈ −0.6 in the low-density wing. Thus, although the sample is in the
strongly interacting regime throughout, the sign of the interaction strength changes.
The experimentally obtained rf spectrum I (ν, r) is shown in Figure 5.23 A. One

can clearly distinguish two branches in the rf signal: the branch close to ∆ν = 0 is
the free-free transition of unpaired atoms. The branch above the two-body binding
energy EB/h (red dashed line) is the bound-free transition of paired atoms. In the
center of the cloud where the density is large and thus the relative temperature scale
T/TF is smallest we see a co-existence of these branches with an increased weight
in the bound-free transition. The relative weight of these two branches then shifts
towards the free-free transition until at around a radius of roughly r ≈ 53 px =
160µm, corresponding to a temperature T/TF ≈ 7, only the free-free transition has
considerable weight.
In thermal equilibrium, the density ratio between free fermions nF and fermions

bound in dimers nB can be calculated for a non-interacting system to be [Bar14,
Nga13]

n2
F
nB

= mkBT

4π~2 e
− EB
kBT , (5.29)

which is known as the Saha formula. As the dimers are only weakly bound with
a binding energy EB much smaller than the linewidth Γ of the optical transition,
EB � Γ, we cannot differentiate between dimers and free atoms in the absorption
imaging and our measured density is thus n2D = nF + nB. Combining this with the
definition of the Fermi energy in equation 2.24, we can derive for the relative weight
p = nF

nF+nB
of free atoms

p
1
p
− 1 = T

TF
e
− EB
kBT , (5.30)
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Figure 5.23.: A Spatially resolved rf spectrum for the 12-mixture at a central
ln (kFa2D) ≈ 0.8 at temperatures T/TF > 1. The horizontal red dashed
line indicates the energy of the confinement induced two-body state,
whereas the vertical white dashed lines indicate the local temperature
T/TF which is non-linear in the radius. In the low density limit in the
wings of the cloud one observes a single peak at ∆ν ≈ 0 indicating
free thermal atoms. Already at temperatures T/TF ∼ 3 a second peak
starts to occur whose relative distance is at least the two-body binding
energy EB ≈ 1 kHz. We identify this with the bound-free transition
of dimer pairs. For both branches one observes a density dependence
related to interaction shifts. B Radial cuts along the vertical dashed
white lines in A. The black dashed line is a double Gaussian fit from
which we obtain the relative weights. In the high-density region in the
center (upper panel) one observes a two peak structure and thus co-
existence between free atoms and dimer pairs with similar weight. To-
wards the low-density wings the weight of the dimer branch diminishes
until only free thermal atoms exist (lower panel). C Relative popula-
tion of the free-free branch expected from a thermal model (blue line)
[Bar14] and obtained from the data using the fit (green squares). The
blue shaded region indicates the uncertainty due to our temperature
and density calibration.
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which we can solve numerically for our local T/TF. In Figure 5.23 B this solution is
shown as a function of T/TF as the blue line. In the center of the cloud the expected
relative free spectral weight is p ≈ 50 % and it increases consistently towards the
wing until only free atoms are present. To compare this to our data we take cuts
along fixed radii. In Figure 5.23 C three cuts along the white vertical dashed lines
in A are shown as an example. In the central region (upper panel), both peaks are
clearly visible and thus there is considerable weight in both of them. Further out
towards the wing (middle panel) the free atom fraction increases and the relative
spectral weight changes towards the free atom peak. In the wing at a radius of
r ≈ 60 px where the density is only 10 % of its central value we cannot discriminate
the molecular peak from the noise (lower panel) and thus the free atom fraction
approaches one. Due to our finite frequency resolution and the small binding energy
we cannot fully separate the two peaks and thus fitting a model as described in
section 5.3.8 has not been robust. To extract some quantitative insight about the
change of the free spectral weight we employ a double Gaussian fit as shown as the
black lines. The relative weight of each peak is additionally plotted as the black
dashed lines. As the symmetric Gaussian profile cannot describe the asymmetry
of the bound-free lineshape, this will overestimate the contribution of the bound-
free branch and hence underestimate the free spectral weight p. The result of this
estimation of the relative free spectral weight is shown in Figure 5.23 B as the green
squares including the 1σ-confidence interval. We can observe that in the wings at
large temperatures T/TF the results are in agreement. In the region 6 < T/TF <
8, the fitting procedure overestimates the small bound-free contribution and thus
severely underestimates the free-free fraction. Towards the center the relative free
spectral weight p decreases and lies consistently below the thermal model. Some of
this systematic deviation can be attributed to our determination of the weights using
a double Gaussian profile and the model which assumes non-interacting particles
although we are in the strongly interacting regime. Nevertheless the observed decline
of the free spectral weight is steeper than predicted by the thermal model. Thus,
interactions and quantum effects play a considerable role in the onset of pairing
which are not captured by the model.

