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A B S T R A C T

This thesis presents correlation measurements in two different few-
fermion systems of ultracold 6Li atoms. The measurements have been
performed with a new spatially and spin-resolved imaging method
with single-atom sensitivity, with which we can probe coherences of
the initial system as correlations in the momenta. First, we study at-
tractively interacting atoms in a single microtrap, which serves as a
basis for understanding the expansion dynamics of strongly interact-
ing Fermi gases. We observe correlation features in the relative coor-
dinate for different interaction strengths. We explain several of these
features theoretically by calculating the initial interacting state in the
microtrap and projecting it on a molecular bound state and scatter-
ing waves. Next, we study a small number of repulsively interacting
particles in the ground state of a double-well potential. This system
constitutes the fundamental building block of the Hubbard model.
We observe interference patterns in the coordinates of the individ-
ual particles and in their relative coordinates. From the amplitude
and phase of these patterns, we extract off-diagonal density matrix
elements of the state, which we use to directly show coherence and
entanglement in our system.

Z U S A M M E N FA S S U N G

In dieser Dissertation werden Korrelationsmessungen an zwei fermio-
nischen Systemen ultrakalter 6Li-Atome vorgestellt, die mit einem
neuen orts- und spinaufgelösten Einzelteilchen-Abbildungsverfahren
durchgeführt wurden. Mit diesem Verfahren können wir Kohärenzen
des Ausgangssystems als Korrelationen der Teilchenimpulse nach-
weisen. Zunächst untersuchen wir attraktiv wechselwirkende Atome
in einer Mikrofalle. Dieses System dient als Verständnisgrundlage
für die Expansion stark wechselwirkender Fermigase. Wir beobach-
ten Korrelationen in der Relativkoordinate für verschiedene Wech-
selwirkungsstärken. Einige dieser Merkmale erklären wir theoretisch
durch die Projektion des Anfangszustandes auf Molekül- und Streu-
zustände unter Berücksichtigung der Wechselwirkung. Weiterhin un-
tersuchen wir Wenigteilchensysteme bei verschiedenen abstoßenden
Wechselwirkungen im Grundzustand eines Doppelmuldenpotentials,
welches den Grundbaustein des Hubbard-Modells darstellt. Wir be-
obachten Interferenzmuster in den Einzelteilchen- und Relativkoor-
dinaten, anhand derer Amplitude und Phase wir Nebendiagonalein-
träge der Dichtematrix bestimmen. Mit diesen Dichtematrixeinträgen
können wir unmittelbar die Kohärenz und Verschränkung unseres
Systems nachweisen.
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1
I N T R O D U C T I O N

Since its development approximately 100 years ago, quantum theory
has been hugely successful at describing microscopic processes of all
kinds. It expresses the states of particles not directly by their coor-
dinates in configuration space, but by their probability amplitudes,
the wavefunctions. A notable feature of quantum mechanics is that
a particle can be in a superposition of states. If these states have a
well-defined phase relation to each other, they are said to be a co-
herent superposition, as opposed to a statistical mixture. Coherence
can lead to interference patterns when measuring an observable of a
quantum particle or correlations between observables. These interfer-
ence patterns are similar to the interference effects found in classical
wave mechanics.

Another distinct feature of quantum mechanics is entanglement. It
can occur when two (or more) independent quantum objects are com-
bined into a single system. The system is entangled if it can only be
described by one common wavefunction, and not by separate wave-
functions for the individual particles. This was famously shown with
the Bell test [Bel64], where entanglement leads to correlations be-
tween two particles which cannot be explained by classical theory
(or, more precisely, a local realist theory). Interestingly, entanglement
is a property which can be created and destroyed, for example when
two particles interact. It is an essential resource in applied fields such
as quantum cryptography or quantum computing.

Naturally, coherence and entanglement both play an important role
when adding more and more quantum particles to a system. Both
phenomena can lead to strong correlations between a large number
of particles, for example, in strongly coupled quantum fluids. A wide
range of systems of current interest falls into this category, including
unitary atomic quantum gases, electrons in strongly correlated ma-
terials such as strange metals, nuclear matter, and the quark-gluon
plasma in a heavy-ion collisions [Ada+

12]. While these systems ex-
ist in wholly different environments, with temperatures ranging be-
tween 10−8 K and 1012 K, their common dependence on strong cor-
relations makes it possible to describe all of them with low-viscosity
hydrodynamics.

Long-range correlations also play a prominent role in quantum
phase transitions. This type of phase transitions typically occurs at
zero temperature when a coupling constant of a Hamiltonian is tuned.
Close to the quantum critical point, the characteristic length scale of
the fluctuations in the system diverges, and the correlations decay al-
gebraically decay with the distance [Sac11]. While directly observing

1



2 introduction

a quantum critical point at 0K may be impossible, one can still detect
the effects of these correlation fluctuations near a quantum critical
point at finite temperatures in the quantum critical region.

In both cases, correlations caused by the quantum nature of a sys-
tem have a strong influence on its properties. In the case of strongly
correlated quantum fluids, for example, the viscosity is affected. It de-
scribes how momentum is dissipated and governs the transport prop-
erties of the fluid. Close to a critical point, it has been conjectured
that the ratio of viscosity over entropy-per-particle, η/s, is close to a
universal bound [KSS05]. First examinations of this prediction have
been performed by looking at the expansion dynamics of an ultracold
quantum gas [Cao+

11] and via momentum correlations in heavy-ion
collisions, which probe a strongly coupled quark-gluon plasma (see
[Mar11; Bec14] for overviews).

A simple example for a correlated system close to a quantum phase
transition is a dimerized lattice of Heisenberg spins [Sac08]. If the
coupling of the spins within a dimer dominates over the coupling
between dimers, each dimer can be treated separately. There will be
correlations between the spins within a dimer, but not on larger scales.
If the inter- and intra-dimer coupling is similar, an antiferromagnetic
Néel-state with long-range spin order may form. One can reveal this
ordered phase by looking at the magnetic properties of such a ma-
terial, e.g., the magnetic susceptibility [MAH76]. One can also study
its excitations, whose energy separation from the ground state is pre-
dicted to vanish at the critical point. This effect produces a character-
istic excitation spectrum, which has been measured in certain alloys
with neutron scattering [Rüe+

08]. A more direct measure of the corre-
lations in the material, albeit averaged over the entire sample, can be
obtained from the structure factor of scattering experiments [SSW51].

In the last couple of decades, it has become possible to create ar-
tificial quantum many-body states with ultracold gases. Due to the
high level of experimental control over the system’s parameters, one
can use such experiments to simulate different aspects of existing
strongly correlated systems, or even to create new systems which do
not occur naturally. To analyze ultracold quantum gases, many of
the aforementioned measurement techniques have been adapted and
applied to atomic systems: Instead of using neutrons for scattering
experiments, one has been able to measure magnetic ordering from
the Bragg scattering of light [Har+

15]. Correlations in the momenta
of particles have been probed by letting the gas expand and corre-
lating the resulting density distribution ([Föl+05; Rom+

06], and more
recently [Hod+

17]). With a novel imaging technique, it has even been
possible to directly measure long-range correlations of fermions in a
lattice atom by atom [Maz+

17], which provides an observable which
cannot be obtained, e.g., from condensed matter systems.



introduction 3

In the Heidelberg few-fermion experiment, we have developed a
unique approach to study correlated quantum systems. One ingredi-
ent is the deterministic preparation of few-fermion systems with very
low entropy, first developed in [Ser+

11; Ser11]. The other ingredient
is an efficient imaging method to obtain as much information as pos-
sible from these systems, called the matterwave microscope. This imag-
ing method, which we have developed over the last two years [Bec16;
Ber17], combines spatially resolved single-atom detection with a time-
of-flight expansion.

In short, we first release the atoms from our initial system into a
large external harmonic potential, in which the atomic density distri-
bution expands. Afterward, we optically detect the resulting density
distribution. Depending on how we apply our harmonic potential in
the first step, we can perform different transformations on the ini-
tial density distribution [Mur+

14] and thereby probe different observ-
ables. In this thesis, we approximately perform a Fourier transform
on our initial spatial distribution, which means that we probe the
initial momentum distribution.

Our optical detection has been optimized to be able to resolve each
atom spatially, as well as its hyperfine state. This maximizes the in-
formation that we can extract from the spatial distribution of atoms.
We use a custom-built microscope objective with a large numerical
aperture [Ser11], which can collect a large fraction of the scattered
photons and provides spatial resolution. Together with our photon-
counting EMCCD camera, this allows us to use a short exposure time
for each image and still obtain a clear signal. This keeps the heating
rate and diffusive motion of the atoms small during imaging1, and
we can image the position of individual atoms in free space with spin
resolution.

In this thesis, we have used our new imaging method to study
the correlations of systems containing a small number of interacting
fermionic particles. In the first experiment, we prepared a “bulk” sys-
tem of two atoms in a tight optical trap with strong attractive interac-
tions near a Feshbach resonance. We use this minimal system to study
the role of interactions for the time-evolution during the expansion of
a Fermi gas. This understanding is crucial if we want to perform ex-
periments with larger numbers of particles in the future, for example
to study strongly coupled quantum fluids.

In the second experiment, we prepared small systems of repulsive
atoms in a double-well potential. This is a minimal realization of spa-
tially discretized quantum systems, in particular the Hubbard model.
The system contains two of the major competing elements which can
drive phase transitions in the Hubbard model, the inter-site hopping

1 This means that we do not have to cool the atoms during imaging or to fix their
position. It makes our imaging scheme easier to implement technically and is similar
to the light-sheet imaging developed by [Büc+

09].



4 introduction

and the on-site interactions. With the matterwave microscope, we
were able to perform complementary measurements to our previous
experiments with this system [Mur+

15b]. By measuring the correla-
tions between the atoms, we were able to directly show the coherence
of our system and to detect entanglement between the particles, de-
pending on the interaction strength.

In the future, we can also use our imaging method on systems
containing more particles, thanks to its single-atom detection capabil-
ity. In particular, our measurements on paired particles in a double
well indicate the potential for studying larger systems, which may,
for example, support elaborate bound states like resonating valence
[And87; ADL04; PB08].



2
M A N Y- B O D Y Q U A N T U M T H E O RY

This thesis covers several experiments performed on systems contain-
ing a small number of 6Li atoms. As the atoms have been cooled well
below the Fermi temperature, they behave as quantum particles. Even
though these small systems are no true many-body systems, it makes
sense to introduce quantum many-body formalisms already for just
two particles. Therefore, this chapter will explain the fundamental
concepts related to many-body quantum theory, which are important
to fully appreciate our experiments.

First, we will revisit the methods needed to express arbitrary states
and operators in a many-body system. We will focus on one operator
in particular, the correlation function, which measures the correla-
tions within a quantum state. By studying a few examples of how
correlation functions have been used in different areas of physics, for
example in quantum optics, we will find results which are instructive
for understanding our experiments.

Also, we will briefly introduce entanglement, a property which is
absent in classical systems and characteristic for quantum systems.
In our experiments described in Chapter 7, we can use the properties
derived in this section together with the correlation function to show
the quantum nature of our systems.

Finally, we will look at the Hubbard model, which is widely used
in the fields of condensed matter and ultracold atoms to describe
systems of interacting particles on a lattice. Using the concepts intro-
duced in the earlier sections, we will demonstrate some of its phases
and observables which appear for many different lattice configura-
tions, including the double well. Theoretical results which are specific
to the double well will not be presented in this chapter, but will be
presented together with the experimental results in Chapter 7.

2.1 many-body quantum states

2.1.1 Constructing Many-Body Quantum States

In general, quantum systems can be described with states of a Hilbert
space. The state of a single particle can be described by a set of num-
bers containing information about all its properties (quantum num-
bers), for example, its position, momentum, polarization, spin, etc.
The values of these quantum numbers denote the mode that the par-
ticle occupies. Often, it is possible to separate the total Hilbert space
into independent subspaces for the different quantum numbers. For

5



6 many-body quantum theory

example, the electron in a hydrogen atom can be approximately de-
scribed by its principle quantum number n, its angular momentum
quantum numbers l and ml, and its spin quantum number ms. Note
that the choice of these quantum numbers is not unique, as one could
also use the spatial wavefunction ψ(r) of the electron, together with
its spin, to describe its state. However, the nlmlms-space is often
more convenient.

Now, we want to see how to describe a quantum system composed
of many particles. Suppose that we have a system containing N two-
level qubits (Hilbert space dimension of each qubit d = 2). If we
want to build a combined Hilbert space using tensor products, we
find from combinatorics that the combined space will have 2N, or, in
general, dN basis states. This exponential increase of the size of the
Hilbert space is one of the reasons why it can be difficult to exactly
solve quantum many-body problems.

If the system is composed of identical fermions (bosons), its total
many-body state must obey the antisymmetrization (symmetrization)
requirement. By expressing generic fermionic states using the Slater
determinant

Φ(l1, l2, . . . , lN) =
1√
N!

∣∣∣∣∣∣∣∣
φl1(x1) · · · φlN(xN)

...
. . .

...

φl1(xN) · · · φlN(xN)

∣∣∣∣∣∣∣∣ , (2.1)

one can conveniently take into account this requirement. For bosonic
states, one has to use a permanent instead of a determinant. The li ex-
press the specific value of the quantum numbers n of the ith particle,
i.e., which of its M modes it occupies.

A simplified notation for the basis states is called the Fock basis. It
counts the occupation of all the single-particles modes,

Φ(l1, l2, . . . , lN) = |n1,n2, . . . ,nM〉 ≡ |n〉 , (2.2)

where n1 counts the number of particles in the first single-particle
mode, n2 counts the number of particles in the second mode, and
so forth. n is the vector containing the occupation numbers of all
modes. For example, if we have two identical fermions with four
modes each, then we can express the state Φ(2, 4) = (φ2(x1)φ4(x2) −

φ2(x2)φ4(x1))/
√
2 as |0, 1, 0, 1〉.

This notation is much simpler, because it only counts the num-
ber of identical particles per mode and does not label them. There-
fore, the need for explicit (anti-)symmetrization is avoided. This is
equivalent to stating that Fock states intrinsically have the correct
(anti-)symmetry, as each Fock state represents a determinant/perma-
nent. Together with the Fock states, we have also introduced the bra-
ket notation to denote the states of the Hilbert space.
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Using the Fock states as defined above, we can thus express a gen-
eral pure N-body state as a superposition of all possible Fock basis
states,

|Ψ〉 =
∑
n

cn |n〉 , (2.3)

where the sum runs over all possible n with
∑M
i=1 ni = N and con-

tains normalized complex coefficients cn. In the picture of eq. (2.1),
the sum runs over all possible ways of combining N modes lj.

2.1.2 Density Matrix

In reality, no system will remain in a pure state indefinitely due to
interactions with its environment. Therefore, as every realization of a
system may result in different states, one has to understand how the
statistical ensemble of this system looks like. Such an ensemble can
be written as a density matrix, which is defined as

ρ̂ =
∑
mn

ρmn |m〉 〈n| , (2.4)

where m and n label basis states, which, for example, may be Fock
states. The coefficients of the sum are defined as ρmn = 〈m| ρ̂ |n〉.
They can be conveniently used to define a matrix, hence the name of
ρ. The diagonal terms correspond to populations and must add up
to 1, i.e., Tr ρ̂ = 1. The off-diagonal terms can be seen as coherences
which couple two of the basis states1. Their magnitudes are limited
to

|ρmn|
2 6 |ρmm| |ρnn| , (2.5)

i.e., they cannot be larger than the populations in the corresponding
states. If this equation is an equality for all m and n, the density
matrix describes a pure state.

Using the density matrix, one can calculate the expectation value
of any observable 〈Â〉 = Tr(ρ̂Â) =

∑
i〈i|ρ̂Â|i〉. In general, one there-

fore needs to know all entries of the density matrix, which requires a
number of measurements in conjugate measurement bases, e.g., with
quantum tomography. However, if one is interested in only certain
observables, it may be enough to know only parts of the density ma-
trix.

1 If one chooses the correct basis
∣∣ψj〉, it can also be expressed as a diagonal matrix ρ̂ =∑

j pj
∣∣ψj〉 〈ψj∣∣. If this sum contains more than one term, the state is an incoherent

mixed state.
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2.1.3 Operators on Many-Body Quantum States

Now that we have seen how many-body states can be expressed and
which role they play in the measurement of observables, it makes
sense to look at how (many-body) observables have to be treated in
the formalism of Fock states. In principle, any observable can be ex-
pressed as an operator, which acts on a Hilbert space and maps a
state to another state. Operators are marked by a caret, e.g. Â, to rec-
ognize them easily2. In this section, I will list a few useful operators
and how they can be expressed in Fock space.

First, let us consider how particles can be added to or removed
from Fock states. This can be done with creation and annihilation op-
erators. With these operators, we can construct any many-body state
starting from a state without any particles, the vacuum state |0〉 =
|0, . . . , 0〉. For bosons, the creation and annihilation operators are de-
fined as

â
†
i |. . . ,ni, . . .〉 =

√
ni + 1 |. . . ,ni + 1, . . .〉

âi |. . . ,ni, . . .〉 =
√
ni |. . . ,ni − 1, . . .〉 .

(2.6)

They obey the commutation relations

[
âi, â

†
j

]
= δij[

âi, âj
]
= 0[

â
†
i , â
†
j

]
= 0.

(2.7)

For fermions, the creation and annihilation operators are defined as

â
†
i |. . . ,ni, . . .〉 = (−1)

∑
j<inj (1−ni) |. . . ,ni + 1, . . .〉

âi |. . . ,ni, . . .〉 = (−1)
∑
j<inj ni |. . . ,ni − 1, . . .〉 .

(2.8)

The fermionic definition already takes into account that there can be
no more than one particle per mode, as the state would otherwise be
impossible to antisymmetrize. The sign comes from the anticommu-
tation relations,

{
âi, â

†
j

}
= δij{

âi, âj
}
= 0{

â
†
i , â
†
j

}
= 0.

(2.9)

2 Other symbols are typically scalar values or functions, or, if written in bold face,
(Euclidean) vectors.
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For both bosons and fermions, a occupation number operator can be
defined to count the number of particles ni in the ith mode,

n̂i |. . . ,ni, . . .〉 = â†iâi |. . . ,ni, . . .〉 = ni |. . . ,ni, . . .〉 . (2.10)

For fermions, it has the property that n̂2i = n̂i and therefore also that
n̂i (1− n̂i) = 0, of which we will make use later. With the number op-
erator, we can also define an operator which counts the total number
of particles in the system, N̂ =

∑M
i=1 n̂i.

In general, any operator T̂ on N-particle Fock space which consists
of single-particle operators t̂ can be expressed using creation and an-
nihilation operators [Sch08],

T̂ =
∑
i,j

tijâ
†
iâj, (2.11)

where tij = 〈li| t̂
∣∣lj〉 is the matrix element of the single-particle oper-

ator for modes li and lj. Similarly, one can define general two-particle
operators on Fock space as

F̂ =
1

2

∑
i,j,k,l

fijklâ
†
iâ
†
j âkâl (2.12)

with matrix elements

fijkl =
〈
li, lj

∣∣ f̂ |lk, ll〉

=

∫ ∫
dx1dx2φ∗li(x1)φ

∗
lj
(x2)f(x1, x2)φlk(x1)φll(x2).

(2.13)

An important operator which relates the Fock states back to real
space is the field operator. It creates or annihilates a particle at a specific
location r,

Ψ̂†(r) |0〉 = |r〉 . (2.14)

The state |r〉 is an eigenvector of the position operator r̂ |r〉 = r |r〉. It
creates this state by adding all modes in Fock space,

Ψ̂†(r) |0〉 =
∑
i

ψ
∗
i (r) â

†
i |0〉 (2.15)

and is thus closely related to the basis wavefunctions of the modes in
position space ψi(r). Its (anti-)commutation relations are

[
Ψ̂(r1), Ψ̂†(r2)

]
= δ(r1 − r2)

{
Ψ̂(r1), Ψ̂†(r2)

}
= δ(r1 − r2)[

Ψ̂(r1), Ψ̂(r2)
]
= 0

{
Ψ̂(r1), Ψ̂(r2)

}
= 0[

Ψ̂†(r1), Ψ̂†(r2)
]
= 0

{
Ψ̂†(r1), Ψ̂†(r2)

}
= 0

(2.16)
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for bosons and fermions, respectively.
One can also define a particle density operator3 which counts the

number of particles at a position r, n(r) =
∑N
k=1 δ(r − rk). Using

field operators, it can be expressed as [FW71]

n̂(r) = Ψ̂†(r)Ψ̂(r)

=
∑
ij

ψ∗i (r)ψj(r) â
†
iâj.

(2.17)

The expectation value of the particle density operator for a given pure
state |Ψ0〉 can be understood as the total probability of finding (anni-
hilating) a particle at position r,

〈n̂(r)〉 = 〈Ψ0| Ψ̂†(r)Ψ̂(r) |Ψ0〉

=
∑
f

〈Ψ0| Ψ̂†(r) |f〉 〈f| Ψ̂(r) |Ψ0〉

=
∑
f

∣∣〈f| Ψ̂(r) |Ψ0〉∣∣2 .

If we want to know the expectation value for a general state described
by a density matrix ρ̂, we obtain

〈n̂(r)〉 =
∑
iklmn

ψ∗k(r)ψl(r) ρmn 〈i | m〉 〈n| â
†
kâl |i〉

=
∑
klmn

ψ∗k(r)ψl(r) ρmn 〈n| â
†
kâl |m〉 . (2.18)

2.2 correlation functions

2.2.1 General Correlation Functions

As mentioned before, a system can be fully characterized by deter-
mining all entries of the density matrix. However, as the number
of basis states scales exponentially with the size of the system, this
can become challenging for systems with large numbers of particles
[Cra+

10]. Instead of trying to measure all entries of the density matrix,
we will focus on measuring just the correlations in the system. This
is a natural approach, because the correlations are what gives a sys-
tem a many-body character — If the particles in a many-body system
show no correlations, it can be described by a product of individual,
independent single-particle systems. We therefore want to find an ob-
servable which describes the correlations between 2, 3, . . . ,n particles

3 Note the difference in notation, the particle number operator counts the particles in
mode i, whereas the particle density operator counts the particles at position r.
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in the system, with increasing complexity. In general, we do this with
the n-point correlation function, which is the expectation value for ap-
plying an operator Ô at n points:

G̃(n)(x1, x2, . . . , xn) =
〈
Ô(x1)Ô(x2) . . . Ô(xn)

〉
, (2.19)

where, in general, the xi stand for points in space-time.
If we look again at the particle density, it is clear that it is a lowest-

order correlation function,

〈n̂(x1)〉 = G̃(1)(x1). (2.20)

Recalling the definition of the density operator (2.17), we can also
write it as a correlation function of two field operators,

〈n̂(x1)〉 =
〈
Ψ̂†(x1)Ψ̂(x1)

〉
⇔ G(1)(x1, x1). (2.21)

This expression can be generalized to Glauber’s definition of the field
correlation function [Gla63b; Gla06]

G(n)(x1, . . . , x2n) =
〈
Ψ̂†(x1) . . . Ψ̂

†(xn)Ψ̂(xn+1) . . . Ψ̂(x2n)
〉

= Tr
(
ρ̂Ψ̂†(x1) . . . Ψ̂

†(xn)Ψ̂(xn+1) . . . Ψ̂(x2n)
) (2.22)

for arbitrary even numbers of field operators.
In this notation, the correlation describes the overlap of a state with

n particles removed in positions x1, . . . , xn with a state where n par-
ticles have been removed in positions xn+1, . . . , x2n. Alternatively, it
is the overlap of the initial state with a state where n particles have
been moved4 from x1, . . . , xn to xn+1, . . . , x2n.

Intuitively, if one knows all correlation functions to Nth order, one
can fully describe an N-particle state, as one then knows the overlap
of the state with all other possible states. However, already the lower-
order correlation functions can contain information about the state.
As they are more easily accessible in experiments, we will mainly use
the first- and second-order correlation function from here on.

2.2.2 Correlation Functions in Quantum Optics

Although correlation functions are essential in many fields in physics
and science in general, we will first study their role in quantum op-
tics, as many of its concepts can also be applied to ultracold atomic

4 This interpretation is evoked in quantum field theory, where the correlation func-
tions are called propagators [PS95].
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Figure 2.1: Double-slit experiment. The point source on the left ensures that
the observer at r sees a coherent superposition of the fields emit-
ted at r1, r2.

systems. In quantum optics, correlation functions are used to charac-
terize the coherence properties of light [Sud63; Gla63a]. This involves
studying the light’s intensity distribution, which depends on the elec-
tric field5 as I(x, t) = |E(x, t)|2. If we decompose the electric field in
positive and negative frequency components, E = E(+) + E(−), we can
quantize it and treat the (±)-components as the field operators Ψ(†)

introduced before.
A familiar example of a correlation measurement on a light field

comes from the double-slit experiment: When illuminating a double
slit with a single light source (Figure 2.1), we can observe an inter-
ference pattern in the intensity on a screen behind the double slit.
The intensity at position x on the screen is given by the square of
the electric field E(x), which in turn is a superposition of the two
fields originating from the slits, E(x1) +E(x2). Using the electric field
operators, we can express the time-averaged6 intensity as

〈I(x)〉 ∝
〈∣∣∣E(+)(x1) + E(+)(x2)∣∣∣2〉

=
〈
E(−)(x1)E

(+)(x1)
〉
+
〈
E(−)(x2)E

(+)(x2)
〉

+
〈
E(−)(x1)E

(+)(x2)
〉
+
〈
E(−)(x2)E

(+)(x1)
〉

= G(1)(x1, x1) +G(1)(x2, x2) +G(1)(x1, x2) +G(1)(x2, x1).

(2.23)

In the last line, the terms were identified with the correlation func-
tions from eq. (2.20) and (2.22). Hence, the intensities measured at
one point can be expressed by using only first-order field correla-
tion functions, regardless of which field is being probed. The last two
terms in the sum contain oscillatory terms which can give rise to the
interference pattern.

We can also study higher-order correlation functions by correlating
the intensities at different points on the screen. If we measure at two

5 Without loss of generality, we assume that the electric field is linearly polarized, such
that we can describe it just with its magnitude E.

6 While I(t) = |E(+)(t) + E(−)(t)|2 contains the fast oscillations of the electric field, the
time-averaged intensity can be described by just 〈I〉 = 〈|E(+)|2〉.
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Figure 2.2: Simplified setup of the Hanbury Brown and Twiss experiment
[HT56b]. Photons are emitted from the discharge tube and pass
a half-silvered mirror on their way to the detectors. From [Gla07]

points, we essentially perform the Hanbury Brown and Twiss (HBT)
experiment [HT56b]. In its most condensed realization (Figure 2.2),
it measures the intensity of a light field in two locations in time by
shifting the detectors forward or backward along the beam. The ob-
servable one obtains is the two-point field correlation function

G(2)(x1, x2, x2, x1) =
〈
E(−)(x1)E

(−)(x2)E
(+)(x2)E

(+)(x1)
〉

. (2.24)

What one observes as a function of x1, x2 depends on the state |Ψ0〉
that is measured. Let us first consider the case where the system is in
a pure, coherent state. The states are by definition eigenstates of the
annihilation operator, i.e., E(+)(x) |Ψc〉 = E(x) |Ψc〉, where E(x) is the
eigenvalue. For this state, the two-point correlation function reduces
to

G
(2)
coh(x1, x2, x2, x1) = E∗(x1)E

∗(x2)E(x2)E(x1)

= G(1)(x1, x1)G(1)(x2, x2),
(2.25)

which is the product of the uncorrelated intensities measured at the
two points independently.

If the source is not coherent, the correlation function evaluate dif-
ferently. To compare this correlation function to the coherent case, we
can normalize it to the values of the independent intensities. This
quantity is called the normalized n-point correlation function,

g(n)(x1, . . . , xn) =
G(n)(x1, . . . , xn, xn, . . . , x1)
G(1)(x1, x1) . . . G(1)(xn, xn)

. (2.26)

For the special case of a chaotic light source, e.g., a discharge tube as
it was used by Hanbury Brown and Twiss, the two-point correlation
function becomes [Gla06; Gla07]

g
(2)
chaotic(x1, x2) = 1+

∣∣G(1)(x1, x2)
∣∣2

G(1)(x1, x1)G(1)(x2, x2)
. (2.27)
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Figure 2.3: Ideal two-point correlation of a chaotic photon source versus de-
lay time between the two detectors. Zero delay time corresponds
to placing both detectors at the same distance x1. If the photons
are indistinguishable, their coincidence rate is enhanced.

For measurements at x1 = x2, i.e., when the photons are in the same
mode, the value of the correlation function is enhanced, as shown in
Figure 2.3. This is also what Hanbury Brown and Twiss had observed
in their original experiment [HT56b]. It shows us that indistinguisha-
bility alone will already introduce correlations to our many-body sys-
tem, due to the (anti-)symmetrization requirement for identical parti-
cles.

2.2.3 Applications of the Hanbury Brown and Twiss Effect

Because the HBT effect only requires the detection of indistinguishable
particles at two locations and no special initial conditions, it is broadly
used in many different fields of physics, of which I will present three
applications (in parts following the review [HJ99]): The first is the
original idea that Hanbury Brown and Twiss had had, namely the
determination of the size of astronomical objects from intensity cor-
relations in their light field [HT54; HT56a]. A second, similar applica-
tion has been developed for particle physics, where the correlations
detected in the products of a high-energy collision convey informa-
tion about the collision process itself (see for example [Gol+60; Koo77;
Zaj+84]).

The third application involves ultracold atoms in optical potentials
which can be probed with optical measurements of the density (see
for example [Föl+05; Föl08; Rom+

06; Rom09], or [Föl14] for a review).
It will serve as an example of how HBT correlations, which are caused
by the symmetry requirement for the wavefunction of indistinguish-
able particles, can be linked back to the more general correlations
which we started with in the beginning. For example, interactions
between distinguishable ultracold atoms may give rise to similar cor-
relations, as we will also see in our experiments. As this application
of the HBT effect requires some background knowledge specific to
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Figure 2.4: Sketch of the geometry of the HBT-experiment. (a) General ar-
rangement of two sources a and b, and two detectors 1 and 2. (b)
Setup for astronomical applications where L� R� d. (c) Setup
for heavy-ion collisions where L� d� R. From [HJ99].

ultracold atomic lattice systems, I will present it at the end of this
chapter.

2.2.3.1 HBT in Astronomy

Let us first consider the simplified case where two photons are emit-
ted at two points ra and rb in a large distance L � R,d from the de-
tectors at positions r1 and r2 (Figure 2.4). The single particle modes
can in the far field be described as plane waves which are emitted by
two atoms at the points a and b. For each mode, the field that reaches
the detector is ψα(rj) ∝ ei(k·(rα−rj))+φα ≡ ei(krjα+φα) with an initial
phase φα, wavenumber k = 2π/λ, label α for the modes of the source,
and label j for the detector. The argument krjα simply corresponds
to the phase that the photon has gathered after traveling the distance
rjα. It is also sensible to assume that the photons were not created by
the same atom, therefore, the density matrix can be described by the
Fock-state |1, 1〉.

