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Abstract:

In this thesis, I present and discuss correlation measurements of fermionic quan-
tum systems engineered out of ultracold 6Li atoms in optical potentials. A strong
emphasis is placed on the complex interplay between interactions and pairing
on the one hand and the effects of indistinguishability and the need for sym-
metrization on the other hand. The starting point will be a strongly correlated
two-dimensional quantum fluid, where fermionic pairing significantly above the
critical temperature for superfluidity is observed, closely related to a pseudo-
gap regime. It is concluded that additionally measuring higher order correlation
functions with full single-particle resolution will be needed to truly unravel the
microscopic correlations responsible for the intricate behaviour of such a many-
body quantum system.
In pursuit of this ultimate goal, I work out and follow a roadmap composed of
both conceptual and technical milestones. As a first step, a novel high fidelity
single-particle and hyperfine state resolved imaging system is developed, which
is custom-tailored for density correlation measurements in real and momentum
space. This imaging scheme is subsequently utilized to identify and quantify
strong correlations and entanglement in microscopic systems of two or three atoms
in different hyperfine states, deterministically prepared in tunnel-coupled optical
tweezer arrays. Effects from strong interactions and Pauli symmetrization are
studied both in isolation and in conjunction.
In a further step towards the many-body regime, the preparation of deterministic
mesoscopic quantum systems, given by up to twelve particles in a two-dimensional
harmonic oscillator potential, is presented. In this system the emergence of many-
body behaviour, in the form of the precursor of a Higgs mode, is experimentally
observed. This is the basis for measuring single-particle resolved pairing correla-
tions in mesoscopic and ultimately also in macroscopic systems.





Zusammenfassung:

In dieser Arbeit präsentiere ich Korrelationsmessungen in fermionischen Quan-
tensystemen, die aus ultrakalten 6Li Atomen in optischen Potentialen aufgebaut
werden. Der Schwerpunkt liegt hierbei vor allem auf dem Zusammenspiel zwischen
Wechselwirkung und Paarbildung auf der einen Seite und dem Effekt der Ununter-
scheidbarkeit und den daraus resultierenden Symmetrisierungsbedingungen auf
der anderen Seite. Als Startpunkt wähle ich ein stark korreliertes zweidimensio-
nales Quantengas, in welchem, eng mit der Existenz einer sogenannten Pseudogap
verwandt, fermionische Paarbildung deutlich über der kritischen Temperatur für
Supraleitung beobachtet wird. Ich lege dar, dass jedoch zusätzlich Korrelations-
messungen höherer Ordnung mit Einteilchenauflösung benötigt werden, um die
verantwortlichen mikroskopischen Mechanismen vollständig zu entschlüsseln.
Mit diesem Ziel im Blick, entwickele und folge ich einem Plan, welcher sowohl
aus konzeptionellen als auch technischen Schritten besteht. Im ersten Schritt be-
schreibe ich die Entwicklung eines Bildgebungsverfahrens mit Einteilchen- und
Hyperfeinzustandsauflösung, welches spezifisch auf die Messung von Dichtekor-
relationen in Ort und Impuls zugeschnitten ist. Mit Hilfe dieser Neuentwicklung
charakterisiere ich im Folgenden starke Korrelationen und Verschränkung in mi-
kroskopischen Systemen, welche aus zwei oder drei deterministisch präparierten
Atomen in tunnelgekoppelten Anordnungen optischer Pinzetten aufgebaut wer-
den. Der Einfluss starker Wechselwirkung sowie Pauli-Symmetrisierung wird so-
wohl isoliert als auch im Zusammenspiel untersucht.
Als weiteren Schritt in Richtung des Vielteilchenlimes beschreibe ich anschlie-
ßend die deterministische Präparation von mesoskopischen Quantensystemen aus
bis zu zwölf Teilchen in einem zweidimensionalen harmonischen Oszillatorpoten-
tial. In Form eines Vorläufers einer Higgs-Anregung werden in diesem System
erste Anzeichen von Vielteilchenverhalten experimentell beobachtet. Dies legt die
Grundlage für die Messung von Paarkorrelationen in mesoskopischen und schlus-
sendlich auch makroskopischen Quantensystemen.
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Part I.

Introduction:
Studying quantum correlations with

ultracold Fermi gases
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1. Introduction

The quantum world is a very intriguing one. Only due to the rather abstract
concept of quantum statistics, a certain class of particles - the bosons - seem to
enjoy each other’s company such that they bunch together and might even show
fascinating collective behaviour in the form of a Bose-Einstein condensate (BEC)
[1, 2]. On the other hand, another class of particles - the fermions - strictly
avoid each other by antibunching. Therefore, instead of a BEC, they form an
incompressible sea of particles, the so-called Fermi sea. Now, simply add in-
teractions on top of this and things get truly fascinating. Introducing attractive
interactions can allow the fermions to develop bound states. Only through such a
pairing mechanism, the half-integer spin fermions find a way to emulate bosonic
behaviour, such that they will also be able to macroscopically occupy a single
energy level and show similar collective behaviour as their integer spin bosonic
counterparts. This is the fundamental idea behind fermionic superfluidity. How-
ever, this is not the full story. It turns out that in three dimensions (and in free
space), there is actually no two-body bound state for weak attractive point-like
interactions [3]. The crucial additional ingredient, as formulated in the famous
Bardeen-Cooper-Schrieffer (BCS) theory for weakly interacting systems [4], is
the presence of the Fermi sea that strongly restricts the accessible phase-space
of the fermions. Particles can only explore states at the top of the Fermi sea,
the so-called Fermi surface, with all other states blocked due to the antibunch-
ing of indistinguishable fermions. Therefore, the effective phase-space becomes
two-dimensional, which turns out to be enough to allow for paired states at any
attraction, such that Cooper pairs [5] form and build up a BCS superfluid. BCS
theory is a prime example of interactions and indistinguishability joining forces.
On the other hand, the effects still mostly separate: First, the Fermi surface is
constructed, and then there is additional pairing as a perturbation on top of it.
In this thesis, I am instead interested in the different regime of strongly inter-
acting systems where the energy scales set by the interaction and the Fermi sea
are comparable. This gives rise to strongly correlated system with an intriguing
interplay and competition between interactions and quantum statistics.
There are many systems where such behaviour can be seen (see also [6]): A
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1. Introduction

very prominent example in the field of condensed matter physics are the high-
TC superconductors [7]. Other important examples include neutron stars and
also strongly correlated quantum fluids governed by quantum chromodynamics
(QCD), such as colour superfluids and the quark-gluon plasma [8, 9], which de-
scribe early phases of our universe. In addition to these true many-body systems,
there are also very important microscopic and mesoscopic systems, such as heavy
atoms and nuclei, possibly even brought to a state which resembles a QCD-fluid
by means of a particle accelerator experiment such as ALICE [10].
In this thesis, I will investigate similar physics by studying a completely different
(physical) system: Ultracold fermionic 6Li atoms in two different hyperfine states,
which represent an S = 1/2 isospin and are trapped in optical potentials. These
atomic ensembles can be brought into the strongly correlated regime by resonantly
enhancing the scattering between the atoms. Compared to the above examples,
ultracold atomic systems offer a few key advantages [11]:1 Atomic systems in
an ultra-high vacuum can be extremely well isolated from the environment, in
stark contrast to for example condensed matter systems, such that they can be
described as closed quantum systems. In addition, the great control over the
optical potentials allows for a very clean (that is defect-free) implementation of
tailored potential landscapes. Together with the possibility of engineering specific
interactions, a wide range of different Hamiltonians can be implemented offering
extensive control over the individual contributing terms [13, 14]. Finally, due to
the larger mass of atoms compared to electrons, typical time and length scales
are brought into an experimentally more accessible regime for studying micro-
scopic entities. In this thesis we will encounter typical length scales of O(1 µm)
and typical timescales of O(10 ms), which will allow for great control over indi-
vidual constituents of the system and to investigate dynamics. All this comes at
the expense of reduced energy scales. While the absolute temperatures of these
ultracold systems, at a few 10 nK, are among the coldest in the entire universe,
the relative temperature compared to typical energy scales of the system (such
as the Fermi temperature or the critical temperature for superfluidity) can be
significantly larger than in a corresponding condensed matter system. Therefore,
the quest for optimizing schemes to prepare systems with a very low entropy or
temperature has been one major driving force in the field of quantum gases [11,
14].
A very interesting platform, where both quantum statistics and strong attractive

1There is of-course also a broad range of other artificial quantum platforms such as ions,
molecules, superconducting circuits and many more; each with their own specific set of
advantages and disadvantages [12].
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interactions play a key role, is a two-component atomic Fermi gas confined to
two spatial dimensions. In a previous series of experiments in our group we have
already characterized the low energy phases of a strongly correlated quasi-2D
Fermi gas including measurements of the critical temperature for superfluidity
[15], the topological nature of the phase transition [16], and the equation of state
[17]. In this thesis, we will in addition study the normal phase above the critical
temperature [18]. In the strongly interacting regime, high-temperature pairing
far above the critical temperature is observed. Based on a strong density depen-
dence of the pairing energy, this effect can be identified as a genuine many-body
effect closely related to a pseudogap regime.
In all these measurements, the effective behaviour of the quantum systems is
discussed based on either of two methods: Macroscopic observables such as the
phase coherence [15, 16], the density of states [17] or the excitation spectrum
[19–22] probe the collective behaviour of the system. Using coarse-grained densi-
ties, on the other hand, for example in measurements on noise corrections [23] or
EPR steering [24–26], correlations between (spatial) regions of the system can be
detected. Direct access to the responsible fundamental microscopic mechanisms
is not achieved in general, however.2

Combining the collective or coarse-grained measurements with microscopic lo-
cal readout is a very desirable goal. In order to truly unravel the microscopic
correlations responsible for all the intricate behaviour observed, it is required
to measure higher order correlations, ideally with full single-particle resolution.
Take for example the BCS superfluid again, where local (in momentum space)
Cooper pairing correlations allow for the collective global phase coherence of the
system. The fact that measuring such correlations might at least in principle be
possible in cold atomic systems [27] is, in my opinion, the most important reason
for choosing this platform.
In the main part of this thesis, I report on my contribution towards this goal of
connecting microscopic observables to macroscopic phenomena. To this end, I
develop and present a roadmap consisting of both conceptual and technical mile-
stones: First, I will describe the development of a high fidelity single particle and
hyperfine state resolved imaging method [28]. As this scheme does not require
any confining potentials during imaging, it can be conveniently used to measure
density correlations in real and momentum space. This imaging method is subse-
quently used to identify and quantify strong correlations in microscopic systems
of two or three atoms in different hyperfine states deterministically prepared in
tunnel-coupled optical tweezer arrays [29, 30]. These microscopic systems are

2With the exception of certain lattice models, see chapter 5.
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1. Introduction

an ideal testbed for correlation measurements, as effects from strong interactions
and Pauli antisymmetrization can be studied both in isolation and in conjunction.
In addition, different classes of entanglement are certified in these systems. In
particular, a new measure is introduced which allows us to isolate the effects due
to quantum statistics from the measured entanglement features [31]. Together,
this constitutes a toolbox to fully characterize almost arbitrary microscopic cor-
relation features. It is crucial to appreciate this: It is rather straightforward to
measure some correlations in a many-body system. However, most of these arise
from a plethora of constraints and boundary conditions by interactions, the trap
potential or even the Pauli principle alone. Even for a conceptually very simple
state it can be sufficient to study an unfortunate observable to measure strong
correlations. Therefore it is an outstandingly important task to learn how to
measure the relevant correlations.
Finally, as the next major step towards the many-body regime, I will present the
preparation of deterministic mesoscopic quantum systems, given by up to twelve
particles in a two-dimensional harmonic oscillator potential [32]. This system,
in its close resemblance to the quasi-2D many-body system studied before, but
also atomic or nuclear systems, will be used to search for first indications of the
emergence of many-body behaviour, given by a precursor of a Higgs mode which
is experimentally observed. This is the foundation for measuring single-particle
resolved pairing correlations also in mesoscopic systems. In this context, and in
order to fully close the circle to the quantum gas discussed in the beginning, I will
also elaborate on the possibilities to extend these methods to the true many-body
limit.

Structure of the thesis

This thesis is structured into three parts. In this first part, specifically in the
following chapter 2, I will discuss the basic concepts needed for this thesis. This
will include theoretical ideas, such as quantum correlations and entanglement, an
overview of correlation functions as the basic observable used in this thesis, and
the fundamental experimental schemes used. In the second part of this thesis,
I will present the measurement of high temperature pairing in a macroscopic
system in chapter 3, based on [18]. I will use this measurement campaign to
motivate why the development of a scheme to access microscopic correlations is
of such great importance. In the third and main part of this thesis, I will start
by outlining my strategy and roadmap towards achieving this goal in chapter 4.
In the chapters to follow, I will discuss our progress on this path. Based on [28],
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I will present a new imaging scheme developed during the course of my doctoral
studies in chapter 5. Subsequently, in chapter 6, we will use this scheme to study
correlations and entanglement as well as the interplay between interactions and
indistinguishability in microscopic systems, based on [29–31, 33]. In chapter 7, I
will present the emergence of collective behaviour in mesoscopic systems, based
on [32], before concluding in chapter 8.
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2. Fundamental concepts in theory
and experiment

In this chapter I will discuss a range of basic notions and concepts which will
be needed for the discussion of the experiments performed in this thesis. I will
focus on general aspects and discuss specific details in the corresponding chapters
when needed. I will start by introducing the concepts of quantum entanglement.
Afterwards, I will discuss the main observables used in this thesis, which are den-
sity correlation functions. Finally, I will outline how we experimentally prepare
a broad range of relevant quantum states.
This section is not aiming at providing a full introduction into the basics of
quantum mechanics needed for this thesis. For this, the reader is referred to for
example [3, 34].

2.1. Quantum entanglement
Quantum entanglement is the feature of quantum mechanics which is probably
surrounded by the most mysterious aura. This is mostly due to the fact that
entanglement (a term introduced by Schrödinger [35]) lies at the heart of what
was considered ‘spooky action at a distance’ [36] in the early days of quantum
mechanics. However, also up to this day, there are still experiments ongoing
trying to close certain very subtle loopholes which would hypothetically allow
a description of nature without this spookyness. In addition, the mathematical
foundation and the computational concepts of entanglement are still debated and
not yet fully sorted out (see for example [37, 38] for an overview). In more re-
cent years, entanglement as a research field gained even more momentum with
the advent of quantum information and computation [39]. In addition, new ex-
perimental and technological developments enable unprecedented control over
microscopic quantities in atomic, molecular and condensed matter systems, such
that entanglement can be used to study the structure of quantum states as well
as information spreading in these systems [40–46].
In this thesis we will mostly use the fact that ‘entanglement is that feature of
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quantum formalism which makes it impossible to simulate quantum correlations
within any classical theory’, as Horodecki et al. write in their seminal review
paper [37]. This means, we are interested in the question whether correlation
features, which are experimentally measured, necessarily have to be explained
within a full quantum theory.
In the following section, I will introduce a few central fundamentals of entangle-
ment. The chapter is mostly based on [37, 38], where the reader is also referred to
for a more in-depth overview on quantum entanglement, as well as a presentation
of the most important original literature. Here, I will restrict myself to finite
dimensional systems for simplicity and also not touch on the subtleties regarding
non-local but otherwise classical theories [47].
In its most basic form, entanglement describes the attribute of a compound quan-
tum system that the individual subsystems, even if they are spacelike separated,
cannot be seen as independent constituents of the whole system. This means
that an operation on one of the subsystems can immediately (but to clarify, non-
signaling) affect the state of the other subsystems. More formally: Assume that
we have n different subsystems such that the Hilbert space of the full system is
given by H = ⊗nl=1Hl. Based on the superposition principle we can write down a
generic state as

|Φ〉 =
∑

i1,··· ,in
ci1,··· ,in |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 , (2.1)

where ci1,··· ,in is the complex component matrix and |ij〉 is a basis set of Hj.
States are defined to be entangled if they cannot be expressed as a product state
of individual states |φj〉 ∈ Hj, such that |Φ〉 6= |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉. The most
prominent example of an entangled state for a two-qubit bipartite system is the
so-called Bell state [48]

|φ+〉 =
√

1
2 (|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) , (2.2)

which obviously cannot be written down as a product state.1 Entangled states
show up quite naturally within quantum mechanics due to coherent (as opposed
to classical) superpositions, and thus are closely related to the study of coherence
properties of quantum states. The spooky nature is thus only due to the fact that
entanglement is inconsistent with a set of assumptions that a classical physical

1There are four equivalent incarnations of the Bell state, typically denoted by |φ+〉, |φ−〉,
|ψ+〉, |ψ−〉, which can be transformed into each other by local (in the subsystems) unitary
operations.
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2.1. Quantum entanglement

world should obey [36, 48]:

• Realism: Measurement results are solely determined by properties of the
system and are never intrinsically stochastic.