In conclusion we observed the onset of pairing in the crossover regime for a strongly
interacting Fermi gas as a function of the temperature T/TF. We found that the
measured relative free spectral weight is not in agreement with a thermal model
and hence interactions and quantum effects play a role in the pairing. A better
quantitative comparison, however, is challenging as the free-free and the bound-free
branch have considerable overlap due to the small dimer binding energy EB = 1 kHz,
making the extraction of the relative weights model dependent. Increasing the axial
confinement ωz to enlarge the dimer energy EB, however, would also lead to a
reduction in the Boltzmann factor and thus reduce the relative free spectral weight
further, making a comparison in the central region difficult.
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5.6. Many-Body Pairing above the Critical
Temperature

In this section we investigate the gap between the free atom branch and the paired
branch in the rf spectrum. As the thermal occupation of the free atom branch is
small in the interesting temperature region close to the superfluid phase transition,
we imbalance the system with a local polarization of ploc ≈ 15 % in order to increase
the population of the free atom branch by the excess atoms of the majority [Sch08a,
Che09a]. This enables us to detect both branches in our locally resolved rf spectra
and measure the relative distance between them.
In the experiment we use the 13-mixture and prepare the imbalance as described

in section 5.3.3. Here the majority is the state |3〉 and the minority is the state
|1〉. By using the 13-mixture we can drive both the transition |1〉 → |2〉 to obtain
the minority spectrum as well as the transition |3〉 → |2〉 to obtain the majority
spectrum. This allows us to compare the spectra in the crossover region where the
pairing is most interesting.
To obtain a reference we start by investigating a system on the BEC side at

B ≈ 672 G where EB/kBT � 1 and the system is fully paired into dimers. Here
EB = 9.3 kHz and we can separate the two branches well. The Fermi energy in
the center is EF = 8 kHz and thus the system is in the quasi-2D regime. The
measured rf spectrum is shown in Figure 5.24 A. Here we observe only a small
density dependent shift on the order of 1 kHz and the width of the free-free peak
increases by ≈ 30 % in the center compared to the low-density regions in the wing.
From radial cuts averaged along 3 pixel as shown in B, we can extract the distance
∆E between the (symmetric) free atom peak energy Epeak

free−free near ∆ν = 0 and the
threshold energy Eth for the (asymmetric) bound-free peak which we obtain from
a fit according to equation 5.26. This model is shown as the green line where in
addition we also show the fit we obtain with a Gumbel distribution (blue dashed
line) as a comparison. We see that the fits are in good agreement with the data
and that the threshold energy we obtain from the model (grey dashed vertical line)
is close to the energy Epeak

free−free + EB one expects for the bound-free branch. In C
the distance ∆E = Eth − Epeak

free−free is plotted in units of the binding energy EB as
a function of the temperature T/TF. As one would expect for a mixture of two-
body dimers and free excess majority atoms we observe a value in good agreement
with ∆E = EB throughout the sample and no temperature dependence. Note that
due to the broadening of the transition towards the high density center, the peak
energy Epeak

bound−free changes more drastically than the threshold energy and is thus
not a reliable quantity to describe the relative distance. This is shown in the inset
in C where the peak energy for the free-free transition (green), the threshold energy
(blue) and the peak energy for the bound-free transition obtained from the Gumbel
fit (red) are shown as a function of T/TF.
We now extend our study to the crossover region where ln (kFa2D) ≈ 0.8 in the