We can now calculate the expectation value of the two-point corre-
lation function (2.22) according to eq. (2.12) in the Fock basis. Using
our assumptions and applying the commutation relations, we can
bring it to the form

G(2)(r1, r2, r2, r1) =∑
αβγδ

ψ∗α(r1)ψ
∗
β(r2)ψγ(r2)ψδ(r1)

[
δαδδβγ

〈
n̂αn̂β

〉
+ δαγδβδ

〈
n̂αn̂β

〉
+ δαβδαγδαδ 〈n̂α(1− n̂α)〉

]
.

(2.28)
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The explicit calculation for a two-mode system can be found in Ap-
pendix A. Upon inserting the fields ψα, we can write the correlation
function as

G(2)(r1, r2, r2, r1) =∑
αβγδ={a,b}

e−i{k(r1α+r2β−r2γ−r1δ)+φα+φβ−φγ−φδ}

×
[
δαδδβγ

〈
n̂αn̂β

〉
+ δαγδβδ

〈
n̂αn̂β

〉
+ δαβδαγδαδ 〈n̂α(1− n̂α)〉

]
.

(2.29)

The terms where α = δ and β = γ will have a constant amplitude
while the phase factor remains only for the terms with α 6= δ, β 6= γ.
The initial phases φα, etc., cancel out in all terms. After performing
the trace over the density matrix, the correlation function can then be
expressed as

G(2)(r1, r2, r2, r1) =3+
1

2
eik(r1b−r1a+r2a−r2b)

+
1

2
e−ik(r1b−r1a+r2a−r2b)

= 3+ cos (k (r1b − r1a + r2a − r2b)) . (2.30)

The argument of the cosine compares the phases φiα = k riα of all
combinations of both sources α = a,b and both detectors i = 1, 2.
Hence, the correlation function compares the phase relation of four
fields simultaneously.

Now, we can start evaluating these phases given the geometry of
the problem. For L � R � d, which is reasonable when comparing
the distance of a star to its size to the size of the detector, the correla-
tion function can be simplified to [HJ99]:

G(2)(d) ∼ cos(d · (ka − kb))

∼ cos
(
2π
θd

λ

) (2.31)

This depends on the separation of the detectors d and the wavelength
λ, which are known quantities, and the angular separation of the
sources θ. Varying the separation of the detectors would lead to a
sinusoidal pattern in the two-point correlation which depends on the
angular separation of the sources.

Of course, many astronomical objects cannot be described by just
two pointlike emitters, but by an angular distribution ρ(Ω) of emit-
ters. The correlation function the becomes

G(2)(d) ∼

∫
dΩρ(Ω) cos

(
2π
Ωd

λ

)
, (2.32)
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which corresponds to the Fourier transform of the original distribu-
tion. This method can been used to accurately measure the diameter
of stars and other astronomical objects.

2.2.3.2 HBT in Particle Physics

A conceptually similar detection method has been applied in the
description of high-energy collisions of particles such as protons or
heavy ions. Here, it can also be assumed that the collision products
have been created independently. Again, one can correlate the detec-
tion position of identical particles with eq. (2.30). However, in con-
trast to the astronomical application, the separation of the detectors
is now much larger than the typical system size, d � R. Instead of
inferring the angular size of the source from the separation of the de-
tectors, one measures the momentum difference ka − kb (see Figure
2.4) to extract the source density distribution SK(R) over the relative
distance R:

g(2)(ka − kb) ∼

∫
d3RSK(R) cos(R · (ka − kb)), (2.33)

Because the source distribution is the result of complex processes that
take place earlier in the collision, the pair momentum K must a prior
also be taken into account as a parameter.

Furthermore, we have to consider that the particles that are being
detected are typically hadrons, and not photons. They can interact
among each other or with the source via Coulomb interactions or
strong interactions, called final-state interactions. This means that the
plane waves of the free-particle description are not the correct basis
of the final state. Instead, the particles expand with waves which are
distorted by interactions. We will also apply a similar concept for the
description of interacting ultracold atoms in our experiments.

2.3 entanglement

While correlations provide a way of describing quantum many-body
systems, they are by no means a purely quantum phenomenon. Clas-
sical systems can also show strong correlations. However, for quan-
tum systems, there exist states exhibiting correlations which cannot
occur for classical systems, as was first shown by Bell [Bel64]. The
detection of these correlations in experiments confirms that quantum
mechanics is required in some form to describe reality. The states
which provide the largest amount correlation on top of classically ex-
plainable correlations, i.e., which maximally violate Bell’s inequality
(or the more general CHSH inequality [Cla+

69]), are entangled states
called Bell states.
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2.3.1 Definition and Properties of Entanglement

As it turns out that entangled states are also essential for understand-
ing the correlations that we observe in our experiments, it makes
sense to have a closer look at the concept of entanglement and the
ways of measuring it. While Bell states are a practical example of
entangled states and their contribution to correlations, they are not
suitable as a definition of entanglement. Entanglement is a general
concept in quantum mechanics and extends for example to systems
with more than two identical or non-identical particles (many-body
entanglement), more than two observers (multipartite entanglement),
mixed states, etc. Defining entanglement in a general manner can be
very delicate and is presently still being debated (see, e.g., [WV03]).
I will treat entanglement in a manner which is practical for the sys-
tems we realize in our experiment, for a more differentiated treatment
I refer to reviews such as [AOV08; GT09].

One common concept of defining a non-entangled (separable) state
is the possibility of finding subsystems A,B,C, . . . which can be fully
characterized independently. For pure states in a bipartite system,
this means that a state |ψ〉 from a Hilbert space H is called separable
if it can be written as a product of states from the Hilbert spaces of
the subsystems, |ψA〉 ∈ HA, |ψB〉 ∈ HB,

|ψ〉 = |ψA〉 ⊗ |ψB〉 . (2.34)

If that is not possible, the state is called entangled.
As an example, let us look at a system of two spins on two sites. If

we split our system such that A measures the spin on one site and B
on the other, then the state

|↑↑〉+ |↑↓〉 = |↑〉A ⊗ (|↑〉+ |↓〉)B

is a separable state, while the state

|↓↑〉+ |↑↓〉

is entangled.
To define entanglement for mixed states, we have to adapt the

previous definition. A product state in this case can be written as
ρ = ρA ⊗ ρB. These states are separable, however, the complete set of
separable states is defined as [GT09]

ρ =
∑
i

pi ρi,A ⊗ ρi,B, (2.35)
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where pi are convex weights of the product states ρi,A ⊗ ρi,B. The
first case of separable states describes an uncorrelated state, while the
second case of separable states describes classically correlated states.

An example for an uncorrelated mixed state would be ρ = ρA⊗ ρB
with

ρA = (|↑〉 〈↑|)A =

(
1 0

0 0

)
A

ρB =
1

2
(|↑〉 〈↑|+ |↓〉 〈↓|)B =

(
1/2 0

0 1/2

)
B

.

Here, the measurement outcome in subsystem A is independent of
the measurement outcome in subsystem B. A classically correlated
state would, for example, be ρ = 1

2ρ1,A ⊗ ρ1,B + 1
2ρ2,A ⊗ ρ2,B, with

ρ1,A ⊗ ρ1,B =

(
1 0

0 0

)
A

⊗

(
0 0

0 1

)
B

ρ2,A ⊗ ρ2,B =

(
0 0

0 1

)
A

⊗

(
1 0

0 0

)
B

,

where the outcomes are always anti-aligned. A state with a density
matrix

ρ =
1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 ,

using the basis |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉, is an example of an entangled state
in the density matrix notation [Ved03].

2.3.2 Entanglement Witnesses and Entanglement Entropy

Determining whether or not a state is entangled by analyzing its
density matrix can be a hard problem [Gur04; Gha10]. Therefore, it
makes sense to look for entanglement witnesses. These are observ-
ables which, if evaluated with a separable state, are bounded. If a
measurement violates this bound, then the observed state was entan-
gled (Figure 2.5). The exact expression for the witness depends on the
system which is being studied. The witnesses specific to our experi-
ments with a double well will be presented in Chapter 7.

While entanglement witnesses can be very convenient, some of the
entangled states may not be detected by the witness if they do not
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Figure 2.5: Visualization of an entanglement witness W which separates the
Hilbert space in a part containing only entangled states and a
part containing also separable states. The Peres-Horodecki crite-
rion (dashed, blue curve) exactly separates entangled from sepa-
rable states for appropriate systems.

violate the bound. For small systems, one can instead look at the
partial transpose of the density matrix,

ρ =
∑
ijkl

pij,kl |i〉 〈j|⊗ |k〉 〈l| (2.36)

⇒ ρTA =
∑
ijkl

pij,kl (|i〉 〈j|)T ⊗ |k〉 〈l| =
∑
ijkl

pji,kl |i〉 〈j|⊗ |k〉 〈l| ,

(2.37)

where the system has been divided into two parts A and B. The
Peres-Horodecki criterion (PHC) [Per96; HHH96] tells us that, for a
separable state, the eigenvalues of the density matrix after a partial
transpose are positive-semidefinite (ρTA > 0). For systems with di-
mensions 2× 2 or 2× 3, this is a necessary and sufficient condition
for separability, meaning that it will exactly distinguish between en-
tangled and separable states.

Another quantity which is often used in larger systems (for exam-
ple in [Isl+

15]) to identify entanglement is the entanglement entropy.
As we had noted earlier, the separability of states is related to the
ability to fully describe subsystems individually. It turns out that,
for a pure, entangled state, its subsystems will be mixed states when
treated independently. A peculiar consequence is that the subsystems
can actually have more entropy than the combined system [HH96], a
behavior that would not occur for classical systems. While we may
not have to rely on entanglement entropy for our small experimental
systems, where we may use the use the PHC or other entanglement
witnesses instead, its usage for large systems makes it an interesting
quantity nevertheless.

One way to quantify the entanglement entropy is by determining
the purity of a (sub)system. While for any closed system Tr ρ = 1 by
definition, only pure states will have Tr ρ2 = 1. Hence, we can use
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V ≡ Tr ρ2 as a measure for the purity. It can be used to define the
linear entropy

Slin(ρA) ≡ 1− Tr ρ2A, (2.38)

as, for example, in [Zan02]. Here, ρA stands for the state that remains
if subsystem B is traced out of the combined state ψ, also called a
partial trace:

ρA =
∑
i

B〈i| ρ̂ |i〉B . (2.39)

If the linear entropy of the subsystem is larger than zero, it was en-
tangled to the other subsystem and the combined state is said to be
entangled7. The purity can also be measured with the Rényi entropy
Sn(ρA) =

1
1−n log2 Tr ρnA in second order (n = 2):

SRen2(ρA) = − log2 Tr ρ2A. (2.40)

The linear entropy and the second-order Rényi entropy can be seen
as a lower bound of a more familiar definition of entropy, the von
Neumann entropy SvN(ρ) = −Tr(ρ log2 ρ). With it, we can define the
entanglement of formation [Woo98]

EF(ψ) = SvN(ρA) = SvN(ρB) (2.41a)

EF(ρ) = min
∑
i

piEF(ψi). (2.41b)

In the first line, the entropy of subsystem ρA quantifies the entangle-
ment of the combined state ψ. The second line contains the definition
for mixed states, where the density matrix is written in a pure-state
decomposition ρ =

∑
i pi |ψi〉 〈ψi|. The minimum refers to choice of

the basis for the decomposition which provides the least average en-
tanglement.

Yet another definition of entanglement is the entanglement of parti-
cles [WV03; DDW06]. It is motivated by the fact that the observers
know how many particle they measure, i.e., the particle number is
conserved for each partition. Therefore entanglement between modes
of with different particle numbers nA,nB may not contribute to the
entanglement of particles. It can be calculated by first evaluating the
mode entanglement EM for fixed particle numbers separately, and
then summing over the results, weighted by the probability of find-
ing a state with such particle number PnA,nB :

EP(ρ) =
∑
nA,nB

PnA,nBEM(ρnA,nB) (2.42)

7 The entanglement measured in this way is the mode entanglement.
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A measure for the mode entanglement can for example be the entan-
glement of formation EF.

The difference between entanglement of particles and mode entan-
glement can be easily understood by looking at a system containing
only one particle: It may contain entanglement between two or more
of the modes, but there typically is no simple way to distinguish it
from a mixed state, because the particle can be measured only in one
mode at a time [DDW06]. Thus, the entanglement of particles would
be zero.

2.4 hubbard model

The previous sections showed the role of correlations and entangle-
ment for quantum systems in a very general manner. It was shown
that the many-body wavefunction of identical particles could be ex-
pressed in the Fock basis by the occupation numbers of its single-
particle modes. Also, operators could be written in such a way that
they acted on this Hilbert space, forgoing the need to calculate inte-
grals explicitly to obtain expectation values of observables.

A particular application of this formalism in the context of con-
densed matter physics and ultracold atoms is the Hubbard model. It
was conceived originally to describe interacting electrons on a crystal
lattice [Hub63], however it can also be applied to ultracold atomic
gases [Jak+

98; JZ05; Ess10], where neutral atoms are confined in op-
tical lattice potentials. The Hubbard model is seen as a promising
model to describe many-body problems, because it provides a simpli-
fied description, but is still complex enough to give rise to a multitude
of interesting phases and behaviors. In this section, I will show the
approximations which enter in the most basic version of the Hubbard
model and highlight a few of its properties.

2.4.1 Hubbard Model Hamiltonian

The single-particle modes of the Hubbard model are Wannier states
wi(x) = w(x− xi) which describe particles localized on the sites xi
of a spatial array, for example, a lattice. In the single-band approx-
imation, a Wannier state describes only one of the motional states
of its site, typically the ground state. For example, if the potential
is harmonic on each site, the Wannier function would be the lowest
eigenstate, a Gaussian.

This tight-binding approximation is used to introduce several sim-
plifications to the general many-body Hamiltonian. The kinetic term
of the Hubbard Hamiltonian only contains the movement of the par-
ticle to neighboring sites (also called hopping or tunneling), and two-
body interactions are assumed to be short-range and apply only if
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multiple particles occupy the same site. Expressed with operators
which act on the Fock basis, it reads [Sca16]

H = −J
∑
σ,〈i,j〉

â
†
iσâjσ +U

∑
j

n̂j↓n̂j↑ − µ
∑
j

(
n̂j↓ + n̂j↑

)
(2.43)

for fermionic atoms with two spin components, where the first sum
runs over all neighboring sites 〈i, j〉. For identical bosonic atoms, the
Hamiltonian is slightly different, mainly due to the fact that multiple
bosons can occupy the same mode,

HB = −J
∑
〈i,j〉

(
â
†
iâj

)
+
U

2

∑
j

n̂j
(
n̂j − 1

)
− µ
∑
j

n̂j. (2.44)

In both cases, the kinetic and interaction terms are characterized
by a single parameter each, which furthermore is the same for all
lattice sites. For the further discussion, it is sufficient to treat these
parameters as values, however, they can also be explicitly calculated:

J ≡ Jij =
∫

drw∗i (r) ĥwj(r) (2.45a)

U ≡ Uii =
∫ ∫

dr1 dr2w∗i (r1)w
∗
i (r2)Vint(r1, r2)wi(r2)wi(r1)

(2.45b)

The tunnel coupling energy J depends on the wavefunction overlap
on neighboring sites i, j and is a single-particle effect (with the single-
particle Hamiltonian ĥ). The interaction energy U is a two-particle
effect and depends on the square of the on-site density and the in-
teraction potential Vint. The chemical potential term µ corresponds
to the energy needed to add a particle to the system. If it depends
on the lattice site, it can be used to include external potentials in the
Hubbard model.

We can now characterize the energy spectrum and the eigenstates
of the Hubbard model, i.e., diagonalize the Hamiltonian. We see that
we have two competing terms, the kinetic term, which is off-diagonal
in our choice of basis, and the interaction term, which gives contri-
butions along the diagonal. For different tunneling strengths and in-
teraction strengths, the eigenvalue problem will give different results.
Additional factors to take into account are the system size (number of
sites) and the filling factor (average number of particles per site). So-
lutions can be found analytically for finite systems by exact diagonal-
ization [Lin+

93; Rav+
17], however, the increasing size of the Hilbert

space makes this approach impractical for large systems. For large
systems away from half filling8 and for different extensions of the
Hubbard model, other techniques such as quantum Monte Carlo or
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(a) (b)

Figure 2.6: (a) Non-interacting state, where hopping and double occupancy
are allowed. (b) Strongly repulsive state, where double occu-
pancy is suppressed by the interaction energy U. Adapted from
[Sca16]

dynamical mean-field theory have to be used. Due to the complexity
of these systems, they are still a subject of ongoing research [LNW06;
Dut+

15].

2.4.2 Limiting States of the Fermi-Hubbard Model

To gain an intuition of the eigenstates of the Hubbard model, it makes
sense to look at its limits, namely, strong repulsive interactions U� J,
strong tunneling J � |U|, and strong attractive interactions |U| � J,
U < 0 (Figure 2.6). In this section, we will restrict ourselves to the
results for fermionic particles.

In the first case with U � J and J = 0, we see that the Fock states
on each separate lattice site i, |0〉i, |↑〉i = â

†
i,↑ |0〉, |↓〉 = â

†
i,↓ |0〉, and

|↑↓〉 = â†i,↑â
†
i,↓ |0〉, are eigenstates of the Hamiltonian with the eigenen-

ergies 0, −µ, −µ, and −2µ+U. The many-body eigenstates are sim-
ply product states over all M sites, Ψ =

∏M
i=1 |ni〉 = |n1, . . . ,nM〉. For

chemical potentials 0 < µ < U, our system will be half-filled with
N = N↑ +N↓ = M particles, and the energy of the system will be
−µM.

At zero temperature and zero tunneling, interactions prevent parti-
cles from hopping to already occupied sites. In the ground state, there
will be exactly one particle per site, while excitations are gapped by
the interaction energy U. This means that the particle number fluctu-
ations on each site are suppressed. This is also clearly visible in the
local moment [Sca16],

〈m̂i〉 =
〈
(n̂i,↑ − n̂i,↓)

2
〉
=
〈
n̂i,↑ + n̂i,↓

〉
− 2

〈
n̂i,↑n̂i,↓

〉
, (2.46)

8 N↑ = N↓ =M/2, where M is the number of sites.
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which is exactly 1 in the extreme case of J = 0. The first term counts
the particle on site i, while the second term subtracts the doubly
occupied sites Di =

〈
n̂i,↑n̂i,↓

〉
. Any admixture of non-occupied or

doubly-occupied sites, for example from tunneling or finite tempera-
tures, will reduce the local moment below 1, while still maintaining
overall half-filling.

In the non-interacting case U = 0, the Hamiltonian is not diagonal
anymore in the ai,σ basis. Instead, one can transform the creation and
annihilation operators to the momentum basis,

a
†
k,σ =

1√
M

∑
j

eik·rj a†j,σ. (2.47)

Using these operators, the Hamiltonian becomes

H =
∑
k,σ

(εk − µ)a†k,σak,σ. (2.48)

εk stands for the dispersion relation. For a one-dimensional lattice,
εk = −2J coskd with lattice spacing d. For µ = 0, the lattice will
be half-filled and each spin state will occupy half of its band9. The
energy will be lower than compared to the strongly repulsive case by
−2JM. Because half of the band is empty for either spin state, this
state has no excitation gap and resembles a metallic state.

Still at half-filling, the average occupation in the position basis of
a site i will still be

〈
ni,↑ +ni,↓

〉
= 1. However, the local moment will

be only 〈m〉 = 1/2 due to empty and doubly occupied sites. This is
possible because the individual particles are mobile and uncorrelated
to the other particles, meaning that, for each site, the four states of its
individual Fock space will be occupied with equal probability.

For strong attractive interactions U � 0, the system can be treated
in the same way as in the strongly repulsive case10. While, for 0 <
µ < |U| /2, the average particle number per site will be 1, the particles
will favor double occupancy. The resulting state will have 〈m〉 = 0

and resemble a charge-density wave.
If the system is not in one of these three extreme cases, there is

no obvious basis choice anymore to diagonalize the Hamiltonian and
it is more difficult to find its ground state. Both the tunneling term
and interaction term of the Hamiltonian are now relevant and a new
energy scale ∝ −J2/U enters the problem, the superexchange energy.
It is caused by a second-order process which can be derived from
perturbation theory. This process describes the exchange of two spins
(∝ J2) via an intermediate, forbidden doubly occupied state (∝ U,
see Figure 2.7). The superexchange term can be understood as an

9 The particles cannot all occupy the lowest momenta due to the exclusion principle.
10 This can be shown rigorously by performing a particle-hole transformation.
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Figure 2.7: Schematic depiction of the superexchange process which swaps
two distinguishable spins via an intermediate excited state. This
process lowers the energy of the system by 4J2/U. Superex-
change is suppressed for identical spins which cannot occupy
the same lattice site. From [Tro+

08].

effective spin-spin coupling and the repulsive Hubbard model can be
mapped to the Heisenberg model which describes spins on a lattice.
This mechanism can lead to magnetically ordered phases such as the
antiferromagnetic state [LM62; Lie89] and other interesting phases,
for example, resonating valence bonds [And87].

2.4.3 Correlations in the Hubbard Model

There are plenty of approaches to characterize the phases of systems
which are described by the Hubbard model. Depending on the ex-
perimental realization, one can measure the compressibility, double-
occupancy, singlet fraction, etc. In this section, I will describe an ex-
periment with ultracold bosonic atoms where two-point correlations
in the density 〈n(x1)n(x2)〉 were studied after a time-of-flight expan-
sion [Föl+

05; Föl08; Rom+
06; Rom09] (for a review of several similar

experiments, see [Föl14]). This type of measurement can be related di-
rectly to the HBT correlation measurements introduced earlier in this
chapter and can also be applied to some of our experiments. There-
fore, I will briefly explain the concepts of the experiment by Fölling
et al. in this section, and show more detailed derivations specific to
our experiment in Chapter 7.

In Fölling’s experiment, bosonic 87Rb atoms are cooled to quantum
degeneracy and then transferred into an optical lattice, where they
can be described by the Bose-Hubbard model. For weak interactions,
the gas is in superfluid state [Gre+

02], while for strong interactions,
it forms a Mott insulator. The density of the system is measured after
releasing the atoms, essentially projecting each atom on a set of free
plane waves originating from its initial lattice site and letting these
free waves propagate.

After a long time-of-flight (TOF) expansion, this corresponds to a
measurement of the momentum density n(x) ≈ n

(  hk
m t
)
∝ n(k). The

density is probed by absorption imaging, where a laser beam passes
through the atom cloud and its shadow is recorded with a camera
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(a) (b) (c)

Figure 2.8: (a) Density distribution of the superfluid phase of the Bose-
Hubbard model after time-of-flight expansion. From [Gre+

02]. (b)
Density distribution of the Mott-insulating phase. (c) Two-point
density correlations of the Mott-insulating phase. Panels (b) and
(c) are from [Föl+05].

from different direction. From these projections, the actual density
distribution of the atoms can be inferred, and this imaging method is
equivalent to the array of detectors in Section 2.2.3.

Let us first look at the case where there are no interactions. Before
the release, each atom will be delocalized over the entire lattice and
will have an equal occupation probability on any site. Because the
atoms do not interact with each other, the density distribution of the
many-particle system can be seen as a sum of the density distribution
of the individual particles. Using eq. (2.20) to evaluate the density
(one-point correlation function), we see that the phases of the differ-
ent sites add up coherently for each single atom. Consequently, the
measured density distribution resembles the pattern of a diffraction
grating (Figure 2.8a).

The density distribution looks drastically different in the case of
strong repulsive interactions11. It is described by a Gaussian distri-
bution, seemingly the sum of many independent atoms localized on
their individual sites prior to release. Looking at the two-point cor-
relation function, i.e., the fluctuations on this density profile, reveals
that the atoms are in fact not independent from each other. The Mott-
insulating state |1, 1, . . . , 1〉 resembles the states which we discussed in
the context of the HBT effect (Section 2.2.3). Therefore, the two-point
correlation function shows an oscillatory behavior similar to (2.30).
Because in these experiments particles from M periodic lattice sites
can interfere, the peaks will be sharper and the correlation function
will be C(d) ∝ sin(πMd)2/ sin(πd)2 [Föl08].

11 For now, we will ignore the interactions during the expansion after the lattice has
been turned off.
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In the previous chapter, we have seen how correlations can be used
to probe the properties of a many-body system. They can reveal the
inherent (anti)symmetry of many-body states consisting of indistin-
guishable particles (e.g., via the HBT bump/dip). They can also show
the properties of generic quantum many-body states, for example, in
systems with interactions between the particles. If we want to study
these states systematically, we must be able to create and control them
in a deterministic way. This is where systems of ultracold atomic
gases excel, with their long coherence times, their high level of control
over the spatial and motional degrees of freedom of individual parti-
cles and the tunable interaction between particles. Additionally, ultra-
cold gases provide a range of different observables to detect the pre-
pared quantum states (see [BZ08] for a review). Even though the goal
of ultracold-atom experiments is to study abstract quantum systems,
it is important to understand their actual implementation. Therefore,
we will review two concepts of atomic physics and scattering theory
which are relevant for our experiments.

First, we will look at the mechanism used to control the external
degrees of freedom of individual atoms. A neutral atom can interact
with its environment via electromagnetic fields of various characters,
for example with light fields, static magnetic fields, radio frequency
(RF) fields, etc. [CT03; CTD05] We will focus on off-resonant atom-
light interactions, which can give rise to conservative potentials called
optical dipole traps (ODTs). These potentials confine our atoms and
create the spatial modes of our quantum systems.

Next, we will see how multiple atoms interact among each other.
This has to be described in principle by a many-body Hamiltonian
ĤIA(r1, . . . , rN), which depends on the states of all N particles. How-
ever, in our experiment, the interactions can be effectively described
by two-body s-wave scattering and Feshbach resonances, which arise
from an interplay of the Van der Waals (VDW) interactions and an
external magnetic field.

With both optical confinement and two-body scattering, we will be
able to describe our experiments in Chapters 6 and 7, which explore
the dynamics of interacting particles in harmonic potentials.

3.1 dipole trapping of neutral atoms

Dipole trapping of neutral atoms relies on dipole interactions be-
tween the oscillating electric field of light and the induced electric

29



30 atomic physics

dipole moment of the atom. If the oscillation frequency of the electric
field resonantly matches a transition frequency between two atomic
eigenstates (and all relevant selection rules), the atom can absorb a
photon from the light field or scatter a photon into the light field.
Because there always is a random contribution to this process (spon-
taneous emissions), it does not result in a conservative potential and
is therefore not suited for making quantum systems with long coher-
ence times1.

If the light is instead far off-resonant, it will neither drive transi-
tions between internal states of the atom nor will photons be taken
out of the light field. Therefore, one can treat its effect as a perturba-
tion on the states of the bare atom. Applying perturbation theory, the
energy shift for a generic state |j〉 becomes

∆Ej =
∑
k6=j

∣∣〈j| ĥAL |k〉
∣∣2

Ek − Ej
. (3.1)

We can arrive at an expression for the atom-light Hamiltonian ĥAL

by comparing to classical theory. Classically, the energy of a dipole in
an electric field is Edip = −p · E, which becomes Edip = −12

〈
αE2

〉
for

a dipole which has been induced by oscillating field itself, introduc-
ing the polarizability α. The goal of the perturbative calculation is to
obtain the value of α for the atom, using the operator

ĥAL = −e r̂ · E. (3.2)

The states |j〉 in eq. (3.1) contain the eigenstates of the bare atom
|J,mJ〉 (with electronic angular momentum J and the corresponding
magnetic quantum number mJ) as well as the state of the light field.

To gain an intuition, it makes sense to look at a two-level atom with
states |g〉 and |e〉. The sums in eq. (3.1) will now contain only one term,
namely

∣∣〈e,L ′| ĥAL |g,L〉
∣∣2, where L, L ′ stand for the states of the

light field E(t) ∝ |E| eiωt which couples both atomic states. We can
take its contribution into account by evaluating in the dressed-state
picture. The energy with the dressing light field will be Eg,0 = n hω

for the ground state and Ee,0 =  hω0+(n− 1)  hω for the excited state,
where  hω0 is the energy difference for the bare atomic states. In the
second expression, one energy quantum of the light field has been
absorbed and the atom has been excited. The problem can now be
treated as a textbook coupled two-level system with an energy shift
(see Figure 3.1, [GWO00]):

∆Ee,g = ±
|〈e| p̂ |g〉|2

∆
|E|2 = ±3πc

2

2ω30

Γ

∆
|E|2 , (3.3)

1 However, light scattering is essential for preparing and detecting these systems, as
will be described in Chapters 4 and 5.
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Figure 3.1: Energy diagram of a two-level atom with a light shift. The left
panel shows how coupling decreases the ground state energy
and increases the excited state energy. The right panel shows
how this can lead to a confining potential if the energy shift is
spatially dependent. From [GWO00].

where  h∆ = Eg,0 − Ee,0 =  h (ω−ω0) is the detuning of the light
field with respect to the bare transition. In the second step, the cou-
pling matrix element was replaced by the spontaneous decay rate

Γ =
ω30

3πε0 hc3
|〈e| p̂ |g〉|2. We can see that the coupling decreases the en-

ergy of the ground state while it increases the energy of the excited
state.

Often, real atoms cannot be described by two-level systems and
all allowed transitions between electronic states |J,mJ〉 and |K,mK〉
in eq. (3.1) have to be taken into account for the calculation of the
polarizability. For excited states, the negative energy shifts from the
coupling to other excited states will compete with the positive en-
ergy shift from the coupling to the ground state, and a qualitative
prediction of the polarizability like in the two-level case is difficult.
The calculation of the polarizabilities is quite lengthy [För15; KLH68;
Joh09] and involves transition rules and Clebsch-Gordan coefficients.
It results in

α = e2

(
α
(0)
J +

3m2J − J(J+ 1)

J(2J− 1)
α
(2)
J

)
, (3.4)

which contains the scalar polarizability α(0)
J and the tensor polariz-

ability α(2)
J . These quantities can be calculated from the overlap inte-

grals of the dipole operator and the energy eigenvalues of the bare
atom. For 6Li, the polarizabilities are shown in Figure 4.3. In gen-
eral, every state with different quantum numbers J,mJ has a different
value for the polarizability for every wavelength2.

If we are far enough away from the resonance, we can effectively
treat the energy shift induced by off-resonant light as an external,

2 Exceptions are the points where two polarizability curves cross, called magic wave-
lengths. There, atoms in different states may experience the same optical potential.
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conservative potential for the bare atoms. It depends on the intensity
profile of the laser I = 1

2cε0 |E|
2, which we can use to express the

optical dipole potential:

Vdip(r) = −
1

2ε0c
<(α) I(r). (3.5)

We can therefore create attractive potentials using far-red detuned
light fields, which yield a positive polarizability. If we choose an ap-
propriate spatial mode of the light field, e.g., a Gaussian beam, we
can confine neutral atoms in these potentials.