• Locality: Measurement results are independent of any operations per-
formed at spacelike distances.

• Free will: The measurement settings chosen are not influenced or prede-
termined by any (hidden) local theory.

This is known as the Einstein-Podolsky-Rosen (EPR) paradox [36], formalized
in terms of a local hidden variable model (LHVM) assumption by Bell [48]. In
addition, Schrödinger noticed that entanglement allows for the situation where
the entropy of a full system might be larger than the entropy of its constituents
and proclaimed that ‘the best possible knowledge of a whole does not include the
best possible knowledge of its parts - and this is what keeps coming back to haunt
us’ [35]. This feature can already been seen in the simple Bell state |φ+〉 where
the total state is pure while each subsystem alone is (maximally) fluctuating. It
later has been called ‘Schrödinger’s demon’ [37] and is an important property of
entanglement used for characterization and quantification.
Before continuing with quantifying entanglement, I would like to point out a few
active research areas where the study of entanglement is central:

• Bell and nonlocality test: Based on the EPR paradox, Bell proved that
quantum physics formally is incompatible with a hypothetical LHVM which
would avoid the EPR paradox [48]. He conceived an afterwards called Bell
inequality based on correlation measurements which is not allowed to be
violated within a LHVM. Afterwards, the inequalities were further refined
and tailored for experimental testing with the most notable example being
the CHSH inequalities [49]. The first stringent violations of the Bell in-
equalities were performed by Aspect et al. [50], with a plethora of further
important experiments either refining these results by closing so-called loop-
holes (for example see [51–55]), applying the concepts to quantum optics
(for example [56]) or finite mass systems [24–26, 57, 58].

• Quantum information and cryptography: Quantum information evolved
as a whole research field with entanglement used as a resource. For an
overview see [37–39]. Early works include for example the no-cloning theo-
rem [59]. Among other things, entanglement is used for teleportation [60,
61], quantum cryptography and key distribution [62, 63], dense coding [64,
65], error correction and computational tasks [66–69].
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• Study of many-body quantum systems: Entanglement is also a key
ingredient in studying the behaviour of many-body quantum systems. In
general this is an exceedingly complicated endeavour. However, the increas-
ing control over microscopic constituents in such systems, as I will discuss
in detail later, allows for more and more entanglement studies. In partic-
ular quantum phase transitions are accompanied by a change in quantum
correlations as quantified by entanglement [40, 70]. This is of special im-
portance for topological states which are not described by local quantities
or order parameters [71–74]. In addition, the important question of in-
formation spreading (or its absence in a many-body localized system) are
intrinsically linked to entanglement properties [42–46].

• Quantum metrology: Non-classical (that is entangled) states can be used
to limit intrinsic quantum noise in a metrology task by squeezing down the
uncertainty in one quadrature component below the standard quantum limit
at the cost of increasing the other (see [75, 76]).

In this thesis I am not aiming at testing quantum mechanics at an fundamental
level as done for example in increasingly more involved Bell measurements. In-
stead, the relevant question will be whether a prepared quantum state, which we
will characterize by correlation measurements, can be certified not to be formed
by classical correlations alone. In this situation we will conclude that there has
to be more to it, in the sense that pure quantum correlations have to be present.
Those can be quantified by entanglement.

2.1.1. Quantifying entanglement

An important idea on quantifying entanglement is based on its usefulness for
quantum communication [38]. This is referred to as the operational approach
and treats entanglement as a resource. It was first introduced for a pure two-
qubit system, where the basic task is to transfer a bit of information between
two parties (usually labelled Alice and Bob). For this an entangled e-bit, given
by the two-qubit Bell state |φ−〉 =

√
1
2 (|00〉 − |11〉), which can be interpreted as

maximally entangled, is first shared between Alice and Bob and afterwards the
actual information is transmitted via quantum teleportation [60, 61]. For a faith-
ful teleportation we need the state |φ〉, which is shared between Alice and Bob, to
be exactly the e-bit, that is maximally entangled. This is usually not the case as
any quantum transmission channel will always be noisy. Therefore, a purification
stage has to be implemented. With this we might still be able to extractmn e-bits
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2.1. Quantum entanglement

Quantum Lab Alice 

Classical communication

Shared quantum state

Local quantum operations
in subsystem A

Local quantum operations
in subsystem B

Quantum Lab Bob 

Figure 2.1.: Quantum communication scheme. A schematic illustration of
the LOCC scheme. Alice and Bob first share a number of e-bits via a noisy quan-
tum channel. Afterwards they are allowed to perform local quantum operations
on their respective subsystems and communicate any instructions and strategies
on LO to be performed and also measurement results through a classical commu-
nication channel. It is implicitly assumed that long range communication via the
quantum channel is much more costly than local quantum operations and clas-
sical communication. The task at hand is now to use the shared entanglement
for quantum communication. This means the entanglement is used as a resource
for example for quantum teleportation. Equivalently this can also be used as a
positive definition of entanglement: Given a certain shared state; how useful is it
for a quantum task?

out of n identical shared states |φ〉, by an adequately chosen distillation proto-
col based on so-called LOCC operations (see figure 2.1). These combine local
quantum operations (LO) with classical communication (CC). Given a specific
partitioning of the quantum system, LO describe generalized quantum operations
on either of the subsystems. These can include applying unitary operations on
the state, performing joint operations with a local ancillary state and projective
measurement protocols. In addition, classical bits of information are allowed to
be transmitted at any point by CC between the subsystems. Importantly, the
concept of LOCC is not only relevant for technological purposes but can also be
used to quantify entanglement. This is based on the fact that entanglement be-
tween the subsystems cannot be created by LOCC operations such that classical
correlations are defined as those created by LOCC operations alone [38]. The
other way around, if a target state, which cannot be simulated by classical cor-
relations, is created out of an initial state (pure or mixed) by LOCC operations
it can be concluded that already the initial state was entangled [77, 78]. This is
the basis of entanglement quantification.
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Coming back to the above communication task, for a fixed purification proto-
col, the distillation rate is obtained as the limit of limn→∞

mn
n

and the distillable
entanglement ED as the supremum over all possible protocols. There also exist
generalizations of this measure for mixed density matrices [79] and multipartite
systems [80].
Here we have measured entanglement based on a very specific task. Therefore
we will encounter equivalent notions which should not be confused: An entangle-
ment measure can be classified based on its strictness. This means, a measure
which is not perfectly strict might detect only certain states as entangled, while
it misses others. On the other hand a specific (and not perfectly strict) measure
also allows us to classify different types of entanglement. In the above example
we detected distillable entanglement alone. It has been found [37] that in gen-
eral there might be also bound entanglement present which cannot be used for
teleportation. Thus distillable entanglement is in general only a sufficient but
not a necessary condition for entanglement. However, for a quantum information
task as described above, only this subset of entanglement is useful, such that the
classification into distillable entanglement is of great practical interest.
As a dual measure to the distillable entropy ED, there is also the concept of the
entanglement cost EC , which measures how many e-bits are at least (on average)
needed to construct the above state |φ〉 using LOCC. For a pure state the entan-
glement cost and the distillable entanglement are equivalent. This is not the case
for a mixed state.2

The above measures are based on usefulness for a specific task. Note that this
is fundamentally different to the negative definition of an entangled state being
not separable [81]. In addition to the operational approach it is also possible to
define a measure based on an axiomatic approach [37, 38, 82–84]:

• A separable state has zero entanglement. A fully separable state
ρABC··· in a density matrix representation and the partitioning ABC · · · is
defined to be separable if it can be written in the form

ρABC··· =
∑
i

piρ
i
A ⊗ ρiB ⊗ ρiC ⊗ · · · (2.3)

in terms of a probability distribution pi and ρiX a state in the subsystem X.
Importantly, all these states can be trivially created by LOCC alone due to
the separable nature of the state. Thus it is postulated that all these states
have zero entanglement.

2Note the similarity to a thermodynamic cycle, which has a finite efficiency. Similarly the
cycle of distillation and formation has a limited efficiency for a mixed state.
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2.1. Quantum entanglement

• Entanglement monotone [82]. Via LOCC operations, entanglement
cannot increase [85]. Put more colloquially, the resource which is entangle-
ment cannot be distilled out of thin air. From this postulate, it also directly
follows that entanglement is invariant under local unitary operations (while
for a general LOCC it might decrease). In addition for any bipartite state
this implies that there exists only one maximally entangled state (the Bell
state) out of which each mixed state can be created.

• Other postulates. A common additional postulate for bipartite entangle-
ment is normalization which demands that the measure counts the number
of e-bits, that is the measure is equal to n for a product state of n Bell
pairs. A generalization to multipartite entanglement is not easily possible
due to the lack of a unique target state. Other commonly used postulates
are based on continuity and convexity [37] but are not strictly necessary for
a closed axiomatic definition of entanglement.

This axiomatic approach allows us to directly detect entanglement with a measure
which is non-zero only if entanglement is present. However entanglement can also
be quantified by establishing an order such that ρ is more entangled than σ if the
transformation ρ→ σ is possible via LOCC (but not the other way around). This
approach again has no straightforward generalization for multipartite systems due
to the lack of a unique reference state. An overview of typical measures based
on this axiomatic approach is presented for example in [37], with the important
generalization to mixed states also covered in [86].

2.1.2. Multipartite entanglement

The most important difference between bi- and multipartite entanglement is that
only in a bipartite system there exists a unique (up to local unitary transforma-
tions) maximally entangled state. For a 2⊗ 2 system we have already called this
state e-bit, and similarly for a d⊗ d system we have

|φ+
d 〉 = |0, 0〉+ |1, 1〉+ · · ·+ |d− 1, d− 1〉√

d
(2.4)

This statement can be justified by showing that any pure or mixed state can be
distilled out of |φ+

d 〉 by LOCC alone. This becomes more complicated in higher
dimensions. For example in tripartite systems (using here 2⊗2⊗2 as an example)
there are already 6 different classes of states: The completely unentangled state,
three combinations of a product state of an e-bit with an additional qubit, the
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Greenberger-Horne-Zeilinger (GHZ) state [87]

|GHZ〉 = |000〉+ |111〉√
2

(2.5)

and the W state [88]

|W 〉 = |001〉+ |010〉+ |100〉√
3

. (2.6)

These states cannot be converted into each other by local unitary operations. Also
in terms of entanglement, they differ [88, 89]. To see this we have to introduce
the notion of partial separability. Building on the definition of separability in 2.3,
a d-partite system is defined to be k-separable if a new partitioning into k ≤ d

subsystems can be found, such that the state can be written as a product state.
Inverting this notion, the state is defined to be (at least) k-partite entangled, if
such a partitioning cannot be found. In the above example the |GHZ〉 and the
|W 〉 state are three-partite entangled, while for the product state of a singlet with
an additional qubit we, per definition, find a two-separable state such that we are
left with bipartite entanglement. On top of this also the two tripartite states are
fundamentally different, as they cannot be transferred into each other by local
unitary operations.3

As a consequence, in general it can be hard to fully extend the measures to
multipartite states as a unique target state (e-bit) is lacking. Typically we have to
carefully choose which state we compare to. For example we might compare to the
product state and thus identify entanglement without being able to differentiate
between two-partite and multipartite entanglement. More in general we will
oftentimes encounter measures able to quantify entanglement which is at least
k-partite. All these measures can be arbitrarily hard to compute. Therefore an
important task is to find measures which are of practical use.

2.1.3. A few important measures

Measures of particular importance for this thesis include:

• Entanglement entropy: The entanglement entropy on a partition A is
defined via the Rényi entropy (of order α) Sα(ρ) as Sα(ρA), where ρA is the
reduced density matrix of subsystem A. An entanglement measure can now
be constructed by comparing the entanglement entropy of the given state to
that of a target state. Importantly, for a two-partite pure state, the distill-

3Note that the state |W 〉 is in a certain sense more robust, as after measuring one qubit the
remaining state is at least bipartite entangled which is not the case for the |GHZ〉 state.
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2.1. Quantum entanglement

able entanglement reduces to the entanglement entropy [90]. Intuitively this
can easily be seen as a shared Bell state results in a maximum uncertainty
of the measurement outcome in either subsystem and thus maximizes the
entropy. Therefore the entanglement entropy can be interpreted as a quan-
tification of Schrödinger’s demon discussed above, quantified for example
by introducing the conditional entropy C (A|B) = Sα(ρAB)−Sα(ρB). For a
mixed bipartite state we can use the conditional entropy as a lower bound
to the distillable entanglement [86, 91].

• Negativity: The negativity is a measure of practical interest because it
can be computed efficiently. For a density matrix ρ it is defined as

N (ρ) = ||ρ
TA|| − 1

2 , (2.7)

in terms of the partial transpose ρTA with respect to the partitioning A

and the trace norm || · ||. For 2 ⊗ 2 and 2 ⊗ 3 systems the negativity is a
sufficient and necessary condition for entanglement [92, 93]. Also for larger
systems it remains sufficient but is no longer necessary. The importance of
the negativity is mostly due to the fact that the computational complexity
is reduced to the computation of eigenvalues of a density matrix.

• Concurrence: The concurrence can be used as a measure for the so-called
entanglement of formation [94–97], which is closely related to the entan-
glement cost (albeit not the same [37]). For a pure state it is defined as
C =

√
2 (1− Trρ2

A) in terms of a reduced state ρA. It is mostly impor-
tant for two qubit systems where an isomorphic map to the entanglement
of formation exists. In this case we can define the concurrence of a pure
state φ as C(φ) = |〈φ|σy ⊗ σy |φ∗〉| in terms of the Pauli y-matrix. For a
mixed state we instead have to compute the infimum over all pure state
decompositions such that C(ρ) = inf ∑i piC(φi). Importantly (and only for
a two qubit system) there is also an explicit formula given by

C(ρ) = max {0, λ1 − λ2 − λ3 − λ4} , (2.8)

where λ2
i are the eigenvalues of the operator ρ (σy ⊗ σy) ρ∗ (σy ⊗ σy) in de-

creasing order.
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2.1.4. Entanglement witnesses

Calculating an entanglement measure can be a very hard task. From a theoret-
ical point of view, ruling out that any decomposition of a general mixed state
separates is in general an NP-hard problem. Also from an experimental point of
view we encounter an exponential scaling in the number of measurements needed
as typically the full quantum state has to be known tomographically. One ap-
proach to limit the computational or experimental complexity is to consider an
entanglement witness instead of a measure [92, 98]. An entanglement witness is
a functional which is able to detect some entanglement, without however strictly
being able to quantify entanglement, as schematically illustrated in figure 2.2.
More formally we define the hermitian operator W to be a witness if for all sep-
arable states ρ we have Tr {Wρ} ≥ 0 but in turn there exists at least one state
σ such that Tr {Wσ} < 0. Important witnesses include the CHSH (Bell) witness
and also the negativity for larger quantum systems.