central region at a magnetic field B ≈ 692 G and the dimer binding energy is EB =
1.37 kHz. Here we take rf spectra of both the minority and the majority as shown in
Figure 5.25 A. We see a good overlap between the branches with the main difference
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Figure 5.24.: A RF spectrum of the majority component |3〉 of an imbalanced 13-
mixture at B ≈ 672 G corresponding to a central ln (kFa2D) ≈ −0.4.
Both the bound-free branch above the binding energy EB (red dashed
line) as well as the free-free branch close to ∆ν = 0 are visible and
well separated. B Radial cuts in the high density center (upper panel,
r = 13 px) and towards the low density wing (lower panel, r = 43 px).
The green line fits a combination of the threshold model in equation
5.26 and a Gaussian to the data whereas the blue dashed line fits
a Gumbel function (equation 5.27) in combination with a Gaussian
to extract the peak position of the bound-free peak. C The relative
distance ∆E between the free-free peak and the bound-free threshold
energy is plotted in units of the binding energy EB as a function of
T/TF. The result is consistent with the binding energy EB throughout
the sample. The inlay shows the fit results for both the peak energies
(green for the free-free branch and red for the bound-free branch) and
the threshold energy (blue).
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Figure 5.25.: A RF spectrum of both the minority component |1〉 and the major-
ity component |3〉 of an imbalanced 13-mixture at B ≈ 692 G corre-
sponding to a central ln (kFa2D) ≈ 0.8. For the minority spectrum the
frequency axis has been inverted. The bound-free branch for both com-
ponents match very well indicating that the system is indeed paired.
The free-free branch in the minority is only weakly occupied in the
high temperature wings whereas we see a larger population for the
majority due to the excess atoms. The white dashed vertical lines in-
dicate the radial cut at r = 40 px shown in B for both spectra. Here
the transfered density ∆n is plotted. C Taking the difference between
the majority and the minority spectrum reveals the free-free branch
for the excess atoms. One observes a broadening at the center which
is due to final state interaction effects. The black crosses indicate the
peak position obtained from a Gaussian fit.
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being the reduced occupation of the free branch for the minority component as it is
only weakly thermally occupied. In B a cut at a radius of r = 40 px is plotted for
the absolute transferred density ∆n. One observes that the paired branch overlaps
very well showing that the atoms in state |1〉 and |3〉 are indeed paired and that the
unpaired branch for the majority component is larger as there the excess atoms lead
to a bigger population. For the minority we observe a clear signal of the free branch
only in the wing of the sample at large T/TF whereas for the majority we can see a
signal also towards the center. However, the width of the transition broadens when
going towards the center which is most likely due to interaction effects. To get a
better estimate for the free-free branch we can subtract the minority rf spectrum6

from the majority rf spectrum to obtain the excess majority atom rf spectrum. This
is shown in Figure 5.25 C where the black crosses mark the peak positions obtained
from a Gaussian fit to vertical cuts averaged over 3 pixels. We observe that the
width of the free-free branch is severely broadened towards the center, indicating a
transition into a short-lived repulsive final state polaron as discussed in section 5.4.
This limits the frequency resolution and makes it difficult to separate the branches.
The question is now whether the relative distance between the free-free peak and

the threshold energy changes significantly already before the critical temperature for
superfluidity. This would hint at beyond two-body physics and thus indicate many-
body effects. We perform the same analysis scheme as for the BEC data as shown
in Figure 5.26. From the radial cuts in B we can see that especially in the center the
branches do not separate well and thus the fitting of a threshold model is challenging.
For the fit we set the width of the free-free branch to the measured width obtained
from Figure 5.25 C to reduce the number of free parameters. Looking at the radial
cuts in Figure 5.26 B, we find that our fits describe the data adequately. However, to
do so the threshold energy of the bound free branch relative to the free-free branch
is increased considerably compared to the dimer binding energy EB. This can be
seen as the distance between the black dashed vertical line which is the expected
distance of EB from the free-free peak and the actually fitted threshold energy which
is the gray dashed vertical line. In C the extracted relative distance ∆E is plotted
as a function of the temperature T/TF. In addition the gray dashed vertical line
indicates the part of the sample where the interaction strength ln (kFa2D) > 0.5
as this is the regime where one would expect a Fermi surface to be present with
µ > 0 [Lev15]. We observe a value ∆E & 1.6 · EB throughout the sample and
thus a result which is not consistent with the picture of simple two-body dimers.
While some of this deviation might be explainable by the fitting procedure, it is
nevertheless considerable and hints towards many-body effects playing a role in this
regime. This might also be an explanation for the increased critical temperature
Tc/TF we observed in this interaction regime in earlier experiments as shown in
Figure 2.8 b) [Rie15b]. In this regime the pair size is predicted to be on the order
of the inter-particle spacing and thus many-body effects become feasible.
However, with our method we cannot give a definite answer to the question of the

existence of a pseudogap, as we do not observe a strong temperature dependence
of the pairing gap above the critical temperature Tc/TF. Theory predictions for the