3.2 scattering theory and feshbach resonances

While we treated the interactions of atoms with the external light field
in the single-particle picture3, the description of interactions between
atoms in general requires the total wavefunction of multiple parti-
cles. For systems with long-range interactions, such as the Coulomb
interaction for charged particles, it can be difficult to reduce the de-
scription of the interactions to a few-particle problem4.

In our experiment, the collisions between the neutral atoms are
governed by Van der Waals interactions which have a short effective
range rsc on the order of the Van der Waals length [Fri13]

β6 = (2µC6/ h
2)1/4, (3.6)

where µ is the reduced mass and C6 the Van der Waals C6 coefficient.
In a dilute gas, it is therefore a good assumption that collisions be-
tween more than two particles are rare, which allows for a simpler,
two-particle description of the interactions. However, this argument
breaks down for degenerate quantum gases, where the number den-
sity per phase space cell can exceed one. This becomes apparent espe-
cially for strongly interacting Bose gases, where inelastic three-body
collisions lead to significant losses when the atoms are strongly inter-
acting [Ino+

98]. In the case of Fermi gases, however, Pauli blocking
between the identical fermions suppresses the probability of finding
more than two particles close to each other [Tan04; Zwe16] and the
interactions can again be described by elastic two-body collisions.

3.2.1 Scattering at Low Energies

First, let us look at how short-range scattering can be described gener-
ically, without specifying the scattering potential. If we treat only

3 Collective effects like superradiance are not covered by this description.
4 Phenomena such as shielding may lead to effective short-range interactions even in

these cases.
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two-body collisions, we may transform to relative coordinate frame
r = r1 − r2 and R = (r1 + r2) /2 instead of using the coordinates of
the individual particles ri. As the interactions depend only on the
relative coordinate r, we can then separate the problem into a center-
of-mass (COM) part without interactions and a relative (REL) part con-
taining the scattering potential Vsc(r). Henceforth, we will only treat
the relative part, which effectively presents a one-body problem:

(
−

 h2

2µ
∇2 + Vsc(r)

)
ψk(r) = Ekψk(r) (3.7)

Detailed discussions of this scattering problem can be found, for ex-
ample, in [LL77; Dal99; Fri13].

Next, we restrict ourselves to scattering potentials which have a
finite range rsc, for example, as in equation (3.6). As we are observ-
ing the scattering process from a large distance, we are interested in
the stationary solution of eq. (3.7) far outside this range. For a given
wavevector k, a general solution can be expressed as the sum of the
incident plane wave and the scattered wavefunction

ψk(r) ∼ e
ik·r + f(k, r)

eikr

r
, (3.8)

where the scattering amplitude f (k, r) contains the magnitude of the
scattered part and the phase shift relative to the incident wave5. The
scattering amplitude is related to the scattering cross section as

dσ
dΩ

= |f|2 . (3.9)

We are now interested in low-energy scattering (rsc � 1/k) with an
isotropic, central scattering potential Vsc(r), which are valid approxi-
mations for the scattering process of two ultracold atoms. Under these
conditions, the scattered wavefunction will be isotropic and only de-
pend on the depth of the potential, the wavenumber k and the angle
between incoming and scattered wave θ:

ψk(r) ∼ e
ik·r + f(k, θ)

eikr

r
(3.10)

To calculate the value of the scattering amplitude, we first look at
the series expansion of a general wavefunction in spherical harmon-
ics, which is a sum of radial and angular wavefunctions that depend

5 Note that the scattered part in the far field is described by a spherical wave; its
wavenumber is the same as the incident wavenumber, as we are looking at elastic
collisions.
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on the main quantum number k and the angular momentum quan-
tum numbers l and m:

ψk(r) =

∞∑
l=0

AlPl(cos θ)
ukl(r)

r
(3.11)

Here, we already used the fact that our wavefunctions must be az-
imuthally symmetric (independent of φ, i.e., m = 0), which reduces
the angular part of the wavefunction to Legendre polynomials Pl. The
radial wavefunction is given by ukl, and Al are the expansion coeffi-
cients to be determined.

We can now use this wavefunction to evaluate eq. (3.7). If we write
our operators in spherical coordinates, we obtain a set of independent
radial equations, one for each value of l:(

−
 h2

2µ

d2

dr2
+
l (l+ 1)  h2

2µr2
+ Vsc(r)

)
ukl(r) = Ek ukl(r) (3.12)

From [LL77; Fri13] we know that the asymptotic radial solutions are6

ukl ≈ 2 sin(kr− lπ/2+ δl)

=
1

i

(
−ile−i(kr+δl) + (−i)lei(kr+δl)

)
,

(3.13)

with the scattering phase shifts δl.
Inserting (3.13) back into (3.11), the full wavefunction can now be

written as

ψk =
1

ir

∞∑
l=0

AlPl(cos θ)e−iδl
(
−ile−ikr + (−i)le2iδleikr

)
. (3.14)

It is a superposition of spherical waves with different phases δl, which
is similar to the structure of the second term of our ansatz (3.10). Also,
the first term in our ansatz describing the incident particle can be
expressed in this form by using spherical coordinates:

eikz =
1

2ikr

∞∑
l=0

(2l+ 1)Pl(cos θ)
(
(−1)l+1e−ikr + eikr

)
, (3.15)

where we defined the axis of incidence to be along the z-axis. If we
can find out how this equation is contained in (3.14), then we can
identify the scattering amplitude f. Or, stating it differently, if we can
find Al such that (3.15) splits off from (3.14) while only outgoing

6 In the far field, where the Vsc becomes negligible, the solution must be a linear com-
bination of the free-particle solutions ukl ∝ A sin(kr− lπ/2) + B cos(kr− lπ/2) ∝
sin(kr− lπ/2+ δl), with tan δl = B

A .
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waves with e+ikr remain, then we can identify those as the part of
the wavefunction that has been scattered. This is the case for

Al =
1

2k
(2l+ 1)ileiδl , (3.16)

which brings (3.14) into the form of (3.10) with the scattering ampli-
tude

f(k, θ) =
∑
l

(2l+ 1)flPl(cos θ). (3.17)

Here, we have defined the partial scattering amplitudes7

fl =
1

2ik

(
e2iδl − 1

)
=

1

k cot δl − ik
, (3.18)

which express with which magnitude and phase the scattering poten-
tial scatters the individual partial waves of the incident particle.

Now we want to see which partial waves contribute most to the
scattering at low energies (krsc � 1). It turns out that the phase de-
pends on the momentum as [LL77; Fri13]

tan(δl) ∝ k2l+1. (3.19)

Intuitively, this behavior can be understood from the Wigner thresh-
old law: For small k, the effect of scattering will be suppressed for
higher angular momenta l due to the larger centrifugal barrier8. Con-
sequently, the partial scattering amplitudes for l > 0 vanish9 for low-

energy scattering as fl ∝ k2l
k→0−→ 0.

For l = 0, we insert the relation

tan(δ0) = −ak (3.20)

into eq. (3.18), where the proportionality factor a is called the s-wave
scattering length. Now, for k → 0, we obtain the value for the total
scattering amplitude:

f(k, θ) ≈ f0 ≈ −a (3.21)

Let us consider a few important consequences of this relation:

7 Using the identity cotα− i = cosα−i sinα
sinα = e−iα

sinα
8 Note that this is a general result without choosing a specific scattering potential.
9 Depending on the exact shape of Vsc, resonant bound states may lead to shape

resonances which can enhance the contributions of the partial scattering amplitudes
with l > 0.
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Figure 3.2: Geometrical visualization of the scattering length. The radial
wavefunction in shown in blue. For r < rsc, its behavior depends
strongly on the scattering potential. The asymptotic behavior for
r → ∞ can be described with the scattering length a and the
phase shift δ0 (see text).

• At low energies, only the partial wave with l = 0 can scatter off
the scattering potential. The partial waves with higher angular
momentum are reflected by the centrifugal barrier. This type of
scattering is called s-wave scattering.

• The effect of the scattering potential depends only on a single
parameter a and expresses itself as a shift and scaling of the
asymptotic scattered partial wave, called the scattering ampli-
tude f.

• The scattering length a can be understood as the point where
the linear expansion around r = 0 of the asymptotic wave func-
tion u ∼ sin(kr+ δ0) crosses the abscissa [FM47] (Figure 3.2),

ulin ∝
(
r+

tan δ0
k

)
.

• The scattering amplitude does not depend on the collision angle
or momentum of the scattering particles. The scattering cross
section for distinguishable particles becomes

σ =

∫
|f|2 dΩ = 4πa2. (3.22)

• For identical fermions, symmetric spatial wavefunctions with
l = 0, 2, 4, . . . cannot be populated because of the antisymmetry
requirement for their total wavefunction. Therefore, they cannot
interact for k→ 0, as also s-wave scattering is suppressed.

It has become clear that the scattering length a is crucial for de-
scribing interactions between ultracold atoms. In the next section, I
will show how a depends on the underlying scattering potential.
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(a) (b)

Figure 3.3: (a) Scattering length a and (b) phase shift δ0 in a square po-
tential. The scattering length diverges and acquires a sign flip
at k0R = (2n − 1)π/2, with n > 1 and k0 =

√
2µV0/ h. Note

that, for deep potentials with multiple bound states (V0 � 0),
the resonance become narrow and a/R will remain close to
one away from the resonance (dashed line). For the phase shift,
((δ0 + π/2) mod π) − π/2 is shown for kR = 0.1.

3.2.2 Zero-Energy Scattering Resonances

The value of the scattering length a depends a priori on the exact
characteristics of the scattering potential. However, it may show uni-
versal resonant behavior if the energy of the incoming particle is res-
onant with a (nearly) bound state. As a result, the scattering length
may become very large and can even switch sign, compared to the
non-resonant case. The simplest example for such a scattering length
resonance is a zero-energy resonance. I will show an example of this
using a generic square well potential following [Dal99], but realistic
potentials exhibit similar behavior.

A spherical hard-core potential is described by an infinitely high
box potential of size R in the radial Schrödinger equation. This means
that the wavefunction will be expelled from the region r < R and all
of its nodes will be displaced by d0 = R. This displacement can be re-
lated to the phase shift as d0 = δ0/k. Clearly, for longer wavelengths
it will amount to a smaller phase shift, whereas the scattering length
will be independent of k: a ≈ −δ0/k = R.

For a potential with a finite height V0, the wavefunction will be only
partially expelled from the core region. In the far field, a displacement
of the nodes will remain, however its value will be 0 < d0 < R. Also,
the scattering length will take values between 0 and R. One can cal-
culate the exact value by solving the radial Schrödinger equation in
and outside the box separately and matching both solutions on the
boundary (see Figure 3.3a for k0R > 0).

For attractive potentials, the wavefunction will be pulled inward
and the scattering length becomes negative. Unlike the repulsive case,
it is not bounded and can become smaller than −R. The reason is the
first bound state that appears at a depth of V0 = −π

2 h2

2µR2
and that
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(a) (b)

Figure 3.4: Wavefunction (blue) above (a) and below (b) a zero-energy res-
onance of a square well scattering potential (black). The linear
expansion of the wavefunction (dashed, magenta) intercepts the
abscissa at a (not shown in the graphs). The energy of the bound
state is shown as a dotted line.

pulls in a node from the continuum into the range r < R. This causes
the phase δ0 to increase to π/2, which leads to a singularity with a
sign flip in a. When increasing the depth of the potential further, the
bound state becomes more deeply bound and the phase shift will
tend to π− kR. An illustration of this process close to a resonance is
shown in Figure 3.4.

This behavior of δ0 and a is called a zero-energy resonance and
reoccurs as the depth of the potential is increased and additional
bound states appear. a and δ0 are shown for a range of potential
depths in Figure 3.3. These resonances are not exclusive to square po-
tential wells, but can be found for any potential that supports bound
states. This means that, by changing the depth of the scattering po-
tential around a zero-energy resonance, the scattering behavior can be
tuned from “infinitely repulsive” all the way to “infinitely attractive”.

3.2.3 Feshbach Resonances

Up to this point, we considered two abstract scatterers with a conve-
nient scattering potential. Of course, for actual atomic collisions, we
should use the correct molecular potential, which cannot be manip-
ulated so easily to make use of scattering resonances. Among other
things, it depends on the symmetry of the scattering wavefunction:
A spatially symmetric electronic wavefunction allows much better
shielding of the repulsive nuclei from each other than an antisym-
metric wavefunction, leading to a much deeper molecular potential.
These two cases lead to two separate scattering channels10, depend-
ing on the initial configuration of the scatterers. A channel whose
potential energy at R → ∞ which is smaller than the energy of the
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Figure 3.5: Open- and closed-channel scattering potentials of a particle with
energy E close to a Feshbach resonance (Ec ≈ E). Adapted from
[Chi+10].

scatterers is called an open channel, while channels above this thresh-
old are called closed channels.

If there is a mechanism which couples these channels, e.g., the spin-
spin coupling of the electron spins at short distances, the properties
of closed channels can influence the scattering behavior of the open
channel. In particular, if a bound state of a coupled closed channel
is resonant to the energy of the scatterers, this causes a Feshbach res-
onance (Figure 3.5). On the resonance, the scattering length diverges
similar to the case of a zero-energy resonance. A simple model of
Feshbach resonances has been described in [Chi05], a more general
description was provided in [SMF12].

In the description of the scattering process, we can take the cou-
pling between channels into account by coupling the Schrödinger
equations (3.12) of the bare channels. This is done by replacing the
scalar scattering potentials Vsc,o and Vsc,c (o for open channel, c for
closed channel) with a matrix containing the off-diagonal coupling
terms Vo,c, Vc,o. Following the derivation in [Fri13], we arrive at an
asymptotic solution for the scattering wavefunction

ukl(r)
r→∞−→ 1

cos δres
sin(kr+ δbg + δres), (3.23)

10 For scatterers which have multiple internal states, the different combinations of in-
ternal states form separate channels. For a full calculation, the coupling to these
channels also has to be considered [Hou+

98], but this will be ignored here for sim-
plicity.
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where δbg is the background phase shift of the uncoupled open chan-
nel (cf. eq. (3.13)) and δres is the additional phase shift due to the
Feshbach resonance. It is described by

tan δres = −
Γ/2

E− ER
, (3.24)

where its width is proportional to the coupling strength between the
channels Γ = 2π |〈uc|Vc,o |uo〉|2. The position of the resonance ER is
shifted with respect to the energy of the bound state in the uncou-
pled closed channel Ec to ER = Ec +

〈
uc
∣∣Vc,oĜVo,c

∣∣uc
〉
. The shift con-

tains the open-channel propagator Ĝ and is reminiscent of self-energy
corrections in the T-matrix approach of scattering. It is clear that the
scattering length is strongly influenced by this phase shift and it may
diverge for E ≈ ER.

In experiments with ultracold gases, the energy of the scattering
particles is typically E ∼ kB × 100nK ∼ h× 2 kHz, which is small com-
pared to molecular bound state energies corresponding to GHz or
even THz. Instead of tuning the energy E of the scatterers to match
a bound state in order to control δres, it is more practical to tune
ER into resonance by manipulating the scattering potential of the
channels. This can be done by changing the coupling between two
channels with an optical field (optical Feshbach resonance, see for ex-
ample [Fed+

96; Nic+
15]) or by shifting the energy offset of the poten-

tials relative to each other with a magnetic field B (magnetic Feshbach
resonance). The latter case applies only when the magnetic moment
µ differs between the channels, where the energy difference will be
E ∝ (µo − µc)B. For the magnetic Feshbach resonance, the scattering
length can be expressed as [Chi05]

a(B) ≈ abg

(
1−

∆B

B−B0

)
, (3.25)

where abg is the background scattering length of the uncoupled open
channel and approximately independent of B, and ∆B is the width of
the resonance, i.e., the difference between the resonance position B0
and the zero-crossing B|a=0. In our experiment, we rely on the mag-
netic Feshbach resonance of 6Li to tune the interactions. This Fesh-
bach resonance has some particular properties which I will lay out in
detail in Section 4.1.3.

3.2.4 Feshbach Molecules

Since the open and closed channel are coupled, the adiabatic theorem
tells us that we can transfer population from free scattering states in
the open channel to bound molecular states in the closed channel by
slowly ramping the magnetic field accross the resonance [Hod+

05].
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With this procedure, we can associate diatomic molecules in the high-
est vibrational state without releasing energy or introducing entropy
[GFK09]. Close to the resonance, the two-particle system will con-
sist of a superposition of free particles and bound particles. It turns
out that, for a wide resonance, the contribution of the free particles
is larger (open-channel dominated), while the bound particle state
contributes more for narrow resonances (closed-channel dominated)
[Chi05].

Close to the Feshbach resonance, the energy of a Feshbach molecule
relative to the energy of the bare open channel Eo,b scales as

E− Eo,b = −
 h2

2µa2
. (3.26)

This means that there is a bound state only for positive scattering
length. In this regime, where a � rsc, the wavefunction in the far
field becomes universal and does not depend on the exact shape of
the scattering potential. It behaves as

ψ(r) ∝ e−r/a, (3.27)

and the particles form a halo dimer: On average, the particles are sep-
arated by a/2, which means that they are much further apart than the
range of the scattering potential rsc. When approaching the resonance,
a diverges and the molecule becomes unbound.

Farther away from the resonance, for small positive a, the state is
described well by the bare closed channel. The energy then scales pro-
portionally to the difference in magnetic moments of the bare chan-
nels, E− Eo,b ≈ (µo − µb) |B|.

3.2.5 Contact Interaction

In the previous sections, we have seen that the long-range scattering
behavior for ultracold atoms only depends on the scattering length
a and that a Feshbach resonance can be used to tune its value. Now,
we can incorporate this into the Hamiltonian (3.7) by using a simpler,
effective interaction term Vint instead of the detailed scattering poten-
tial Vsc that would require a precise description of the wavefunction
for short ranges.

We accomplish this by shrinking the range of the scattering po-
tential rsc → 0, while maintaining the correct phase shift δ of the
scattering waves in the far field. If we want to extend the long-range
solution of our wavefunction from eq. (3.13) to r = 0, the boundary
condition to the Schrödinger equation changes from u(0) = 0 to

tan δ =
sin δ
cos δ

= −ka⇔ u ′

u

∣∣∣∣
r=0

= −
1

a
. (3.28)
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As a consequence, we also have to include unphysical terms in the
radial Schrödinger equation (3.12) that we had implicitly omitted
earlier. Using the fact that we can write our radial wavefunction as
ψ(r) =

u(r)
r =

u(0)
r +

u(r)−u(0)
r and that ∇2 1r = −4π δ(r), we instead

obtain

−
 h2

2µ

(
−4πu(0) δ(r) +

u ′′(r)

r

)
+ V(ψ(r)) = E

u(r)

r
. (3.29)

Here, higher angular momenta l > 0 have been excluded, because
their boundary condition remains ul(0) = 0 due to the centrifugal
potential. For the s-wave contribution, we can insert the asymptotic
solution from eq. (3.13) and evaluate the second derivative:

(
 h2k2

2µ
− E+ V

)
ψ(r) = −

2π h2

µ
u(0)δ(r). (3.30)

The first two terms in the sum cancel, and, after substituting the
boundary condition (3.28) on the right hand side, we obtain an ef-
fective pseudo-potential for contact interactions

Vint(ψ(r)) =
2π h2

µ
aδ(r)u ′(0) = g δ(r)

d
dr

(rψ(r)) . (3.31)

The strength of the interaction potential is defined as g = 4π h2

m a and
is proportional to the scattering length.
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E X P E R I M E N TA L S E T U P A N D P R E PA R AT I O N

In this chapter, we will lay out the steps necessary to prepare a few-
fermion system in a deterministic manner. First, we will examine the
properties of Lithium which are relevant for the methods and results
of our experiments. With these properties, we will then describe the
cooling procedure of a 6Li gas. This is the basis our final preparation
step, with which we create deterministic few-fermion systems [Ser11;
Ser+

11]. Finally, we will examine how to prepare low-entropy systems
in multiple microtraps by adiabatically coupling the microtraps.

4.1 properties of lithium

Our experiments use the fermionic isotope of Lithium, 6Li. Due to
the simple structure of its optical transitions and its broad Feshbach
resonance, it is widely used in cold-atoms experiments. This section
will present its optical and collisional properties, which can be found
in more detail in the comprehensive overview written by M. Gehm
[Geh03a].

4.1.1 Internal States and External Magnetic Fields

6Li is made up of three protons, three neutrons and three electrons,
and is therefore, in total, fermionic. Its nucleus has a nuclear spin of
I = 1. Two of its electrons occupy the 1S orbital with the remaining
one being in the 2S orbital. This unpaired electron determines the
chemical and optical properties of Lithium and has a total electronic
angular momentum of J = 1/2. From the ground states, the excited
states 2P

1/2
and 2P

3/2
can be reached via electric dipole transitions

called the D1 and D2 lines, respectively. In our experiment, we only
use the D2-line for optical transitions.

In absence of strong magnetic offset fields, the magnetic moments
of the electron and the nucleus couple to each other leading to the
hyperfine splitting of the energy levels (Figure 4.1) and to new eigen-
states with the total-angular-momentum quantum number F. Due to
the coupling of J and I, the optical transitions are typically not closed
and can for example couple the F = 1/2 and F = 3/2 ground states
manifolds.

When applying an external magnetic field, the magnetic moments
of the electron and nucleus will start to couple to it. This means that
the quantum states described with the total angular momentum F

43
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Figure 4.1: Hyperfine splitting of three lowest-energy states of 6Li for van-
ishing magnetic field. In our experiment, we currently only use
the D2-line for optical transitions. From [Geh03a].

are no longer eigenstates. The new eigenstates of the ground state
manifold can be expressed in the |mJ,mI〉-basis as

|1〉 = |F = 1/2,mF = 1/2〉 = sin θ+ |1/2, 0〉− cos θ+ |−1/2, 1〉
|2〉 = |F = 1/2,mF = −1/2〉 = sin θ− |1/2,−1〉− cos θ− |−1/2, 0〉
|3〉 = |F = 3/2,mF = −3/2〉 = |−1/2,−1〉
|4〉 = |F = 3/2,mF = −1/2〉 = cos θ− |1/2,−1〉+ sin θ− |−1/2, 0〉
|5〉 = |F = 3/2,mF = 1/2〉 = cos θ+ |1/2, 0〉+ sin θ+ |−1/2, 1〉
|6〉 = |F = 3/2,mF = 3/2〉 = |1/2, 1〉 .

(4.1)

We can see that four of the hyperfine states consist of a superposi-
tion of two states in the |J,mJ〉-basis. Their coefficients can be under-
stood as mixing angles, which depend on the strength of the exter-
nal magnetic field and the magnetic moment of the 2S orbital. We
will forgo a detailed discussion of the properties of θ±, which can be
found in [Geh03a]. For our experiment, the most important property
is that the coefficients sin θ± tend to zero for large magnetic fields and
the uncoupled mJ and mI states form a good basis again (hyperfine
Paschen-Back effect).

The two remaining states only consist of one basis state each, with
an extremal value for mF. As their angular-momentum components
align, these states are called stretched states and can be identified
from the energy level diagram Figure 4.2 as the states with a constant
slope.
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(a) (b)

Figure 4.2: (a) Zeeman splitting of the 2S ground state. (b) Zeeman splitting
of the 2P

3/2
excited state. From [Geh03a].

The eigenstates of the 2P
3/2

excited state look similar to the ground
state manifold, however, they have more mJ and mI states available.
Also, they enter the hyperfine Paschen-Back regime at much lower
magnetic fields, since the coupling between the electron and nuclear
magnetic moments is smaller (Figure 4.2b). Unfortunately, they can-
not be diagonalized analytically and the eigenvalue-problem has to
be solved numerically [Geh03b].

4.1.2 Optical Properties

Both during the preparation phase and the detection phase of our
experiment, we utilize light resonant with the D2-line to excite the
atoms. To understand how the atoms scatter the light, we have to
know the resonance frequency of the atomic transition depending
on the magnetic field (Figure 4.2). In the Paschen-Back limit, the fre-
quency shift is approximately proportional to

∆EmJ
(B) ≈ −gJmJµB B, (4.2)

where gJ is the Landé factor and µB = h× 1.40MHz/G is the Bohr
magneton.

The scattering behavior of the atoms also depends on the polariza-
tion, intensity I and detuning ∆ relative to the atomic transition of
the external light field. For example, at 900G, the transition between
|3〉 = |−1/2,−1〉 and |3 ′〉 = |−3/2,−1〉 can be addressed with σ−-light,
in accordance to the angular-momentum selection rules. Compared
to the D2-line at 0G (eq. 4.2, Figure 4.1), the resonance frequency of
this transition is lowered by −1.34GHz.

The excited atom can return to the ground state via spontaneous
emission or via stimulated emission. In the spontaneous emission pro-
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Figure 4.3: Polarizability of 6Li for the 2P
3/2

, mj = 1/2 ground state (red)
and the 2P

3/2
, mj = 1/2 and mj = 3/2 excited states (blue and

orange, respectively). From [För15].

cess, the atom will emit into a random direction following the dipole
emission pattern. The spontaneous emission rate can be calculated as

Γsc =
Γ

2

I/Isat

1+ I/Isat + (2∆/Γ)2
(4.3)

and depends on the spontaneous decay rate Γ and the saturation in-
tensity Isat, which are given in Table 4.1.

Stimulated emission leads to a coherent transfer of the excited-state
atom back to the ground state, as the photon is re-emitted into the
original mode of the external light field. This happens at a rate called
the Rabi frequency,

Ω

Γ
=

√
I

2Isat
. (4.4)

In both cases, because the light mainly couples to the electrons
electric dipole moment (see eq. 3.2), the atom will decay to a state
with a certain electronic quantum number mJ. As we can see from eq.
(4.1), this is not necessarily an eigenstate of the atom, therefore the
atom may end up in a different hyperfine state after having scattered
a photon (open transition). Only the stretched states consist of a single
basis state and can be used for closed optical transitions.

If the light is far off-resonant, the scattering rate will decrease as
∆−2 (eq. (4.3)), until it barely excites the atoms anymore. In this case,
the effect of the light field on the atoms can be described by a shift
of the bare atomic energy levels (AC-Stark shift, see Section 3.1). The
energy shift is proportional to the polarizability α, which can be calcu-
lated for Lithium with perturbation theory [SSC13; För15]. For wave-
lengths above approximately 820nm, both the 2S-state and the 2P

3/2
-

state have a positive polarizability (Table 4.1, Figure 4.3). This means



4.1 properties of lithium 47

Optical Properties Value

Wavelength D2-line 670.977nm

Frequency D2-line 446.780GHz

Lifetime D2-line 27.1ns

Natural linewidth D2-line 36.9× 106 s−1

Atomic recoil velocity D2-line 9.89 cms−1

Recoil temperature D2-line 3.54µK

Saturation intensity Isat D2-line 2.54mW cm−2

Polarizability of 2S at 1064nm 270 a.u.

Polarizability of 2P3/2, mJ = 1/2 at 1064nm 208 a.u.

Polarizability of 2P3/2, mJ = 1/2 at 1064nm 175 a.u.

Scattering Properties Value

Singlet background scattering length 38.75 a0

Triplet background scattering length −2240 a0

1-2 resonance position B0 832G

1-2 resonance width ∆B 527G

1-3 resonance position B0 690G

1-3 resonance width ∆B 568G

2-3 resonance position B0 810G

2-3 resonance width ∆B 589G

Table 4.1: Properties of 6Li, adapted from [Geh03a]. The abbreviation a.u.
stands for atomic unit.

that both the ground state and the first excited states of 6Li are at-
tracted to the high-intensity regions of the light field. According to
eq. (3.5), the energy shift is

∆E(r) = −
1

2ε0c
<(α) I(r)

and scales with the laser detuning as approximately ∆−1 (c.f. eq.
(3.3)). We exploit this behavior to trap atoms in the intensity max-
imum of far-red detuned (1064nm and 1070nm) high-power laser
beams, where off-resonant scattering is strongly suppressed.

4.1.3 Collisional Properties

The scattering between two neutral atoms at low energies can be de-
scribed by the s-wave scattering length a (Section 3.2). The exact value
of a is determined by the scattering potential, which depends on the
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combination of the hyperfine states of the atoms involved in the scat-
tering process. For example, the scattering potential between a par-
ticle in state |1〉 and a particle in state |2〉 will be different from the
potential between state |1〉 and |3〉.

However, the potential is influenced most by the configuration of
the electronic spin pair, namely if the particles form a S = 0 singlet or
a S = 1 triplet. In the case of Lithium, a low lying virtual bound state
in the triplet potential and the strong coupling to one of the singlet
states gives rise to a broad Feshbach resonance. For the description
of its most important features, we will only discuss the mixture of
the hyperfine states |1〉 and |2〉. However, the other combinations of
the three lowest hyperfine states behave similarly. Measurements of
the 6Li-Feshbach s- and p-wave resonances can be found in [Sch+

05;
MVA95; Bar+

05], detailed review on Feshbach resonances in general
and the 6Li-resonance in particular can be found in [Chi+

10].
At zero magnetic field, the scattering particles can be in a super-

position of the singlet and triplet state, since these are degenerate at
large distances. The singlet potential supports 38 vibrational levels,
the highest one lying 1.38GHz below the continuum and consisting
of two states with I = 0; 2. Because also the next-higher lying (virtual)
state does not lie very close to the continuum, the singlet background
scattering length aS,bg = 45.2 a0 is not influenced by zero-energy res-
onances and is similar to the effective range1 rsc, as expected (see
Section 3.2 and [Dal99]). The triplet potential features a remarkably
large scattering length aT,bg = −2140 a0. This is caused by a zero-
energy resonance: the highest bound state is relatively deeply bound,
with the next possible bound state slightly above the continuum. This
explains the large and negative scattering length (see Section 3.2.2).

As the magnetic field is increased from 0, the atoms will enter the
Paschen-Back regime and S = 1 triplet configuration will become
energetically favorable and thus the only open channel. At the same
time, the coupling between the channels will lead to a triplet potential
that is slightly deeper than the bare triplet potential. However, this is
already enough to support the additional, previously virtual bound
state. As the magnetic field is increased, this state becomes more and
more similar to the bare triplet state, causing the bound state to move
closer to the continuum and a to be positive. At B0 = 832G, the
potential can no longer support this bound state and the scattering
length shows a zero-energy resonance and diverges. For even higher
fields, the scattering length approaches aT,bg.

We can describe the tuning of the scattering length with the mag-
netic field approximately with the heuristic formula (3.25),

1 It is of the same order of magnitude as the van-der-Waals length for 6Li, β6 = 62.5 a0

[Yan+
96]
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Figure 4.4: Feshbach resonances of the three lowest hyperfine states. The
positions of the zero crossings and resonances are marked (see
also Table 4.1).

a(B) = aT,bg

(
1−

∆B

B−B0

)
.