A CB

entangled

separable

A

B

A B

wi
tne
ss

Figure 2.2.:Measuring entanglement. A: The full Hilbert space of a composite
system can be separated into entangled (darker blue) and separable (lighter blue)
states. A witness can certify that a given state is not separable, but on the other
hand is not a necessary condition for entanglement. B: Mode partitioning: The
system made up of different internal states used as particle labels (indicated by
red and blue circles) in different external modes (crossing points of the dotted line)
can be partitioned according to a specific boundary in-between the modes. Alice
takes control over the subsystem A (blue shaded area) and Bob over subsystem B
(red shaded area). C: Particle partitioning: The same system can be partitioned
according to the internal state, where Alice takes control over the subsystem A of
all blue particles and Bob takes control over the subsystem B of all red particles.
Adapted from [99].
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2.1. Quantum entanglement

2.1.5. Particle vs mode entanglement and the role of
symmetrization

Up to now the partitioning used was not explicitly specified, despite the notion of
entanglement strongly depending on how the partitioning is chosen. Often times
in literature, in particular in a quantum communication context, implicitly a par-
titioning according to particle labels is used (see figure 2.2). This is emphasized in
literature by the personifications, Alice and Bob, used as labels. More precisely,
particles or systems of particles, which are distinguishable by external parameters
(‘send to Alice/Bob’) are used as the partitioning, where in turn some internal
quantities (state 1 or state 0) are entangled. A prominent physical example is
the decay of a spin 0 particle into two spin-1/2 particles. The total state of the
two spin-1/2 particles has to be the singlet (that is the Bell state) while their
relative momentum is diametral, such that we can identify the particle sent to
one half-sphere as Alice’s particle and the other one as Bob’s.
There is a conceptual problem arising as soon as we have to consider the exchange
symmetry. Consider for example the state of two indistinguishable fermionic par-
ticles in two distinct (spatial) modes. I will call the two modes in this case |0〉 and
|1〉, to emphasize the connection to the above examples. Within a first quantized
picture, we have to label the identical particles, which I will do as above as Alice
for the first particle and Bob for the second. The price we have to pay for intro-
ducing labels to the indistinguishable particles is that we have to antisymmetrize
the state by hand. Thus the state is given by

|φ〉 =
√

1
2 (|1〉 ⊗ |0〉 − |0〉 ⊗ |1〉) . (2.9)

At least formally this is a Bell state and (maximally) entangled. It is a long-lasting
debate in literature if this non-separability which can be seen as an artefact of
the antisymmetrization should be considered entanglement and if it can be used
as a resource [100–113]. This topic will be discussed in more detail in section 6.4.
Particle entanglement is however not the only possible partitioning. We could
also study entanglement in a mode partitioning. As an example we might have an
ensemble of particles in an array of spatial modes (think for example of neutral
atoms in an optical lattice [41, 114, 115], see also figure 2.2). This is particularly
useful for delocalized particles. It is possible to partition the system according to
the different modes and detect for example correlations in the particle occupation
(or any other observable quantity) between the different modes [24]. Interestingly,
as a pathological limit, already a single particle delocalized over several modes
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features mode entanglement. As an example, one particle delocalized in two
spatial modes could be written down as

|φ〉 =
√

1
2 (|10〉+ |01〉) (2.10)

which at least formally is a Bell state. This is not restricted to position space.
Also a spatially localized particle shows mode entanglement when the momentum
modes are used as a partitioning. Intuitively it is not too surprising that we
observe entanglement, as we can always map the two-level system given by the
mode occupation number to a spin-1/2 system. The spin state is now entangled
by the delocalization in conjunction with the atom number conservation. As
with the identical particle entanglement above, it is also in this case crucial to
identify the usefulness of such a mode entanglement [116, 117]. I will discuss
mode entanglement in chapter 6 as well.

2.2. Correlation functions and the density matrix

A convenient way to represent a quantum mechanical state is the density matrix ρ.
In order to write it down, the full set of information on the state has to be known.
Determining all the entries of a density matrix describing a complicated many-
body state can be a very demanding task. The experimental approach used in
this thesis will be based on the measurement of correlation functions. Therefore,
in this section, I will introduce the relevant basic notion on the density matrix
and correlation functions. For a more detailed discussion the reader is referred
to the literature (for example [3, 34, 118]).

2.2.1. Density matrix

Suppose that we have initialized a quantum system in the a-priori unknown nor-
malized state vector |Ψ〉. This state could either be pure or mixed, such that
|Ψ〉 = ∑

i pi |Ψi〉. We can define the density operator via

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| . (2.11)

The density operator is a very useful concept as it greatly facilitates the notation
of the quantum mechanical measurement process. For this we make use of the fact
that the density operator is the projection operator onto the state |Ψ〉. Therefore,
for a general observable A, the expectation value of the measurement associated
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2.2. Correlation functions and the density matrix

to A is
〈A〉 = Tr (Aρ̂) , (2.12)

with the probability of an individual measurement outcome pa (assuming the
existence of a spectral representation) given by

pa = Tr (Paρ̂) , (2.13)

where Pa denotes the projection operator onto the eigenstate corresponding to
the eigenvalue a.
This access to the eigenspectrum also allows for a convenient notation of measures
quantifying the statistical spread over the space of eigenstates for example by
virtue of the purity as well as the entropy. The purity is given by

γ = Trρ̂2. (2.14)

The density operator of a pure state is idempotent such that in this case the
purity is unity. For a general state the purity is a measure for how mixed the
state is. In a similar fashion we can write down the von Neumann entropy via

SvN = −Tr (ρ̂ ln ρ̂) (2.15)

and the Rényi entropy of order α given by

Sα = 1
1− α ln Trρ̂α. (2.16)

For a finite dimensional Hilbert space (as will be always the case in this the-
sis), the density operator can be represented as a matrix. This density matrix
corresponding to the orthonormal basis |ei〉 is defined via the entries

ρi,j = 〈ei| ρ̂ |ej〉 . (2.17)

The diagonal entries ρi,i quantify the populations, that is the probability that the
eigenstate |ei〉 measured. For a classical state, this is all the information needed,
as the full state is an incoherent sum over the eigenstates. For a general quantum
mechanical state we have to take coherent superpositions into account. These are
included in the density matrix by the off-diagonal entries which therefore quantify
the coherences in the system.
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2.2.2. Correlation functions

Another very useful object in a perturbative approach to a quantum field theory
is the n-point correlation function χn of the form

χn (i1, i2, · · · , in) = 〈Ψ|φ(�)(i1)φ(�)(i2) · · ·φ(�)(in) |Ψ〉 . (2.18)

This object is the conditional probability of n field annihilation (creation) oper-
ators φ(�)(ij) evaluated with respect to the state (e.g. ground state) |Ψ〉 of the
system. The index ij with j ∈ [1, · · · , n] indicates n different points of the fun-
damental basis. Typically, these are n different spatial positions xi. Note that in
this thesis, I will focus on equal time correlations alone. Therefore I will suppress
any reference to the time and in particular neglect any specific time ordering
which in general has to be included in the definition of the correlation functions.
We can gain some intuition on these correlation functions by considering two
specific examples:
The one point function χ1(x1) = 〈φ(x)〉 measures the expectation value of the
field amplitude. Typically (and in particular for theories with number conser-
vation incorporated), this is zero as the field fluctuations average to zero. The
two-point correlator χ2(x1, x2) = 〈φ(x2)φ�(x1)〉 is called propagator or Green’s
function. It measures the correlation between the field fluctuations at point x1

and x2. For two independent locations, also the fluctuations are independent and
the propagator evaluates to zero. For a finite distance between the positions,
within the so-called correlation length, the fluctuations are at least partially cor-
related resulting in a finite expectation value. Studying the propagator and in
particular the divergence of the correlation length at a second order phase tran-
sition is one central topic in many-body (field) theory.
More in general we can express any (conditional) probability of something hap-
pening as a correlation function. Of course this can, and in general will be, a
quite complicated object. Therefore, much of the success of quantum field theory
is based on the fact that in a perturbative fashion the full correlation function can
be reduced to a series expansion of correlation functions with respect to the free
theory (that is with |Ψ〉 = |Vac〉). There exists a large machinery to efficiently
evaluate this perturbative series. In particular the pictorial series expansion in
terms of Feynman diagrams can help in keeping track of different terms contribut-
ing. For an introduction into this the reader is referred to the standard literature
such as [118], or [34] for a more condensed matter inspired approach.
Experimentally, we do not have access to the field operators directly, and instead
have to rely on measurements of observables. In analogy to 2.18 the nth order
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2.2. Correlation functions and the density matrix

correlation function Cn of a set of observables Ai is defined as the conditional
probability

Cn (i1, i2, · · · , in) = 〈Ψ| A(i1)A(i2) · · · A(in) |Ψ〉 . (2.19)

Again the index ij typically indicates different spatial positions xi. Experimen-
tally the expectation value is approximated by averaging the measurement result
either over many different realizations of the same state |Ψ〉 or by taking a suit-
able average over a large statistical ensemble. In this thesis we will exclusively
use spatial densities as an observable, Ai = n̂(xi). In order to get access to a
broader range of observables, we will use a tailored experimental toolbox in order
to map different observables onto real space densities. I will present this toolbox
in section 5.3. The most important example will be the momentum p or wave
vector k, where Ai = n̂(xi(k)) ≡ n̂ki.
I would like to stress that throughout this thesis I will discriminate between an
nth-order correlation function Cn, and an n-point correlation function χn. For
example an nth order density correlator is a 2n-point correlation function in the
fundamental fields. In addition we will always consider finite systems with a fixed
particle number N . Therefore any perturbative expansion will naturally stop at
Nth order. For very large systems, an effective description in terms of an infinite
system will nevertheless oftentimes be useful.
There is a close connection between the entries of the density matrix and correla-
tion functions. To this end, consider that (assuming a pure state for simplicity)

ρi,j = 〈ei| ρ̂ |ej〉 = 〈ei|Ψ〉 〈Ψ|ej〉 = 〈Ψ|ej〉 〈ei|Ψ〉 = 〈Oi,j〉Ψ , (2.20)

where the expectation value is taken with respect to the state Ψ and Oi,j =
|ej〉 〈ei|. Therefore, by measuring a suitable set of correlation functions we can
indeed reconstruct the state operator, as of course expected for a reasonable
perturbation theory. Note however, that in general the evaluation of 2.20 might
involve complicated correlation functions of high order and in particular the com-
plexity will strongly depend on the choice of basis.4 It is a-priori not clear how
to connect measured correlation functions of nth order to these density matrix
entries. I will discuss this in detail in chapter 6.

4This is also not surprising at all. The success of a perturbation theory strongly depends
on a proper choice of the initial guess upon which higher perturbation orders are added.
Crucially one should therefore be careful when inferring the presence of interesting physics
based on high-order correlations measured.
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2.3. Interactions between neutral atoms

In this section I will discuss some basic scattering properties of neutral atoms. I
will focus on very low energy and momentum scattering via a short range isotropic
potential, suitable for the description of ultracold quantum gases of 6Li (see also
section 2.4). I will first introduce the generic description of ultracold scattering
in free-space and later introduce a few important concepts needed for trapped
systems.
The fundamental elastic interaction potential for neutral 6Li is given by a short
range van-der-Waals potential Vint. As the range RvdW of the potential is only
of the order of a few hundred picometers and thus much smaller than the typi-
cal interparticle distance and the de-Broglie wavelength of ultracold atoms, the
description can be significantly simplified by a partial wave expansion.

2.3.1. Partial wave expansion

In the centre-of-mass frame and using spherical coordinates, the elastic scattering
process is described by the time-independent Schrödinger equation[

p2

2mr

+ Vint(r)
]

Ψ(r) = EΨ(r), (2.21)

with the reduced massmr of the two scatterers. Here, it is used that the scattering
potential is spherically symmetric. Asymptotically for r � RvdW this can be
solved by a superposition of an incoming plain wave (without loss of generality
in z-direction) and a scattered spherical wave with a relative phase shift (or
scattering amplitude) f~k(θ)

Ψ~k(~x) = eikz + eikz

r
f~k(θ). (2.22)

The phase shift is directly related to the differential cross section

dσ/ dΩ =



∣∣∣f~k(θ)∣∣∣2 for distinguishable particles∣∣∣f~k(θ)− f~k(θ + π)
∣∣∣2 for identical fermions∣∣∣f~k(θ) + f~k(θ + π)
∣∣∣2 for identical bosons.

(2.23)
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2.3. Interactions between neutral atoms

The scattering amplitude can be expanded in Legendre polynomials PL, which is
known as the partial wave expansion

f~k(θ) = 1
k

∞∑
L=0

(2l + 1)eiδL sin δLPL(cos θ). (2.24)

The expansion coefficient δl can be interpreted as the phase shift which each
partial wave, corresponding to a relative angular momentum L, acquires in the
scattering process.
At low temperatures, only a few expansion orders have to be taken into account
as higher angular momentum partial waves have negligible weight in the range of
the effective potential. In particular for the ultracold systems considered in this
thesis, only s-wave, that is L = 0 scattering has to be considered,5 resulting in
the s-wave scattering amplitude

f(k) = 1
k cot δ0(k)− ik . (2.25)

Importantly, s-wave scattering for identical fermions is in conflict with the re-
quirement of an antisymmetric relative wave function. Therefore, in accordance
with equation 2.23, identical ultracold atoms are non-interacting and the lowest
possible scattering order is of p-wave nature.
For 6Li, at least in the regimes described in this thesis, we can further simplify
equation 2.25 by an expansion of k cot δ0(k) to lowest order in k

f(k) = − 1
a−1 + ik

, (2.26)

where the s-wave scattering length a is defined via f(k → 0) = −a. The above
equation has the two important limits of weak interactions k|a| � 1 where f =
−a, and the unitary regime k|a| � 1 where the scattering amplitude f = 1

k

becomes independent of the scattering length. For this description and the energy
scales considered, as we do not resolve the scattering potential, we can replace
the scattering potential by a conceptually much simpler pseudopotential chosen
such that the low energy scattering properties are reproduced. We thus have

Veff (r) = gδ̃(r), (2.27)

in terms of a suitably renormalized delta function and the scattering parameter
g = 4π~2a

m
. In addition, to gain some intuition on the scattering length, we can

5That is as long as other channels are not resonantly enhanced.
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calculate the interaction shift on the mean field level of a homogeneous gas with
density n to be

Eint(a) = gn = 4π~2n

m
a. (2.28)

In a similar approximation we can estimate the interaction shift of two (weakly
interacting) distinguishable particles in the same spatial mode described by the
wave function Ψ(~x) to be

U =
∫

d~x|Ψ(~x)|2g. (2.29)

In both cases a positive scattering parameter results in an increased interaction
energy, while a negative value reduces the energy. Based on this intuition we will
call a > 0 (a < 0) repulsive (attractive) interactions.
The s-wave interactions support a single dimer bound state for any positive scat-
tering length with a binding energy of [119]

EB = ~2

2mra2 . (2.30)

There is no dimer state present in the spectrum for attractive interactions. For
a very large repulsive interaction strength, the dimer binding energy becomes
very small and accordingly the size of the molecule is large. Upon decreasing the
scattering length, the dimer becomes more deeply bound and the size decreases
until it is ultimately not resolved by typical momenta of the system. In this
limit, the dimers can be described as effective point-like bosonic particles with an
atom-dimer scattering length of sad ≈ 1.18a [119] and a dimer-dimer scattering
length of add = 0.6a [120].

2.3.2. Scattering and pairing in lower dimensions

In the previous section I have discussed scattering properties of two particles in
three dimensions. A similar analysis can be performed also in one and two di-
mensions. For a useful description of an experiment, however, we also have to
take the trapping potential into account, which is needed to confine the atomic
system to lower dimensions. A trapping potential always introduces an additional
length scale, which competes with the intrinsic scales in the system such as the
scattering length, the (inverse) density, or the Fermi length scale. In addition, a
trapping potential always breaks the translation invariance6, such that for exam-
ple in- and outgoing plane waves cease to be a useful description of the scattering

6For specific lattice potentials it might be argued that the continuous translation is merely
replaced by a discrete one, however every experimental lattice has to be of finite size of
course.
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2.3. Interactions between neutral atoms

problem. There are three important limiting cases for the length scales of the
trapping potential compared to the intrinsic scales of the system

• Trapping potential � scales of the system: In this limit the trapping
potential is almost constant on the system length scales. Therefore it is
often times convenient to impose a local density approximation (LDA),
where the system is locally mapped onto a homogeneous system with a
chemical potential offset originating from the local trap potential. It is
crucial to notice that such an approximation is bound to fail when one of
the intrinsic scales diverges. The most important example is a correlation
length diverging at a second order phase transition.

• Several scales of a similar order: When at least one of the length
scales of the trapping potential is of a similar size as an intrinsic scale, the
confining potential has explicitly to be taken into account. In particular
the density of states is radically changed and resonance in the scattering
process can appear.

• Dimensional freeze-out: Engineering systems with fewer than three spa-
tial dimensions is, strictly speaking, only possible theoretically. However,
it is possible to kinematically freeze out one or more spatial dimensions by
engineering the confinement length to be much smaller than all kinematic
length scales. In this case the system behaves kinematically according to
a lower dimensional density of states. Note, however, that it might still be
possible that the interaction scale becomes even smaller (for a deeply bound
molecule), such that while the molecules are 3D objects, the motional states
are still restricted to lower dimensions.