6Here we do not normalize the rf spectra but take the absolute transfered density.
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Figure 5.26.: A RF spectrum of the majority component |3〉 of an imbalanced 13-
mixture at B ≈ 692 G corresponding to a central ln (kFa2D) ≈ 0.8.
Both the bound-free branch above the binding energy EB (red dashed
line) as well as the free-free branch close to ∆ν = 0 are visible but not
well separated. B Radial cuts in the high density center (upper panel,
r = 13 px) and towards the low density wing (lower panel, r = 43 px).
The green line fits a combination of the threshold model in equation
5.26 and a Gaussian to the data where the width of the Gaussian was
fixed according to the result in Figure 5.25 C. The blue dashed line
fits a Gumbel function (equation 5.27) in combination with a Gaussian
to extract the peak position of the bound-free peak. C The relative
distance ∆E between the free-free peak and the bound-free threshold
energy is plotted in units of the binding energy EB as a function of
T/TF. We observe a deviation from the dimer binding energy which
hints towards many-body effects playing a role in the pairing process.
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temperature T ∗ where the pseudogap opens up for interaction strengths ln (kFa2D) ≈
0.8 are in the range T ∗/TF ≈ 0.6 [Mar15] and thus we barely probe this temperature
regime.
In conclusion, we identified a region where the measured rf spectra cannot be

explained by two-body physics alone. This is strong indication that in this regime
many-body pairing plays a role and thus further experimental investigations as well
as theory input e.g. regarding the expected lineshapes for many-body paired sys-
tems are required. To improve the experiment or build upon our investigations,
different steps can be taken. In our 6Li system, it would be of advantage to use
the 12-mixture in the strongly interacting regime as there the final state is much
narrower as shown in section 5.4. This could improve the achievable frequency res-
olution and thus help to resolve the branches better. Furthermore, the imbalance
creation introduces heating into the system. Thus, reducing the temperature while
keeping the imbalance is an aim for the future. Performing such experiments in
a homogeneous trap as might be achievable soon in the setup would also be an
improvement.
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During the course of this thesis ultracold gases have been used as a quantum simu-
lator to investigate different quantum mechanical systems. Our experimental setup
offers the ability to prepare a strongly interacting, two-component Fermi mixture in
a single layer of a strongly anisotropic standing wave trapping potential. Thereby we
can create a single realization of a quasi-2D system and we have direct access to the
two-dimensional density distribution using absorption imaging without averaging
over several realizations. Furthermore, we can add two perpendicular retro-reflected
beams in the radial plane to realize a two-dimensional square lattice geometry.
In chapter 3 the preparation procedure of our sample was described and the cali-

bration of our imaging system, performed during this thesis, was presented in detail.
Furthermore, the possibility to image both spin states within a single experiment
cycle has been implemented during the course of this thesis which will give us the
full information about the system in future experiments.
In chapter 4 the momentum distribution of a sample in the two-dimensional square

lattice geometry was measured using a time-of-flight evolution in a weakly harmonic
potential in the radial plane [Mur14]. The momentum distribution contains infor-
mation about the coherence of the system by means of the macroscopic occupation
of specific momentum states. For a sample on the BEC side of the Feshbach reso-
nance where deeply bound bosonic dimers are formed we observed sharp peaks in
the momentum distribution at zero-momentum as well as at positive and negative
lattice momenta kL along the lattice axes for shallow lattices. This shows that a
macroscopic part of the sample is condensed and hence in a superfluid state. In-
creasing the lattice depth to drive the transition into a Mott-insulator, we observed
heating which leads to an increased loss of coherence on a timescale of 20 ms at a
lattice depth of V = 4 Er. Thus, we made first steps towards our goal of realizing
low entropy systems in a two-dimensional lattice geometry.
In chapter 5 a spatially resolved rf spectroscopy method was employed for a single

realization of a quasi-2D Fermi gas in a harmonic trap. This enabled us to separate
the varying density, relative temperature T/TF and interaction strength ln (kFa2D)
regimes one inevitable has in the harmonic trapping potential. Using a local density
approach (LDA), the rf lineshapes for two-component Fermi mixtures in the normal
phase were measured as a function of these parameters.
For spin-balanced samples the interaction induced energy shifts were measured as

a function of the interaction strength. As there are always final state interactions
present in 6Li, we used both a 12-mixture as well as a 13-mixture to minimize these
final state effects. This allowed us to use weakly coupled theories to disentangle these
final state shifts from the initial state interactions in the strongly interacting regime.
We found these interaction induced shifts to be substantial in the strongly interacting
regime reaching up to half the Fermi energy EF. Furthermore, by comparing samples
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with the same initial interaction strength but differing final state interactions one can
directly contrast their influence on the obtained spectra. This showed that the final
state can also be influenced by polaron like physics leading to strong shifts and broad
transitions in the case of a short-lived repulsive final state polaron [Nga12, Sch12].
These measurements emphasize the need to use either spatially resolved spectra or
homogeneous systems. Otherwise the averaging over the trap leads to broadening
effects as well as systematics. This can be seen as for example the dominant part of
the unpaired atom signal stems from the wings of the cloud at large temperature but
low density whereas the paired atom signal is dominantly from the low temperature,
large density region at the center.
Heating up the sample by modulating the harmonic potential, we studied the