The values of the parameters are listed in Table 4.1, and a graph of
scattering lengths of the |1〉-|2〉, |1〉-|3〉, and |2〉-|3〉 mixtures is shown
in Figure 4.4.

Because this Feshbach resonance is open-channel dominated, the
scattering is universal2 over a wide range. This kind of Feshbach res-
onance typically has a large width ∆B, which makes it particularly
easy to control experimentally. Therefore, we can use the 6Li Fesh-
bach resonance to study systems with contact interactions of almost
arbitrary interaction strength, as explained in Section 3.2.5.

4.2 cooling a fermi gas

The experiments which are presented in this thesis all have a small,
deterministic sample of fermions as their starting point. To get to this
point, we first create a degenerate, ultracold Fermi gas. The exper-
imental procedure has been established on our experiment already
several years ago [Ser11] and has been used ever since. However, for
the experiments shown in chapter 6, we had to modify our cooling
scheme. Therefore, I will briefly describe the cooling steps following
one cycle of the experiment (Figure 4.5). More detailed information
about how to cool atomic gases can for example be found in [DCT89;
GWO00; KZ08; MS99].

2 I.e., it can be described with only the scattering range as a parameter, see [Chi+10].
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Figure 4.5: Experimental sequence for high-field evaporation. The evapora-
tion starts at 2250ms after the MOT has been loaded by transfer-
ring the MOT to the ODT. The intensity of the laser is first reduced
by linearly decreasing the laser output (purple curve). When the
minimum output power of our laser is reached, we attenuate the
laser beam using two AOMs (green curve) following a polyno-
mial curve ∝ (1− t/τ)3.24, with τ = 1000ms. At the kink in the
green curve, the intensity stabilization is switched to a photodi-
ode with a higher gain. The Landau-Zener RF passage from state
|2〉 to |3〉 is performed at 3550ms for 5ms. Before the atoms are
transferred to the microtrap at 4450ms, the field is increased to
above the resonance (900G, yellow curve) in order to dissociate
Feshbach molecules that have formed during the evaporation. Fi-
nally, the microtrap is spilled at 4650ms by lowering its depth
(pink curve) and applying a magnetic field gradient (red curve).
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The first step towards an ultracold Lithium gas is the evapora-
tion in our oven chamber. The hot gas leaves the oven chamber as
an atomic beam and is first slowed down by a Zeeman slower. The
atoms which are sufficiently slow are then captured in a magneto-
optical trap (MOT). During this first stage of the experiment, the MOT

is loaded for 2 s with approximately 1× 108 atoms mainly in the |1〉
and |2〉 hyperfine states.

Next, the atomic beam is turned off with a shutter and the atoms in
the MOT are transferred into the crossed optical dipole trap (ODT). To
increase the overlap between the MOT and the ODT, we compress the
MOT by applying a stronger gradient and by reducing the detuning
of our light. Still, because the beams of the ODT only have a waist of
45µm, we transfer less than 1% of the atoms.

Then, we start cooling our sample by evaporative cooling, i.e., re-
ducing the depth of the ODT. Initially, we reduce the output power of
the laser directly, while at later stages we attenuate the power of the
laser beam using two acousto-optic modulators (AOMs). The cooling
during this phase depends on the thermalization rate of the sample,
and thereby also on the scattering cross section and the scattering
length, which we tune to large values by using the Feshbach reso-
nance. For the initial stages of the evaporation, we therefore evapo-
rate at a field of 795G which corresponds to as ≈ 9600 a0. Also, we
apply an RF field to mix the lowest two hyperfine states and keep
their numbers balanced.

As we prefer3 to perform our experiment with the states |1〉 and |3〉,
we transfer the atoms in state |2〉 to state |3〉 with an RF Landau-Zener
passage after about 1.35 s of evaporation.

After this step, we can continue to evaporate either left or right of
the zero-crossing (see Table 4.1). In the first case (low-field evapora-
tion), we evaporate at around 300G to ensure efficient thermalization
due to the reasonably large, negative scattering lengths. As there is
no bound state at these scattering length, the gas remains a Fermi
gas during the entire evaporation. Because the thermalization relies
on momentum redistribution which happens only near the Fermi sur-
face, this evaporation slows down the colder the gas gets. However,
it is a useful method to access few-fermion systems on the repulsive
branch (see Figure 4.6), because we can tune to positive scattering
lengths by passing the zero crossing again4. We have been predomi-
nantly using this method of evaporation during the last few years, for
example for the experiments described in Chapter 7.

The second method (high-field evaporation) is performed at a mag-
netic field near the resonance (685G) and results in a gas of weakly

3 Firstly, its Feshbach resonance allows us to work with smaller fields, which spares
our Feshbach coils. Secondly, state |3〉 provides a closed transition for imaging and
we have less off-resonant scattering due to the 160 MHz separation in energy be-
tween the states at high magnetic fields (Figure 4.2a).

4 For positive scattering lengths, the repulsive branch is not the ground state.
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Figure 4.6: Range of experimentally accessible energy states in an isotropic
trap, depending on the scattering length a (more details in Chap-
ter 6). The states which have less energy than the non-interacting
ground state (marked by the lower dashed line) are called the
attractive branch, while the states with higher energy are called
the repulsive branch. Blue (magenta) lines show the scattering
lengths which are accessible with high-field (low-field) prepara-
tion of atoms in a |1〉-|3〉 mixture. Note that a is shown on a
double logarithmic scale, its values around the Feshbach reso-
nance are outside the graph to the left and right and can also
be accessed. The dotted segment on the left shows the scatter-
ing lengths we cannot access (see also Figure 4.4). Effects of the
confinement-induced resonance [Ols98; BMO03] are not shown
in this graph.
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Figure 4.7: Spilling technique (description in the text), adapted from
[Zür12a]. The different hyperfine states of the atoms are repre-
sented by dots of different color.

bound Feshbach molecules. Due to their bosonic statistics, they ther-
malize faster and we can accelerate our evaporation. After finishing
the evaporation, this evaporation method allows us to access large
negative scattering lengths while still remaining in the ground state
of the system by crossing the Feshbach resonance (see also [Zür12a],
chapter 5). At the end of either evaporation process, we typically have
a sample containing 6× 104 atoms at a temperature of 250nK.

4.3 preparing few-fermion systems

To perform our experiments, we need systems with a small, well-
known atom number in the ground state of an optical potential. We
achieve this by loading an optical microtrap from the previously pre-
pared dipole trap reservoir. We have used this technique already prior
to this thesis [Ser11; Ser+

11], however, in the meantime, we have
installed a new objective which can make smaller foci and thereby
deeper microtraps [Ber13; Kli12]. After having installed the new ob-
jective, we had to revisit our preparation scheme (Figure 4.7) and
optimize its parameters.

4.3.1 Spilling Technique

After completing the evaporation phase in the optical dipole trap,
we superimpose a small focus of 1064nm light (waist of 1.65µm).
We slowly ramp up the intensity to ca. 390µW, which corresponds
to a depth of 5µK. Because the microtrap is small compared to the
reservoir, only a fraction of the atoms will fit in the potential and the
absolute temperature of our system will not be increased by turning it
on. However, because the Fermi temperature of the combined system
is much higher (7µK) that that of the dipole trap alone, we achieve
a much better degeneracy of T/TF ≈ 0.05. This corresponds to an
occupation probability of ideally over 99.99% in the lowest levels of
the microtrap.

Next, we want to perform experiments using only the lowest lev-
els of the microtrap, since those contain the least amount of entropy.
First, we reduce the interaction strength (e.g., by going to the zero-
crossing of the scattering length for the low-field preparation). Then,
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we turn off the ODT and apply a magnetic field gradient. The higher
trap levels of the microtrap are now not bound anymore, and only
the (quasi-)bound states with the lowest energy remain. We fine-tune
the number of bound states by adjusting the depth of the microtrap.

However, due to the tunneling effect, even particles in bound states
can still escape from the microtrap as long as the gradient is on and
the barrier is low and narrow enough. Therefore, we must keep the
tunneling time sufficiently short. The tunneling time constant for each
of the energy levels of the microtrap can be calculated and optimized
with the Wentzel-Kramers-Brillouin (WKB) method (see [Ser11]). Fi-
nally, we increase the depth of the microtrap to its original value and
turn off the gradient. This suppresses the tunneling and concludes
the preparation method for deterministic few-fermion systems.

4.3.2 Optimization of the Preparation Fidelity

The fidelity of the preparation method described in the previous sec-
tion depends, among other things, on the choice of the tunneling time.
We want to choose it long enough so the atoms in the higher levels
can tunnel out of the potentials, and short enough to retain the atoms
in the lower levels (the ones we want to keep for the experiments).
With accurate knowledge of the optical potential and the strength of
the gradient, it is possible calculate these probabilities using the WKB

method.
However, we cannot monitor the intensity distribution of the mic-

rotraps directly inside the vacuum chamber with a camera. Therefore,
we do not know the exact shape of our optical potential for the WKB

calculations. This means that it is still necessary to optimize various
spilling parameters experimentally. Typically, the parameters we can
tune are the depth of the optical potential Pspill (given as the total
optical power of the microtrap), the strength of the magnetic field
gradient B′spill and the duration of the spill tspill. Because this spans
a large parameter space, we usually optimize only one or two of the
parameters simultaneously.

We optimize the preparation parameters by measuring atom num-
ber statistics and preparation fidelities for different combinations of
spilling parameters by re-transferring the prepared sample into an
imaging MOT after the preparation has been completed. Taking ac-
count the losses from this final transfer (< 1%, [Zür12b]), we can
then infer the atom number in each realization from the fluorescence
intensity of the MOT (for more details, see Section 5.1), which allows
us to extract the average atom number and the probability for having
a certain number of atoms.

For the first optimization method called “stufenplot”, we keep B′spill
fixed to typically 60G/cm and tspill to typically between 10ms and
50ms, while tuning the depth of the optical potential. One can see
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Figure 4.8: Atom number after spill when varying Pspill. (a) Mean atom num-
ber vs. Pspill. (b) Probability of finding a certain atom number vs.
Pspill. Only the values for up to 6 atoms are shown, higher num-
bers have been omitted for clarity. The errorbars represent the
standard deviation after 12-21 repeats per setting. At 0.3V , for
example, the probability for finding two atoms is 93(7)%, and
7(7)% for finding one atom. This leads to a mean atom number
of 1.93(27) at 0.3V , as shown in the left panel.

that, for certain depths of the optical potential, the atom number stays
relatively constant at an even number (Figure 4.8a). This is the case
when one trap level has long tunneling times whereas the atoms in
the next higher trap level tunnel quickly or even become unbound.
This makes it possible to prepare 2n atoms with a high fidelity f2(n)
of over 95% (Figure 4.8b).

Still, even when testing a wide range of parameters, a perfect, 100%
preparation fidelity is never reached. While the actual preparation fi-
delity may be influenced by multiple settings, parameters and uncon-
trolled drifts thereof, the fundamental limitation to the fidelity are
the tunneling times of the highest bound energy level τ2 and the next
lowest energy level τ1. The probability of the atom in the higher state
tunneling while retaining the atom in the lower state then becomes

p1(t) = e
−t/τ1

(
1− e−t/τ2

)
. (4.5)

This function has a global maximum value which only depends on
the quotient of the tunneling times q = τ1/τ2:

p1,opt = q (1+ q)
− 1+q

q (4.6)

at the time

topt = τ2 ln(1+ q). (4.7)
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Figure 4.9: Atom number after spill when varying tspill with B′spill =

75G/cm for different Pspill. (a) Mean atom number. The lines rep-
resent double-exponential fits. (b) Probability of finding n atoms
for Pspill = 0.48V (voltage on the photodiode). If “good” values
are chosen for Pspill and B′spill, there is a range of tspill where the
fidelity stays high, in this example between 20ms and 90ms.

Thus, by determining the tunneling times for different experimental
parameters, we can find the values with the best possible quotient
and the best corresponding spilling duration, leading to an optimal
preparation fidelity.

The tunneling times can be determined by measuring the mean
atom number depending on the spilling duration (Figure 4.9a). The
values for τ1 and τ2 and the derived quantities for a few typical set-
tings are listed in Table 4.2. With the correct settings, fidelities of 97%
have been reached experimentally.

4.4 transfer to multiple microtraps

Once we have prepared a well-defined state in a single well, we can
start manipulating the optical potential and the interaction strength.
We can create multiple microtraps by diffracting the initial microtrap
beam in an acousto-optic deflector (AOD), which was characterized in
[Kli12]. It is integrated into our optical setup as described in [Ber17]
(Figure 4.10). We use the AOD to shape the optical potential by con-
trolling the intensity and position of each individual microtrap. Effec-
tively, this allows us manipulate the tilt ∆ and tunnel coupling J in
the Hubbard Hamiltonian from eq. (7.1).

If we want to maintain a pure state while we change our poten-
tial, we must ensure all our manipulations happen adiabatically, i.e.,
slowly compared to the energy gap to other states. Depending on the
system in question, the gap may be of the size of ∆ or J, but also,
for example,  hωtrap, U or J2/U (see Section 7.1). In this section, I will
explain how we prepare a double well adiabatically and how we plan
to make larger arrays of microtraps.
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Figure 4.10: Current optical setup for generating multiple microtraps,
adapted from [Ber17]. The stabilization path is shown in green.

Figure 4.11: Double-well preparation scheme, adapted from [Ber17].

4.4.1 Double Well

For the double-well experiments, we want to transfer the state which
we have prepared in a single microtrap to two microtraps. We do
this with a scheme shown in Figure 4.11, where the atoms are non-
interacting (U = 0). First, we turn on a second well which is slightly
less deep than the first well which contains the atoms. In the begin-
ning, the coupling between the wells is kept to J ≈ 0. Consequently,
the atoms remain in the ground state of the system, |LL〉, which is
gapped by ∆ ∼ − hωtrap/2. Then, we couple the wells with typically
J/ h ≈ 70Hz by reducing the overall depth of the potential. Now, we
we can reduce |∆| to zero by balancing both wells. If we do this slowly
compared to  h/J, we end up with the ground state of the double-well
system, |a〉 = 1

2
(|LL〉+ |RL〉+ |LR〉+ |RR〉) (see eq. (7.6) and Figure

4.12).
We can apply a similar preparation procedure to prepare an ex-

cited state of the double well, namely state |c〉. Instead of the ground
state, we initialize the system in the highest excited state (of the low-
est band) by making the tilt ∆ positive. As in the previous case, we
then balance both wells. This state is interesting to study because its
behavior is just the opposite of the ground state (see Section 7.2).
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∆→ −∞ ∆ = 0 ∆→ +∞
|a〉 |↑↓, ·〉 1

2 (|↑↓, ·〉+ |↑,↓〉+ |↓,↑〉+ |·,↑↓〉) |·,↑↓〉
|b〉 1√

2
(|↑,↓〉+ |↓,↑〉) 1√

2
(|↑↓, ·〉+ |·,↑↓〉) 1√

2
(|↑,↓〉+ |↓,↑〉)

|c〉 |·,↑↓〉 1
2 (|↑↓, ·〉− |↑,↓〉− |↓,↑〉+ |·,↑↓〉) |↑↓, ·〉

Figure 4.12: Energy levels during the preparation of the double well, ac-
cording to Hamiltonian (7.1). The table shows the eigenstates
for different tilts ∆ without interactions. The ground state of
the balanced double well (see Section 7.1) is connected to the
single-well state |↑↓, ·〉 and gapped by at least 2J. Adapted from
[Mur+

15b].

4.4.2 Multiple Wells

The double well introduced in the previous section may be seen
as the fundamental building block of the Hubbard model. It has
been proposed that larger Hubbard systems may be assembled out of
such building blocks with very low entropy [Lub+

11; Mat+
01; Oje+

16].
However, this is only possible if the energy gap during the prepara-
tion of such a system remains large enough and if one can control
the individual sites sufficiently well. Therefore, we have theoretically
examined the energy gap of a four-well system in [Mül16], which will
briefly be presented here.

In all of the three studied cases, we starts from a configuration
where two atoms each sit in each of the two energetically lower wells
(Figure 4.13). The final state is the balanced four-well system, where
δ = 0. In all of the initial configurations, the lowest energy state is has
an energy of −2∆ and is unique. The energy gap to the next-higher
state is on the order of ∆, which may be arbitrarily large initially.

In the final state of the system, the energy gap is on the order of J. If
the system is non-interacting, the energy gap is approximately 1.4 J,
which is similar to the gap of 2 J in the double-well system. When
tuning ∆ to zero, the energy gap in the system will monotonously
evolve from initially ∆ towards this minimal, final value. Since the
initial and final states are very similar for all three configurations, this



60 experimental setup and preparation

Figure 4.13: Three different four-well preparation schemes, where the wells
are all tilted by the same amount ±∆/2. From [Mül16].

behavior will appear in all three studied cases and the exact choice of
configurations is not important. As the final energy gap is ∼ J, the size
of the energy gap should not be an obstacle for preparing a four-well
system5.

A prerequisite for these experiments is that the tilt can actually be
controlled on these energy scales. Detrimental effects of an uncon-
trolled tilt can be seen in two ways. Firstly, tunneling experiments
will have different effective tunneling rates Jeff =

√
J2 +∆2 depend-

ing on the tilt. For a typical trap depth of 40 kHz and tunneling rate
J = 70Hz, a relative drift of 10−3 in the tilt would already cause the
effective tunneling rate to change by 15%. Secondly, also stationary
states may be influenced by a tilt, especially when using attractive in-
teractions U/J� −1. Here, the tilt would change the balanced, coher-
ent state |a〉 ≈ |↑↓, ·〉+ |·, ↑↓〉 to either |↑↓, ·〉 or |·, ↑↓〉 once |∆| & 4J2/ |U|.
These states are localized to a site and potentially obscure interesting
non-local effects present in the balanced system.

There are two ways to address these issues: Increase the other en-
ergy scales of the system6 J and U or reduce the undesired tilt.

4.5 intensity stabilization of multiple microtraps

In the previous section we have demonstrated need to control the tilts
∆ of our individual wells. Already for a intensity drift of 10−3 relative
to the total intensity in a microtrap, the effects would be significant.
In our double-well experiments, we relied on the passive stability
of the balancing between our microtraps and observed two kinds of
unwanted imbalance mechanisms.

One is a relatively fast (∼ 400ms) drift when we change the RF

powers on the AOD. This drift is relatively deterministic and we com-
pensated it with a feedforward in the double-well system. However,
as we want to prepare systems with more microtraps and hence need
more RF frequencies, this feedforward would become unpractical.

The other imbalance we observed as a gradual drift of the relative
depth of our microtraps over the course of several days. The source

5 It is worth noting that the gap in the balanced four-well system is largest for repul-
sive U ≈ 2J.

6 For attractive interactions, this means that one has to work at fields above the reso-
nance (larger than B0) to be able to reach sufficiently large scattering lengths.
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of this drift has not yet been identified and we had to regularly recal-
ibrate our double well to complete our experiments.

To be able to efficiently deal with both kinds of drifts, we wanted to
find a way to actively control the intensities of the individual micro-
traps to a level of 10−4. We identified two different approaches: One
uses a downconverted optical signal of each microtrap to a different
RF frequency. The challenge is then to precisely measure these RF in-
tensities. The development of this method has just recently started
and is still in progress.

The other method is based on direct imaging of the microtraps with
a camera and will be presented in this section.

4.5.1 Optical Setup and Camera

To stabilize our microtraps in real-time, we have to detect them syn-
chronized to the experiment cycle. We do this by splitting the trap-
ping light into two branches, one which produces the actual micro-
traps and the other which we use for the stabilization of the micro-
traps (Figure 4.10). This light we split once more, which allows us to
have an overall power stabilization with a photodiode and the stabi-
lization with the camera in parallel7. In the camera branch, we then
produce an image of the microtraps on with an f = 250mm and an
f = −50mm lens.

The key requirement for this method is that the intensity measured
on the sensor is proportional to the intensity in the actual microtraps.
This means that the optical device splitting the beam paths must be
chosen with great care, since the relative intensity fluctuations it in-
troduces on the beams will, via the stabilization, lead to enhanced
fluctuations of the intensity of the actual microtraps. For example,
if the beamsplitter shows a dependence on the polarization for the
splitting ratio, then noise on the polarization of the light will directly
translate to intensity noise on the microtraps. From these consider-
ations, together with the constraints on the clear aperture (at least
50mm) and space constraints on the breadboard8, we decided to use
two Edmund Optics non-polarizing beamsplitters (#49-006) for our
stabilization optics.

Now we have to choose the optics for creating the microtrap pattern
on the camera and the camera itself. As already mentioned we want
to measure the intensities of the microtraps, i.e., a photon number.
If, on average, N photons are generated by a coherent (uncorrelated)

7 Even though, in the final setup, only one of the branches will be used for stabiliza-
tion, it is very convenient to have an additional diagnostics setup.

8 If it had been possible to have a beamsplitter under a small angle of incidence instead
of 45° as proposed in [Hol17], then the polarization dependence would generically
have been weak.
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laser source, the shot-to-shot photon number n will follow a Poisson
distribution Nne−N

n! with a relative number fluctuation of

σ

N
=

1√
N

. (4.8)

This fundamental uncertainty on the photon number is called shot
noise. It sets a lower threshold for how many photons we have to
collect per microtrap per image for our desired σ = 10−4, namely
N = σ2 ≈ 108.

With a power of P ≈ 0.144mW/V · 0.4V ≈ 58µW, we have a flux of
3.1× 1014 photons s−1 on the camera. However, we have to account
for the finite quantum efficiency of the camera. For our wavelength of
λ = 1064nm, the quantum efficiency strongly depends on the semi-
conductor material used for the sensor. For InGaAs, quantum efficien-
cies ofQEInGaAs(1064nm) & 80% can be reached. However, these sen-
sors tend to have more thermal (dark) noise, so the camera must be
actively cooled [And]. With on the order of 3× 1014 photons at our
disposal, we decided that we could also work with a Si-based cam-
era that can be operated at room temperature, despite its quantum
efficiency of only QESi(1064nm) ≈ 1% [Fli].

Another aspect for choosing the correct camera is its frame rate.
If we want to have a fast intensity feedback, we have to measure
faster than the typical timescale in our system, which is in our case
J/ h ∼ 100Hz. For photodiodes, where the entire sensor measures only
a single value, bandwidths of > 100MHz are common. However, for
cameras, every pixel has to be read out individually and the data has
to be transferred to a computer, which often limits the frame rate. Still,
especially when restricting the readout region on the sensor, frame
rates up to 1 kHz are possible with commercially available cameras.

The fact that the readout region scales inversely with the readout
rate means that we have to restrict the size of the focus on the sensor
by choosing the correct magnification. Also, we still have to make
sure that we are able to collect enough photons to avoid shot noise.
Therefore, a large full-well depth per pixel is important. It specifies
how many photo-electrons a pixel can hold and is different for every
sensor9. It typically ranges from 5000 e-/pix to 100 000 e-/pix.

Keeping all these requirements in mind, we chose the compact
CMOS camera Grasshopper3 (model GS3-U3-23S6M-C) from Point
Grey (specifications in [Pg2]) for our stabilization setup. It has a full-
well depth of 32 000 e-, which means that an area of 50× 50pix2 can
contain required number of ∼ 1× 108 photoelectrons.

Combining this with the size of each pixel (5.86µm), we can cal-
culate the size of the focus. We need a magnification that is approxi-
mately 100 times larger than that of the objective, therefore, we would

9 Roughly speaking, it depends on the volume of each pixel. Therefore, sensors with
large pixels areas tend to have larger full-well depths.
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Figure 4.14: RF setup for generating multiple microtraps. The frequencies
are generated by different output ports of a frequency genera-
tor. A DAC sets the mixers which control the signal power. The
computer calculates the setpoint with data from the camera and
from the real-time processor ADwin. The signals are combined
with a splitter, amplified and sent to the AOD. All devices are
synchronized with a clock.

have to use a lens with f = 2000mm. As this is impractical, we
shorten the length of the optical path by using a combination of an
f = 250mm focusing and an f = −50mm defocusing lens, which
gives us a Gaussian focus with 4σ ≈ 15pixels.

4.5.2 RF Setup

To create multiple microtraps, we use an AOD (model A2D-404AH4

from IntraAction Corp.) to split our initial microtrap beam. The AOD

is driven by an RF source between 25MHz and 55MHz, where the
frequency determines the position of the microtrap and the intensity
determines the depth of the microtrap. We can modify the intensity
directly at the RF source, however, with the current setup it is eas-
ier to control the intensity of each single frequency by applying a
DC voltage to a mixer (Figure 4.14). These voltages we can generate
with a 16-bit analog output card (Advantech PCI-1723). The card is
installed in the computer which reads out the camera and generates
the control values calculated by the feedback loop. After having set
the intensities, the signals are then passed through a switch and com-
bined using a 4-way splitter. The combined signal10 is then amplified
to 4W and sent to the AOD.

For the generation of up to four RF frequencies, we currently use
two Rigol frequency generators. In the future, we may switch to an
arbitrary waveform generator or to software-defined radio. We would
then directly generate the superimposed RF signal with the correct
frequencies, phases and amplitudes.

10 One has to keep in mind that the splitter adds the amplitudes of every signal. If this
happens in-phase, doubling the number of signals may quadruple the power.
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Figure 4.15: Simplified structure of the LabVIEW program for the intensity
feedback. The gray boxes represent continuously running while-
loops. In the upper row, an image stream of the intensity pattern
and the PID parameters are acquired and queued (violet and ma-
genta lines). The feedback sub-VI runs independently and eval-
uates these queued values with low latency (typically < 100µs)
to calculate the control voltages for the mixers (orange).

4.5.3 Feedback Software

The feedback software runs on a computer which contains an analog-
output (AO) card and is connected to the camera. It has to perform
following tasks:

• Acquire images from camera and extract intensities.

• Read timing table from main experiment computer.

• Synchronize with the experiment.

• Acquire PID parameters.

• Run feedback loop.

• Switch between feedback and feedforward.

• Output the voltages for the mixers on the AO card.

The program has been implemented in LabVIEW in a producer-
consumer structure (Figure 4.15). It acquires the images with regu-
lar IMAQ modules at the maximum frame rate of the camera and
queues them. From the user interface, it acquires the PID parameters.
Meanwhile, it listens to the datasocket server and downloads the tim-
ing table which has been uploaded from the experiment computer.
When a trigger signal is received from the ADWin, it starts extracting
the intensities from the images and passes those to a PID loop. The
setpoints for the microtrap intensities are extracted from the timing
table and continuously updated. The results from the PID loop are
then output with the AO card.
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4.5.4 First Results

Two major obstacles were encountered when we tested the intensity
stabilization: First, the program currently runs on a computer with
a Windows-OS. The operating system will schedule when tasks are
executed, which means that the execution time may jitter by tens of
µs. This problem was alleviated by declaring the VIs as subroutines
and thus increasing their priority. Also, three cores were assigned
exclusively to LabVIEW, leaving fewer tasks to disrupt the feedback
program. In this way, the execution time was reduced to a median of
4µs/cycle (160µs/cycle at most). However, running the program in a
real-time environment would be more reliable. Still, the execution of
the feedback loop is fast enough compared with the frame rate of the
camera (up to 1 kHz).

The other major problem was that the relative intensity noise that
was observed was ∼ 10−3, which is much higher than the design goal
of 10−4. A possible reason is pointing noise on the microtrap beams,
which leads to a position fluctuation of the microtraps on the camera.
If the active region on the sensor is stationary, these position fluctu-
ations will be converted into intensity noise of up to 10−2. Because
this problem has not yet been completely resolved, a reduction of the
noise to the design goal has so far not been achieved.

In spite of these problems, we tested the stabilization in the ex-
periment. First, we calibrated the heating rates with the feedback
turned off (only feedforward for intensity jumps) by measuring the
loss rate of two atoms in the microtrap. The observed losses were
on a timescale of 12 s. Also, we performed tunneling experiments be-
tween two wells, first without active feedback from the camera. We
observed coherent oscillations with a contrast up to 90%, however,
they decayed by more then 10% after only 3 periods11. With the feed-
back active, the contrast of the coherent oscillations was limited to
approximately only 50%.

To summarize, the feedforward feature of the stabilization setup
works well and is able to compensate the intensity jumps caused by
a change in RF power. However, we will require an optimized ver-
sion of the feedback with less intensity noise to be able to fully use it
for multiple-well experiments. For the remainder of this thesis, only
the total intensity of the microtraps was stabilized with a photodi-
ode, while relying on passive stability for the relative depths of the
microtraps.

11 This may be due to the intensity noise of the stabilization setup, however, at a later
point, we observed a similar decoherence using only passive relative stabilization.
This suggests that part of the decoherence has a different source.





5
S I N G L E - AT O M D E T E C T I O N

As we have seen in Chapter 2, many-body quantum states can be de-
scribed with the occupation numbers of single-particle modes. What
kind of modes are suited to describe the system depends on the spe-
cific implementation. Often, the modes are described by their spatial
or momentum coordinates state, by their energy state, or by an inter-
nal state.

In our experiment, we prepare small systems of 6Li atoms, typically
up to 10 in total, in a spatial array of microtraps. The atoms are in
two of the lowest three 6Li hyperfine states which we can identify
as (pseudo-)spin modes. Because we are considering systems where
the potential has a spatial structure, we can extract information about
its state by measuring the occupation and coherence of the spatial
modes. As the spin configuration of the system may also matter, we
must be able to distinguish the internal states of the atoms.

The imaging technique which we used in our original experiments
was developed to reliably detect the total atom number in the system
in a MOT. By manipulating our system prior to detecting the atoms
in the MOT, it was also possible to use this imaging technique to mea-
sure mode occupation. For example, for a double-well system, we
could release the atoms from one site (spatial mode) to measure the
occupation of the other site (see Chapter 7).

However, this imaging method has a severe limitation: To describe
a many-body system in many modes, we had to measure many repe-
titions of the experiment to gather statistics for every mode individu-
ally. To extract this information more efficiently, we needed an imag-
ing technique which was able to detect the occupation of all modes
at the same time for both spin states in each single image. Keeping
the double well as an example, it should hence be able to measure
the number of both spins states in both wells simultaneously.

With our new imaging scheme [Bec16; Ber17], we can spatially- and
spin-resolve atom distributions with single-atom sensitivity. Briefly
explained, it works as follows; in an optional first step, we can release
the atoms from their initial potential and let them expand in time-
of-flight. We illuminate the resulting atom distribution with short,
resonant light pulses, and focus the scattered light with a high-NA
objective on an electron-multiplying CCD (EMCCD) camera, record-
ing the spatial information of the atoms in one hyperfine state. We
then quickly repeat this procedure on the same sample for the other
hyperfine state.

In this chapter, we will first briefly summarize how our MOT imag-
ing works, as it is still important for calibrating the experiment. Then,
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we will describe how the different requirements (detection efficiency,
spatial resolution, etc.) have influenced the implementation of our
new imaging technique. We will also present several ways of how to
use the new imaging to obtain different, complementary information
about our systems.