For all that is to follow, we will always assume that the confining potential is
a three dimensional harmonic potential. In this regime, theoretical results in
various different geometries exist [121–125]. In the experiment, as I will discuss
below, we typically have Gaussian traps instead. Within a second order Taylor
expansion, these traps can be approximated by a harmonic confinement. How-
ever, for a fully quantitative theory, the full trap geometry has to be taken into
account. This is in particular the case for tightly confined traps: A useful figure
of merit in this respect is the ratio of the harmonic oscillator length of the trap
(quantifying the scale on which anharmonicity starts to play a role) to the size
of the ground state wave function set by the trap frequency.7

7For the same trap frequency, a large deep trap is more harmonic than a tight but more shallow
trap. However, the latter case requires less laser power and is less prone to aberrations.
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The most important example of a potential in this thesis is a radially symmetric
trap approximated by the functional form (in cylindrical coordinate x = (ρ, φ, z))

Vc(x) = 1
2m

(
ω2
radρ

2 + ω2
zz

2
)
, (2.31)

in terms of the radial (axial) trap frequency ωrad (ωz) with an aspect ratio η =
ωrad/ωz. A large positive aspect ratio corresponds to a quasi-1D system, while a
ratio well below one describes the quasi 2D scenario. Here, I will discuss solutions
for two distinguishable particles. In the limit where the interaction length scale is
small compared to the harmonic oscillator length scales aHOrad,z =

√
~/(mrωrad,z)),

the wave function can be approximated by the non-interacting ground state; for
stronger interactions, the description in the non-interacting basis has to involve
higher lying states as well.
An analytical solution is given in [124] with the generalizations to a general 3D
harmonic oscillator potential added in [125]. Given two particles and harmonic
confinement, the centre-of-mass coordinate can be decoupled. In the following
only the relative motion (in the relative coordinate r with the relative mass mr)
is discussed. It should be kept in mind, however, that in an experimental setting
the anharmonicities present will couple the relative and centre-of-mass motion.
Due to the decoupling and the point-like interaction potential, only states where
the relative wave function is finite at r = 0 are shifted in energy by interactions.
These are the angular momentum states with m = 0.
In the following paragraph, I will quote the solutions for the eigenenergies in
the case where the aspect ratio or its inverse is integer obtained in [124]. For
more general solutions and the corresponding wave functions see [124, 125]. The
eigenenergies are given by the implicit formula

−
√
πaHOz
a

= F(−E/2). (2.32)

Here the eigenenergy E = E−E0
~ωz is given in units of the harmonic oscillator energy

with respect to the ground state energy E0/ωz = 1/2 + η. For an aspect ratio
n > 1 , that is a cigar-shaped trap, and in terms of the Gaussian hypergeometric
function F (a, b; c; d) and the Euler gamma function Γ (x), F(x) is given by [124]

F(x) = −2
√
π

Γ (x)
Γ (x− 1/2) +

√
π

Γ (x)
Γ (x+ 1/2)

n−1∑
m=1

F (1, x;x+ 1/2; ei 2πm
n ). (2.33)

For a very large aspect ratio, this result can be compared to the true 1D result
already obtained in [121]. In terms of the 1D interaction potential V 1D

int (x) =
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g1Dδ(x) the 1D solution is given by:

− 1
g1D

= mr

2~2
Γ (−E/2)

Γ (−E/2 + 1/2) . (2.34)

In [122], by comparison to the limit of equation 2.33 for very large aspect ratios
it was shown that

g1D = 2~2a

mr (aHOrad )2
1

1− Ca/aHOrad
. (2.35)

In this formula C = −ζ(1/2) ≈ 1.46 in terms of the Riemann zeta function
ζ. This is a very important result as it gives the proper renormalization of
the 1D interaction parameter. In particular, we see that a confinement-induced
resonance appears when the scattering length approaches the confinement scale.
In addition, the resonance is shifted away from its bare position (|a| → ∞) by
the renormalization.8 In figure 2.3, the energy levels of a quasi-1D system are
presented and compared to the true 1D solution.
Based on equation 2.32, also the results for a quasi-2D system can be calculated.
For an inverse aspect ratio 1/η = n the energy levels are determined by [124]

F(x) = −2
√
π

n
=

n−1∑
m=0

Γ
(
x+ m

n

)
Γ
(
x− 1

2 + m
n

) . (2.36)

Similar to before, we can now also compare equation 2.36 to the solutions obtained
in a true 2D setting. In this case I will present it in a little more detail as it will be
explicitly used in section 3.1. Additional background and an in-depth overview
of the calculations can be found in [126] and references therein.
Again, we will start by a partial wave expansion which in 2D results in

fl(k) = −4
cot δl(k)− i , (2.37)

8A small excursion: It is interesting to compare this to the situation of (high energy) quantum
field theories and the standard model. Also for these fundamental models, we have to
regularize and renormalize the parameters of the model. This is done by fixing a set of
parameters (for example a particle mass) to an experimentally determined value. Here we
do the same thing: We fix the unknown g1D by comparison to the binding energy (which
is nothing but the excess mass of our composite system) determined by equation 2.33. The
only difference is that as we discuss here a highly effective theory, we know the underlying
microscopic theory and are - in principle - able to calculate the binding energy, while in high
energy physics, theories describing the physics above the Planck scale are still to be found
and the particle mass has to be experimentally measured.
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Figure 2.3.: Energy levels in 1D. Shown are the lowest eigenenergies of an
interacting two-body system in a cigar-shaped trap as a function of the inverse
1D interaction strength calculated based on equation 2.35. An aspect ratio of
ωz/ωrad = 1/7 is assumed. The quasi-1D solution according to equation 2.33 (red
line) is compared to the true 1D limit according to equation 2.34 (blue dashed
line). The 1D limit is a good approximation outside of the strongly interacting
regime −1 < 1/g1D < 1 for all energy levels except of the dimer state. Note that
the energy is given with respect to the vacuum ground state such that the lowest
non-interacting state has a ground state energy of 7.5~ωz. The true 1D solution
is offset in energy accordingly.

with the differential cross section for distinguishable particles given by

dσ
dθ = |f(k)|2

8πk . (2.38)

As before it suffices to consider the s-wave channel together with a low energy
scattering process such that we can expand for a low k, resulting in

cot δ0(k) = − 2
π

ln (1/ka2D) +O(k2). (2.39)

In the above formula, the positive 2D scattering length a2D was introduced. Be-
fore renormalizing the 2D scattering length by comparison of the above formula
to the 2D limit of equation 2.36, I would like to point out a few observations. First
of all, the scattering length appears here in the for of a logarithm. Therefore,
if we want to describe the interaction strength using a dimensionless interaction
parameter, the canonical choice is to use ln (ka2D) instead of ka in the 3D case.
This will be heavily used in section 3.1, where, in terms of the typical momentum
scale of the Fermi momentum kF , the interaction regime is specified by ln (kFa2D).
Note that this quantity has the intuitive interpretation as the (logarithm of the)
ratio between the scattering length and the interparticle spacing which is given
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by
√

4π
kF

.
In addition, it can be seen that the definition of a2D according to equation 2.39
is reasonable, as the binding energy is given by

EB = ~2

2mra2
2D
. (2.40)

This is the same formula obtained already for the 3D case. The crucial differ-
ence is that a2D is always positive such that a bound state is supported for any
scattering length. Among other implications (see also section 3.1), an immediate
consequence is that a unitary regime as in 3D does not exist in lower dimensions
due to the additional length scale of the binding energy.
In [126] the renormalization of the scattering length in a quasi-2D scenario is
performed. In terms of the 3D scattering length and the axial confinement length
we arrive at

a2D = aHOz

√
π

A
e−
√

π
2
aHOz
a , (2.41)

where A ≈ 0.905. This can be also inverted to arrive at an implicit equation for
the binding energy

aHOz
a

=
∫ ∞

0

du√
4πu3

1− e−
EB
~ωz

u√
1

2u (1− e−2u)

 (2.42)

In figure 2.4, the binding energy of the dimer in the 3D as well as the 2D limit
is shown together with the quasi-2D solution. In addition, also the energy levels
for two particles in a harmonic quasi-2D trap are presented.

2.3.3. Many-body physics

The discussions in this chapter were up to now limited explicitly to few-body
systems. In this section I would like to present a few relevant concepts of many-
body physics, in particular related to two dimensions and low temperature be-
haviour. Importantly, many concepts introduced up to now, such as two-body
bound states, will still play a major role also in the many-body context. For
simplicity, I will restrict the discussion to homogeneous systems and balanced
two-component Fermi gases alone. This step will be a-posteriori justified by a
local density approximation in the context of the experiments presented in chap-
ter 3. For additional details, the reader is also referred to [34, 119, 126, 127].
First of all we have to derive the relevant thermodynamic parameters. Given the
density n of a single spin component, the Fermi energy EF can be defined in 3D
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Figure 2.4.: Energy levels in 2D. A: Lowest eigenenergies of an interacting two-
body system in a harmonic trap with ωz/ωrad = 7 as a function of the inverse
3D scattering length and in units of the inverse radial harmonic oscillator length.
The quasi-2D solution (red line) according to equation 2.36 can be compared
to the true 2D solution (blue dashed line) and the non-interacting energy levels
(gray dashed line). The 2D limit is a good approximation outside the strongly
interacting regime for all energy levels except for the dimer state. Note that the
energy is given with respect to the vacuum ground state such that the lowest
non-interacting state has a ground state energy of 4.5~ωz. The true 2D solution
is shifted in energy accordingly. B: Comparison of the bound state energy in
the 3D (green dashed line), the 2D (blue dashed line) and the quasi 2D (red
line) limit. In order to compare the different energies, they are offset by the
harmonic oscillator ground state energy in axial direction. For a negative 3D
scattering length a3D, there exists only a dimer state in the 2D solutions. For a
small negative scattering length, the quasi-2D solution is well approximated by
the true 2D solution. In contrast, for a small positive scattering length the size
of the quasi-2D dimer is smaller than the harmonic oscillator length such that
the bound state is not much influenced by the confinement, and mostly given by
the 3D solution, while the 2D dimer is much deeper bound due to the limited
density of states. In the regime of a large scattering length the quasi-2D solution
interpolates between the 2D and the 3D solution.

as EF = ~2

2m (3π2n)2/3 and in 2D as EF = ~2

2m4πn. Based on this definition, the
Fermi wave vector kF =

√
2mEF
~ and the Fermi temperature TF = EF/kB can be

obtained as well. Note that the Fermi energy will be used as a typical energy
scale also in the limit where the two-body binding energy is large, EB � EF , such
that a Fermi surface is not present any more. If the absolute temperature T and
the scattering length a or a2D are known, all low temperature thermodynamic
quantities can be described as a function of the dimensionless relative tempera-
ture T/TF and the respective dimensionless interaction parameter 1/(kFa) in 3D
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or ln (kFa2D) in two dimensions.
In the following section, I will first point out a few important considerations con-
cerning condensation, before also discussing (quantum) phase transitions more
in general and introducing the important concept of the BEC-BCS crossover in
three and two dimensions.

Condensation

In this section I will very briefly discuss the phenomenon of condensation. Spe-
cial interest will be put on two-dimensional systems which are considered to be
‘marginal’ [126] in the sense that ordered phases are less robust than in higher
dimensions due to the more pronounced role of quantum fluctuations, ultimately
destroying any true long range order, while in 2D at least some quasi long range
order is still possible at finite temperature [126, 128, 129].
A Bose-Einstein condensate in three dimensions is ultimately characterized by
long range order (LRO). This means the system features finite coherence for
arbitrarily large spatial distances. This can be quantified by the first order cor-
relation function g1

g1(r) = 1
n
〈ψ̂�(r)ψ̂(0)〉 , (2.43)

in terms of the operator ψ̂�(r) (ψ̂(r)) creating (annihilating) a single particle at
position r and density n. A second order phase transition into a long range or-
dered phase corresponds to a spontaneously broken symmetry of the Hamiltonian.
In the case of a (zero temperature non-interacting) BEC this is the phase φ of ψ̂
which is fixed to an arbitrary value such that ψ̂ =

√
neiφ. As a consequence

g1(r) ≡ 1, (2.44)

signalling full long range coherence. A similar symmetry-broken phase is not
possible in two dimensions at finite temperature as fluctuations destroy any phase
coherence beyond the thermal de-Broglie wavelength λdB. Thus, the first order
coherence decays, even in the degenerate limit, for large distances r at least
exponentially with [129]

g1(r) ≈ e−r/l (2.45)

where l is directly related to λdB. The only way around is to introduce another
competing length scale. This can be done by introducing repulsive interactions
quantified by the interaction strength g. A suitable length scale is given by the
healing length ζ = ~√

mgn
. Crucially, the interaction energy can be minimized

by reducing density fluctuations on length scales larger than the healing length.
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As a consequence, these density fluctuations are strongly suppressed in the limit
where the interaction energy is larger than the thermal energy. Even in this
regime, true long range order can be excluded on general grounds based on the so-
called Mermin-Wagner theorem [128].9 Nevertheless, a topological and thus not
symmetry-breaking phase transition as described by the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism is still possible [130, 131]. Instead of true LRO, this
mechanism allows for quasi long range order in the form of algebraically decaying
coherence described by

g1(r) = r−η. (2.46)

with η = 0.25 for a homogeneous system.
Starting at already small temperatures, density fluctuation beyond the healing
length can be assumed to be already strongly suppressed. Thus, in a simplified
model, we can again try to start from a superfluid wave function of the form [129]

ψs(r) = √nseiφ(r) (2.47)

On general grounds, it is possible to show that thermally excited, low lying
phononic modes will eventually destroy LRO for very large distances based on
the two-dimensional density of states in consistency with the Mermin-Wagner
theorem. However, it is instructive to study this model in a little more detail.
Within the approximations made, all interaction effects only affect the phase be-
yond λdB. Therefore, the relevant excitations are low energy phononic modes as
anticipated, but also vortex excitations corresponding to a phase circulation of
±2π. The latter excitation is possible due to the vortex being restricted in size to
the healing length and thus only contributing short range density fluctuations. In
the limit where only the smooth phase fluctuations have to be taken into account,
the effective Hamiltonian on length scales above the healing length is given by

Hθ = ~2

2mns

∫
d2r (∇θ)2 . (2.48)

Based on this, the first order correlation function g1 takes the form g1(r) =
〈ei(θ(r)−θ(0))〉 which evaluates to [129]

g1(r) =
(
r

ζ

)−1/(nsλ2
dB)

. (2.49)

9Stating that LRO at finite temperature is not allowed in a lower dimensional system fea-
turing only short range interactions and a Hamiltonion with a continuous symmetry in the
thermodynamic limit.
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This is an example of algebraic quasi long range order. Based on the assumption
leading to the structure of the Hamiltonian, it is clear that the BKT transition
is driven by vortex excitations. A possible way to see this is by studying the free
energy needed for the vortex creation. It can be shown [129] that the free energy
needed for creating a vortex changes sign at nsλ2

dB = 4. Therefore, for large phase
space densities, vortex excitations cost energy and vortices of different sign (that
is the direction of the phase winding) pair up. In this limit, phase fluctuations
are suppressed at length scales above the vortex pair length of O(ζ) such that
2.48 becomes a valid (approximate) effective model and quasi long range order is
established. On the other hand, for smaller phase-space densities, free vortices
can proliferate, and the phase coherence is scrambled on length scales above the
healing length.

Mean field picture of a second order phase transition

Phases classify the macroscopic behaviour of matter [132]. Above, I have already
discussed the example of condensation, where a specific form of order developes
at a critical temperature. In general, we have to distinguish between thermal and
quantum phase transitions. In the former case, the system changes its phase as
a function of the temperature, and thus the transition is driven by thermal exci-
tations [133]. Therefore, even though the individual phases have to be described
in a quantum formalism, the transition is of a classical nature. In contrast, in
a quantum phase transition the system changes its phase as a function of a pa-
rameter of the system (for example due to the competition between two intrinsic
energy scales) and is thus driven by quantum fluctuations [134].
We can classify phase transitions based on the free energy, where an nth order
phase transition is defined to be a transition where the nth derivative of the free
energy shows a discontinuity. As a consequence, first order transitions involve
latent heat (as for example seen in the vaporisation process), which is not the
case any more for higher order transitions which are referred to as continuous. I
will here focus on second order phase transitions which will be relevant in par-
ticular in chapter 7. Note that in this formalism, topological phase transitions
(such as the BKT mechanism discussed above) are of infinite order and cannot
be described within the framework of spontaneous symmetry breaking and local
order parameters applied here. For a full theoretical discussion the reader is re-
ferred to [34, 118, 134].
Finite order phase transitions are accompanied by a spontaneous symmetry break-
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ing, such that the ground state in the symmetry-broken phase has a lower sym-
metry than the underlying Hamiltonian. This mechanism gives rise to a (locally
defined) order parameter, which takes a finite expectation value only when the
symmetry is broken. I will illustrate this in one of the most basic, yet experimen-
tally relevant, cases of a U(1)-symmetric Hamiltonian. I will use an effective and
purely phenomenological low energy theory, the so-called Landau theory [135].
To this end the free energy F , linked to the (effective) action S of the system via
F = T

V
S, is expanded in powers of the order parameter. In a mean field approach,

the order parameter in the U(1) system is guessed to be the macroscopic wave
function Ψ(r) = |Ψ|eiθ. Now, we can expand the static part of the action to
lowest order, still reflecting the symmetry of the Hamiltonian [34]

Sstatic [Ψ] =
∫

d3r
(
ξ|∇Ψ|2 − r|Ψ|2 + u

2 |Ψ|
4
)
. (2.50)

As this model is purely phenomenological and generic for any U(1) symmetric
system, the parameters ξ, r and u > 0 are a-priori unknown and have to be
determined by comparison to a microscopic model. In order to calculate the
expectation value of the order parameter, we have to minimize the free energy
with respect to Ψ. Crucially the expectation value, and thus the ground state
properties, depend on the sign of r. When r < 0 we obtain 〈Ψ〉 = 0, and
the symmetry is preserved. On the other hand, for r > 0, we have | 〈Ψ〉 | = r

u
.