onset of pairing at high temperatures in the strongly interacting regime. There we
observed the transition from a system of mostly unpaired atoms in the wings to a co-
existence of paired and unpaired atoms, where the fraction of paired atoms increases
as one decreases the temperature T/TF. Measuring the relative fraction by fitting
the lineshapes with a model incorporating both these branches, we extracted that
the fraction of paired atoms increases faster as one approaches the low temperature
regime than one would expect from a non-interacting, thermal model. This indicates
that interactions play a role in the formation of the paired atoms.
At last, we looked at the pairing gap in a slightly spin-imbalanced sample. There,

the excess atoms of the majority populate the unpaired atom branch and its signal is
enhanced, making it possible to observe both branches also at low temperatures and
far on the BEC side where deeply bound molecules are formed. Inferring the distance
between these branches from the measured rf spectra, we find that on the BEC
side our results are in agreement with two-body theory. In the strongly interacting
regime, however, we observe a deviation from two-body physics. Although we cannot
unambiguously identify a pseudogap regime, this nevertheless implies that many-
body effects play a role and that this regime includes interesting physics thus inviting
further studies. For future experiments, combining the ability to create uniform
potentials as e.g. shown in [Muk16] with momentum-resolved rf spectrosopy as used
in [Fel11, Frö12, Gae10] could improve on our results, especially when using atomic
species where the final state interactions are negligible.
In the immediate future we plan to expand our existing experimental setup in

several steps. We will implement a spatial light modulator (SLM) [Hol14] together
with a high numerical aperture objective [Ser11] to project tailor made trapping
potentials on top of the strong axial confinement provided by the SWT (see Figure
6.1). This will enable us to prepare various trapping geometries, ranging from
uniform systems to different lattice geometries. In addition, a single particle, spatial
and spin resolved fluorescence imaging method has been developed and successfully
tested in the other experiment of our group [Bec16, Ber17]. The combination of these
techniques together with our momentum imaging technique [Mur14] will provide a
rich playground for future experiments.
One idea is to prepare a uniform, quasi-2D system with low atom number where

we can still resolve the atoms individually and perform momentum resolved rf spec-
troscopy. This could give us direct access to multi-particle correlation functions and
thus the possible onset of many-body effects in the pairing could be studied as a

130



6. Conclusion and Outlook

Figure 6.1.: Using the combination of a spatial light modulator (SLM) and a custom
made high numerical aperture objective we will be able to create a
large variety of trapping geometries to study correlations in strongly
interacting Fermi systems.

function of system size and interaction.
Another direction the SLM offers is to create lattices of varying sizes and geometry.

One goal would then be to prepare a Mott-insulator of molecules as a low entropy
state. Breaking up the molecules in a deep lattice and adiabatically changing the
lattice geometry to a superlattice can then potentially create a state with strong
anti-correlations in the spin domain [Lub11] which we could measure with our spin
resolved imaging technique.
These experimental implementations will bring us further towards our aim of a

flexible quantum simulator and allow us to study the crossover from few- to many-
body physics in more detail in the future.
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A. Appendix

A.1. Polylogarithmic Function
In the context of density distributions for ideal Fermi or Bose gases, we introduced
the polylogarithmic functions Liν (z). Therefore we give here a definition and sum-
marize its properties. The polylogarithmic function can be either defined in an
integral form or as a power series [Pit03]

Liν (z) = 1
Γ (ν)

∞∫
0

dxxν−1 1
z−1ex − 1 =

∞∑
l=1

zl

lν
, (A.1)

where Γ (ν) is the Gamma function and |z| < 1. In the case of a Bose gas, z =
exp (βµ) is the so-called fugacity which is always smaller than one since µ ≤ 0. In
the case of fermions one uses a slightly different definition

−Liν (−z) = 1
Γ (ν)

∞∫
0

dxxν−1 1
z−1ex + 1 =

∞∑
l=1

(−1)l+1 z
l

lν
. (A.2)

Another useful property of the polylogarithm is the relation

z
d

dz
Liν+1 (z) = Liν (z) . (A.3)
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