5.1 detection in a magneto-optical trap

Our original imaging method works by recapturing the atoms from
the microtrap in a MOT and counting the number of scattered photons
on a camera [Ott10; Ser11; Ser+

11]. For dilute samples, the recorded
intensity of the MOT is proportional to the number of atoms it con-
tains. For sufficiently long exposures (typically 1 s), the strength of
the fluorescence signal varies very little1, allowing us to resolve the
atom number up to 10 with a certainty exceeding 98% [Ser11]. Com-
bining this with the losses during transfer and in the MOT, we can
count atoms with approximately 97% fidelity.

This method provided us with a reliable way for counting the total
number of atoms and has also been adapted to extract information
about the mode occupation from the studied systems. This is typ-
ically done by manipulating the system of microtraps in different
ways prior to transferring into the MOT: The number of atoms per en-
ergetic mode can be inferred from performing spills to different trap
levels prior to detection. The number of atoms per spatial mode can
be measured by turning off all but one microtrap before transfer into
the MOT [Mur+

15b; Mur15]. The number of particles in hyperfine state
|2〉 can be obtained by performing an additional spill at 27G, where it
has zero magnetic moment and thus remains unaffected by the mag-
netic field gradient (see Figure 4.2a). The symmetry of the state can be
inferred from the ground state occupation: The spatially symmetric
two-particle state will occupy only the single-particle ground state of
the microtrap, while the spatially antisymmetric state also occupies
the first excited single-particle level (see Chapter 7 for more details).

As one can see from these examples, imaging with the MOT makes
it possible to measure a diverse set of quantities. However, once one
has decided which quantity one wants to measure, the occupation of
each of the modes has to be measured one at a time. This means that
the number of measurements required to characterize a system scales
with the number of modes. Also, it is difficult to directly detect corre-
lations between modes with this imaging method. For these reasons,
we developed a new imaging scheme, which focuses on an improved
spatial detection of the atoms.

1 The relative fluctuation σN of the detected number of photons N is σN/N = N− 1
2

for random scattering through spontaneous emission.



5.2 spatial resolution 69

5.2 spatial resolution

Improved spatial resolution is one of the key features of our new
imaging scheme. However, several limitations apply to it: There is
an optical resolution limit, which depends on the optical setup of the
imaging system. But in our experiment, mainly the back-action of our
imaging light on our sample limits our spatial resolution. The funda-
mental problem is that the recoil momentum that an atom receives
from a photon will lead to a random motion, or to heating if the
atom is trapped during imaging. As this process happens hundreds
or thousands of times during the acquisition of a single image, the
path of the atom will be integrated on each image and can lead to
significantly degraded position information. I will present two recent
approaches how to overcome this problem, the quantum gas micro-
scope (see [Bak+

09] for bosonic atoms, and [Par+
15; Che+

15; Hal+
15]

for fermionic atoms), and our approach, the matterwave microscope (see
[Büc+

09] for a similar method).

5.2.1 Optical Resolution Limit

The most intuitive limitation of the resolving power of an optical
setup is the diffraction limit: it is not possible to directly resolve struc-
tures which are smaller than the wavelength λ of the light that one
uses for imaging. Furthermore, the resolution also depends on the
numerical aperture (NA) of the imaging optics, which leads to the
Abbe limit for the smallest resolvable structure size:

d =
λ

2NA
=

λ/n

2 sin θ
, (5.1)

where n is the refractive index of the medium and θ the half opening
angle of the objective2. For our system (Figures 4.10 and 5.1), the
theoretical Abbe limit (in absence of imaging aberrations) is 671nm2×0.6 =

0.68µm.
Another way of understanding Abbe’s limit is through the point

spread function (PSF) of an imaging system. The PSF describes how
an optical system images a perfect, pointlike source: different spatial
frequencies will be transmitted with different efficiencies through the
system, leading to a smeared out spot instead of a perfect point in
the imaging plane. This can be understood as a convolution of the PSF

characteristic to the optical system with the object being imaged. The
Abbe limit marks the highest spatial frequency which is transmitted,
i.e., the frequency where the Fourier transform of the PSF (optical
transfer function) vanishes.

2 There are ways to overcome Abbe’s limit, often referred to as super-resolution imag-
ing [SHL10; YSF14].
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Figure 5.1: Schematic of the detection of fluorescence with the imaging
setup. The atoms are illuminated with alternating, counter-
propagating light pulses. The emitted fluorescence which is col-
lected by the objective is shaded in red. From [Ber17]

In practice, imperfections and aberrations in the optics will prevent
the imaging system from reaching the theoretical diffraction limit.
Phase shifts in the wavefront corresponding to less than a wavelength
will already deteriorate the quality of the PSF. A detailed simulation
has been performed in [Ser11] to take these possible aberrations into
account when we designed our objective. The resolution of the real
objective we use in our experiment amounts to 0.9µm at a wavelength
of 671nm.

5.2.2 Quantum Gas Microscopes

Apart from the resolution limits of the optical setup, random motion
of the atom while it scatters photons also limits the ability to deter-
mine its position precisely. One of the most straight-forward ways to
reduce this motion is to use atoms with a larger mass, as the recoil
velocity vrec =  hkphoton/matom of the atoms depends inversely on its
mass. However, this quantity is fixed by the element that is used in
the experiment, and cannot be easily changed.

Alternatively, we can restrict the motion of the atom by pinning
it in an optical standing-wave lattice. As the lattice site spacing is
typically similar to the resolution limit of the imaging system, the
position of the atoms has to be determined very precisely to be able
to distinguish the individual lattice sites. Therefore, a large number of
photons has to be collected per atom (typically 750 to 1000 [Bak+

09])
in order to reconstruct the PSF with sufficiently low noise. For this,
the atom typically scatters between 5000 and 20 000 photons, because
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only a fraction of the scattered photons is collected by the imaging
system.

If the atom is confined to a lattice site during imaging, the recoil
of the scattered photons will not lead to random motion, but rather
to heating of the atom to on average higher motionally excited states
of its lattice site. Eventually, it will have obtained enough much en-
ergy to start tunneling and move between lattice sites. This can be
suppressed by cooling the atom back to the ground state of its lattice
site during imaging. Over the past two years, the combined trapping,
cooling, and imaging technique in a lattice, called quantum gas mi-
croscope, has been implemented for fermionic atoms, for example by
[Par+

15; Che+
15; Hal+

15], allowing for the first direct observations of
antiferromagnetic order [Par+

16] and more detailed studies of the 2D
Hubbard model.

While this approach has been very successful, it also poses some
restrictions to what information can be gathered from a system. For
example, it is difficult to combine this method with having spin reso-
lution at the same time. Also, the high density on the lattice sites lead
to photo-association losses when multiple atoms occupy the same lat-
tice site. The method is also challenging to implement, as one needs
very powerful trapping lasers as well as multiple lasers for cooling
the atoms, which greatly increases the complexity of the experiment.
Therefore, we developed a different approach for spatially- and spin-
resolved imaging.

5.2.3 Matterwave Microscope

Let us first consider one key difference of our system to quantum gas
microscopes: we perform our experiments with a variable array of
microtraps which are separated by typically 1.5µm. This spacing is
much larger than the lattice spacing of the quantum gas microscope
experiments. The larger separation of the atoms gives us less strict
bounds on the size and accuracy of the PSF. Therefore, we need to col-
lect fewer photons per atom and image to reconstruct the PSF with suf-
ficient accuracy. In turn, this leads to less heating or random motion.
Still, we need to collect a minimum number of photons per atoms to
discern it from the noise floor of our camera. With our EMCCD camera
(Andor iXon DV887) and imaging scheme (explained in more detail
in Section 5.6), we only have to detect only approximately 10 photons
per atom to be able to detect it. This number should be understood as
an estimate for a lower threshold: For fewer photons than this num-
ber, we will not be able to identify the atom reliably.

As our imaging setup combined with our camera effectively detects
about 9% of all the scattered photons [Ber17], the atom should scat-
ter at least ∼ 100 photons to produce a sufficiently clear signal on the
camera. However, because the scattering of light is a random process,
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the photon number distribution is Poissonian, and the atom may scat-
ter more or fewer photons than the average value. To ensure that we
(almost) always detect more photons than our threshold, each atom
typically has to scatter 300 photons on average. Nevertheless, this
number of photons is an order of magnitude lower compared to the
quantum gas microscopes. In the experiment, the atoms are exposed
for 20µs at an intensity of I/Isat ≈ 8 (16.5 photons µs−1) to scatter the
required number of photons.

The relatively small number of scattered photons allows us to im-
age the atoms without cooling them or pinning them in the micro-
traps. Still, the position that we measure strongly depends on the ran-
dom motion of the atom induced by the photon recoil3 vrec = 10 cm/s

(see Table 4.1).
The process of scattering a photon can be divided in two contribu-

tions: the momentum the atom gains when absorbing a photon and
the recoil momentum it receives when emitting a photon. If the atom
always absorbs photons from the same imaging beam, it will accu-
mulate a net momentum, similar to the process in a Zeeman slower.
Therefore, we use two counter-propagating beams for imaging (Fig-
ure 5.1). In order to avoid a standing-wave intensity pattern on the
imaging light, we use alternating 200ns pulses generated by switch-
ing the imaging light with two AOMs (Figure 5.2). The duration of
the pulses is chosen to be comparable to the lifetime of the excited
state τ = 27ns and short compared to the total imaging time of 20µs,
which ensures that, in the duration of one single pulse, the net mo-
mentum transfer remains negligible.

In contrast to the absorption process, the spontaneous emission
process will emit photons in random directions, following the dipole
radiation pattern of the optical transition. These random recoils result
in a random walk4. It leads to a diffusion of the atom in all spatial
directions, which increases the apparent width of its position distri-
bution during the imaging process.

This diffusion process is the main contributor to uncertainty in
determining the position of an atom. With an illumination time of
20µs, we measured a standard deviation of σimg = 5.7µm for the av-
erage atom distribution. Even though the width of every individual
event is smaller and also its center position can be determined more
accurately, we can only infer the initial position of the atom up to
σimg ≈ 4µm. Hence, we cannot use this imaging method to directly
resolve the different sites of our system separated by just 1.5µm.

3 If we image the atom immediatly after releasing it from the microtrap, its initial mo-
mentum is negligible. However, we will exploit this momentum in the next section
for our time-of-flight measurements.

4 The effect of the photon recoil can be mitigated by molasses cooling, but cannot be
completely avoided.
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Figure 5.3: Imaging with an ODT, adapted from [Ber17]. The orientation of
the double well system is labeled as DW.

5.3 momentum imaging

A way to circumvent the resolution limitation described in the last
section is to not image the system we wish to study directly, but
to map it to a system with a larger spatial extent in a well-defined
manner, first. We do this by letting the atoms expand in time-of-flight,
not unlike the procedure described in [Büc+

09]. Combined with our
highly sensitive fluorescence imaging, the positions determined with
this method can give us momentum or position information of each
atom in our initial system, depending on the exact mapping that we
choose.

The crucial advantage is that, due to the expansion, we image an
atom distribution which has a size of ∼ 100µm. This is large enough
that even our free-space imaging with its limited resolution can still
give us useful position information. However, we have to ensure that
the atoms expand only within the focal plane: Even though the objec-
tive has a field of view of 200µm where its imaging performance is
diffraction-limited, it will only produce sharp images within its depth
of field [IO94]

dDoF =
λn

NA2
+

n

NA

e

M
(5.2)

along the optical axis. The first term comes from the behavior of the
electric field around the focus, and corresponds to half the distance to
the first intensity minimum along the optical axis. The second term
is of geometric nature, and is related to the largest circle of confusion
which will still be detected as a point on the camera. Using the camera
resolution e = 16µm and the magnification M ≈ 6, we obtain dDoF ≈
7µm. The expansion of the atoms along the optical axis has to remain
smaller than this value for optimal spatial resolution.

One method is to release the atoms into a potential which confines
them along the optical axis instead of releasing them into free space.
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Figure 5.4: Phase space diagrams for momentum and in-situ imaging. The
empty circles show the initial positions, the filled circles the final
positions of two atoms. The solid arrows represent the expansion
in the ODT potential, the dotted arrows represent other matter-
wave operations. The left panel shows the momentum mapping
of two particles after T/4. The middle panel shows the position
mapping if the trapping frequency is changed at T/4 during the
expansion, leading to a magnification of the initial system. The
right panel shows position mapping after T/4, if the positions
have been mapped to momenta prior to the expansion in the
ODT.

For example, we can use our optical dipole trap for this purpose (Fig-
ure 5.3), or, after a future upgrade of the experiment, a pancake trap
similar to [Rie+

15].
If we release an atom into the ODT, in the classical picture, it starts

oscillating along the three axes of the ODT:

xi(t) = x0,i cos(ωi,ODTt) +
p0,i

mωi,ODT
sin(ωi,ODTt), (5.3)

where i = x,y, z stands for the axis of the ODT, ωi,ODT for the ac-
cording trap frequencies5 and p0, x0 for the initial momentum and
position, respectively. If we assume that the initial position is near the
center of the ODT (x0,i ≈ 0) where the potential is approximately har-
monic, we see that x(t) becomes largest at the turning point for τi =
Ti/4 = π/(2ωi). Incidentally, the position at this time is an exact map
of the momentum the particle had had initially, p0,i = mωixi(T/4),
and is independent of its starting position (Figure 5.4). This under-
standing can be applied in the framework of quantum mechanics, re-
placing the position and momentum coordinates with the respective
field operators [Mur+

14].
We can now estimate whether the ODT can confine the atom to

the focal plane during expansion. For typical parameters, we see that
the ground state momentum wavefunction in the microtrap along the
imaging axis has a standard deviation of σpz(t = 0) =

 h
lz,MT

with the

5 Typical values are Tx = 2π/ωx,ODT ≈ 16ms and ωy,ODT ≈ ωz,ODT ≈ 8ωx,ODT.



76 single-atom detection

harmonic oscillator length lz,MT = 0.53µm. The maximum position
width of the wavefunction during expansion in the ODT is then

σz(T/4) =
σpz(0)

mωz,ODT
=
lz,ODT

lz,MT
lz,ODT ≈ 5.8µm, (5.4)

using lz,ODT ≈ 1.8µm. This value is smaller than the depth of field of
our objective (5.2) and can be adjusted by changing the depth of the
ODT or of the microtrap.

We have can use the expansion of atoms prior to imaging in two
different ways. For the first method, we leave the ODT on during the
entire time of the expansion (T/4-method). When the atoms reach the
turning along the x-axis, they will have performed many oscillations
along the other two axes. If the interactions during expansion are neg-
ligible and the ODT is described by a three-dimensional harmonic os-
cillator, the three coordinates are decoupled and the dynamics along
the y and z-direction do not influence the outcome along the x-axis.
By integrating out the z-axis due to the imaging procedure and the y-
axis during the data evaluation, we can use this method to determine
the initial x-momentum distribution of the atoms:

px(0) = mωx,ODT x(T/4) (5.5)

We have to be careful, however, when using this imaging technique
for strongly interacting systems. If we want to avoid the refocusing
of the atoms along the y and z-axes during the expansion, we turn
on the ODT only for the first Tz/4 ≈ 445µs at the beginning of the
expansion and turn it off for the rest of the expansion (similar to
[Rie+

15]). This means that we maximize the spread of the atoms along
the z-axis, and, in our case, also along the y-axis (since ωz,ODT ≈
ωy,ODT), minimizing their density and the effects of interactions. Also,
their momentum spread (i.e., dispersion) along these axes will be
minimal, namely

σpz(Tz/4) = −mωz,ODTσz(0) = −σpz(0)
ωz,ODT

ωz,MT
. (5.6)

In our experiment, this means that the wavefunction spreads along
the z-axis at only one tenth of its initial velocity, which is why we call
this procedure the brake pulse method. We can ensure that this spread
remains smaller than the depth of field,

σpz(Tz/4)

m
texp = 2π lz,MT

texp

Tz
< dDoF, (5.7)

if we choose the expansion time texp sufficiently short. For typical
values, this amounts to texp < 3.7ms. We compensate center-of-mass
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momenta caused by initial displacements z0 6= 0 by applying a weak
gradient of ca. 2Gcm−1 during the entire expansion.

The position along the x-axis will be an approximate mapping of
the initial momentum,

px(0) =
mx(texp)

texp
, (5.8)

as long as the system after expansion is large compared to the initial
system,

texp �
xinit

 hωx,MT/m
≈ xinit

45µmms−1
. (5.9)

xinit denotes the typical length scale of the initial system, for example,
the harmonic oscillator length along x of the microtrap, the separa-
tion of the microtraps, or the displacement of the microtrap from the
center of the ODT.

With these two methods, we can determine the initial momentum
in the system with a resolution of

∆px

px
=

σimg

x(texp)
, (5.10)

which is typically smaller than 0.04.

5.4 in-situ imaging

The momentum imaging technique can also be adapted to perform
position imaging, enabling us to take in-situ data of our systems. The
most straight-forward way is with a two-step expansion. First, the
atoms expand for T1/4 in a deep trap with a trap frequencyω1, which
maps their initial positions to momenta. Next, the depth of the trap
is reduced to ω2. Due to the large momenta of the atoms, their dis-
placement after T2/4 is proportional to their initial positions,

x((T1 + T2)/4) = −
ω1
ω2
x0, (5.11)

where ω1/ω2 acts as a magnification (Figure 5.4). The problem with
this method is that we do not use harmonic potentials, but Gaussian
potentials with a finite depth. This means that, if we make the first
trap too deep, the atoms will gain too much momentum to be bound
by the second trap.

However, we can achieve similar behavior with a different method.
The mechanism that is essential to our magnification scheme is the
unambiguous mapping of initial position to momentum in the first
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step. Instead of implementing this using the dipole trap potential,
we displace the microtraps non-adiabatically by different amounts,
which gives the atoms in each well an individual momentum kick.
We then image these momentum kicks with our established momen-
tum imaging technique as displacements, mapping the final spatial
distribution back to the in-situ distribution.

5.5 spin resolution and photon number

An important feature of our imaging technique is its ability to distin-
guish the different hyperfine states |1〉, |2〉, and |3〉 in a single image.
To address the hyperfine states individually, we use σ−-light to excite
the atoms while applying a large magnetic field B > 500G. Due to the
Zeeman effect, the hyperfine states are separated by δ ≈ 80MHz (see
Section 4.1), hence the light can be tuned to resonance for one of the
hyperfine states while being off-resonant for the others. From equa-
tion (4.3), we see that off-resonant scattering is suppressed quadrat-
ically when the linewidth of the laser is narrow enough and its in-
tensity is low enough. For typical intensities of I/Isat ≈ 8.5, we reach
Γoff-res ≈ 1.1× 10−2 Γ/2 for δ = 80MHz (between states |1〉 and |2〉,
and |2〉 and |3〉) and Γoff-res ≈ 2.8 10−3 Γ/2 for δ = 160MHz (between
states |1〉 and |3〉).

5.5.1 Photon Scattering Process

To ensure that the hyperfine states do not mix during imaging, we
have to look at their decomposition in the |mJ,mI〉-basis as in eq.
(4.1). The resonant σ−-photons alter the electronic quantum number
by ∆mJ = −1, but leave the nuclear spin quantum numbers I,mI
unchanged. During the emission process, the atom is transferred back
to a mJ = −1/2 ground state, but we see that different hyperfine
states can have an admixture of the same mI,mJ-state. This leads to a
branching ratio during emission, i.e., the excited state may decay with
a certain probability to one of two ground hyperfine states. Atoms
that decay to a hyperfine state which is different from their initial
state will not be resonant anymore with the imaging light and become
dark. It is therefore crucial that the branching ratio remains small
during imaging.

This is the case for large magnetic fields, where the coupling be-
tween electronic and nuclear magnetic moments becomes small and
the eigenstates consist mostly of one basis state. The admixture of
the other basis state can be calculated with the mixing angles from
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eq. (4.1) [Geh03a]. For 527G, the resulting branching ratios after one
scattering event are

pBR(|1〉 → |5〉 , 527G) = 0.47%

pBR(|2〉 → |4〉 , 527G) = 0.58%.
(5.12)

This may sound like a small number, but we have to keep in mind
that each atom has to scatter Nph ∼ 300 photons6. The number of pho-
tons that an atom scatters Nsc before it becomes dark is described by
the geometric distribution. The case that the atom has not entered the
dark state after Nph scattering events is described by a delta distribu-
tion at Nsc = Nph. The combined distribution looks as follows:

p(Nsc) =


pBR(1− pBR)

Nsc for 0 6 Nsc < Nph

(1− pBR)
Nsc for Nsc = Nph

0 for Nsc > Nph

(5.13)

The photon number that is actually detected Ndet is sampled from
this distribution with a probability of pdet = 8.7%. This process is de-
scribed by the binomial distribution B(Ndet;Nsc,pdet), which yields
the probability of detecting Ndet out of Nsc photons. The total num-
ber distribution for detected photons can be obtained by convolving
distribution (5.13) with B(Ndet;Nsc,pdet), which results in

P(Ndet) =

Nsc−1∑
k=0

pBR (1− pBR)
kB(Ndet;k,pdet)

+ (1− pBR)
Nph B(Ndet;Nph,pdet).

(5.14)

For a closed transition, e.g., |3〉 → |3 ′〉 → |3〉 with a branching ratio
pBR(|3〉 → |i〉 , 527G) = δ3,i, only the second term of the sum remains,
resulting in a binomial distribution with a mean value ofNsc pdet. The
first term, which is important in the case of an open transition with
pBR > 0, results in a tail towards lower photon numbers as can be
seen in Figure 5.5.

In order to optimize our imaging procedure, we must understand
how we can influence the parameters of the photon number distri-
bution. We can change the branching ratio by changing the magnetic
field and the photon number Nph by changing the duration or inten-
sity of the imaging light pulse, while the detection efficiency is fixed
by our optical setup. Also, we must identify a figure of merit D which
relates our imaging performance to the detection fidelity of an atom.
We choose the probability for detecting at least a threshold number of

6 This is an average number, however, it is a good approximation to use for the follow-
ing calculation.
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(a) (b)

(c) (d)

Figure 5.5: Numerical simulation of the detected photon numbers from an
open transition for (bars), for Nph = 300, pdet = 8.7%, and pBR =

0.5%, 0.1%, 0.05%, and 0.01% (a, b, c, and d, respectively). The
histogram is normalized and contains 10000 trials. The blue lines
show the distribution according to eq. (5.14), the red lines show
the distribution B(Ndet;Nph,pdet) for a closed transition, and the
yellow line shows 1− CDF(Ndet) for the cumulative distribution
function of eq. (5.14), which corresponds to the fraction of events
above a threshold of Ndet (scaled by 0.1 for display purpose).
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Figure 5.6: Probability of detecting 10 or more photons for different branch-
ing ratios and total photon numbers.

photons Nth = 10 scattered per atom. The exact choice of this number
strongly depends on the performance of the camera and the image
post-processing (see Sections 5.6 and 5.7).

We can calculate our figure of merit by integrating the probability
distribution, D =

∑
k>Nth

P(k). For finite branching ratios, it satu-
rates well below one even for large Nph (Figure 5.6). Therefore, the
only way of improving D is to reduce the branching ratio, that means,
image at as high magnetic fields as possible. In our experiment, we
typically choose a magnetic field of 900G whenever possible, leading
to branching ratios of less than 0.2% for the |1〉 and |2〉 states, and
D ≈ 80%.

Currently, we are also working on a different scheme for increasing
the number of detected photons. By using a second laser which is res-
onant to the ground states in the upper mF-manifold, we can image
the atoms in states |1〉 and |5〉 or |2〉 and |4〉 simultaneously, eliminat-
ing the dark states. To avoid mixing the states and reduce off-resonant
scattering, we use the transitions to the mF = −3/2 and mF = 3/2

excited-state manifolds, respectively, for this imaging scheme.

5.5.2 Rapid Spin-Resolved Imaging

Now that we have established that we can image the hyperfine states
individually, we also want image them in a single image. We do this
by imaging each of the hyperfine states on a different region of the
camera sensor. As this is a sequential process, and we must ensure
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Figure 5.7: Schematic of the laser lock of the imaging laser. The RF setup of
the beat lock is shown on the right. The Red Pitaya microproces-
sor runs a feedback loop on the piezo voltage and diode current
of the laser. From [Tho16]

that the time elapsed between imaging the different hyperfine states
is short compared to the timescales of the system that we image.

We decided to image the different hyperfine states with one sin-
gle7 external-cavity diode laser (ECDL) (Toptica DL-100). Therefore,
we have to quickly change the frequency of the laser between imag-
ing two hyperfine states, while still providing long-term frequency
stability during imaging. To achieve this, we use a beat offset lock
[Sch+

99] to feedback on both the grating of the laser via the piezo
voltage, as well as the current of the laser diode (Figure 5.7). The lat-
ter has a high bandwidth and we use it to stabilize the laser while
we jump its frequency by up to 160MHz to match the resonance fre-
quency of the different hyperfine states. The jump can be performed
reliably in approximately 10µs, which is much faster than the typical
expansion times T/4 ∼ 4ms. (In fact, the acquisition of the different
hyperfine state images is currently limited by the frame rate of the
EMCCD.) For more details on the imaging of two hyperfine states, see
[Ste16; Tho16].

5.6 single photon detection

As we have seen in the previous section, the signal-to-noise ratio on
the camera plays an important role for the detection efficiency. There-

7 This is more cost-effective and requires less maintenance than running two separate
lasers. More details on the working principles of ECDLs can be found in standard
literature, e.g., [Zor95].
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fore, it is necessary to take a look at the camera that we use for imag-
ing and its noise and detection characteristics.

CCD cameras are arrays of photo-sensitive detectors (pixels) which
measure the intensity of a source. With a certain quantum efficiency
(QE), the photons from the light source excite electrons in the semicon-
ductor to the conduction band. These photoelectrons are collected at
every pixel of the array. At the end of the exposure, the number of
photoelectrons in each pixel is read out sequentially via a common
readout amplifier and an analog-to-digital converter (ADC). How well
the value extracted by the ADC matches the real intensity at the cor-
responding pixel depends on different noise sources of the imaging
process.

5.6.1 Noise Sources of CCDs

The first fundamental noise source of an optical signal is the photon
shot noise, which is independent of the detection device. It has its
origin in the fact that the light field consists of independent photons,
and, for an average photon number N (i.e., a fixed average intensity),
the photon number will be given by a Poisson distribution with a
width

√
N. This means that the relative fluctuations of the intensity

will decrease as 1√
N

as one increases the intensity. This behavior was
also exploited for the stabilization setup in Section 4.5.1.

The next noise source comes from the limited quantum efficiency
of the detector. From the photons that arrive at a pixel, only a fraction
is converted into photoelectrons. One can model this as a random pro-
cess, therefore, the relative number fluctuations of the photo-electrons
can be described as 1√

QE×N .
Apart from the noise related to the generation process of the photo-

electrons, there are additional noise sources which stem from the pro-
cessing of the signal in the camera’s electronics. One of these noise
sources is the dark noise, which expresses the rate at which photo-
electrons are spontaneously excited, even in absence of light. As this
happens continuously, the amount of dark noise increases with the ex-
posure time of the image. Because this process is caused by thermal
excitations, the dark current can be effectively suppressed by cooling
the sensor or using a semiconductor with a larger band gap.

The remaining noise sources are often referred to as read noise or
readout noise, as they occur only once during readout and are inde-
pendent of the exposure time of the sensor. However, when trying
to understand the noise of an EMCCD, it makes sense to differentiate
between different sources of read noise.

The first type of read noise originates from the shifting of the
charges across the sensor. When the gate voltages are applied, ex-
citations and holes can be created for example by impact ionization
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[Tul10]. These charges are called clock-induced charges (CICs) or spu-
rious charges, and they occur at a rate typically less than 0.01 e-/pix.

For conventional CCDs, CICs are negligible compared to the other
source of readout noise, the (pre-)amplifier noise. It is caused by ther-
mal fluctuations (Johnson noise) in the resistors of the readout am-
plifiers. The best scientific cameras currently have a readout noise of
6 e-/pix [Li+16]. This means, however, that conventional CCDs cannot
be used to detect a single photoelectron coming from a single photon.

5.6.2 Electron-Multiplying CCDs

To detect single photons, one has to amplify the signal of the photo-
electron before it reaches the noisy readout electronics. In an electron-
multiplying CCD, this is done by creating an avalanche of secondary
electrons by impact ionization [Hyn01; Jer+

01]. The primary electrons
of each pixel are amplified by shifting them through an electron mul-
tiplication register before they reach the conventional amplifier and
readout electronics.

The electron-multiplying (EM) amplification works similar as in an
avalanche photomultiplier. For every shifting process, there is a prob-
ability (typically 1% to 1.5%) that a secondary electron is created.
This is a stochastic process which, after around 500 shifting processes,
can produce up to ∼ 2000 secondary electrons for each primary elec-
tron. The distribution of the number of secondary electrons follows a
Erlang distribution8 [BHM03]

psec(x;n) =
xn−1e−x/g

gn(n− 1)!
, (5.15)

where n is the number of primary electrons, x is the number of sec-
ondary electrons, and g is the average gain of the electron multiplica-
tion register. When using the EMCCD in photon counting mode, where
there is one photon per pixel at most, this becomes an exponential
distribution.

As we can see from Figure 5.8, this distribution leads to a finite
probability that a photoelectron generates very few secondary elec-
trons. For events which fall within the range of the read noise, we
cannot reliably identify these events as real events or as noise, there-
fore we must discard them by only considering events above a cer-
tain threshold. Also, we see in the right panel that there is a shoulder
present in the distribution which is explained neither by the read
noise nor by the avalanche process. We attribute it to secondary CICs,
which are created similar to (primary) CICs, but in the multiplication

8 Since the amplification process is stochastic in the same way as the photon shot
noise, the noise of both processes is often combined, leading to an effective decrease
in quantum efficiency. Note that this does not apply when operating the EMCCD in
photon counting mode.
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Figure 5.8: Histogram of the pixel values of our EMCCD in photon-counting
mode (blue). The Gaussian contribution of the read noise is
shown in red (dashed), the contribution of the EM gain is shown
in orange (dash-dotted). Below 200ADU, the shoulder in the sig-
nal is caused by secondary CICs. From [Ber17].

register. To avoid counting these false events, we choose a relatively
high threshold, typically 8 σread. With this threshold and a gain of
g ≈ 90 σread, we detect 88% of the photoelectrons [Ber17]. Because
the exact number of secondary electrons carries only little informa-
tion about the original number of primary electrons, we assign pixels
which are above threshold the value 1 and all other pixels the value
0, which results in a binarized image (Figure 5.9).

Although the electron multiplication makes it possible to detect
single photons with a high fidelity, it also means that the CICs cannot
be neglected anymore as a noise source. Just as the photoelectrons,
they are amplified in the EM register and their signals follow the same
distribution. From dark measurements, we concluded that 3% of the
pixels contain a CIC, for typical camera settings. Because, individually,
a CIC event looks exactly like a real event, finding the best way to
distinguish the real signal from CICs is the main challenge for image
processing.