Therefore we have identified r = 0 as the critical point. Based on the construction
of Ψ as a macroscopic wave function, we can interpret the expectation value
〈Ψ〉r>0 =: Ψ0 = r

u
as the condensate density. Here, without loss of generality

θ = 0 was chosen. This process of symmetry breaking can also be visualized by
defining a mean field potential of the order parameter based on the above action
via

V (Ψ) = −r|Ψ|2 + u

2 |Ψ|
4. (2.51)

This potential is shown in figure 2.5. It has its minimum at zero for r < 0, while
the minimum is shifted to finite values for r > 0.
In this thesis, I will at several instances discuss fundamental excitations on top of
the ground state. We might be tempted to directly infer the nature of the modes
based on this mean field potential. For example, the shape of the potential
suggests two (to lowest order) uncoupled modes: A gapped (that is of finite
energy for k → 0) amplitude mode and an ungapped phase mode corresponding
to oscillations in |Ψ| and θ respectively. While this naive approach certainly helps
to gain intuition, it has to be kept in mind that it is based on the static part of the
action alone, and thus not capable of correctly predicting excitations on top of
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Figure 2.5.: Mean field potential. The mean field potential V (Ψ) of the order
parameter Ψ can be extracted from the static part of the action. The potential
is shown for a fixed u = 2, assuming r = −1 (left panel) and r = 1 (right panel).
For r < 0, the minimum of the potential is at zero, such that the ground state
reflects the symmetry of the potential. For r > 0, the minimum of the potential
is at a finite |Ψ0| = r

u
, such that the ground state with a spontaneously chosen

fixed phase θ has a lower symmetry than the potential. Indicated, based on
a fixed Ψ0 = r

u
with θ = 0, are oscillations in the phase θ (phase mode, red

arrow) and amplitude |Ψ| (amplitude mode, green arrow). Upon varying the
phase the potential stays constant, such that a massless (Goldstone) mode might
be anticipated, while by varying the amplitude, V (Ψ) increases (to lowest order)
quadratically such that a massive (Higgs) mode is expected. It is important to
stress that this serves only to build up intuition, as for a valid characterisation of
the fundamental modes, the kinetic part of the action has to be included as well.

the mean field ground state. In order to make progress in this direction, also the
lowest order time derivatives have to be included. For the example of a (spinless)
non-relativistic Bose gas, such an equation is given by the famous Gross-Pitaevskii
equation [136]. The crucial result is that in general for a non-relativistic dispersion
relation, the first-order derivatives couple the phase and amplitude excitations. In
the specific case of a non-relativistic Bose gas, the linearized excitation spectrum
is given by the Bogoliubov dispersion relation (with the mass set to one) [34]

ω2 = ξ2k2u|Ψ0|2 + (ξ2k2)2. (2.52)

This dispersion relation features both massless long wavelength phononic exci-
tations (ω ∝ k) as well as particle-like short wavelength excitations (ω ∝ k2),
without any independent second stable mode due to the coupling of phase and
amplitude oscillations. Note that in a relativistic setting, there are no first-order
derivatives and the two modes remain indeed uncoupled. In this setting, the gap-
less mode is referred to as the Goldstone mode, with the amplitude mode referred
to as the Higgs mode. It is important to note that even in non-relativistic sys-
tems, a (significant) coupling between phase and amplitude mode can be avoided
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by a suitable density of states and in particular by an (approximate) particle-hole
symmetry, such that (albeit strongly damped) Higgs modes were also observed
in a non-relativistic setting in [22, 137–143].

The 3D BEC-BCS crossover

After the more general remarks on condensation and phase transitions, I will now
discuss the specific case of two-component Fermi gases. I have discussed above
that depending on the scattering length a, vastly different scattering regimes can
be reached. In addition, below I will introduce a method to smoothly change the
scattering length from very large negative to very large positive values. In this
section, I will introduce a very successful theoretical framework which aims at
a unified description of the low-temperature phases of a two-component many-
body Fermi system interacting via s-wave scattering throughout all these scatter-
ing regimes. This so-called BEC-BCS crossover was first studied theoretically by
Eagles and Leggett [144–146] and later on realized in an ultracold atomic system
[147, 148], with its application however not restricted to atomic systems alone
[146, 149]. It smoothly links the limits of molecular Bose-Einstein condensation
for weakly repulsive interactions to the weakly attractive regime described by
a BCS phase. Strictly speaking, the BEC-BCS crossover is a pure 3D model,
which I will describe in this section. In the context of this thesis, however, also
the (quasi-)2D limit is of interest. Thus I will discuss the application on two-
dimensional systems in the next section.
The limit of weak attractive interactions is well described by BCS theory, where at
the critical temperature TC the Fermi surface becomes unstable towards Cooper
pairing already for arbitrarily weak interactions [4, 34]. On the other hand, weak
repulsive interactions support a deeply bound molecular dimer state. In the limit
where the dimer binding energy is the dominating energy scale in the system,
a description in terms of bosonic molecules (with a renormalized dimer-dimer
scattering length [120]) as the fundamental constituents of the model becomes
favourable. Consequently, like their atomic counterparts, also the molecules con-
dense into a molecular BEC (mBEC) at the critical temperature [150–152]. The
BEC-BCS crossover links these two marginal limits smoothly (that is, there is
no phase transition in-between) via the strongly correlated crossover or unitary
regime. Based on equation 2.26, the unitary regime is characterized by the con-
dition that the scattering length is much larger than the interparticle distance
such that kF |a| � 1. Therefore, the scattering amplitude assumes the unitary
form f0 = 1

k
, independent of the scattering length. As a consequence, the only
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relevant length scales remaining are the (inverse) Fermi wave vector and the ther-
mal de-Broglie wavelength, such that all thermodynamic quantities are uniquely
determined by EF and T/TF . Due to the strongly correlated nature and the fact
that it can neither be described purely in terms of bosonic nor fermionic degrees
of freedom, no complete theoretical description of this regime is available up to
date [119].
Despite the fact that a full theory of the BEC-BCS crossover is missing, its suc-
cess is rooted in the fact that at least a consistent treatment is possible already
on the mean field level. In fact, it is possible to directly extend the standard zero-
temperature BCS mean field theory over the whole crossover [144, 145]. Within
a standard BCS treatment and based on a Bogoliubov transformation [119], the
spectrum of elementary quasi-particle excitations is given by the familiar expres-
sion10

EBCS
k =

√
∆2 + η2

k, (2.53)

in terms of the position-dependent order parameter

∆(r) = −
∫

dsV (s) 〈Ψ̂↓(r + s/2)Ψ̂↑(r − s/2)〉 , (2.54)

defined as the weighted average of the short-range potential V (r) over the pairing
field, and the kinetic energy ηk = ~2k2

2m − µ relative to the chemical potential µ.
The crossover can be realized by tuning µ as calculated self-consistently within
the Bogoliubov treatment. In the weak coupling limit, the chemical potential
coincides with the Fermi energy µ = EF such that the standard BCS superfluid
gap ∆sf = ∆, with a minimum of the excitation spectrum at k = kF , is recovered.
Upon decreasing µ, the minimum shifts towards k = 0 and reaches zero exactly
when the chemical potential changes sign on the BEC side where ultimately
µ→ −EB/2 such that the single-particle pair breaking excitations with ∆ = EB

are also incorporated in the BEC limit.
Similar observations can be made for the ground state wave function given by

|BCS〉 =
∏
k

(
cos θk − sin θkâ�k↑â

�
−k↓

)
|0〉 , (2.55)

where sin θk =
√

(1− ηk/Ek) /2. If we project the wave function onto the sub-
space of a fixed particle number N , the wave function can be expressed in terms
of pair orbitals [119]

ΨBCS(r1, · · · , rN) = Â [ψ(r1↑1↓) · · ·ψ(rN↑N↓)] . (2.56)
10compare this to the Bogoliubov spectrum for a spinless Bose gas given in equation 2.52.

39



Here Â denotes the antisymmetrization operator and ri↑i↓ = |ri↑ − ri↓| the rela-
tive coordinate of pair i. Importantly, the pair function for a single pair ψ(r) ∝∫

dk tan θkeikr, describing weekly bound Cooper pairs in the weak coupling limit,
smoothly evolves into the molecular wave function ψ(r) ∝ 1√

2πare
−r/a upon ap-

proaching the deep BEC limit. As a consequence, pairing and the fundamental
excitations are consistently described across the full crossover, becoming exact in
the limiting cases of weak attractive or repulsive coupling.

2.3.4. The 2D BEC-BCS crossover

In two dimensions, true long range order is prohibited for contact interactions in
a homogeneous gas by virtue of the Mermin-Wagner theorem. Nevertheless, also
in two dimensions the ground state smoothly changes nature from a weakly inter-
acting fermionic system for ln (kFa2D)� 1 to an effective description in terms of
weakly interacting bosonic entities for ln (kFa2D) � 1. Therefore, this crossover
is again entitled (2D) BEC-BCS crossover; despite the fact that the mechanisms
of Bose-Einstein or BCS condensation have to be replaced by their respective
BKT counterparts. Apart from the topological nature of the phase transition,
the most profound difference to the three-dimensional crossover is that a two-
body bound state exists for all values of the interaction parameter. However, a
fermionic regime can still be defined in the many-body limit by ensuring EB � EF

such that the typical interparticle distance is much smaller than the two-body
pair size. As this constraint directly translates into ln (kFa2D) � 1, this is al-
ready naturally incorporated in the description used so far. Importantly, this
implies that the regimes within the BEC-BCS crossover cannot only be reached
by changing the scattering length, but also by varying the density.11 In [126,
127], an overview of the current status towards a theoretical description of the
2D BEC-BCS crossover is given. Here, I will restrict the discussion again to a
few key results of a zero temperature mean field treatment. Note however, that
in two dimensions a mean field treatment is expected to be even less accurate
due to the increased role of quantum fluctuations.
Similar to before, the quasi-particle excitation energies are given by [126]

EBCS
k =

√
∆2 + η2

k (2.57)

11Covering the whole crossover only by changing the density is experimentally impractical due
to the logarithm in the definition of the interaction parameter. As we will see in the next
sections, drastically changing the scattering length is the better way to go.
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2.3. Interactions between neutral atoms
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Figure 2.6.: BCS dispersion relation. A: Assuming a gap of ∆ = 0.3EF ,
corresponding to EB = 0.045EF , the chemical potential (black dashed) is ap-
proximately given by the Fermi energy µ ∼ EF . The paired branch (blue line) is
given by µ− EBCS

k and calculated with the help of equation 2.57. The unpaired
branch (red line) is calculated according to µ+ EBCS

k . As a reference, the single
particle kinetic energy Ek ∝ k2 (green dashed line) is shown as well. The mini-
mum excitation gap is approximately at the Fermi wave vector kF . B: The BCS
formula can also be applied more on the BEC side (same colour scheme used).
Here ∆ =

√
10EF , corresponding to EB = 5EF , is assumed. As a consequence,

the chemical potential becomes negative, µ = −1.5EF , and the minimum excita-
tion gap is at k = 0.

in terms of the gap parameter ∆ and ηk = ~2k2

2m − µ. The chemical potential
takes the general form µ = EF −EB/2 and thus smoothly evolves from EF in the
BCS limit to −EB/2 in the BEC limit. In addition, the order parameter is given
by ∆ =

√
2EFEB. As a consequence, the single-particle excitations are again

captured both in the BEC and the BCS limit. The corresponding dispersion re-
lations in the BCS limit (∆ = 0.3EF , EB = 0.045EF ) and further down on the
BEC limit (∆ =

√
10EF , EB = 5EF ) are shown in figure 2.6. Equivalently, equa-

tion 2.55 can also be recovered with sin2 θk = 1
2 (1− ηk/Ek), such that the pair

wave functions are again consistently included for the limiting weakly interacting
regimes.
While there is also in 2D no full analytical treatment of the BEC-BCS crossover,
more quantitative results can be obtained at least in the limiting cases by per-
turabtive calculations or quantum Monte Carlo methods (see [126, 127] for an
overview). Remarkably, upon perturbing slightly away from the strict 2D limit
towards a regime where EF ≈ ωz, an increase in the gap ∆ is expected, already
based on a mean field treatment. Going beyond the zero temperature limit,
equivalently also an increased critical temperature is expected [126], consistent
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with observations in high-TC superconductors [153].
As in the three dimensional system, also in 2D special interest lies in the strongly
correlated crossover regime. However, in this case a unitary regime does not exist
due to the additional length scale set by the dimer state. Therefore, a reasonable
definition of the crossover ‘point’ is given by the interaction strength where the
chemical potential changes sign and consequently the last remnants of a Fermi
surface disappear. Based on the BCS treatment, ln (kFa2D) = 0 could be inter-
preted as the crossover interaction strength. This is however inconsistent with a
current experimental understanding based on for example [15] and [18] as will be
discussed in detail in section 3.1. In addition, a more detailed theoretical QMC
calculation [126] locates the sign change of µ rather at ln (kFa2D) ' 0.5. The
crossover into a BKT superfluid was studied in our group in [15, 16], confirm-
ing the BKT nature of the phase transition and measuring an enormously large
critical temperature of more than 15 % of the Fermi temperature in the crossover
regime. There are however still a number of exciting mysteries to unravel, includ-
ing in particular the microscopic (pairing) correlation mechanism responsible for
the unconventional thermodynamic behaviour observed.