5.7 image processing

Once we have collected the signal of an atom, which may consist only
of a handful of photons, we have to identify it against the noise on
the image. First, we separate the pixels into bright pixels and dark
pixels using the threshold from the previous section (binarization).
Then, we use the fact that the photons emitted by an atom originate
from approximately the same location and will appear as a bunched
pattern of bright pixels, even though we do not a priori know the
number of bright pixels or the shape of the pattern.

The CICs, in contrast, are created in an almost9 uncorrelated man-
ner, which results in white noise with a uniform spatial frequency
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Figure 5.9: Image of a single atom (a) after binarization (b) after low-pass
filtering. Darker shades represent higher photon numbers. The
red cross shows the intensity peak which we identify as an atom.
From [Ber17].

spectrum. This means that a large part of the noise spectrum has
high spatial frequencies, unlike our signal. Therefore, we can reduce
the contribution of the CICs by applying a low-pass filter with a width
of 3pixels to the binarized images (Figure 5.9). The signal from the
atoms has a low spatial frequency and will be damped less than the
CICs.

We can see this by analyzing the amplitudes of the local maxima
in the images: If atoms are present, the histogram shows a clear bi-
modal distribution (Figure 5.10). We identify the atoms as the peaks
with an amplitude higher than a certain threshold. The threshold
value lies close to the minimum between the two peaks in the his-
togram, however, its exact position can be chosen according to the
requirements of the specific experiment: higher values if one wants
to definitely exclude CIC events (no false positives) or lower values if
one wants to definitely detect all real events (no false negatives). The
overlap between the two distributions depends on, for example, the
CIC density and the number of photons scattered per atom. We opti-
mize our imaging parameters such that the overlap between real and
false events becomes as small as possible.

A different approach for identifying events is estimating the like-
lihood that a certain pattern has been generated by an atom, or by
random CICs [Bom16]. Here, we first estimate the distributions that
the events are sampled from. As mentioned before, the CICs are dis-
tributed almost uniformly. For the atoms, we use an averaged image
to determine the typical photon distribution. We then divide each im-
age into sectors and estimate the probability p(k|Hi) that the photon
pattern k in each sector was generated by either distribution (hypothe-

9 The distribution of CICs is not completely uniform: the regions farthest away from
the readout register are more likely to contain a CIC because they undergo more line
shifts.
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Figure 5.10: Histogram of the amplitudes of local maxima of approximately
1000 low-pass filtered images. The inset shows the complete
histogram. From [Ber17].

ses Hi). We can then compare the likelihood of the hypotheses by
looking at the logarithmic likelihood ratio (LR), lnR = ln

(
p(k|H1)
p(k|H0)

)
.

If we make a histogram of the LR values of the pixels in an im-
age, we obtain a bimodal distribution, similar to Figure 5.10 of the
low-pass method. Unfortunately, the LR method does not produce
histograms where the contributions of atoms and noise are separated
more than with the low-pass method. This is probably because the LR

method still uses a hypothesis that has an average atom distribution
at its base, and therefore we do not extract more information out of
each image compared to the low-pass method. In the future, we will
try to improve the performance of the LR method by, e.g., incorporat-
ing correlations between the photons of each image into the hypothe-
sis. This hypothesis should describe the actual imaging process more
accurately, as the photons are emitted sequentially while the atom
follows a certain trajectory, and therefore the photons should show
some amount of correlation.

5.8 summary

Our new imaging scheme consists of four major components which
have been developed and implemented in our experiment over the
past years: The imaging optics, in particular the high-NA objective
[Ser11], which enables high photon detection efficiency and is essen-
tial for the spatial resolution. The laser setup [Ste16; Tho16], which
provides the light pulses and the fast frequency jumps for the spin-
resolution. The EMCCD camera which detects single photons [Bec16].
And our image processing [Bom16; Ber17], which allows us to iden-
tify atoms from the photon patterns.
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We have combined these components to implement our matter-
wave microscope, which allows us to gather both in-situ and momen-
tum information about our system. Because it can detect and identify
individual atoms, this novel imaging method will be an essential tool
for future experiments with tens or even hundreds atoms. But it can
also provide new insight in the small systems with one or two micro-
traps which we currently realize in our experiments. In the next two
chapters, we will study the results that we have obtained with our
matterwave microscope.



6
S T R O N G LY I N T E R A C T I N G F E R M I O N S I N A S I N G L E
W E L L

In our first set of experiments, we study the expansion of a strongly-
interacting Fermi gas containing only a few attractively-interacting
particles. These experiments are motivated by the heavy-ion collision
experiments from particle physics that I described in Section 2.2.3.
The two-ion system rapidly undergoes several different stages during
the collision (see [Hei04] for a review). First, the system thermalizes
and forms a quark-gluon plasma (QGP). This plasma evolves hydro-
dynamically and eventually freezes out. The hadrons resulting from
the freeze-out are measured with detectors outside the collision area.

One of the main interests of these studies is how the quark-gluon
plasma, a strongly-correlated quantum fluid which also existed in the
early universe, behaves. As many other quantum fluids, the QGP can
be described hydrodynamically [Ada+

12]. In heavy-ion collisions, its
properties are studied by looking at the hadrons (mostly pions) which
are produced after the QGP freezes out. For example, momentum cor-
relations in the far field can be used to perform an HBT analysis and
infer the size of the initial collision product.

We realized that we could perform similar experiments with our
newly developed matterwave microscope imaging technique, which
we can use to study how an ultracold quantum gas expands. In con-
trast to the heavy-ion collisions which produce a thermal plasma, we
start with ultracold atomic systems in well-known, low-entropy states.
In our experiment, we can prepare two-particle states with fidelities
up to 97%. Furthermore, the nature of the interactions is different in
our system: we only have short-range interactions which can be de-
scribed by contact interactions. Still, we can reach strongly-interacting
regimes by use of a Feshbach resonance (see Chapter 3).

Previously, we have studied few-fermion systems in a microtrap
for strong repulsive interactions [Mur+

15a] with our MOT imaging
technique. With our new matterwave microscope imaging (Chapter
5), we can measure correlations directly between individual particles.
In this chapter, we will present correlation measurements of strongly-
attractive few-fermion systems. We will also describe a theoretical
model for our measurements and how we currently interpret the ob-
served correlations. However, these are to be seen as preliminary re-
sults, as we are still improving our models in collaboration with the-
orists. While the experiments in this thesis were performed on two-
particle systems, we plan to extend this type of measurements to sys-
tems containing more particles, which may eventually be described
as a hydrodynamic system.

89
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6.1 description of the experiments

In our experiments, we prepare a sample of two atoms in a single
microtrap. We use a balanced mixture of the hyperfine states |1〉 and
|3〉, which we obtain after evaporating at high magnetic fields (see
Section 4.2). Before loading the microtrap, we cross the resonance to
break up the Feshbach molecules. After having loaded two atoms in
our microtrap (see Section 4.3), we set the intensity of the microtrap
typically to 185µW. This microtrap has an axial trap frequency of
ωz ≈ 2π× 6 kHz and radial trap frequencies of ωr ≈ 2π× 30 kHz.
Then, we slowly ramp our field in ∼ 100ms to the scattering length
that we want to study. For fields between 660G and 750G, we obtain
strongly interacting systems with scattering lengths |a| > 5000a0 (see
Appendix C for a list of values).

In a final step, we release the atoms from the microtrap. We can
then ramp to a high magnetic field to improve the performance of
the imaging (see Section 5.5). However, we noticed that this ramp in-
fluences the expansion dynamics of the atoms, since it corresponds
to a ramp in scattering length. Therefore, for the following experi-
ments, we decided to remain at the field where we had prepared our
sample, at the cost of decreasing our detection fidelity1. Instead, we
calibrated the atom number at high fields and then post-selected the
images taken at lower fields displaying the correct atom number.

After releasing the atoms from the microtrap, we let them expand
in an external potential. Even though an expansion in free space
would be easier to understand theoretically, it is experimentally not
feasible. Without external confinement, the atoms would exit the fo-
cal plane of the objective and we would not be able to detect them.
Therefore, we guide the atoms with the ODT potential. This potential
typically has an axial trap frequency of fODT = 1/T = 62Hz and an
aspect ratio of η ≈ 8 (see Chapter 5 for more details). Of course, this
elongated potential influences the motion of the atoms and has to be
taken into account for the exact interpretation of the measurements.

After the expansion has been completed, we image the atoms op-
tically with spin and position resolution along the elongated axis of
the ODT. For each individual image, we measure the position of the
atoms along this axis (Figure 6.1a). After repeating the experiment
ca. 5000 times for the same settings, we can display the result as a
correlated position density map (Figure 6.1b).

6.2 experimental results for two particles

Before we look at systems containing multiple particles, we first have
to understand how two particles expand and which influence the

1 We will overcome this limitation with a new imaging scheme which addresses both
the |1〉 and |5〉 hyperfine states, eliminating dark states.
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𝑥 𝑧

𝑦

(a) (b)

Figure 6.1: (a) Typical image of two atoms used for correlated density mea-
surements. The two hyperfine states are imaged individually and
their distance from the origin after T/4 can be interpreted as their
initial momentum. (b) Density map of the correlated positions of
two atoms for ca. 5000 measurements at 690G. Each position bin
contains two pixels. The cross marks the approximate position of
the image in the left panel.

confinement and the interactions have on them. Figure 6.2 shows a
collection of correlated density measurements after an expansion time
T/4 with different settings, in which we can identify several different
features.

From looking at the correlated density (diagrams as in, e.g., Figure
6.1b), we observe that structures mainly appear along the diagonal
x1 = x2 and antidiagonal x1 = −x2 axes. The reason is that, for two
particles, the coordinates of the individual particles x1 and x2 can be
transformed to center-of-mass (COM) and relative (REL) coordinates,
X = (x1 + x2)/2 and x = x1 − x2 (see Section 3.2). These coordinates
are parallel to the diagonal and antidiagonal axes, respectively, of the
correlated density images. In the case of harmonically confined par-
ticles2 with interactions that only depend on the particle separation,
the equations of motion separate in this coordinate frame, resulting
in two decoupled single-particle problems.

Therefore, we can look at the correlated data along the REL coor-
dinate x regardless of the COM coordinate (effectively integrating the
X-axis), or vice versa. In Figure 6.2, the densities along these two axes
are shown for a range of different scattering lengths and expansion
parameters (the complete data set is available in Appendix D). For
each setting, two graphs are shown. In the upper (lower) graph, one
sees the correlations along the REL (COM) coordinate, where the den-
sity along the COM (REL) coordinate has been integrated:

2 Our optical potential is created by Gaussian beams and can, at least for sufficiently
low energies of the particles, be approximated by a harmonic potential.
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ñ(x) =

∫
dX 〈n̂(x1)n̂(x2)〉 (6.1a)

ñ(X) =

∫
dx 〈n̂(x1)n̂(x2)〉 (6.1b)

For comparison, we also show the densities profiles which one ob-
tains when integrating over the uncorrelated densities,

ñu(x) =

∫
dX 〈n̂(x1)〉 〈n̂(x2)〉 (6.2a)

ñu(X) =

∫
dx 〈n̂(x1)〉 〈n̂(x2)〉 . (6.2b)

From these quantities, we can define the correlator

C(x) =
ñ(x)

ñu(x)
− 1, (6.3)

which has also been used in [Föl+
05; Rom+

06]. It corresponds to the
correlation function g(2)(x1, x2) (eq. (2.26)) and has been normalized
by dividing the correlated two-particle density by the uncorrelated
single-particle densities.

To reduce the effect of noise in the less dense regions of our mea-
surements, we instead prefer to use different correlators,

Γ(x) = ñ(x) − ñu(x) and (6.4a)

Γ(X) = ñ(X) − ñu(X). (6.4b)

As these correlators do not have measurement data in the denomina-
tor, their values should be less susceptible to noise. The correlators
that we obtained from our measurements can also be found in Ap-
pendix D.

Already by looking at the integrated densities ñ(X) and ñ(x) in Fig-
ure 6.2, we can see several interesting features in our data. Starting at
relatively small negative scattering lengths at 900G (see Appendix C
for the values of the scattering length), the width of the distributions
ñ(x), ñ(X) is similar to that of the individual, uncorrelated particles
ñu(x), ñu(X). This shows that the particles are approximately inde-
pendent from each other, as in the case of non-interacting particles.

For larger interactions toward the resonance, the width of ñ(x) de-
creases as, while the width of ñ(X) stays approximately the same.
Near the resonance, the shape of the density profile changes and re-
sembles a bimodal distribution with wide wings and a sharp central
peak. Further below the resonance, the wings disappear and only the
central peak remains. This sharp correlation peak is expected as the
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Figure 6.3: Length scale d corresponding to the fringe spacing after T/4 for
different interaction strenghts (a) and for different ODT depths
(b). The dashed line, d = aHO, is a guide to the eye.

atoms are bound as Feshbach molecules at these values of the scatter-
ing length.

For strong interactions just above and on the Feshbach resonance,
additional fringes appear next to a central peak. Interestingly, their
spacing does not strongly depend on the initial parameters of the
microtrap or the scattering length (Figure 6.3a), but mostly on the
parameters of the ODT which we use during the expansion. Using the
relation

1/d ≡ p(T = 0) = mωx(T/4), (6.5)

where we introduced the length scale d corresponding to the initial
momentum3, we can see that the fringe spacing matches the harmonic

oscillator length aHO =
√

 h
mω closely for different depths of the ODT

(Figure 6.3b). Note that the fringes would scale differently if they de-
pended on the ODT only in a trivial manner: In this case, they would
scale with the magnification as M ∝ ω ∝ a2HO. Surprisingly, the
fringes are present only for some configurations of the dipole trap,
and absent for others, the reason for which has as of yet not been
identified.

In the next sections, we will provide a theoretical model for under-
standing several of these features observed in the correlated density
profiles.

6.3 theoretical interpretation

As mentioned in the previous section, the initial state of our exper-
iment consists of two interacting particles in a harmonic trap. This

3 For this evaluation we assumed that the momentum mapping expained in Section
5.3 also works for interacting systems.
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problem can be separated in center-of-mass and relative coordinates.
As the interactions only depend on the REL coordinate, the wavefunc-
tion in the COM coordinate remains that of an ordinary harmonic
oscillator, with the modified mass M = 2m. The equations of motion
in the rel coordinate describe a single particle with reduced mass
µ = m/2 in a potential consisting of a central harmonic potential and
a central interaction potential (eq. (3.31)). This problem has been has
been treated analytically and numerically for different confinement
geometries [Bus+

98; BTJ02; IC06; LZ08].
In this section, we will first focus on the isotropic and axially sym-

metric solutions by [Bus+
98; IC06] to describe our initial states. Then,

we will deduce how these states evolve using our knowledge about
low-energy scattering from Section 3.2. Combined, these approaches
will result in predictions for correlated density profiles, which we can
compare to our measurements.

6.3.1 Interacting Atoms in an Axially-Symmetric Microtrap

For the initial system, we have to treat the one-particle harmonic os-
cillator problem combined with contact interactions, which can be
described in relative coordinates by the Schrödinger equation

(
−
1

2
l2∇2 + 1

2

(
η2
ρ2

l2
+
z2

l2

)
+ 2π

a

l
δ(r)

∂

∂r

r

l

)
Ψ(r) =

E
 hωz

Ψ(r). (6.6)

Here, we have explicitly normalized all energy scales with respect to
the axial trap frequency  hωz and all length scales with respect to the

reduced harmonic oscillator length l =
√

 h
µωz

. Energies and lengths
will be expressed in these units for the following discussion, includ-
ing the scattering length a. The radial harmonic oscillator is related
to the axial harmonic oscillator by the aspect ratio η = ω⊥/ωz.

Instead of using plane waves to find a solution to this problem, it is
more suitable to use a basis set consisting of the two-dimensional har-
monic oscillator basis Φn,m(ρ,φ) and the one-dimensional harmonic
oscillator basis Θk(z). In the case of a prolate (cigar-shaped) trap,
we obtain the following relation between the energy E = E − E0 =

E− η− 1/2 and the scattering length [IC06]:

−
1

a
= −

2Γ(−E/2)

Γ
(
−E+1

2

) + Γ(−E/2)

Γ
(
−E−1

2

) n−1∑
m=1

2F1

(
1,−E/2;−

E− 1

2
; e2πim/n

)
,

(6.7)

where Γ(x) is the Euler gamma function and 2F1(a,b; c; x) is the hyper-
geometric function. This relation is visualized in Figure 6.4. We can
see that, compared to the non-interacting system at

∣∣a−1∣∣ � 1, pos-
itive scattering lengths increase the energy (called repulsive branch),
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Figure 6.4: Energy of two particles in a harmonic trap for η = 5 (equation
(6.7), blue line) and in free space (magenta dashed line), versus
the inverse scattering length a−1. The eigenenergies without in-
teractions are shown as dotted black lines. The zero-point energy
of the harmonic trap has not been subtracted.

while negative scattering lengths decrease the energy (called attrac-
tive branch). The ground state is connected to the free-space Feshbach
molecule for positive scattering lengths. The energy of the Feshbach
molecule is barely influenced by the external confinement once its
length scale (eq. (3.27)) is small enough compared to l and its bind-
ing energy is much larger than the trap depth.

We can learn more about this system if we use the energy eigenval-
ues to calculate its (unnormalized) eigenstates as a series expansion
in the harmonic oscillator basis:

ΨE(r) =
∑
n,k

Φ∗n,0(0,φ)Θ
∗
k(0)

2ηn+ k− E
Φn,0(ρ,φ)Θk(z) (6.8)

The terms with m 6= 0 do not contribute to the solution since they
vanish for r = 0 (Φ∗n,m>0(0,φ) = 0) and cannot be influenced by the
contact interaction.

A few observations can already be made from this very general
expression, without calculating the wavefunction explicitly. The con-
tribution of each basis wavefunction in the expansion is determined
by its prefactor. This coefficient contains the energy difference be-
tween the state’s energy E and the energy of the non-interacting har-
monic oscillator in the denominator. For weak interactions, where
2ηn + k ≈ E, the contribution4 from the non-interacting harmonic-
oscillator wavefunction with matching energy will be resonantly en-
hanced, while the other terms will contribute small corrections.

For stronger interactions there is no single, resonant coefficient any-
more. While the wings of the wavefunction at distances ∼ l still match

4 For η ∈ Q, there may be several resonant terms from degenerate states.
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(a) (b)

Figure 6.5: Absolute value of the relative wavefunction of two particles in a
harmonic trap with η = 5. (a) Ground state for a−1 = −2. (b)
Excited state for a−1 = 5.6. Rendered using data from [Blu17].

the basis functions well, the wavefunction in the center is mainly de-
termined by the boundary condition of the scattering problem, eq.
(3.28). Because the non-interacting basis does not follow the same
boundary conditions, many high-frequency terms in the expansion
are required to describe the wavefunction well at small distances. A
similar argument applies for the ground state when it has large over-
lap with the Feshbach molecular state. In these two cases, it is ad-
vantageous to expand the wavefunction in a more suitable basis, or
to calculate it numerically. A few examples of numerically calculated
wavefunctions [Blu17] for strong interactions are shown in Figure 6.5.

6.3.2 Interacting Atoms in an Isotropic Microtrap

For the remaining discussion, it is useful to have a concise, analytic
expression for the wavefunction. In the special case of isotropic con-
finement, such a solution exists [Bus+

98]. Just as the confinement, the
eigenstates of this problem are also isotropic. They are characterized
by the radial wavefunction

rΨν(r) ∝ r e−r
2/4U(−ν, 3/2, r2/2), (6.9)

where U(a,b, z) is the confluent hypergeometric function and ν =

(E− 3/2)/2 corresponds to a main quantum number.
It is interesting to observe that this wavefunction is related to a gen-

eralized solution of the non-interacting, one-dimensional harmonic
oscillator wavefunction e−r

2/2Hn(r), where the main quantum num-
ber n in the Hermite polynomial determines the wavelength of the
wavefunction inside the trap. If n is allowed to take non-integer val-
ues −ν, the Hermite polynomial has to be replaced by the hyperge-
ometric function U, just as in equation (6.9). It becomes clear that ν
determines not just the wavelength of the wavefunction, but also its
phase shift at r = 0 (which, for non-interacting particles and integer
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n, always is a multiple of π). This insight will come in handy when
treating the dynamical expansion of the wavefunction, as it shows the
direct relation between the trapped, interacting particles and the free
particles described by scattering waves.

6.3.3 Free Expansion with Contact Interactions

As a next step, we have to understand the dynamics of the atoms after
they have been released from the microtrap. While, in the experiment,
we use an optical potential to guide the released particles, it makes
sense to first look at the behavior of freely expanding particles, which
is simpler to describe.

From scattering theory (Section 3.2), we know that the eigenstates
of free particles with contact interactions are plane waves with a
phase shift. In general, they can be written as

ψs,k(r,a) =
sin(kr+ δ(a))

2π r
=

sin(kr) − ka cos(kr)
2π r

√
(ka)2 + 1

, (6.10)

where the scattering phase was replaced by the scattering length in
the second step according to tan δ = −ka. For positive scattering
lengths, we also have to consider the bound state

ψb,k(r,a) =
e−r/a√
2πa r

. (6.11)

These states are all orthogonal to each other and the scattering states
have been normalized such that their volume integral is independent
of their wavelength.

If we want to know the occupation of a certain momentum mode k,
we must calculate the overlap of the scattering waves with the initial
wavefunction ψ0. In position space, this becomes

ck(t = 0) = 〈ψk | ψ0〉 =
∫

d3r
sin(kr+ δ)

r
ψ0(r) (6.12)

at t = 0 directly after releasing the atoms. Decomposed in these mo-
mentum modes, the full wavefunction at time t reads

ψ(r, t) =
∫

d3k e−iEkt/ h ck(0)ψk(r), (6.13)

where the energies of the modes are Ek =
 h2k2

2m . After long expansion
times texp, the different momentum components will have spatially
dispersed and we are able to read off the momentum components
from the spatial density distribution, n(k, t = 0) ≈ n(r, texp).
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While calculating the density distribution in this manner mimics
the experimental procedure, it is relatively impractical. A more con-
venient way of extracting the initial momentum distribution can be
found by reformulating equation (6.12) using Bessel functions,

√
π/2
√
kr J1/2(kr) = sin(kr). (6.14)

We obtain the following relationship for the overlap coefficients ck:

ck(t = 0) =

√
π

2

√
k

∫∞
0

dr rψ0(r)
√
r J1/2(kr) =

1

2π2
kF(ψ0(r))

⇔ ψ0(k) ∝
ck
k

, (6.15)

In the second step, the integral was identified as a Hankel trans-
form, which can be in special cases related to the Fourier transform
F [Bra00]. Even though the interaction-induced phase shift has been
neglected in this derivation, it shows the connection between the pro-
jection coefficients of the initial state on the scattering waves and the
momentum representation of the initial state.

6.3.4 Free Expansion of Isotropic Trapped States

We will now see how strong interactions influence the expansion dy-
namics of an isotropically-trapped initial state, which will henceforth
be called the Busch state [Bus+

98] (see eq. (6.9)). When this state is re-
leased from its confinement, it is projected on the scattering states
ψs,k(r,a) and the molecular bound state ψb,k(r,a) (eq. (6.10) and
(6.11), respectively).

In Figure 6.6, we can compare the Busch state with these states,
and also with free spherical waves ψf,k(r) =

sin(kr)
2πr with momentum

k =
√
2mE. For small and intermediate positive scattering lengths, the

Busch wavefunction closely resembles the molecular wavefunction,
while at large positive scattering lengths, the molecular wavefunction
extends far outside the trap and is no good description of the Busch
state. Instead, the scattering spherical wave ψs,k(r,a) matches it better
for r . l (neglecting the phase shift of π). For larger distances, how-
ever, the scattering waves do not match well because the Busch wave-
function vanishes outside the trap. Also for large and intermediate
negative scattering lengths, where there is no bound state ψb,k(r,a),
the scattering states match the Busch state for small distances.

For comparison, the overlap with a free wavefunction ψf,k(r) with
the same momentum is worse, because the it does not describe the
Busch wavefunction well around r = 0, i.e., the phase does not match.
For weak interactions, the initial wavefunction is approximately a
Gaussian, rψBusch(r,a ≈ 0) ∝ r e−r

2/2, and the scattering and free
waves provide almost identical overlap.
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Figure 6.6: Overlap of Busch’s wavefunction (blue) with the bound state
(yellow), scattering spherical waves (green) and non-interacting
spherical waves (red). For the spherical waves, only the waves
with momentum k =

√
2mE(a)/ h are shown. The horizontal

axis gives the radial coordinate r. All wavefunctions are radial
wavefunctions rψ. The values of the scattering lengths are given
in each panel and are typical for intermediate repulsive, strongly
repulsive, intermediate attractive and weakly attractive interac-
tions.
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(a) (b)

(c) (d)

Figure 6.7: Overlap of the scattering waves (color gradient) and free waves
(blue) with Busch’s wavefunction vs. momentum. The different
panels show the overlap for different interaction lengths, as in
Figure 6.6. The color of the curve specifies the phase of that mo-
mentum component. For free waves, that phase is always zero.
The red dot marks k =

√
2mE.
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It is clear that the initial Busch state will not project only on a sin-
gle scattering wave, since it is a trapped state with a finite extent and
the scattering states are infinitely extended states. Instead, we have
to calculate the overlap with a whole spectrum of scattering waves
with different momenta. This spectrum has to be such that the scat-
tering waves interfere constructively inside the trap and destructively
outside the trap, for t = 0.

Depending on the scattering length and the momentum, the scat-
tering waves may have different phase shifts and contribute differ-
ently the overlap. This may be seen in Figure 6.7, where the overlap
ck with different momenta k is shown together with the phase shift
δ = arctan(−ka). While the phase shift is zero for all momenta at
weak interactions, large momenta obtain a phase shift at larger scat-
tering lengths, until all momenta display a phase shift of π/2 on the
Feshbach resonance.

At large scattering lengths, also the distribution of overlap coef-
ficients ck starts to differ, depending on if we project on scattering
waves or on free waves. This can be understood from the boundary
condition (3.28) which is determined by the scattering length: It is the
same for the initial Busch state and the scattering waves, while it is dif-
ferent for the free waves (u|r=0 = 0). Therefore, the initial wavefunc-
tion can be decomposed into scattering waves with relatively low mo-
menta. In contrast, decomposing a strongly-interacting trapped state
in the free-waves basis requires large momenta to emulate the bound-
ary condition correctly. This additional momentum comes from the
released interaction energy, which remains contained if we project on
scattering waves instead.

With these results, we can try to reproduce our experimental re-
sults theoretically. The wavefunction expressed in scattering waves,
which are eigenfunctions of the Hamiltonian during expansion, can
be propagated by unitary time evolution (eq. (6.13)). It is clear that
the part which has been projected onto the molecular state remains
stationary, while the scattering waves expand outwards. If we wait
for sufficiently long times and rescale the position axis r ≈  hk

µ t and
the amplitude of the wavefunction, the part which has been projected
onto the scattering waves converges to c(k)/k. This behavior was also
expected from eq. (6.15). The wavefunction of bound state will in this
case remain narrow and not contribute to the expansion. In the ex-
periment, however, it will have a finite width which is given by the
resolution of the imaging system.

To mimic the imaging procedure in our experiment, we project this
radially symmetric wavefunction onto one axis of the Cartesian coor-
dinate system using an Abel transform [Pou10]. The numerical results
are shown in Figure 6.8. While there is a clear bound state for small
and intermediate positive scattering lengths, a base appears when
approaching the resonance, until the molecular peak and the base
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Figure 6.8: Busch wavefunction after projection on scattering waves and
bound state, after long expansion times and integrated over two
axes (blue curve). The contribution from the scattering waves is
shown in green and corresponds to the momentum components
of the initial wavefunction. For comparison, also the projection
on free waves without interaction (a = 0) is shown (yellow curve).
The panels show the results for different scattering lengths com-
parable to the experimental values (see Appendix C).
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merge on resonance. For negative scattering lengths, the narrow dis-
tribution becomes wider and more similar to a Gaussian the farther
away one goes from the resonance. The fringes which are a striking
feature in the experimental data do not appear in the calculations for
any scattering length. This may be due to the approximations and as-
sumptions made during the calculation, for example, that the initial
state and the expansion is isotropic. Currently, we suspect that the
anisotropy may indeed give rise to the fringes, however, this still has
to be investigated.

6.4 summary

We have used a simple system of two strongly-interacting fermions
in a single microtrap to study their expansion dynamics. Due to the
attractive interactions between the particles, correlations appear in
the relative coordinate, which we have detected with our matterwave
microscope. Two distinctive features in the correlated densities close
to the Feshbach resonance are the bimodal distribution at negative
scattering lengths and the fringe pattern at positive scattering lengths.

Due to the different spatial symmetries of the microtrap and the
ODT, it is difficult to exactly describe our system theoretically. How-
ever, a preliminary calculation based on isotropic, interacting initial
states and an isotropic, interacting expansion has already been able
to explain the bimodal structure at negative scattering lengths. We
are still working on an explanation for the fringe pattern, which we
suspect is caused by the anisotropy of our system.

The measurements in these chapter show the importance of inter-
actions during the expansion of strongly-coupled systems. By per-
forming these measurements with increasing numbers of particles,
we want to study transition between microscopic dynamics and hy-
drodynamic behavior in strongly-coupled quantum fluids.



7
E X P E R I M E N T S W I T H A D O U B L E W E L L

We can also study interacting few-fermion systems which occupy not
a single microtrap, but two coupled microtraps. This system can be
seen as the fundamental building block of the Hubbard model. While
the Hubbard model was originally developed to describe the behavior
of interacting electrons in a metal, it can also be applied to ultracold
atoms in a lattice [Jak+

98]. It provides a greatly simplified way of
treating the many-body problem, because it typically contains only
two characteristic parameters, the tunnel coupling J and the on-site
interaction U (see Chapter 2). The interplay of these parameters gives
rise to interesting phases which have been studied in many different
variations over the years [Tas98; JZ05; Ess+

05; Ess10; Dut+
15].

Even though some unexpected properties may only arise in very
large systems (as was advocated early on by P.W. Anderson [And72]),
they are caused by the microscopic behavior of the constituent par-
ticles. This behavior can be studied conveniently in very small sys-
tems, with only two sites and up to four particles. These double-well
systems or Hubbard dimers have attracted considerable interest from
theorists (for example [Zan02; DDW06; Car+

15]) and experimentalists
(for example [Föl+

07; Tro+
08; Gre+

13; Kau+
14]) alike.

In this chapter, we will look at our realization of the two-site Hub-
bard model, starting with a brief theoretical description. From the
measurements performed in our experiment (including those pub-
lished in [Mur+

15b]), we will be able to identify the states that we
prepared and match them to the theoretical predictions. Also, we will
use our matterwave microscope to extract information about the co-
herence and entanglement of our system.