2.4. The atom of choice: 6Li

All our experiments employ 6Li, a fermionic isotope of Lithium, which is the
lightest alkali atom with a proton number of Z = 3. The fermionic nature of
6Li is set by the single valence electron in combination with the nuclear spin of
I = 1. A detailed overview of all relevant properties of 6Li can be found in [154].
The level structure up to the hyperfine splitting is shown in figure 2.7. For all
our experiments, we will work in the electronic ground state manifold 22S1/2,
which itself is split by the hyperfine coupling into the F = 1/2 and F = 3/2
submanifolds with a splitting of ∆ = h·228.2 MHz. The relevant optical excitation
energies which we will use for (near) resonant tapping and cooling as well as
imaging are the D1 and in particular the D2 line at λ1 = 670.992 421 nm and
λ2 = 670.977 38 nm, coupling the ground state to the 22P1/2 and 22P3/2 manifolds,
respectively. The natural line width of the D2 transition is Γ = 5.8724 MHz with
a saturation intensity of Isat = 25.4 W/m2. Therefore, the hyperfine structure of
the D2 line is not resolved without any magnetic field applied. Two additional
details on the D2 line will be of importance later on. First of all, the recoil
velocity, which is the velocity change after scattering a single photon on the D2

line, is given by vrec ≈ 0.1 µm/µs. As will be discussed in detail below, this has
important consequences for imaging the atoms. In addition, the splitting between
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2.4. The atom of choice: 6Li
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Figure 2.7.: Level structure of 6Li. A: Hyperfine structure of the lowest mani-
folds at B = 0. The 22S1/2 ground state is split by around 228 MHz into the
F = 3/2 and F = 1/2 submanifolds. The relevant optical transitions are the D1
and D2 line at around 671 nm (∼ 446.8 THz) coupling the ground state to the
22P1/2 and 22P3/2 manifolds, respectively. The splitting between the D1 and D2
line is around 10 GHz, with the splitting between the different F submanifolds
significantly smaller than for the ground state manifold. B: Level structure of
the ground state (lower panel) and the D2 (upper panel) manifold as a function
of an applied magnetic offset field. For the ground state, only at O(100 G) the
approximate Paschen-Back regime is reached, while for the 22P3/2 manifold this
is already at O(1 G) the case. The energy levels of the ground state are labelled
|1〉 to |6〉 in ascending order of energy.

the D1 and D2 line is with around 10 GHz rather small, which can pose challenges
in the strong coupling regime as will be briefly discussed in section 5.4.6.
All the experiments presented in this thesis will be performed at a magnetic
offset field in the range B ∈ [250 G, 1000 G]. Therefore, in figure 2.7 also the
Zeeman splitting of the relevant manifolds is shown. For small magnetic fields,
F is still a good quantum number and the manifolds split up linearly according
to the mF projections. On the other hand, in the regime where the magnetic
interaction energy is larger than the hyperfine coupling, we are in the Paschen-
Back regime of the hyperfine structure, where the nuclear and total electronic
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angular momentum fully decouple. Therefore, we again have a linear scaling of
the energies, now with the mJ projection. Due to the small hyperfine coupling
of the excited state manifolds, the decoupling in this case already happens at
around 1 G. As a consequence, for all practical purposes, we can neglect the
residual coupling between nuclear and total electronic angular momentum at
large magnetic fields. This is not possible for the ground state manifold. Even
though the general level structure is well captured by the Paschen-Back effect,
I will have to take the small but finite residual hyperfine coupling into account
when presenting our imaging scheme in chapter 5. We label the different hyperfine
states of the ground state manifold by |1〉−|6〉 in ascending order of energy. Their
analytic form and the limiting cases for large magnetic fields in the |mj,mI〉 basis
are given by [154]

|1〉 =A+ |1/2, 0〉 −B+ |−1/2, 1〉 → |−1/2, 1〉
|2〉 =A− |1/2,−1〉 −B− |−1/2, 0〉 → |−1/2, 0〉
|3〉 = |−1/2,−1〉
|4〉 =B− |1/2,−1〉 − A+ |−1/2, 0〉 → |1/2,−1〉
|5〉 =B+ |1/2, 0〉 − A− |−1/2, 1〉 → |1/2, 0〉
|6〉 = |1/2, 1〉 ,

(2.58)

where in terms of the magnetic dipole energy Ad = h · 152.136 840 7 MHz and
the neutron (electron) magnetic moment µn (µe) the magnetic field dependent
prefactors are given by A± = 1/

√
1 + (Z± +R±)2/2, B± =

√
1− A±, Z± =

(µn + 2µe) BAd ± 1/2 and R± =
√

(Z±)2 + 2.
In this thesis, we will employ the hyperfine states |1〉 , |2〉 and |3〉. They can be
individually addressed by the D2 line due to the splitting of around h · 80 MHz
between the individual states. In addition, we can transform the states into each
other by driving radio-frequency (rf) transitions. More specifically, all experi-
ments presented in this thesis will use a mixture of two out of the three hyperfine
states (albeit in a varying composition). Therefore, we will heavily make use of
the fact that any two-level system can be mapped onto a spin-1/2 description.
The two hyperfine states will thus be described as the spin-up and spin-down
projections of an isospin-1/2 state. As we will work at (thermal and interaction)
energies much below h · 80 MHz, the spin projection will always be a conserved
quantity in the dynamics of the quantum systems presented.
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2.4. The atom of choice: 6Li

2.4.1. Feshbach resonances of 6Li

The exact value of the scattering length is a parameter of the effective description
given in section 2.3.1. It can be calculated using first principles based on the mi-
croscopic (van-der-Waals) scattering potential or measured experimentally. For
6Li (in a mixture of the lowest hyperfine states), this so-called background scatter-
ing length is given in units of the Bohr radius a0 by approximately abg = −1600a0

[155]. Much of the versatility of ultracold quantum gases is based on the fact that
we are not stuck with the scattering length 6Li happens to have, but instead are
able to tune and in particular resonantly enhance the scattering length. The
most common tool, which will also be used in this thesis, are magnetic Feshbach
resonances.
Such a Fano-type Feshbach resonance appears when a virtual bound state in the
scattering potential between two atoms is tuned into resonance with the relative
kinetic energy of the scatterers. In the specific case of a magnetic Feshbach res-
onance, the closed channel featuring the bound state has a different magnetic
moment compared to the open scattering channel such that their relative energy
can be tuned by an applied magnetic field. For a detailed description of Fesh-
bach resonances, the reader is referred to [11]. Here it suffices to state that the
scattering length as a function of the magnetic field in the vicinity of a Feshbach
resonance is approximately given by the phenomenological model

a(B) = abg

[
1− ∆B

B −B0

]
, (2.59)

in terms of the resonance position B0 and width parameter ∆B. For 6Li, and
all combinations of relevant hyperfine states, there are convenient Feshbach reso-
nances in the range B0 ∈ [689 G, 832 G]. Details on the resonances can be found
in [155] and in figure 2.8, where the scattering length as a function of the magnetic
field is shown. Importantly, we can experimentally reach (almost) every scatter-
ing length including the limiting cases of vanishing (a = 0) and strongly repulsive
and attractive (a→ ±∞) interactions. Note that the Feshbach resonances of 6Li
are broad in the sense that they have a very weak energy dependence (signalled
also by ∆B being large). This a-posteriori justifies neglecting the k-dependence
of the scattering phase shift in the derivation of equation 2.26.12

126Li also features narrow s-wave and p-wave resonances. In this case, (at least) the next
leading term given by the effective range has to be included in equation 2.26.
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Figure 2.8.: Feshbach resonances of 6Li . Shown is the s-wave scattering length
as a function of the magnetic offset field in the vicinity of the broad Feshbach
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|1〉-|3〉 mixture (green line) at around 690 G and the resonance in the |2〉-|3〉
mixture at around 810 G.

2.5. Preparing ultracold quantum gases

The preparation of ultracold quantum gases is, for the most part, based on very
well established techniques and both the general concept [11] and the specific
implementations in our experiment [32, 99, 156–159] have already been described
extensively. For this reason, in this chapter, I will only very briefly outline the
preparation of ultracold atomic samples as well as the deterministic preparation of
number states. Note that the experiments described in this thesis were performed
at two different experimental setups. The general experimental procedure and
the techniques used are identical, though.

2.5.1. Cooling and trapping

All experiments are performed in ultra-high vacuum (around 10−11 mbar) in an
octagon steel chamber providing both optimum isolation from the environment
and good optical access through high numerical aperture (NA) viewports, with
the top and bottom re-entrant with NA = 0.65 (see figure 2.9). We can set
an offset magnetic field in the range of 0 G to 1000 G by controlling the current
through a set of coils placed directly above (below) the upper (lower) re-entrant
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2.5. Preparing ultracold quantum gases

Ti-sub pump Ti-sub pump

ion pump ion pump
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Zeeman slower

gate valve
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Figure 2.9.: Mechanical design of the vacuum system. Ultra-high vacuum
conditions are ensured by two ion pumps and two titanium sublimators. The
atoms are heated up in the oven and can evade through a nozzle into the Zeeman
slower and the main experimental chamber where they are trapped first in a MOT
and than in optical dipole traps. All experiments are performed in the octagon
main chamber. Good optical access is provided by the high NA viewports, in
particular the re-entrant viewports on the top and the bottom of the chamber.
The full setup has a length of around 1.5 m.

viewport. This also defines the quantization axis to be the z-axis. At a finite
magnetic field we can drive rf transitions between the different hyperfine states
by an oscillatory current through a single-loop coil placed below the experimen-
tal chamber. The ultracold gas starts out as hot vapour evading at a rate of
around 1016 atoms/s out of a nozzle in the oven where an enriched sample if 6Li
is heated up to above 300 °C. A fraction of the atoms is resonantly (on the D2

line) pre-cooled and trapped in the vacuum chamber using a Zeeman slower and
a magneto-optical trap (MOT).13 After this stage we are left with a few times
108 atoms in the hyperfine states |1〉 and |2〉 at a temperature of a few hundred
µK. In order to cool below the Doppler temperature of TD = 136 µK which is set
by the recoil energy, we have to use non-resonant techniques. For this reason we
transfer the atoms into a far off-resonant optical dipole trap (ODT) formed by a
focused laser at a wavelength of 1064 nm.14 On the timescales considered in this
thesis, the potential formed by the off-resonant light can be assumed to be fully
conservative. In the ODT we can set the relative population of the hyperfine
states through a suitable rf pulse. Typically, we are working either in a balanced
|1〉 − |2〉 or a balanced |1〉 − |3〉 mixture. Also in the ODT, we perform forced
evaporative cooling in order to create a sample at a much lower temperature at

13The light is derived from a Toptica tapered amplifier at 671 nm, beat offset locked onto a
reference laser stabilized with the help of a spectroscopy cell.

14200 W Yb-doped fibre amplifier YLR-200-LP-WC from IPG Photonics.
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the expense of significant atom loss. We either perform the evaporation step a
few Gauss below the Feshbach resonance at a large positive scattering length, or
at around 300 G where the scattering length is negative. In the latter case we
end up with a degenerate Fermi gas of around 40 000 atoms per spin state well
below the Fermi temperature (T . 0.5T/TF for the experiments described here).
During the repulsive interaction based evaporation step, already at a rather large
temperature kBT ∗ ≈ EB a molecular gas is formed (see equation 2.30). As the
molecule-molecule scattering length is also large and positive (add ≈ 0.6a for
deeply bound molecules), we end up with a molecular Bose-Einstein Condensate
(mBEC) of around 40 000 dimers at temperatures as low as T/TF ≈ 0.1. Due
to the larger scattering length and in particular the bosonic statistics, the evap-
oration into a mBEC is with around 1 s much faster than the evaporation into a
Fermi gas, which takes at least 5 s.
After the forced evaporation, we transfer the gas into a range of different optical
dipole traps, again acting as a conservative potential, which allow us to study
the quantum gas in various different geometries. In addition, we can also use the
degenerate Fermi gas as a starting point for the preparation of few-body number
states, as described below.
After the preparation and manipulation stage we infer information on the pre-
pared state by imaging with resonant light15, as will be described in detail in
chapter 5. Importantly, resonant imaging is both projective, in the sense that
we project the wave function onto the measurement basis, and destructive, as
we strongly perturb the state by the imaging process. Therefore, we have to
repeat the whole preparation and imaging scheme over and over again if we are
to sample the many-body probability distribution of our system. For different
experimental measurement campaigns, the number of repetitions for a fixed set
of physical parameter, ranges from a few single ones to several ten thousands.
Each experimental run takes on average around 10 s.
For all experiments, we create a sequence of timings for various triggers as well
as target values for all the intensities, frequencies and currents used in the exper-
iments with the help of a specific LabView interface and send it to a real-time
processor unit.16 The processor unit features high resolution and high speed
digital and analogue out- and inputs (16bit and 18bit). It distributes the digital
timings in the form of TTL logic triggers to the various experimental instruments.
In addition, with the help of the analogue in- and outputs, we can regulate the
various laser and rf powers and frequencies as well as electric currents through

15Using different Toptica DL100(-pro) diode lasers at 671 nm.
16Jaeger AdWin Pro II.
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2.5. Preparing ultracold quantum gases

magnetic field coils using digital PID loops running at 400 kHz.

2.5.2. Preparation of deterministic few-body states

In our group we have specialized in creating deterministically prepared fermionic
few-body states [160]. The general scheme of creating states in one spatial dimen-
sion is well established by now, however, based on the physical system of interest
it is continuously refined and adapted to the specific needs. In this chapter, I
will present the basic techniques for the preparation of number states in a sin-
gle optical tweezer (synonymously also called microtrap) as a starting point for
the preparation of interacting but still deterministic few-body states in a multi-
well geometry. I will introduce specific refinements of this general scheme when
needed in later chapters and in particular in chapter 7, I will present the novel
generalization to two-dimensional potentials.

Preparation of number states

In order to prepare a state where with almost unity probability, a few distinct
energy levels are occupied while all other levels are empty, we have to ensure two
things: First of all we have to isolate the eigenstates which should be occupied in
energy, such that we can selectively remove all atoms in other states. Secondly,
unity occupation of the relevant states has to be ensured. Both prerequisites can
be fulfilled at the same time using the dimple trick [161]: We start with a mostly
degenerate Fermi gas in a rather large optical dipole trap (waist around 100 µm)
as described above. Typical temperatures are around 250 nK corresponding to
T/TF ≈ 0.5. Now we superimpose the ODT with an optical tweezer formed by
a tightly focussed infrared laser beam. We use a laser power of several 100 µW
which is derived from a 1 W Innolight Mephisto laser at 1064 nm wavelength.
The beam is collimated to a diameter of around 2 cm and focussed through a cus-
tom made high resolution objective which is mounted directly above the upper
re-entrant viewport. The objective has a numerical aperture of NA= 0.55 and
an effective focal length of f = 20.3 mm such that the beam is focussed down in
the atom plane to around 1 µm, which is close to the design diffraction limit of
0.72 µm. In order for the atoms to thermalize into this microtrap, we set a finite
interaction strength via the magnetic offset field and ramp on the tweezer poten-
tial slowly within several 10 ms. As the trap volume of the microtrap, with a few
hundred trapped states, is small compared to the large ODT which thus acts as a
reservoir, the overall temperature stays close to the temperature of the reservoir.
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However, locally in the microtrap, the Fermi energy is drastically increased, as
illustrated in figure 2.10. As a consequence, the degeneracy of the lowest levels in
the microtrap is basically unity (P (E0) > 99.99 %). In addition, the lowest eigen-
states have very distinct eigenenergies, which allows us to individually address
them. We will quantify typical energy spacings throughout this thesis by the
trap frequency in the harmonic approximation. That means the typically Gaus-
sian potential shape is Taylor-expanded to second order around the minimum.
Note that this approximation, in particular for such a tightly focussed trap, is
accurate at most for the lowest lying states and thus should be interpreted as a
figure-of-merit alone. For quantitatively accurate calculations the full potential
shape has to be taken into account. Typical axial trap frequencies (that is along
the z-axis) are around 1 kHz, with the aspect ratio, which is defined as the ra-
dial trap frequency divided by the axial trap frequency, being roughly 7. As a
consequence, the lowest lying (non-interacting) states in the microtrap are in the
radial ground state with a few distinct axial excitations.
After the thermalization step, we switch off the reservoir, such that we are left
with a few hundred atoms in the microtrap. We tune the magnetic field to typ-
ically around 530 G where the atoms are non-interacting. Therefore the lowest
lying single-particle eigenstates are occupied by one atom of each of the two hy-
perfine states (see figure 2.10). Afterwards we remove all but the lowest lying
states by a suitable trap deformation. We will call this step spilling of the mi-
crotrap. In practice, this is achieved by superimposing a linear magnetic field
gradient B′ ≈ 20 G/cm - 60 G/cm, which induces a tilt of the potential according
to Vmag = µB′ in terms of the magnetic moment µ. In the Paschen-Back regime
for large magnetic fields, the magnetic moment becomes state independent with
µ ≈ µB = e

2me~. At around 530 G the magnetic moments differ by around 1 %.
With the gradient applied, all states are tunnel-coupled to the continuum. How-
ever, the tunnelling timescales are vastly different for states below the tunnel
barrier height (at least several 100 ms) and above the barrier (. 1 ms). There-
fore, by adjusting the the magnetic field gradient strength, the time the gradient
is turned on and the potential depth of the tweezer during spilling, we can have all
atoms above a certain energy scale tunnel out while the atoms at smaller energies
remain trapped. This process is illustrated in figure 2.11. With this technique
we can prepare atom numbers of (at least) one, two and three atoms per spin
state almost deterministically. In this thesis, we will mostly use the situation of
one atom per spin state in the ground state. We can prepare this state with a
fidelity of typically 97 %. The fidelity is limited by the separation of tunnelling
timescales for the given potential and the trap frequency. As we saturate this
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Figure 2.10.: Spilling of the optical tweezer. A: Loading of the microtrap.
In the right panel, the potential landscape of the combined trap out of the ODT
serving as a reservoir and the microtrap is schematically illustrated. The trap
volume of the microtrap is significantly smaller but in turn the potential is much
deeper. In the left panel, the occupation probability of different energy states
of a Fermi gas based on a finite temperature of T/TF ∼ 0.5 is shown. While
the absolute temperature is globally the same, the local Fermi energy (relative to
the potential depth) is increased in the microtrap, resulting in an almost unity
occupation probability of the ground state. B: Schematic illustration of the
spilling procedure. Starting from the full microtrap, a magnetic field gradient
is applied such that only a certain number of levels remains bound. The atom
number is tuned by the ratio between the barrier height and the level spacing.
After typically around 20 ms the gradient is slowly ramped off and a specific
number of atoms is prepared. In this example, three filled levels corresponding
to six atoms are prepared.

limit, we can conclude that the finite degeneracy of gas and technical noise on
the optical and magnetic potentials are not deteriorating the preparation. With
the current geometry of the microtrap it is not easily possible to create states of
more than 3 + 3 atoms due to the finite aspect ratio and the specific geometry
of the tweezer. When needed, the geometry can be adapted, though [160, 162].
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Figure 2.11.: Tunnelling timescales. For a fixed magnetic field gradient, the
height of the tunnel barrier can be fine-tuned by adjusting the depth of the
tweezer. Here, for three slightly different depths (green, blue and red data points),
the atom number remaining in the tweezer as a function of the spill duration where
the gradient is turned on is shown in a semi-logarithmic plot. The tweezer depths
are chosen such that the tunnel barrier is in-between the lowest and the first
excited state. Two different tunnel timescales can be identified. The timescale in
which the first excited state tunnels into the continuum is tspill . 1 ms while the
tunnelling time for the ground state is at least two orders of magnitude larger.
The observed mean atom number is well described by a sum of two exponential
functions (solid lines). In order to optimize the spilling process, the tweezer depth,
the spill duration and in an additional data set (not shown) the magnetic field
gradient have to be optimized such that the correct atom number is prepared
with the highest fidelity.