7.1 double-well hubbard hamiltonian

For the double-well system, the description of the Hubbard model
and the Hamiltonian (2.43) is greatly simplified:

H = −J
∑
σ

(
â
†
LσâRσ + â

†
RσâLσ

)
+U

∑
j=L,R

n̂j↓n̂j↑+∆
∑
σ

(n̂Lσ − n̂Rσ)

(7.1)

Here, there are only the sites left and right (L and R) and the chemical
potential has been replaced with a tilt 2∆ between the sites. We can
now define a basis which counts the occupation of the sites for each
spin separately. Since the Hamiltonian conserves the number of parti-
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Dim. States Hamiltonian

1 |·, ·〉 0

1 |↑, ↑〉; |↓, ↓〉 0

1 |↑↓, ↑↓〉 2U

2 |↑, ·〉, |·, ↑〉; |↓, ·〉, |·, ↓〉

(
∆ −J

−J −∆

)

2 |↑↓, ↑〉, |↑, ↑↓〉; |↑↓, ↓〉, |↓, ↑↓〉

(
U+∆ −J

−J U−∆

)

4 |↑↓, ·〉, |↑, ↓〉, |↓, ↑〉, |·, ↑↓〉


U+ 2∆ −J −J 0

−J 0 0 −J

−J 0 0 −J

0 −J −J U− 2∆


Table 7.1: Dimensionality, states, and Hamiltonians of the subspaces of the

2-site Hubbard model. Adapted from [Kli12].

cles per spin state, it will in this basis consist of eight block-diagonal
entries (Table 7.1), which may be diagonalized separately.

7.1.1 One Particle in a Double Well

The simplest non-trivial case that we can study is one particle with
spin σ = {↑, ↓} in the double well. Even though there will obviously
be no interactions, it can show us the influence of the tunnel coupling
between the wells. In our experiment, we did not directly realize this
system. However, if we prepare two distinguishable, non-interacting
particles, we can treat each of these particles independently in a simi-
lar manner (see Section 7.4.1).

For a double well without coupling, the localized basis states given
in the fourth line of Table 7.1 are also its eigenstates. If there is cou-
pling, this system forms a textbook coupled two-level system. The
eigenstates will be a superposition of the basis states, |σ, ·〉 ± |·,σ〉,
and have the eigenenergies ∆∓ J.

In our experiment, we also have to consider that we may have pre-
pared a mixed state instead of a pure state. Therefore, it is necessary
to describe the state with the general density matrix

ρ1 = ρLL |σ, ·〉 〈σ, ·|+ ρLR |σ, ·〉 〈·,σ|+ ρ∗LR |·,σ〉 〈σ, ·|+ ρRR |·,σ〉 〈·,σ|

=

(
ρLL ρLR

ρ∗LR ρRR

)
.

(7.2)

For the eigenstates, the corresponding density operators are
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ρ− =
1

2

(
1 −1

−1 1

)
(7.3a)

ρ+ =
1

2

(
1 1

1 1

)
. (7.3b)

If we want to fully characterize a state in the experiment, we have
to measure all independent elements of the density matrix. While
there are different ways of doing this, one method is to measure the
different correlation functions of the system. In the simple case of a
single particle, the only relevant correlation function is the one-point
correlation function, i.e., the spatial density distribution n(x). We can
express it in a general form according to eq. (2.18) as

〈n(x)〉 =ρLL |ψL(x)|
2 + ρLRψ

∗
L(x)ψR(x)

+ ρ∗LRψ
∗
R(x)ψL(x) + ρRR |ψR(x)|

2 .

(7.4)

The precise shape of 〈n(x)〉 still depends on the type of measurement
which we perform, as this determines the shape of the modes ψi(x).

Notwithstanding the above, we can already assess in which cases
we are able to determine the off-diagonal terms ρLR. If the state is
completely mixed (ρLR = 0) or if there is no overlap between the
modes ψL and ψR, we can see that the cross-terms vanish. Therefore,
we will not be able to detect coherences between the modes from in-
situ measurements: mixed and pure states with the same populations
ρii will look alike. They can instead be detected if the modes overlap
and interfere during the measurement, analogous to the coherences
that are observed in a double-slit experiment (see Section 2.2.2). This
property also extends to higher order correlation functions for larger
systems and will be used in the momentum measurements in Section
7.4.

7.1.2 Two Particles in a Double Well

7.1.2.1 Eigenstates and Eigenenergies

Now, we will look at systems containing two particles with different
spins. They can be described in the four-dimensional subspace shown
in the last line of Table 7.1. This type of system is the fundamental
building block of the half-filled Hubbard model, since it contains both
nearest-neighbor tunneling and on-site interactions.
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If the tilt is negligible (∆ = 0), we can write the eigenenergies as

Ea = 2J α−(U/4J)

Eb = U

Ec = 2J α+(U/4J)

Ed = 0

(7.5)

and the (unnormalized) eigenstates as

|a〉 = |↑↓, ·〉+α+(U/4J) (|↑, ↓〉+ |↓, ↑〉) + |·, ↑↓〉
|b〉 = |↑↓, ·〉− |·, ↑↓〉
|c〉 = |↑↓, ·〉+α−(U/4J) (|↑, ↓〉+ |↓, ↑〉) + |·, ↑↓〉
|d〉 = |↑, ↓〉− |↓, ↑〉 ,

(7.6)

where we have used α±(x) ≡ x±
√
1+ x2 as a shorthand. Note that

we have chosen the sites as the modes which we occupy with particles
of either spin in this notation. Because we have an equal number of
spin and spatial modes in this particular system, it is equivalently
possible to instead choose the spin as the modes to construct a basis
(c.f. the notation in [Mur+

15b]).
First, let us look at the symmetry of the eigenstates. While we are

treating systems of identical particles (both are 6Li atoms), they can
be distinguished by their spatial mode and their spin mode. As these
two quantum numbers are not coupled by the Hamiltonian, the to-
tal state of each atom can be expressed as a product of the state in
position space and in spin space, ψ(x)⊗ χ(mF).

Also for two-particle states, the wavefunction can still be separated
into position and spin Hilbert spaces. However, it must be totally anti-
symmetric under particle exchange due to Fermi statistics. For the ex-
pressions given in (7.6), we can determine the symmetry of the spatial
wavefunction by swapping the position of the two particles (L ↔ R):
The first three states are spatially symmetric, and the fourth state
is spatially antisymmetric. Conversely, if we swap the spins (↑↔↓),
the first three states are all spin singlets and antisymmetric under
exchange, while the fourth state is in a symmetric spin triplet state
(with a spin projection value of zero). Under exchange of both quan-
tum numbers, i.e., particle exchange, all states are antisymmetric.

7.1.2.2 Occupation Numbers

We can characterize the eigenstates (7.6) by measuring the occupation
of the basis states of our system. While this kind of measurement does
not give us explicit information about the coherence between the basis
states, it does allow us to discern between the different eigenstates.
For all values of the interaction, except at U = 0, each eigenstate has
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a unique distribution of the occupation of the basis states. Therefore,
if we assume that our states are pure, this measurement allows us to
precisely determine the eigenstate that we have prepared.

In fact, we can already identify the eigenstates by measuring just
the fraction of single and double occupancy of the spatial modes
without spin-resolution. The expectation values for the different ei-
genstates are

〈D〉 = 1

N

∑
i

2〈Di〉 =



(
1+ (α+(U/4J))

2
)−1 for state |a〉

1 for state |b〉(
1+ (α−(U/4J))

2
)−1 for state |c〉

0 for state |d〉

(7.7)

for the double occupancy and 〈m〉 = 1
N

∑
i〈mi〉 = 1 − 〈D〉 for the

single occupancy (lines in Figure 7.1), using the local moments (ni,↑−
ni,↓)

2 and local double occupancy ni,↑ni,↓ from eq. (2.46).

7.2 in-situ measurements

Our first measurements of the double well system have the goal to
show that we could prepare states with a high fidelity and purity
(published in [Mur+

15b]). We prepare the system by adiabatically
connecting a decoupled, tilted double well to a coupled, balanced
double well as described in Section 4.4. This means that we can easily
access the ground state if we start with a state with two particles in
the deeper well (E = −2∆) or the highest-energy state if we start with
two particles in the shallower well (E = +2∆). After introducing a
coupling on the order of J ≈ 70Hz and balancing the wells to ∆ = 0,
we ramp the interaction to −1.3 < U/J < 10.1 with the magnetic Fesh-
bach resonance1. More details on the preparation and calibration of
this coupled, interacting double-well system can be found in [Mur15;
Ber17].

Before performing our measurements, we also test the adiabaticity
of our preparation scheme by reversing the ramps and measuring
the final ground-state fraction in a single well. We conclude that the
preparation scheme for the double well has the same fidelity as the
preparation of the ground state of a single well, i.e., up to 97%. We
therefore expect our system to be in an almost completely pure state.

7.2.1 Occupation Number Measurements

To demonstrate which states we could prepare, we measure the oc-
cupation number for each site. Experimentally, we first freeze the oc-

1 Because we use low-field preparation for this measurement, our access to large neg-
ative scattering lengths is limited.
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Figure 7.1: Double occupancy (blue) and single occupancy (green) for state
|a〉 (a) and state |c〉 (b). The open (filled) symbols were measured
for J/h ≈ 142Hz (J/h ≈ 67Hz). The lines show the curves ob-
tained from eq. (7.7). From [Mur+

15b].

cupation number of our system by quenching the tunnel coupling to
J = 0. Then, we reduce the magnetic field to zero and release the
atoms from the site which we do not want to detect. Finally, we trans-
fer the atoms from the remaining site into a MOT and measure the
atom number in the MOT (see Section 5.1 for details on the detection
method).

The resulting occupation numbers (Figure 7.1) convincingly2 match
the theoretical predictions from eq. (7.7) for the ground state |a〉 and
the highest excited state |c〉 over the entire range of accessible interac-
tions. At zero interactions, where the two particles are uncorrelated,
single occupancy is as likely as double occupancy. At strong repulsive
interactions, particles in the ground state avoid double occupancy,
while particles in the highest excited state in fact prefer double occu-
pancy.

7.2.2 Spectroscopic Measurements

As the occupation number measurements suggest that we can pre-
pare eigenstates of the double-well system, we can now study the
eigenenergies of the system (7.5) (see curves in Figure 7.3). Without
interactions (U = 0), there is one state with an energy −2J, two with
zero energy and one with 2J. This is consistent with the four ways
of combining the uncorrelated single-particle energies from Section
7.1.1. For strong interactions |U|� J, there are two doublets of states,
one with an energy approximately proportional to U and one with
an energy approximately independent of U. The states |b〉 and |d〉,
whose composition does not change with U, show an exact linear be-
havior with U, while the other states asymptotically approach them

2 We did take the finite preparation fidelity into account in the model shown in the
figure [Mur+

15b; Mur15].
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Figure 7.2: Resonance energy Ebc vs. tilt ∆. Different values of the interac-
tion strength are shown in different colors. The dotted line shows
the prediction from the Hubbard model without free parameters
(J/h = 67Hz). The fits (shown as solid lines with error bands) are
compatible with a larger, effective tunnel coupling J ′ (see inset).
From [Mur+

15b].

as 4J2/U. As we had seen in Section 2.4.2, this is the energy scale
related to the superexchange process.

For the measurement of the energy spectrum, we use trap modula-
tion spectroscopy. First, we initialize state |c〉 at different interaction
strengths. Then, we modulate the total intensity of the microtraps
sinusoidally between 30Hz and 300Hz. The intensity modulation re-
sults in a modulation of the tunnel coupling with an amplitude of
0.11J. We choose this small modulation amplitude to minimize the
perturbation of our system.

For the frequency matching Ebc = Ec − Eb, a fraction of the atoms
is transferred to state |b〉. We measure the resonance position from
the occupation of the eigenstates |c〉 and |b〉. We do this by reversing
the preparation procedure after the modulation and measuring the
occupation of the original microtrap. If the system has remained in
state |c〉, both atoms return to the original microtrap, while it will be
singly occupied if the system has been transferred to state |b〉 (see
also Figure 4.12).

This measurement also shows that the energy depends on the tilt of
the system. Because we could not guarantee that our system was per-
fectly balanced, we decided to perform the spectroscopy for different
values of ∆ and to extract the value for ∆ = 0 from these measure-
ments by fitting a numerical model to it. We noticed that the model
without free parameters did not fit our data and suspected that the
tunnel coupling J may have been modified due to the modulation.
Therefore, we decided to leave J as a free parameter and to fit Ebc. As
we can see in Figure 7.2, the value of Ebc at ∆ = 0 can then be read
of as the ordinate.
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Figure 7.3: Energy of the double well extracted from Figure 7.2 at ∆ = 0,
versus the interaction energy. An energy offset of U has been
added to show the measurements together with the complete
spectrum of the double-well Hubbard model. The dotted line
shows the asymptotic value for U/J� 1. From [Mur+

15b].

If we look at the energy against the interaction strength (Figure
7.3), we see that the values match the theoretical prediction, both for
the regime where Ebc ≈ 2J as well as for the superexchange regime
where Ebc ∝ 4J2/U. This suggests that we should be able to see ef-
fects caused by the superexchange in our system, e.g., spin ordering.

7.3 singlet-triplet oscillations

While the occupation number measurements indicates that we had
prepared an eigenstate, they are not able to directly distinguish be-
tween pure and mixed states with the same mode populations. If we
want to show that we have prepared a pure state, we must measure
the coherence between the modes of our system. These coherences
appear as the off-diagonal terms of the density matrix (see Section
2.1.2). For our system consisting of two distinguishable spins in a
double well, the general density matrix

ρ =


ρ11 ρ12 ρ13 ρ14

ρ22 ρ23 ρ24

ρ33 ρ34

h.c. ρ44

 (7.8)

contains six entries describing coherences between different modes,
each of which consists of a magnitude and a phase. The indices of
the entries refer to the basis states from Table 7.1.

There are multiple ways of determining the off-diagonal elements
of this matrix experimentally. A direct method is to measure the
correlation functions, e.g.,

〈
n̂↑(x)

〉
,
〈
n̂↓(x)

〉
, or

〈
n̂↑(x1)n̂↓(x2)

〉
, after

time-of-flight expansion. However, we have only been able to mea-
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|s〉 = (|↑, ↓〉− |↓, ↑〉) /
√
2

|t〉 = (|↑, ↓〉+ |↓, ↑〉) /
√
2

|↑, ↓〉

|↓, ↑〉

φ

Figure 7.4: Bloch sphere of states spanned by the basis |↑, ↓〉, |↓, ↑〉 in the
singly-occupied sub-space. Pure states lie on its surface, while
mixed states lie in the interior. The states will time-evolve along
lines of constant latitude around the axis connecting the eigen-
states of the system.

sure these quantities after we having implemented the matterwave
microscope (Chapter 5). Still, with our MOT imaging, we were able to
detect one of the off-diagonal density matrix elements by measuring
the fraction of singlets and triplets via singlet-triplet oscillations.

In our double-well system, it is convenient to perform the measure-
ment of singlet and triplets with strong repulsive interactions (U� J).
In this limit, the states |a〉 and |d〉 can be expressed entirely in the sub-
space of singly-occupied states {|↑, ↓〉 , |↓, ↑〉}. This subspace can be rep-
resented by the states on and in the Bloch sphere (Figure 7.4). Within
this subspace, we can transform our basis to the singlet-triplet basis

|s〉 = (|↑, ↓〉− |↓, ↑〉) /
√
2 (7.9a)

|t〉 = (|↑, ↓〉+ |↓, ↑〉) /
√
2. (7.9b)

In this basis, the eigenstates can be identified as |a〉 ≈ |t〉 and |d〉 ≈ |s〉
for U� J.

We can now substitute these new singlet-triplet states in the expres-
sion of our partial density matrix

ρso = ρ22 |↑, ↓〉 〈↑, ↓|+ρ23 |↑, ↓〉 〈↓, ↑|+ρ∗23 |↓, ↑〉 〈↑, ↓|+ρ33 |↓, ↑〉 〈↓, ↑| .

In the {|s〉 , |t〉} basis, the partial density matrix becomes

ρso =

(
1
2 − |ρ23| cosφ 1

2(ρ22 − ρ33) + i |ρ23| sinφ
1
2(ρ22 − ρ33) − i |ρ23| sinφ 1

2 + |ρ23| cosφ

)
,

(7.10)
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where we have expressed the complex density matrix element ρ23 in
its polar form, ρ23 = |ρ23| e

iφ. By projecting our initial state on the
singlet or triplet state,

〈Ps〉 = ρss =
1

2
− |ρ23| cosφ (7.11a)

〈Pt〉 = ρtt =
1

2
+ |ρ23| cosφ, (7.11b)

we can measure the coherences between the |↑, ↓〉 state and the |↓, ↑〉
state from a population measurement in the singlet-triplet basis. As
projection operators, we used P̂j = |j〉 〈j|.

However, the singlet-triplet populations only contain a term which
depends on both the magnitude and the phase of ρ23. We can sepa-
rate the two contributions by making the phase time-dependent. The
initial state will rotate on the Bloch sphere, which introduces an os-
cillation of 〈Ps〉 and 〈Pt〉. We can then identify |ρ23| as the contrast of
these oscillations.

To introduce this time dependence, we have to make sure that the
singlet and triplet states are not eigenstates anymore. We can do this
by lifting the energy degeneracy of the position basis states |↑, ↓〉 and
|↓, ↑〉. Experimentally, we use the difference in magnetic moment of
the hyperfine states |1〉 ≡ |↑〉 and |2〉 ≡ |↓〉, combined with a magnetic
field gradient along the axis connecting the wells. The magnetic field
gradient induces a position-dependent Zeeman shift

Eσ,i = −µσB
z(xi), (7.12)

where Bz is the magnetic field component along the quantization axis.
The term added to the Hubbard Hamiltonian (7.1) is


0 0 0 0

0 ∆B 0 0

0 0 −∆B 0

0 0 0 0

 , (7.13)

with 2∆B = (µ↑ − µ↓)(B
z(xL) − B

z(xR). For vanishing tunnel cou-
pling and tilt, the position basis states become the eigenstates with
eigenenergies U,−∆B,∆B,U. If our initial state was a coherent super-
position of the basis states |↑, ↓〉 and |↓, ↑〉, for example, |s〉 or |t〉, it
will start rotating along the latitudes of the Bloch sphere at a rate
ωst = φ/t = 2∆B/ h.

To perform singlet-triplet oscillations in our experiment [Mur15],
we first prepare our system as described in Section 4.3 with strong re-
pulsive interactions (U ≈ 10 J). Then, we quench the tunnel coupling
to zero to freeze tunneling dynamics and pin the on-site populations.



7.3 singlet-triplet oscillations 115

��� ��� ��� ��� ������
���
���
���
���
���

�

�

��
��

��
���
�	

��������������
Figure 7.5: Singlet-triplet oscillations in a double well. The blue (red) points

show the measured single (double) occupancy of the ground
state, corresponding to a fraction of spatial singlets (triplets) as
described in the text. From damped sinusoidal fits (lines), damp-
ing timescales of 1.85(39) s (1.60(39) s) were extracted. Adapted
from [Mur15].

We reduce the magnetic field to below 100G to increase the differen-
tial magnetic moment and apply a magnetic field gradient between
the wells. After a time tgrad, we turn off the gradient again and return
to high magnetic fields.

To detect the singlet and triplet fraction of our state, we merge the
wells and measure the occupation in the ground state. The atoms
which are in the spatial triplet state will both be in the ground state,
while atoms in a spatially antisymmetric singlet state will end up in a
superposition of ground and first excited state. If we release all atoms
in motionally excited states and measure the atom number remaining
in the ground state, we will measure two atoms if the state was pro-
jected on a spatial triplet, and one atom if the state was projected on
a spatial singlet3.

The time dynamics show the oscillations of our initial state between
the singlet and the triplet state (Figure 7.5). The contrast corresponds
to a value of |ρ23| = 0.414(15). Compared to the maximum possi-
ble value of 0.5, this shows that a large fraction of our state can be
described as a pure state. Unfortunately, we cannot extract a reliable
value for the initial phase φ, since the state will already start to evolve
while the magnetic field gradient is being turned on.

A remarkable property of the singlet-triplet oscillations is the long
decoherence timescale of approximately 2 s. As both the singlet and
the triplet states have the same local occupation numbers and total

3 Alternatively, we can measure the occupation of the spin states after performing a
π/2-rotation on the hyperfine states, similar to [Kau+

15]. This maps the spin triplet
state on a state with spin projection 1, while the spin projection of the spin singlet
state remains 0.
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spin projection, they are insensitive to local fluctuations of the optical
potential and global fluctuations of the offset magnetic field. There-
fore, this system is part of a decoherence-free subspace.

7.4 momentum-space measurements

With our new matterwave microscope imaging method, we can mea-
sure the position and spin of each atom in every realization of the
experiment. This allows us to measure the correlation functions of
our system. Compared to the singlet-triplet oscillation measurements
in the previous section, the correlation functions can be used to ex-
tract different off-diagonal elements of the density matrix, including
their magnitude and phase. Which specific density matrix elements
can be measured depends on the order of the correlation function
and the shape of the mode wavefunction ψi(x).

7.4.1 Two Non-Interacting Particles

If we measure the lowest-order correlation function, this is equivalent
to measuring the density distribution of one of the particles 〈n̂σ(x)〉.
Effectively, we trace out the other particle during this measurement,
resulting in the partial density matrices

ρ↑ =

(
ρ11 + ρ22 ρ13 + ρ24

h.c. ρ33 + ρ44

)
and (7.14a)

ρ↓ =

(
ρ11 + ρ33 ρ12 + ρ34

h.c. ρ22 + ρ44

)
. (7.14b)

With these density matrices, we can treat each particle as a single-
particle system (Section 7.1.1). The entries of the matrix describe the
populations left and right, and the coherence between the left and
right spatial mode. However, we have to keep in mind that the entries
of the density matrices may look different from the (non-interacting)
single-particle case if there are interactions between the particles.

Now, we can evaluate the spatial single-particle density distribu-
tion after the time-of-flight expansion. When the atoms are released
from the microtraps, each spatial mode at xi is projected on spherical
waves ∝ eikxi . In the far field, this results in a Fourier transform of
the in-situ wavefunction,

ψi(k) = F(ψi(x)) = F(w ∗ δ(x− xi)) = w̃(k) eikxi , (7.15)

where the transform variable k is the momentum and the w̃ is the
Fourier transform of the Wannier function, which we assume to be
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Figure 7.6: Single-particle density of non-interacting particles prepared in
state |a〉 (a) or |c〉 (b). From [Ber17].

identical for each site. Inserting this expression in the density distri-
bution (7.4), we obtain the single-particle density distribution

〈nσ(k)〉 = |w̃(k)|2
(
ρLL + ρRR

+ |ρLR|
(
eiφ eik(xL−xR) + e−iφ e−ik(xL−xR)

))
= |w̃(k)|2 (1+ 2 |ρLR| cos(kd+φ)) , (7.16)

where d is the separation of the wells, and the matrix elements ρij
have to be taken from eq. (7.14). This density distribution can be re-
lated to the spatial density distribution that we measure with the
matterwave microscope by transforming  hk→ mωODTx.

This single-particle density distribution is sufficient to describe our
experiments if the two particles in the coupled double well are non-
interacting. Since the wavefunction factorizes, it is reasonable that
both spins can be treated as independent particles. If we prepare our
system in the non-interacting ground state or the highest excited state,
its state should ideally be described by

|a〉 −→ (|↑, ·〉+ |·, ↑〉)⊗ (|↓, ·〉+ |·, ↓〉) and (7.17a)

|c〉 −→ (|↑, ·〉− |·, ↑〉)⊗ (|↓, ·〉− |·, ↓〉), (7.17b)

respectively. The corresponding density matrices would be

ρa =
1

2

(
1 1

1 1

)
and (7.18a)

ρc =
1

2

(
1 −1

−1 1

)
=
1

2

(
1 eiπ

e−iπ 1

)
. (7.18b)

With these density matrices, we expect spatial density distributions
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Figure 7.7: Correlated density of two non-interacting particles in a double
well. (a) Two particles in different hyperfine states. (b) Two parti-
cles in the same hyperfine state.

nσ,a(k) = |w̃(k)|2 (1+ cos(kd)) and (7.19a)

nσ,c(k) = |w̃(k)|2 (1− cos(kd)) . (7.19b)

The density distributions that we measure in our experiment quali-
tatively match the expected oscillatory patterns (Figures 7.6 and 7.7a).
We can fit the data with eq. (7.16), where we approximate the enve-
lope function w̃(k) with a Gaussian. From the fits, we extract the pa-
rameters4 φa = −0.007(24)π, |ρLR,a| = 0.449(7), and φc = 0.957(23)π,
|ρLR,c| = 0.387(7). We see that the magnitude of the coherence is
slightly reduced from its maximum possible value, ρLR 6

√
ρLLρRR 6

1/2. Due to the lack of in-situ data from these measurements, we
cannot determine the values for ρLL and ρRR in order to distinguish
whether this due to an imbalance ρLL 6= ρRR, or due to impurity of
the state, which would show as Tr ρ2 = ρ2LL + ρ2RR + 2 |ρLR|

2 < 1.
For the width of the envelope, which is determined by the local

wavefunctions in the individual microtraps, we find σa = 43.4(5)µm
and σa = 47.8(5)µm, while we find da = 102(1)µm and dc =

96.1(7)µm for the separation of the wells. Both the larger width and
smaller separation of the energetically higher state suggest that we
may have excited to higher bands during the preparation of this state,
which would also explain the reduced purity of this state.

7.4.2 Two Indistinguishable Particles

For two particles in the same hyperfine state (same spin), we might
expect similar results as in the previous section, since identical par-
ticles cannot interact via contact interactions. However, due to their

4 We did not extract the parameters ρ13 + ρ24, etc., from eq. (7.14) from these fits, as
the spatial density distribution of both spins was combined in this data set.
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indistinguishability, these particles are in fact not independent from
each other. When looking at the initial state of the Hubbard model,
the Pauli principle forbids the particles to occupy the same site. Ef-
fectively, they block each other in position space and only the band-
insulating state |σ,σ〉 is available (see Table 7.1). Our initial state there-
fore resembles the states studied in [Föl+

05; Rom+
06] on a smaller

scale (see Section 2.4.3 for a summary) and we may apply the same
evaluation as was used in those experiments.

We can begin to describe our system by evaluating the expectation
value for the single-particle density distribution as in eq. (2.18),

〈n̂(k)〉 = |w̃(k)|2
∑
i,j=L,R

eik(xi−xj) 〈n̂i〉 δij = |w̃(k)|2 . (7.20)

We have already taken into account that the cross-terms vanish for
fermions, e.g., â†LâR |1, 1〉 = 0. Consequently, we do not observe den-
sity oscillations, but only the transformed envelope function |w̃(k)|2

as the single-particle density (Figure 7.8a).
For the correlated density distribution, we can relate our observable

to the two-point correlation function:

〈n̂(k1)n̂(k2)〉 = 〈n̂(k1)〉 δ(k1 − k2) +
〈
Ψ̂†(k1)Ψ̂

†(k2)Ψ̂(k2)Ψ̂(k1)
〉

(7.21)

By inserting the wavefunctions of the modes into the fermionic equiv-
alent of eq. (2.28) (see Appendix A), we obtain

G(2)(k1,k2) = |w̃(k1)|
2
|w̃(k2)|

2 (1− cos((k1 − k2)d)
)
. (7.22)

The correlation pattern of two indistinguishable particles along the
relative coordinate is a result of the Hanbury Brown and Twiss effect.
This behavior is caused not by specifically preparing an antisymmet-
ric initial state, e.g., through interactions, but by the required antisym-
metry of two indistinguishable fermions.

In the experiment, both the single-particle density and the corre-
lated density qualitatively look as we expect from eq. (7.20) and (7.22)
(Figures 7.8a and 7.7b). By integrating along the diagonal CoM-axis,
we can display a density profile along the relative coordinate k1 − k2
as in Figure 7.8b. Both fits to the data of Figure 7.8 show a similar
envelope with a width of approximately 82µm and, in the correlated
density, fringes are visible with the expected phase. For the correlated
density, there is no peak visible in the center at k1 = k2 as predicted
by the first term of eq. (7.21). This is an artifact from our imaging
scheme which cannot resolve two atoms if they are too close to each
other.
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(a) (b)

Figure 7.8: Two indistinguishable fermions in a double well. (a) Single-
particle density distribution 〈n̂(k)〉. (b) Correlated density left
〈n̂(k1)n̂(k2)〉. The solid lines are fits to the data, the dotted line
shows a Gaussian offset which effectively accounts for the re-
duced contrast. Adapted from [Ber17].

For the same reason, we seem to have perfect contrast for the cen-
tral fringe. However, the actual contrast can be seen from the neigh-
boring fringes and is smaller than unity. This is now more difficult to
explain than for a system containing two distinguishable particles, be-
cause a system with a Hilbert space dimension of 1 does not support
mixed states. We suspect that the reduced contrast is caused by un-
intentionally including systems with more than two atoms per spin
state or systems with motionally excited atoms in our data set.

7.4.3 Two Repulsively-Interacting Particles

In our final set of measurements, we revisit the systems with repul-
sive interactions studied in Sections 7.2 and 7.3. Due to the interac-
tions, we cannot describe the particles as individual particles in inde-
pendent subspaces. Therefore, measuring the single-particle density
distribution is not sufficient to characterize the two-particle system,
similar to the case of two indistinguishable fermions.

Instead, we measure the correlated densities 〈n↑(x1)n↓(x2)〉, which
is equivalent to measuring the two-point correlation function (see
Chapter 2):

〈
n̂↑(x1)n̂↓(x2)

〉
=
〈
Ψ̂
†
↑(x1)Ψ̂

†
↓(x2)Ψ̂↓(x2)Ψ̂↑(x1)

〉
≡ G(2)

↑↓(x1, x2).

(7.23)
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By inserting the Fock-space expansion of the field operators from eq.
(2.15) and the density matrix (7.8), we obtain

G
(2)
↑↓(x1, x2) =

∑
ijklmn

ψ∗i (x1)ψ
∗
j (x2)ψk(x2)ψl(x1) ρmn

× 〈n| â†↑,iâ
†
↓,jâ↓,kâ↑,l |m〉 .

(7.24)

This expression contains all entries of the density matrix ρmn, be-
cause the different combinations of annihilation and creation opera-
tors let all possible states |m〉, |n〉 contribute to the sum. By perform-
ing measurements of the correlated density, we can therefore obtain
full information about the density matrix of the two-particle system,
both of its populations and coherences.

Which of the elements ρmn can be extracted from a particular mea-
surement again depends on the character of the mode wavefunctions
ψi(x) for this measurement. For our momentum-space measurements
with the matterwave microscope, we insert the mode wavefunction
(7.15), and the correlated density distribution (7.24) evaluates to

〈
n̂↑(k1)n̂↓(k2)

〉
|w̃(k1)|

2
|w̃(k2)|

2
= ρ11 + ρ22 + ρ33 + ρ44

+ 2 |ρ13 + ρ24| cos(k1d+φ1)

+ 2 |ρ12 + ρ34| cos(k2d+φ2)

+ 2 |ρ23| cos(kd+φ23) + 2 |ρ14| cos(Kd+φ14).

(7.25)

Here, the sum and difference of the momenta have been defined as
K ≡ k1 + k2 and k ≡ k1 − k2, respectively, and the phases φ1 and φ2
are associated to the combined density matrix elements (ρ13 + ρ24)

and (ρ12 + ρ34).
From the amplitudes and phases of the different momentum os-

cillations in (7.25), we can determine the complex-valued density
matrix elements (ρ13 + ρ24), (ρ12 + ρ34), ρ14, and ρ23. For this, we
define a basis of fitting functions consisting of horizontal, vertical,
diagonal, and anti-diagonal sines and cosines (Figure 7.9). Addition-
ally, we fit an offset term to account for the sum of the populations,
ρ11 + ρ22 + ρ33 + ρ44.

With these functions, we fit our measurements for different repul-
sive interactions (Figure 7.10). We see that, for increasing interac-
tions, the interference pattern in the single-particle coordinates ki
becomes suppressed, while an interference pattern along the rela-
tive coordinate k emerges. The relative-momentum interference pat-
tern entirely depends on ρ23, a quantity which is absent, e.g., in the
single-particle density matrices (7.14). This suggests that the two par-
ticles are strongly correlated. In contrast to the indistinguishable par-
ticles, where the correlations are a consequence of the fermionic anti-
symmetrization requirement, the correlations in this system originate
from the strong repulsive interactions.
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Figure 7.9: Basis functions used for fitting the measured correlated densities〈
n̂↑(k1)n̂↓(k2)

〉
(eq. (7.25)). The envelope w̃ has been fit with a

Gaussian.

7.5 entanglement in the double well

Our double well containing two particles can also serve as a minimal
system to study entanglement. As the system is described by two
Hilbert spaces (position and spin) with two modes each (L,R and
↑, ↓), it is possible to share entanglement between two partitions of the
system [DDW06]. With the density matrix elements from Sections 7.3
and 7.4, we can evaluate different entanglement measures introduced
in Section 2.3 to detect the entanglement in our systems.

7.5.1 Entanglement Witnesses

First, we can construct an entanglement witness following a proce-
dure similar to [Kau+

15]. Starting with a separable state ρ = ρ↑ ⊗ ρ↓,
we can determine bounds for ρ23 = ρ↑,LRρ↓,RL. For its magnitude, we
find

|ρ23| =
∣∣ρ↑,LR

∣∣ ∣∣ρ↓,RL
∣∣

6
√
ρ↑,LLρ↑,RR

√
ρ↓,LLρ↓,RR =

√
ρ11ρ44 =

√
ρ22ρ33 (7.26)

6
1

4
.

Note that the labels L and R stand for the modes of the single-particle
Hilbert space, as in eq. (7.2), and the numeric indices for the modes of
the two-particle Hilbert space, as in eq. (7.8). In the inequality in the
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Figure 7.10: Fitted correlated densities for three different interaction
strengths. The magnetic fields are equivalent to U/J = 0, 4.3,
and 7.7, respectively. The rows show, from top to bottom, the
measured data, the fitted function, the residuals, the profile
along the relative coordinate k, and the profile along the single-
particle coordinate k1.
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Figure 7.11: Entanglement witnesses measured in the double well. The blue
circles (red squares) show the witnessW (Y) from the correlated
density measurements, the yellow triangle shows W obtained
from the singlet-triplet oscillations. The white area above zero
certifies entanglement.

second line, we used from eq. (2.5) that the magnitude of coherences
is limited by the corresponding populations. We then expressed the
product of the single-particle populations as two different combina-
tions of the two-particle populations, using ρ11 = ρ↑,LLρ↓,LL, etc. As
the particles must be in either one of the sites, ρσ,LL + ρσ,RR = 1, we
obtain the upper bound of 1/4 if both sites have equal populations
ρσ,LL = ρσ,RR = 1/2.

We can then define an entanglement witness using the first inequal-
ity from (7.26),

W = |ρ23|−
√
ρ11ρ44. (7.27)

If it evaluates to a positive value for a state, this state cannot be ex-
plained by any separable states, therefore it must be entangled. As
the products of the populations ρ11ρ44 and ρ22ρ33 are not necessar-
ily equal for non-separable states, we have chosen the combination
which provides the strictest bound for separability in our system. A
similar entanglement witness can be constructed from the density
matrix element ρ14 as

Y = |ρ14|−
√
ρ22ρ33. (7.28)

Which of these witnesses is more suitable to detect entanglement
depends on the specific state in question. The results using the den-
sity matrix elements obtained from the correlated density measure-
ments (Section 7.4) and the singlet-triplet oscillations (Section 7.3) are
displayed in Figure 7.11 and listed in Table E.2. Note that we used
theoretical values derived from the eigenstates (7.6) to estimate the
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Figure 7.12: Mode entanglement in the double well calculated with the lin-
ear entropy (blue line) and entanglement of particles (magenta
line).

values for the populations, as we could not extract in-situ information
from our measurements5. We can see that, for repulsive interactions
(see [Ber17] for a derivation of the values), the witness W shows that
our states are entangled, while we cannot make any statement for
zero interactions.

7.5.2 Entanglement Entropy

Next, let us look at the entanglement entropies that we can determine
from the measured density matrix elements. We can calculate the
mode entanglement shared between the two spatial modes by trac-
ing out one of the sites. This leaves us with a Hilbert space spanned
by the basis states |↑↓〉, |↑〉, |↓〉, and |0〉, and a density matrix

ρL =


ρ11

ρ22

ρ33

ρ44

 . (7.29)

It contains no coherences because of particle number conservation on
the site, and because we have no mechanism that flips the spin. The
linear entropy (2.38) becomes Slin = 1−

∑
i ρ
2
ii.

When evaluated for the pure ground state |a〉 [Zan02], we find that

Slin = 1− 1
2

α4++1

(α2++1)2
is maximal without interactions and decreases for

repulsive and attractive interactions (blue line in Figure 7.12). Without
interactions, all modes are equally occupied, and therefore the sub-
systems also maximize their entropy (and mode entanglement). For

5 Even though we did determine ρ11 + ρ44 and ρ22 + ρ33 as the single and dou-
ble occupancies in Section 7.2, these measurements were performed roughly two
years prior to the measurements with the matterwave microscope. Therefore, we
cannot assume that those measurements were performed with comparable settings
and preparation fidelities.
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strong repulsive interactions, only the spin entropy remains while
the density entropy vanishes, which reduces the mode entanglement.
Also the Rényi entropy or the von Neumann entropy show a similar
behavior for the mode entanglement.

This result is somewhat counter-intuitive as, for strong repulsion,
the ground state resembles a Bell state, which we know to be a max-
imally-entangled state. To recover this result, we have to look at the
entanglement of particles (eq. (2.42)) instead of the mode entangle-
ment. The density matrix (7.29) can be separated in three parts with
total particle numbers n = 2, 1, 0:

ρ
(2)
L = 1, ρ

(1)
L =

1

ρ22 + ρ33

(
ρ22

ρ33

)
, ρ

(0)
L = 1, (7.30)

which have been normalized separately. These three cases occur with
probabilities ρ11, ρ22 + ρ33 and ρ44. The entanglement of particles
then becomes

EP,lin =
2ρ22ρ33
ρ22 + ρ33

(7.31a)

EP,Ren2 = −(ρ22 + ρ33) log2
ρ222 + ρ

2
33

(ρ22 + ρ33)2
(7.31b)

EP,vN = − ρ22 log2 ρ22 − ρ33 log2 ρ33
+ (ρ22 + ρ33) log2(ρ22 + ρ33),

(7.31c)

where the first line has been calculated using the linear entropy, the
second using the second-order Rényi entropy and the third using
the von Neumann entropy (or entanglement of formation). For the
ground state, they all evaluate to

EP,GS =
(α+(U/4J))

2

1+ (α+(U/4J))2
. (7.32)

For strong repulsive interactions (magenta line in Figure 7.12), the en-
tanglement of particles becomes unity and we recover the maximally-
entangled Bell state. For strong attractive interactions, we would de-
tect no entanglement of particles, as both particles would always be
detected in the same spatial mode.

From eq. (7.31) we can see that the spatial mode entanglement
only depends on the populations which we cannot currently mea-
sure. Instead, we can determine the mode entanglement in the spin
subspaces (see eq. (7.14)). With these density matrices, we can deter-
mine the purities

V↑ = (ρ11 + ρ22)
2 + (ρ33 + ρ44)

2 + 2|ρ13 + ρ24|
2 (7.33a)

V↓ = (ρ11 + ρ33)
2 + (ρ22 + ρ44)

2 + 2|ρ12 + ρ34|
2. (7.33b)
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Figure 7.13: (a) Spin entanglement entropies Sσ,Ren2 = − log2 Vσ. The
squares show S↑, the circles S↓. Red and blue points are from
ground state measurements, the yellow and green points from
the excited state measurements. The line shows the prediction
for a pure ground state |a〉. (b) Entanglement entropies of the
entire system, given as an interval of Stot,Ren2 = − log2 V . The
blue bars show the values from ground state measurements, the
red bar from the excited state.

For comparison, we also determine the purity of the entire system

V = Tr ρ2 =
∑
ij

|ρij|
2. (7.34)

From these purities, we calculate the corresponding entanglement en-
tropies as S = − log2 V (Figure 7.13).

We can see that, while the entropy follows the predicted value qual-
itatively, there is no quantitative agreement. There may be several rea-
sons for this. For example, we have observed that the coherence time
of our system has been worse when performing the measurements
with the matterwave microscope than when the singlet-triplet oscil-
lations had been performed. We are currently investigating this and
hope to restore the reliability of our experiment soon.

Additionally, we plan to perform in-situ measurements, which will
make it possible to measure the populations ρii. This will certainly
reduce the uncertainties of the entanglement witnesses and entropies,
and also will allow us to measure other entanglement measures, such
as the entanglement of the spatial modes. With these improvements,
we ultimately hope to study entanglement in systems containing more
particles.





8
C O N C L U S I O N

8.1 summary

In the experiments presented in this thesis, correlations in two differ-
ent interacting few-fermion systems have been measured. Two crucial
ingredients made it possible to study these delicate quantum systems:
First, the reliable preparation and manipulation of quantum states
and, second, their efficient detection. The former had already been de-
veloped in large parts prior to this thesis. It includes deterministically
preparing small numbers of 6Li atoms in a microtrap and controlling
their scattering behavior with a magnetic Feshbach resonance. The
measurements presented in this thesis have been made possible by
a newly developed imaging scheme, which combines spin-resolved
single-atom detection with spatial resolution (Chapter 5).

In brief, the imaging method works as follows: In a first step, we
release our system in a large optical potential with which we can
manipulate the matterwaves. We use this to map the small initial
state, which we cannot directly resolve, to a large spatial distribution.
Then, we image this distribution optically.

One of the key features of our imaging scheme is the manipulation
of the matterwave prior to imaging. For the measurements presented
in this thesis, we evolve our system coherently for a quarter trap pe-
riod in an optical potential to measure its initial momentum distribu-
tion (see Figure 5.4). The expansion of the initial system also leads to
interference of atoms originating from different spatial modes. From
this interference, we can probe coherences of the initial state as corre-
lations in the momenta of the atoms. By choosing different potentials
for manipulating the matterwave, we are also able to magnify and de-
tect the position distribution instead of the momentum distribution,
which we are currently implementing for the double-well system.

The atom distribution is then imaged with a relatively straight-
forward optical imaging scheme (Sections 5.5–5.7). By exposing the
atoms to resonant imaging light for a short time up to 20µs, we are
able to extract a sufficiently strong photon signal to identify single
atoms, while limiting the heating and diffusion due to the photon re-
coil. This allows us to determine the spatial distribution of each atom
individually, at the same time, its hyperfine state (pseudo-spin) by
exploiting the Zeeman splitting at high magnetic fields.

Combining the matterwave manipulations with the optical detec-
tion scheme gives us access to a matterwave microscope, with which we
can extract full spatial and spin information from our atom distribu-
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(a) (b)

Figure 8.1: Correlated densities of systems with one spin-up and one spin-
down particle at 690G in a single microtrap (a) and at 640G
in a coupled double well (b). Brighter colors show higher den-
sities. The horizontal and vertical axes give the coordinates of
the individual particles. The relative coordinate is along the anti-
diagonal, the center-of-mass coordinate is along the diagonal.

tions in every single image. This helps significantly reduce the num-
ber of repetitions of the experiment needed to determine the state of
a system, and it also makes it possible to directly measure coherences
of the states. Moreover, this new imaging technique should also work
for larger systems containing more particles.

One of the systems that we have studied with this powerful new
imaging technique are attractively interacting atoms in a single micro-
trap (Chapter 6). This system serves as a very simple basis for under-
standing how contact interactions influence the expansion dynamics.
These experiments are motivated by the prediction of universal hy-
drodynamic properties of strongly-interacting quantum fluids, which
may appear in vastly different systems ranging between ultracold
atomic gases similar to our system [Cao+

11] and quark-gluon plas-
mas in heavy-ion collisions [Ada+

12; Cre11]. Our two-particle system
provides a first step for exploring the connection between microscopic
and macroscopic strongly-interacting quantum systems.

For two atoms contained in a single microtrap, we performed cor-
relation measurements with our matterwave microscope at different
attractive interaction strengths. From the correlated densities (Figure
8.1a), we can see that interactions can introduce several kinds of cor-
relations between the atoms. In the relative coordinate of the two
particles (see Figure 6.2), we have observed a central peak, a bimodal
distribution, and interference fringes depending on the interaction
strength. Some of the features we were able to explained by calcu-
lating the approximate initial state of our system and its expansion
dynamics (see Section 6.3). To explain the fringes, we are currently
working on a theoretical model in collaboration with theorists.
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From these results, we have learned that the expansion process of
two particles strongly depends both on the inter-particle interactions
and the expansion potential. Even though we model the interactions
as very short-ranged contact interactions (of the order of a nanome-
ter), their influence cannot be neglected even if the particles are sep-
arated by hundreds of micrometers. As a next step, we can use these
insights to study systems containing more particles and try to make
a connection to the hydrodynamic description of strongly-coupled
quantum fluids.

The other system that we studied with our new imaging technique
were interacting particles in a double well (Chapter 7). We had stud-
ied this system previously with a MOT-imaging method [Mur+

15b]
and the obtained mode populations had been consistent with the
eigenstates predicted by the two-site Hubbard model. However, we
it had been difficult to measure off-diagonal density matrix elements
of our state and to directly show that we had prepared the state co-
herently.

The matterwave microscope has made it possible to directly ob-
serve the coherences between spatial modes. Depending on the initial
state and the interactions, we have observed interference patterns in
the coordinates of the individual particles, as well as in the center-
of-mass and relative coordinates (Figure 8.1b). From the amplitude
and phase of these oscillations, we have been able to extract several
of the off-diagonal density matrix elements of our state and show the
coherence of our systems.

We have studied three different kinds of systems in the ground
state of a double well (Section 7.4): particles with identical spins and
particles with different spins, with and without interactions. In the
case of non-interacting distinguishable particles, the atoms indepen-
dently delocalize over the double-well system. The occupation of ei-
ther site is coherent for each particle individually, resulting in an in-
terference pattern in the single-particle momentum resembling the
pattern from a double-slit experiment.

For two non-interacting particles with identical spins, this pattern
disappears, because the atoms are not independent from each other
due to Pauli blocking, which prevents fermionic modes from being
occupied twice. Even though there were no interactions between the
particles, we have observed correlations in their relative momentum.
They are a manifestation of the antisymmetrization requirement anal-
ogous to the Hanbury Brown and Twiss effect: Because the two atoms
were indistinguishable, there were two equivalent paths for the two-
particle state leading to the same measurement outcome. The inter-
ference between those two paths caused an interference pattern in
relative momentum coordinate. The antisymmetry also shows up in
the phase of the interference pattern, where it results in a central min-
imum for vanishing spatial separation of the particles.
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For two repulsively interacting particles, we have observed simi-
lar interference patterns (Figures 7.10 and 8.1b). Because they had
distinguishable spins, these correlations are not formed by the an-
tisymmetrization requirement as in the previous case. Instead, they
are a consequence of the interactions and depend on the interaction
strength. With the measured off-diagonal density matrix elements, we
are able to calculate entanglement witnesses and show that the states
we have prepared with strong repulsive interactions are entangled
(Figure 7.11). In forthcoming in-situ measurements, we will be able
to measure additional entries of the density matrix and to improve
the bounds on the detected entanglement.

8.2 outlook

By studying two systems containing few fermions, we have shown
that our matterwave microscope has the capability of detecting par-
ticle densities, correlations, and entanglement in quantum systems
with single-particle resolution. In the future, we will apply this imag-
ing method to a variety of larger systems, containing more particles
or consisting of different potential geometries. In the regime of strong
interactions, we can presume that correlations will play a prominent
role for a range of different many-body systems.

In strongly interacting bulk systems, increasing the number of par-
ticles could link two-particle system, which can be treated with a mi-
croscopic description, to the many-body regime, which can be treated
hydrodynamically [Cao+

11]. Measuring relatively small, but deter-
ministically prepared systems can serve as a benchmark for studies
of the quark-gluon plasma. It would however be helpful to first over-
come some limitations of our imaging scheme, for example the ad-hoc
implementation of our matterwave optics with the optical dipole trap.
We are already planning an optical setup which can create light sheets
[Rie+

15], in order to look at two-dimensional expansion dynamics.
Also, we could study bulk systems for different kinds of interac-

tions, for example repulsive interactions or p-wave interactions. In
particular, interaction quenches have been predicted to lead to in-
teresting correlation effects, for example, the change in the scatter-
ing boundary condition may generate correlation waves [CC06; CB15;
CB16]. From the response of the entanglement after a quench of the
Hamiltonian [CC05; LK08], it may be possible to study the ground
state [NS06; Has07] and non-equilibrium states of the system [BHV06;
ECP10]. The spreading of correlations and entanglement can be used
to study transport and thermalization behavior of isolated quantum
systems [RDO08; Che+

12; Kau+
16].

If we want to study systems beyond bulk physics, we have to up-
grade our experiment. We will have to match the advances from our
new imaging method with improved control over our optical poten-
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tials. For example, we may use the AOD to create different trap ge-
ometries by using time-dependent potentials. This is also one of the
reasons to implement a light sheet, which gives us independent con-
trol over the potential in the z-axis.

With rotating microtraps, we would be able to simulate strong
gauge fields. We could then, for example, deterministically prepare
Laughlin states [Lau83] and analyze their correlations. These states
had been proposed originally to explain the fractional quantum Hall
effect, which occurs naturally in certain alloys exposed to strong mag-
netic fields [TSG82]. This effect is a famous example of a topologi-
cal phase transition, which, in contrast to most other phase transi-
tions, cannot be explained by symmetry breaking. These systems pos-
sess highly correlated ground states and anyonic quasi-particle exci-
tations with fractional charges and statistics which are not described
by bosons or fermions. Due to their non-local nature, these excita-
tions are robust against perturbations and are seen as a candidate for
fault-tolerant quantum computing [Kit03; Nay+

08].
We also consider implementing a spatial light modulator, which

will allow us to create larger arrays of microtraps. By creating chains
of microtraps, we could study a particular phase called the Luttinger
liquid. Due to the dimensionality, it is highly susceptible to interac-
tions and the role of fluctuations and correlations is enhanced (see
[Rec+

03] for a summary in the context of ultracold atoms). These sys-
tems can be used to describe electrons in edge states, nanotubes or
quantum wires in condensed matter.

If, instead, we want to study two-dimensional physics, we could
start by looking at a single plaquette, which forms the fundamental
building block of the two-dimensional Hubbard model [PB08]. While
the double well studied in this thesis does support a bond between
two particles on different sites, it lacks the dimensionality and size
to study exchange phenomena between multiple bonds. The plaque-
tte supports multiple bonds which can resonate [And87; KRS87] and
the atoms in the plaquette may form d-wave pairs if the system is
doped [Tre+

06]. This type of pairing is suspected to be responsible
for high-Tc superconductivity and could be detected from its corre-
lation signature [ADL04]. Several plaquettes can be combined to a
ladder, where several different correlated states are expected [UG15].
With these larger systems, we could study interesting ground state en-
tanglement properties [KP06; LW06] and scaling laws [ECP10], with
the ultimate goal of building a link to strongly-correlated phases in
actual materials.





A
D E R I VAT I O N O F T H E T W O - P O I N T C O R R E L AT I O N
F U N C T I O N

This appendix shows how the field correlation function (2.22) can be
expressed in the Fock basis. First, we expand the correlation function
using the definition for the field operators from eq. (2.15):

G
(2)
σϑ(x1, x2, x2, x1) =∑
ijkl

ψ∗i (x1)ψ
∗
j (x2)ψk(x2)ψl(x1)

〈
â
†
σ,iâ

†
ϑ,jâϑ,kâσ,l

〉
(A.1)

The labels σ and ϑ allow us to treat two cases, distinguishable parti-
cles (σ 6= ϑ) and indistinguishable particles (σ = ϑ).

Next, we can simplify this sum by identifying the terms that van-
ish. We will do this explicitly for a system with two modes {i, j,k, l} =
{1, 2} per particle for a singly occupied state containing two particles,
but the final result can be extended to any number of modes and
different states. For distinguishable particles σ, ϑ, the two-point corre-
lator then becomes

Ψ̂†σ(x1)Ψ̂
†
ϑ(x2)Ψ̂ϑ(x2)Ψ̂σ(x1) =

ψ∗1(x1)ψ
∗
1(x2)ψ1(x2)ψ1(x1) â

†
σ,1â

†
ϑ,1âϑ,1âσ,1

+ψ∗1(x1)ψ
∗
2(x2)ψ1(x2)ψ2(x1) â

†
σ,1â

†
ϑ,2âϑ,1âσ,2

+ψ∗1(x1)ψ
∗
2(x2)ψ2(x2)ψ1(x1) â

†
σ,1â

†
ϑ,2âϑ,2âσ,1

+ψ∗2(x1)ψ
∗
1(x2)ψ1(x2)ψ2(x1) â

†
σ,2â

†
ϑ,1âϑ,1âσ,2

+ψ∗2(x1)ψ
∗
1(x2)ψ2(x2)ψ1(x1) â

†
σ,2â

†
ϑ,1âϑ,2âσ,1

+ψ∗2(x1)ψ
∗
2(x2)ψ2(x2)ψ2(x1) â

†
σ,2â

†
ϑ,2âϑ,2âσ,2

= ψ∗1(x1)ψ
∗
1(x2)ψ1(x2)ψ1(x1) â

†
σ,1âσ,1â

†
ϑ,1âϑ,1

+ψ∗1(x1)ψ
∗
2(x2)ψ2(x2)ψ1(x1) â

†
σ,1âσ,1â

†
ϑ,2âϑ,2

+ψ∗2(x1)ψ
∗
1(x2)ψ1(x2)ψ2(x1) â

†
σ,2âσ,2â

†
ϑ,1âϑ,1

+ψ∗2(x1)ψ
∗
2(x2)ψ2(x2)ψ2(x1) â

†
σ,2âσ,2â

†
ϑ,2âϑ,2

=
∑
ijkl

ψ∗i (x1)ψ
∗
j (x2)ψk(x2)ψl(x1)δilδjk n̂σ,in̂ϑ,j. (A.2)

In the first step, we made use of the fact that all terms vanish where
the number of creation operators per mode does not match the num-
ber of annihilation operators per mode, because this would create
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doubly occupied states. In the second step, we removed the second
and fifth term where the labels σ, ϑ were mismatched, because, for
distinguishable particles, these would also alter the state of the sys-
tem. Finally, we sorted the operators using the (anti-)commutation
relations in order to express the sum with number operators.

For indistinguishable particles (where the labels σ, ϑ can be omit-
ted), we have to keep all terms in the first equality of (A.2). When
bringing their operators into the right order, the correlation operator
becomes:

Ψ̂†(x1)Ψ̂
†(x2)Ψ̂(x2)Ψ̂(x1) =

ψ∗1(x1)ψ
∗
1(x2)ψ1(x2)ψ1(x1) â

†
1

(
1± â1â

†
1

)
â1

±ψ∗1(x1)ψ∗2(x2)ψ1(x2)ψ2(x1) â
†
1â1â

†
2â2

+ψ∗1(x1)ψ
∗
2(x2)ψ2(x2)ψ1(x1) â

†
1â1â

†
2â2

+ψ∗2(x1)ψ
∗
1(x2)ψ1(x2)ψ2(x1) â

†
2â2â

†
1â1

±ψ∗2(x1)ψ∗1(x2)ψ2(x2)ψ1(x1) â
†
2â2â

†
1â1

+ψ∗2(x1)ψ
∗
2(x2)ψ2(x2)ψ2(x1) â

†
2

(
1± â2â

†
2

)
â2

=
∑
ijkl

ψ∗i (x1)ψ
∗
j (x2)ψk(x2)ψl(x1)

×
[
δilδjk n̂in̂j ± δikδjl n̂in̂j + δijδikδiln̂i(1− n̂i)

]
, (A.3)

where the plus sign is for bosons, the minus sign for fermions.



B
E R R O R E S T I M AT E S F O R S I N G L E - W E L L
M E A S U R E M E N T S

For the density profiles in Figure 6.2 and Appendix D, we specify
the errors as standard error of the mean. The data points represent
probabilities of finding atoms with a certain separation d in the REL

coordinate,

ñ(d) =
1

Ntot

∫
x=d

dXN(x1, x2) =
N(d)

Ntot
, (B.1)

where N(x1, x2) is the number of events with coordinates x1 and x2
and Ntot the total number of events, i.e., measurements.

The error bars represent the standard error of the mean for each
data point,

∆ñ(d) =
∆N(d)

Ntot
≈
√
N(d)

Ntot
=

√
ñ(d)

Ntot
. (B.2)

In the second step, we have assumed that the individual realizations
of the experiment are independent of each other and that their num-
ber statistics are described by a Poisson distribution with a standard
deviation ∆N(d) =

√
N(d). Cases where N(d) = 0 occur with a prob-

ability of 1
Ntot+2

≈ 1
Ntot

, according to the rule of succession. We sub-
stitute this probability in the last line of eq. (B.2) to estimate the error
bar for these cases.

For the density profiles in the COM coordinates, we calculate the
error bars analogously.
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C
S C AT T E R I N G L E N G T H S F O R T H E S I N G L E - W E L L
E X P E R I M E N T S

The following table contains all magnetic fields and the correspond-
ing scattering lengths which were used for the experiments with a
single microtrap described in Chapter 6 and Appendix D. The val-
ues are given in Bohr radii a0 and in harmonic oscillator lengths

l̄ =
√

 h
µω ≈ 390nm ≈ 7400 a0, with the reduced mass µ and the

averaged trap frequency ω ≈ 2π× 22 kHz.

Field (G) a (a0) a−1 (a0

−1) a
(
l̄
)

a−1
(
l̄−1
)

660 5203 1.92× 10−4 0.703 1.42

665 6609 1.51× 10−4 0.893 1.12

685 4.23× 104 2.36× 10−5 5.72 0.175

690 −6.48× 105 −1.54× 10−6 −87.5 −1.14 × 10−2

692 −9.07× 104 1.10× 10−5 −12.3 −8.16 × 10−2

695 −4.06× 104 −2.47× 10−5 −5.48 −0.182

700 −2.18× 104 −4.59× 10−5 −2.94 −0.340

710 −1.19× 104 −8.38× 10−5 −1.61 −0.620

750 −5213 −1.92× 10−4 −0.704 −1.42

900 −2825 −3.54× 10−4 −0.382 −2.62

Table C.1: Magnetic fields and corresponding scattering lengths for the |1〉-
|3〉-mixture used in the single-well experiments in Chapter 6.
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D
C O R R E L AT I O N M E A S U R E M E N T S W I T H A S I N G L E
W E L L

The following graphs show all measurements performed on two at-
tractive atoms in a single microtrap with our matterwave microscope,
as described in Chapter 6. The first four pages show the densities in
the REL and COM coordinates, the latter four pages show the correla-
tor Γ from eq. (6.4).
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E
E N TA N G L E M E N T E N T R O P I E S A N D W I T N E S S E S

The following tables contain the values measured for the purities, en-
tanglement entropies, and entanglement witnesses in the double well,
as described in Section 7.5. The quantities in Table E.1 are defined in
eq. (7.34) and (7.33). The Renyi entropies have been calculated from
the purities as S = − log2 V .

The maximum values for the coherences ρ23 and ρ14 in Table E.2

ρmax
23 =

√
ρ22ρ33 (E.1a)

ρmax
14 =

√
ρ11ρ44 (E.1b)

are theoretical predictions for state |a〉.

151



152 entanglement entropies and witnesses

U/J Vmin Vmax V↑ V↓

0.0 0.752(6) 0.897(6) 0.80(2) 0.87(2)

2.1 0.736(7) 0.861(7) 0.74(2) 0.77(2)

4.3 0.754(8) 0.791(8) 0.68(2) 0.71(2)

7.7 0.662(8) 0.691(8) 0.56(2) 0.59(2)

2.1 0.736(7) 0.861(7) 0.74(2) 0.77(2)

11.1 0.657(9) 0.686(9) 0.51(2) 0.51(2)

0.0 0.666(6) 0.840(6) 0.77(2) 0.83(2)

U/J Smin Smax S↑ S↓

0.0 0.41(1) 0.16(1) 0.32(3) 0.20(3)

2.1 0.44(1) 0.22(1) 0.44(4) 0.39(4)

4.3 0.41(1) 0.34(1) 0.55(4) 0.50(4)

7.7 0.60(2) 0.53(2) 0.84(4) 0.77(4)

11.1 0.61(2) 0.54(2) 0.96(4) 0.97(5)

0.0 0.59(1) 0.25(1) 0.38(4) 0.27(3)

Table E.1: Summary of all purities and entanglement entropies obtained
from the measurements. The five topmost rows were obtained
from ground state measurements, the bottom row from excited
state measurements.

U/J ρ14 ρmax
14 ρ23 ρmax

23 Y W

0.0 0.16(1) 0.25 0.22(1) 0.25 −0.09(1) −0.03(1)

2.1 0.08(1) 0.13 0.28(1) 0.37 −0.29(1) 0.14(1)

4.3 0.06(1) 0.07 0.29(1) 0.43 −0.38(1) 0.22(1)

7.7 0.02(1) 0.03 0.26(1) 0.47 −0.45(1) 0.23(1)

11.1 0.04(2) 0.01 0.28(2) 0.49 −0.45(2) 0.26(2)

10 0.41(2) 0.48 0.40(2)

Table E.2: Summary of all entanglement witnesses obtained from the mea-
surements. The five topmost rows were obtained from ground
state measurements, the bottom row from the singlet-triplet oscil-
lations.
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