In addition, similar fidelities are reached not only for spilling of a non-interacting
gas, but also for weak interactions where the energy levels are still well separated
from each other. In addition, we can make use of the fact (see figure 2.7) that at
low magnetic fields of B ≈ 5 G - 30 G the magnetic moments are vastly different
between the different hyperfine states. Thus, by slightly modifying the spilling
protocol, we can also engineer spin imbalanced states, where we prepare a dif-
ferent number state for the different hyperfine states. We can prepare all the
combinations (0 + 3, 0 + 2, 0 + 1, 1 + 2, 1 + 3, 2 + 3) near deterministically with
fidelities above 95 %.

A few tunnel-coupled wells

The spilling technique described above allows us to prepare number states in a
single tweezer. We are however also interested in preparing specific states in a
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Figure 2.12.: Creating a tunnel-coupled double-well potential. The light
going through the AOD is partially deflected by means of an rf input signal sent
to the AOD. The fraction of the light deflected is controlled by the rf power
and the angle by the frequency. The undeflected light is blocked (not shown).
If we use two different rf tones (tone one/two with power P1/2 and frequency
f1/2, respectively), light is deflected at two different angles (red and blue beam
path). The light is collimated to a size of ∼ 2 cm and focussed onto the atom
plane through the objective. In the case where the two tweezers projected in this
way overlap, the lowest lying excitation energies are well approximated by those
of a double-well potential. The distance d between the wells and the respective
potential depths V1/2 are controlled by the frequency and power of the rf signal
and can be tuned. Adapted from [163].

multi-well geometry formed by an array of tweezers. For this, we utilize a two-
axis acousto-optic deflector (AOD), which is driven by an rf control signal. In
the AOD a certain fraction of the light (set by the rf intensity) is deflected at an
angle set by the frequency of the rf pulse. We block the undeflected part and use
the deflected light for the creation of the tweezers. If we use a multi-frequency rf
signal, the light is deflected into multiple angles. We expand the beams using a
telescope and focus it with the objective onto the atom plane. Different deflection
angles therefore correspond to different positions of the focus on the horizontal
plane, which allows us to create multi-well potentials. With the relative power
of the frequency components we control the relative depth of the potentials and
via the frequencies the distance between the individual tweezers, as schematically
shown in figure 2.12.
The AOD has a bandwidth of around 30 MHz corresponding to a position shift
of 15 µm in the atom plane, thus corresponding to 15 times the waist of a single
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Figure 2.13.: Tunnelling in a double-well. A: Resonant tunnel dynamics of
two non-interacting particles. Recorded is the mean atom number in one of the
wells as a function of the time where the tunnelling is enabled (blue data points).
Coherent oscillations in the population are observed due to the effective two-level
dynamics. A decay time of about 80 ms is observed which is consistent with a
small drift in the resonance position by about 25 Hz, due to the relative power
in the wells drifting (red line). B: We can tune the tunnel coupling by adjusting
the overall light power and thus also the tunnel barrier height. In this thesis we
work mostly at around 100 Hz oscillation frequency. C: By introducing a relative
tilt between the two wells, we can tune the tunnel dynamic off-resonant, resulting
in a larger oscillation frequency (and a smaller amplitude). In order to calibrate
the tilt, we fit the expected tunnel coupling based on a two-level system given by
J ′ =

√
J2 + ∆2 in terms of the resonant tunnel coupling J and the tilt ∆ (red

line).

microtrap. In this thesis we will use only one axis of the AOD and as a conse-
quence create a 1D array of tweezers. More precisely, we will use 1 to 3 tweezers
resulting in a single trap or a double- and triple-well respectively. We deliber-
ately work at very low diffraction efficiencies of the AOD on the sub-percent level
corresponding to low rf powers in order to minimize non-linearities both due to
heating effects and the finite percentage of light being deflected off. We stabilize
the total deflected lightpower using a digital PID loop. Crucially, we do not sta-
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2.5. Preparing ultracold quantum gases

bilize the relative power difference between the different wells. Instead, we set it
passively by fixing the rf power in the different frequencies. Implications of this
limitation will be discussed in chapter 6.
We can either separate the tweezers as much as possible such that they are mostly
independent, or we can have them partially overlapping, as shown in figure 2.12.
In the latter case we can engineer tunnel coupling between the different tweezers
or, adapting the terminology of larger systems, lattice sites. For a fixed spacing
we tune the tunnelling rate by adapting the potential depth of the tweezers. This
is shown in figure 2.13. In addition, we can tune the tunnelling dynamics in
and out of resonance by means of the relative depth of the microtraps. We typi-
cally separate the tweezers by around 1.5 µm, resulting in ground state tunnelling
rates of around 100 Hz. Crucially, for these parameters only nearest neighbour
tunnelling has to be taken into account. We always work in a regime where the
tunnel coupling is much smaller than the trap frequency. Thus, for single-particle
tunnelling, we only have to take the lowest energy level in each well into account
and arrive at a system fully described by a Rabi-coupled two-level system.
In addition, we can turn on attractive or repulsive on-site interactions by tuning
the magnetic field. I will discuss a theoretical treatment of such a tunnel-coupled
interacting few-body and few-well system in terms of a one-dimensional Fermi-
Hubbard model in section 6.1. In order to avoid confusion, I should point out
that by now we have used two distinct notions of 1D. In a single well, the lowest
lying excitations are along the axial (that is z) direction, while the dynamics in a
few-well system as described here is along the axis of the tweezer array, which is
along one of the horizontal axes. In turn, for this to be a true 1D model, we have
to make sure that both the tunneling and the interaction energy scale are well
below the single-particle excitation energy in axial direction.17 This is equivalent
to the lowest band approximations in an infinite lattice model.

17In particular, the tunnel rate is dependent on the axial excitation levels, such that these
cannot be ignored.
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Part II.

Motivation:
A strongly correlated 2D Fermi gas
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3. Correlations in many-body
quantum systems

This chapter is centred around a summary of the results obtained on high tem-
perature many-body induced pairing in a quasi-2D ultracold Fermi gas. These
results have been published in [18]. In the discussion, it will become clear how a
set of complex techniques and tricks can be used to learn a lot about the fascinat-
ing pairing correlations in such a system. However, even with all these techniques,
we will be limited to probing the global collective response of the system with
no direct access to fundamental microscopic correlations granted. The crucial
insight is that these limitations are not specific to the exact system described
in this chapter but inherent to at least a broad class of ultracold quantum gas
experiments, and even more general almost for the whole field of many-body
physics. Therefore, it is imperative to find a general scheme to surpass them.
Thus, after the discussion of the high temperature pairing results, in the next
part of this thesis, I will lay out a roadmap, combining general concepts with
specific measurements, on how to make progress towards measuring microscopic
correlations also in a macroscopic quantum system. As a consequence, the many-
body pairing experiments discussed in this chapter can be seen as an important
step towards a better understanding of strongly correlated Fermi gases on their
own, as a motivation for the remainder of the thesis to build up a toolbox for
correlation measurements, and as the ideal system to test this toolbox on.

3.1. High temperature pairing in a strongly
correlated 2D Fermi system

At the most fundamental level, quantum exchange statistics prevents any macro-
scopic occupations of a single quantum state by fermionic particles. Therefore, a
pairing mechanism is the central mechanism required for fermionic superconduc-
tivity and superfluidity. As discussed in section 2.3.3, a very useful framework to
discuss a system interacting via s-wave scattering with a variable scattering length
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is the BEC-BCS crossover. The two limiting cases differ fundamentally in their
pairing properties. BCS theory describes the phase transition by an instability
of the Fermi surface towards pair formation at the critical temperature TC [34],
in conjunction with the opening of a superfluid gap. The gap, ∆sf , represents
the order parameter of the system and accounts for a suppression of the density
of states at the Fermi surface. Crucially, these Cooper pairs are only stabilized
by the presence of the Fermi surface and can thus be considered many-body
induced. Within BCS theory, the temperature scale T ∗ where the pairs form co-
incides with the critical temperature TC = T ∗. This is quite different in the BEC
limit. Here, tightly bound two-body molecules are populated thermally already
at very high temperatures T ∗ � TC . Subsequently, at the critical temperature
TC , orders of magnitude lower (kBTC � EB), these point-like bosonic compound
particles condense into a mBEC. Of particular interest is the strongly interact-
ing regime, between the limiting cases, where the system is still fermionic in the
sense that the chemical potential is positive, µ > 0, such that a Fermi surface
is present. Thus, paired states are still expected to form at a finite momentum.
In this regime, fermionic pairing and superfluidity are still closely related phe-
nomena, however not equivalent [164], such that pairs can form even without any
macroscopic phase coherence established. Understanding this so-called pseudo-
gap phase, where T ∗ > TC , on a fundamental level is an outstanding question
in many-body physics, also in the context of high-temperature superconductivity
[149, 165–167]. Of particular interest are (quasi-)two-dimensional systems where,
due to the increased role of quantum fluctuations, the pseudogap region is ex-
pected to be more pronounced [126]. A prominent example of a pseudogap region
is found in high-TC cuprates with a finite doping factor [168] or, more directly
connected to the s-wave BEC-BCS crossover, in high-TC iron selenide films [149,
167]. When discussing 2D systems, it has to be kept in mind (as discussed in
section 2.3) that unlike in 3D, a two-body molecular bound state exists for ar-
bitrarily small attractive interactions (and thus in a quasi-2D system for all 3D
scattering lengths). In addition, the second order phase transition at TC has to
be replaced by a topological BKT transition.
According to the above considerations, it is tempting to identify the BEC limit
of the crossover with a pseudogap phase, since here T ∗ > TC . However, we will
apply a more rigid definition according to which a pseudogap is accompanied by
a reduced spectral weight at the Fermi surface above TC [126]. As a consequence,
this implies the pairing mechanism to be many-body induced with the excita-
tion spectrum gapped at a finite momentum k. In particular, we demand the
chemical potential to be positive, µ > 0. This is expected only to happen for
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Figure 3.1.: Schematic phase diagram of the 2D BEC-BCS crossover.
The ground state of the the 2D BEC-BCS crossover is a BKT superfluid for
all interaction parameters. In the BCS limit, the critical temperature becomes
exponentially small, with the normal phase above TC described by a Fermi liquid
of unpaired fermions. In the BEC limit, the normal phase is instead described by
a (weakly interacting) Bose liquid of tightly bound molecules. In the crossover
regime, the critical temperature is anomalously large, as experimentally studied
in [15]. The nature of the normal phase above TC is neither captured by a Bose
nor a Fermi liquid description and is not yet fully understood. Adapted from [18].

ln (kFa2D) & 0.5 [126].
In figure 3.1 a schematic drawing of the finite temperature phase diagram is
shown. Measurements of the critical temperature, the nature of the phase tran-
sition and the equation of state have previously been performed in our group
[15–17]. In turn, the nature of the normal phase above the critical temperature
in the crossover regime has proven elusive so far. Only in the limiting regimes of
weaker interactions, descriptions in terms of a weakly interacting Bose or Fermi
liquid exist.
There have been a range of measurements on pairing above the critical temper-
ature for superfluidity in the BEC-BCS crossover [169–175]. Crucially, none of
the measurements has shown any evidence of pairing above TC or a pseudogap
behaviour in a regime where it cannot be explained by two-body (that is bosonic)
correlations alone [126, 165, 176–179].
In this chapter, I will present measurements on the normal phase in a strongly
correlated quasi two-dimensional two-component Fermi system, revealing a re-
gion in the phase diagram which significantly deviates from a Bose or Fermi
liquid behaviour. In this region, a pairing mechanism influenced by many-body
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correlations allows for pairing far above the critical temperature for superfluidity.

3.1.1. Remarks on a mean field treatment

In this chapter, I will oftentimes refer to a BCS treatment of the BEC-BCS
crossover as already introduced in section 2.3.3. I should stress again that while
it is a consistent theory [126] and thus to a large part responsible for the suc-
cess of the BEC-BCS crossover as a concept, it is not expected to be accurate
in the crossover regime. In particular, the critical temperature is dramatically
overestimated for strong interactions [15], partially due to the fact that the en-
hanced role of quantum fluctuations in two-dimensional systems is not included
in a mean field model. In this context, in [169], an interesting (but purely qual-
itative) conjecture was presented. To this end, consider a complex BCS type
order parameter given by ∆(x) = |∆(x)|eiθ(x). We know that below the criti-
cal temperature TC a gapped (BKT) superfluid forms, such that the expectation
value of the gap becomes finite, that is 〈∆(x)〉 =: ∆sf > 0. Above the critical
temperature, thermal fluctuations in conjunction with quantum fluctuations de-
stroy any (quasi) long range order. In other words, the phase factor is scrambled
such that 〈eiθ(x)〉 = 0 = ∆sf . Nevertheless, the amplitude of the gap param-
eter 〈|∆(x)|〉 =: ∆pseudogap is potentially still finite up to a higher temperature
scale T ∗. The conjecture states that BCS theory, at least approximately, cor-
rectly predicts the onset of a finite pairing gap 〈|∆(x)|〉 at TBCSC . At the same
time, the prediction that phase coherence establishes at the same temperature
is incorrect due to the negligence of quantum fluctuations. This would suggest
identifying T ∗ = TBCSC . While this model is clearly oversimplified, it helps in
gaining intuition and also motivates, why a pseudogap regime is expected to be
more prominent in lower dimensions. In particular, this interpretation becomes
exact again in the weakly interacting BEC limit.

3.2. Measurement of high temperature pairing

In this section, I will present the experimental measurements on high temperature
many-body induced pairing in the strongly correlated regime of a 2D BEC-BCS
crossover. I will start with brief overview of the preparation scheme and continue
with a step-by-step presentation and interpretation of the measurements.

62



3.2. Measurement of high temperature pairing

A B

Elliptical
lattice beams

Rf frequency [MHz]

T
ra

ns
fe

rr
ed

 a
to

m
 n

um
be

r

81.9396 81.9400 81.9404 81.9408
0

2000

4000

6000

8000

10000

12000

Figure 3.2.: Preparing a single layer of the SWT. A: Sketch of the SWT. The
standing wave potential (light green) is formed by the interference of two phase-
stable laser beams derived from the same source. The atoms (red) are loaded into
the central layer. B: Rf tomography method to experimentally confirm loading
into a single layer. Starting from a gas of atoms in state |1〉, an rf pulse with a
variable frequency in the vicinity of the |1〉 − |2〉 transition is applied. During
the whole time, a magnetic field gradient is turned on such that the transition
frequency becomes spatially dependent due to the locally varying magnetic offset
field. The transferred atom number in state |2〉 is recorded. The central peak
corresponds to atoms in the central layer while small side peaks indicate a small
population in adjacent layers. From a multi-peak fit to the data (blue: full model
given by sum of three Gaussian functions; grey: individual peaks) we can estimate
that at least around 90 % of the atoms are loaded to the central layer.

3.2.1. Preparation of a quasi-2D system

In order to perform measurements in quasi-2D, it is necessary to strongly confine
the atoms along one of the spatial axes. In our case this is the z-axis. The
confinement is induced by a far off-resonant standing wave optical dipole trap
(SWT). The trap potential is derived from a single elliptical (aspect ratio 1 : 8,
elongated along z-direction) laser beam of wavelength λ = 1064 nm.1 The beam
is split using a 50:50 beam splitter and subsequently both beams are focussed
onto the atoms intersecting under an angle of 14°. The potential formed by the
two interfering beams is given by a layered stack of potential discs, each with
a tight confinement along the vertical axis and a much weaker, almost isotropic
confinement in radial direction as schematically illustrated in figure 3.2. The
distance between the different potential maxima is around 4.4 µm. At a typical
trap depth of V0 = 500 nK the trap frequencies of the central disc are measured

1Light from a 50 W NUFERN SUB-1174-22 fibre amplifier, seeded by an Innolight Mephisto-S
500NE is used in this setup. This laser setup features a very low intensity-noise spectrum
in the range of the typical trap frequencies such that parametric heating is minimized.
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to be ωz ≈ 2π · 6.95 kHz for the strongly confined axis and ωx ≈ 2π · 23.4 Hz,
ωy ≈ 2π · 21.2 Hz along radial directions. Therefore, the aspect ration is ωx : ωy :
ωz ≈ 1.1 : 1 : 327. Note that a significant contribution to the radial confinement
is made by an additional magnetic saddle point potential due to the Feshbach
coils (deliberately) placed slightly off of a Helmholtz configuration (see [156, 157,
180] for details). By comparing the spacing between the potential maxima to the
vertical harmonic oscillator length aHOz ≈ 550 nm it is clear that at least for the
ground state (or lowest band) tunnelling between layers is negligible.

Loading of a single layer

Loading of a single layer of the SWT is described in detail in [156, 157]. The start-
ing point is a mBEC prepared as described in section 2.5.1. Loading a molecular
gas is more efficient due to the absence of the Fermi pressure otherwise enlarging
the cloud size. For this set of experiments, the ODT used for evaporation is al-
ready flattened with the help of elliptically focussed beams. In addition, we can
increase the mode overlap with a single layer by creating a time-averaged poten-
tial. For this, the potential is smeared out in horizontal direction by modulating
the position of the ODT beams with a frequency far above typical trap frequen-
cies [156]. Finally, it is necessary to tune the vertical position of the atomic cloud
with respect to the interference pattern by applying a small magnetic field gra-
dient of up to ±6 G/cm. After careful alignment of all the traps involved and
a suitable trap frequency matching, we can transfer at least 90 % of the atoms
into the central layer of the SWT. There are two complementary experimental
techniques available to us in order to determine the single layer loading efficiency.
Firstly, a tomographic method based on rf transitions which are made spatially
dependent by an applied magnetic field gradient (see figure 3.2 and [156, 157] for
more details). Secondly, a suitably tailored time-of-flight method (based on [181],
see section 5.3 for a detailed discussion of the broader picture in terms of so-called
matter wave optics). After loading a single layer, an additional evaporation step
incorporating a strong magnetic field gradient of typically 30 G/cm is performed
to remove atoms excited to higher bands during the loading procedure and to set
the atom number. After this second evaporation, we are left with around 35000
atoms per spin state at a temperature of around 50 nK.

Reaching the 2D regime

In addition to loading a single layer of the SWT we have to ensure that the sys-
tem is in the (quasi-)2D regime. This is achieved when all the atoms are in the
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motional ground state along the vertical direction. For an ideal Fermi gas at zero
temperature, the number of states available within the ground state can be easily
estimated. Based on the measured trap frequency and the density of states of a
fully harmonic trap, around 49 000 atoms (per spin state) could be accompanied.
However, there are a few more details to consider: First of all, any interactions
will alter the density of states. In addition, a finite temperature allows for oc-
cupations above the Fermi-energy, while on the other hand, the emergence of
Bose statistics for a deeply paired system allows for larger occupation numbers
of individual states. Furthermore, as discussed in section 2.3.2, for deeply bound
molecules we will encounter the situation where the molecular wave function is
three-dimensional, while the kinematics of the molecule are fully restricted to
two dimensions. Therefore, I should clarify that despite the fact that we care-
fully ensure initiating the system in the kinematic 2D regime, all observations
made in the following are indeed expected to be at least somewhat influenced by
admixtures of higher lying states in axial direction.
In order to check experimentally that we are in the quasi-2D regime [182], we tune
the system into the weakly interacting regime, limited only by the background
scattering length. Afterwards, we switch off the SWT potential instantaneously
and let the cloud expand for a short free time-of-flight of 3 ms. Subsequently,
we image the cloud along the horizontal axis and record the cloud width by a
Gaussian fit to the data. We can measure the width for different atom numbers,
corresponding to a different second evaporation depth in the SWT. The width is
compared to the theoretical expectation of a ground state wave function accord-
ing to the measured trap frequencies. This measurement is shown in figure 3.3. It
is observed that up to around 50 000 atoms per spin state, there is no significant
population in vertically excited states. The experiments described in this chapter
are thus performed with around 30 000 atoms, where the quasi-2D assumption is
well fulfilled for weakly interacting systems. A similar measurement is not easily
possible for stronger interactions. However, when tuning towards the BEC side
by increasing the attractive interactions we expect this measurement to be rather
an upper limit on the atom number allowed.

Estimating the parameters of the regime

For a homogeneous quasi-2D system we can combine the thermodynamic parame-
ters into two dimensionless quantities, fully determining the phase diagram. They
are given by the interaction parameter ln (kFa2D) and the relative temperature
T/TF . In order to determine these quantities, in this chapter, we will apply the
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Figure 3.3.: The quasi-2D limit. Measured axial cloud width after a short
time-of-flight of 3 ms. The kink in the measured width indicates the population
of higher axial excitations for atom numbers larger than around 50 000. The
position of the kink is extracted from the intersect of two linear fits to the data
(solid blue line: linear fit; dashed blue line: guide to the eye). In grey, also the
expected ground state width based on the measured particle number and trap
frequencies, assuming fully harmonic potentials, is indicated. We conclude that,
when working at around 30 000 atoms, we are well within the quasi-2D regime.

local density approximation introduced in section 2.3.2. This means we will as-
sign the thermodynamic quantities T/TF and ln (kFa2D) of a homogenous system
to a density region with a local density n2D(r). In the normal phase, the approx-
imation made that the potential varies slowly on the scale of typical correlation
length scales in the system, translates to the requirement of kF (r)R � 1. Here,
kF accounts for the typical momentum scale of the system (and thus the thermal
de-Broglie length) and R is the typical spatial extent of the cloud. Based on
typical experimental parameters, we can faithfully apply the local density ap-
proximation for temperatures below T/TF ≈ 1.5.
In order to determine the thermodynamic quantities, we need the local density
n2D(r), fixing kF =

√
4πn2D(r) and TF = ~2k2

F

2mkB , as well as the global temper-
ature of the sample and the 2D scattering length a2D. We can calculate the
renormalized 2D scattering length and the two-body binding energies based on
the 3D scattering length and the trap parameters using equations 2.41 and 2.42.
We measure the density spatially resolved by a carefully calibrated absorption
imaging scheme. As we are working with a single-layer 2D sample, when imaging
along the vertical dimension, we can directly measure the in-situ density n2D(r)
(as opposed to a 3D sample were one dimension is always averaged over). We
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3.2. Measurement of high temperature pairing

are probing the system using an imaging beam with an intensity comparable to
the saturation intensity of the optical transition. Due to the large number of
scattered photons, we have to compensate Doppler shifts during imaging. In
addition, we also have to account for dark state losses due to not fully closed
optical transitions (see also chapter 5). I have carefully calibrated and discussed
the imaging system already in a previous work, therefore the reader is referred to
[157, 183] for more details. In total, after calibration, we estimate the systematic
uncertainty in the density to be around 7 %.
Finally, also the temperature is needed for a full description of the system. We
determine the global temperature of the sample by fitting reference equations of
state (EOS) to our sample. This procedure is based on the techniques developed
in [17] and furthermore described in detail in [157]. In order to infer the functional
form of the EOS, n(µ, T, r), in terms of the temperature and chemical potential
µ, the underlying physics has to be fully known, which is here clearly not the
case. However, we can estimate the temperature based on the asymptotic limit-
ing cases. For example, the very low density wings of the atomic cloud correspond
to a very high relative temperature T/TF (within a local density approximation).
We can therefore try to fit this regime with a Boltzmann EOS

n0 = α

λ2
T

eαβµ, (3.1)

where λT is the thermal de-Broglie wavelength and β = 1
kBT

. The factor α ∈
{1, 2} accounts for the fact that the system is molecular for ln (kFa2D) ≤ 0, cor-
responding to α = 2, and fermionic for ln (kFa2D) ≥ 2. In-between these two
limiting cases, we interpolate α (see [156]). We refine the temperature deter-
mination by comparing also to different EOSs such as a virial expansion in the
low density regime and a Thomas-Fermi EOS in the high density regime, as well
as comparing to Luttinger-Ward and quantum Monte-Carlo simulations [17, 18,
156, 157]. All methods show consistent results leading to a faithful temperature
estimation.
To summarize, for a fixed realization of an atomic cloud in the quasi-2D regime
we assume a fixed global temperature T and a two-body binding energy EB. In
addition, based on the local density we introduce a local interaction parameter
ln (kFa2D) and relative temperature T/TF dependent on the radial distance from
the cloud. This is shown in figure 3.4 for a typical example. Note that the atomic
cloud is slightly elliptical such that for this density profile an elliptical averag-
ing scheme has been used. We will frequently refer to specific datasets by the
values of ln (kFa2D) and T/TF in the centre of the cloud. However, it has to be
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Figure 3.4.: Relating the measured cloud profile to local parameters. A:
Typical example of a measured density profile. The data is elliptically averaged
in accordance with the symmetry of the trap potential. B: Corresponding lo-
cal parameters for the same dataset within the LDA, calculated using the global
temperature and magnetic offset field. The central region of the cloud profile cor-
responds to the largest ln (kFa2D) and the smallest relative temperature T/TF .
For a larger radius, the density is reduced and correspondingly the system be-
comes more bosonic (smaller ln (kFa2D)) while the relative temperature increases.

always kept in mind that, as we go towards the lower densities further away from
the centre, T/TF increases while ln (kFa2D) decreases. Therefore, for sufficiently
small densities, we are always in the high temperature, bosonic regime. This can
be understood intuitively by comparing the fixed two-body pair size to the inter-
particle distance. The latter is increasing while reducing the density, such that
at some point it is much larger than the molecular size and the system becomes
bosonic. At the same time, due to the reduced density, all intrinsic energy scales
are lower such that in turn the relative temperature increases.

3.2.2. Spatially resolved rf spectra

We probe our system by rf spectroscopy. This has been a very successful tool in
studying quantum gases, in particular with respect to their pairing properties.
The general scheme is sketched in figure 3.5. Our sample consists of a two com-
ponent mixture of states |a〉 and |b〉 (in the actual experiment this will be either
a |1〉 − |2〉 or a |1〉 − |3〉 mixture). Suppose that some fraction of the atoms is
bound into molecules with a binding energy EB, and (for simplicity) that the gas
is otherwise non-interacting. In addition, we have a third initially unoccupied
state |c〉 available (either state |3〉 or |2〉). The energy difference between state
|b〉 and |c〉 is typically around E|c〉−|b〉 = 2π ·80 MHz, and thus conveniently in the
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Figure 3.5.: Schematic illustration of the rf spectroscopy method. A
mixture of paired dimers and free atoms is assumed. By an rf pulse, a fraction
of the atoms in state |b〉 is transferred into an initially unoccupied state |c〉. The
transition frequency of the paired atoms is blue-shifted with respect to the free
atoms due to the binding energy.

rf range.2 Therefore, by applying a short (global) rf pulse at the corresponding
frequency, we can transfer a fraction of the free atoms into state |c〉. The atoms
bound into molecules are not resonant with the pulse if the binding energy is suf-
ficiently large. However, we can tune this transition into resonance by detuning
the centre frequency of the rf pulse accordingly. Therefore, by recording the frac-
tion of atoms transferred into state |c〉 as a function of the applied frequency, we
can get a measure for both the fraction of atoms paired and the binding energy.
In a real system, there are a few more details to consider. First of all, it should be
noted that the recoil energy of the rf photon is small compared to the mass of a
6Li atom. Therefore, the momentum of the atom remains approximately constant
upon absorption of one photon. In addition, we have to take the full dispersion
relation of our initial and final state system into account. Therefore, in figure 3.6
a more realistic sketch of the rf spectroscopy method is shown. Here, we have cho-
sen rather generic single-particle dispersion relations of a (mean field) BEC and
BCS state3, which account for the limiting cases of a weakly interacting bosonic
or fermionic system close to T = 0. Indicated are the lowest (bound) branch,
which is fully occupied for T = 0 and the branch of quasi-particle excitations
(which were referred to as ‘free’ particles in the above discussion). In addition,
well separated in energy, the dispersion relation of the final state is indicated,

2The rf transition flips the nuclear spin, therefore we can drive transitions with ∆mI = ±1,
see equation 2.58.

3The BEC limit might look unexpected. Note that shown here is the single-particle and thus
fermionic dispersion relation and not the dispersion relation of the bosonic molecules.
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which is assumed to be the quadratic relation of non-interacting particles (final
state interactions to be discussed later).
It is important to realize that, depending on the dispersion relation, the mini-
mum of the quasi-particle branch can be at around k ∼ 0 (in the BEC limit) or
k ∼ kF (in the BCS limit). Therefore, also the excitation of the quasi-particle
(‘free’) branch branch into the continuum happens preferably at a finite momen-
tum in the latter case. In this set of experiments, we do not have access to the
momentum of the transferred atoms. Nevertheless, we can observe signatures of
this behaviour in the rf response, which is also schematically drawn in figure 3.6.
In the BEC limit, we expect a response of the unpaired atoms centred around
zero frequency offset (relative to the non-interacting transition frequency). It
is symmetrically broadened by the finite temperature with an integrated weight
proportional to the fraction of free particles. In addition, offset by the binding
energy, the bound peak appears. An asymmetric peak shape with a sharp thresh-
old is expected. While the minimum transition shift is given by EB at k = 0,
there are additional contributions at finite momentum corresponding to a larger
shift due to the finite momentum width of the pairing wave function. In the
BCS limit, we expect an asymmetric peak from the (Cooper) bound atoms offset
again by EB. In addition, there is a peak from quasi-particle excitations. In
this limiting case, they are at finite momentum and offset in frequency by the
gap. This ‘free’ peak is slightly asymmetric due to the functional form of the
dispersion relation. It is remarkable that (at least within mean field BCS theory)
in two-dimensional systems the threshold for the bound state is always at EB
relative to the non-interacting transition frequency. Therefore, only by recording
the free branch in addition, the shift due to the superfluid gap becomes visible.
We do not expect our system to be fully described by either of these two dis-
persion relations. Nevertheless, we can get a good intuition on how to interpret
the rf spectroscopy data. In particular, we have learned that it is instructive to
compare the measured energy difference between bound and free peak with the
two-body binding energy. In addition, in the case where we have any dispersion
relation with a gap at finite momentum, we expect this gap, and therefore also
the rf response, to be dependent on the density. For the specific example of the
BCS limit, we can read off the density dependence from the functional form of
the gap, ∆ =

√
2EFEB.

At this point it is clear that an important experimental step is to record the rf
response locally resolved in order to apply the LDA and observe possible shifts of
the transition frequency with the density. In principle, we can record the atoms
transferred into the final state locally using absorption imaging (or equivalently
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Figure 3.6.: Rf spectroscopy in the BEC and BCS limit. A: Single-particle
dispersion relation in the BEC limit. At T = 0 only the bound branch (red line)
at negative energies (relative to the non-interacting free branch) is occupied.
The chemical potential (grey dashed line) is negative with µ = −EB/2. At
finite temperature there is also some population in the unpaired free branch
(black), predominantly at k ∼ 0. We drive rf transitions (green arrow) from
either the bound or the free branch into the continuum (blue line). Indicated as
a reference (dashed blue line) is also the non-interacting dispersion relation. B:
Corresponding idealized rf spectrum. Free atoms contribute a symmetric peak at
around zero frequency shift relative to the non-interacting transition. The onset
of the asymmetric paired peak is at EB, corresponding to the k = 0 contribution,
with the distance between the two peaks given by ∆E = EB. C: Single-particle
dispersion relation in the BCS limit (colour scheme as in A), with the many-body
gap ∆ at k = kF and a positive chemical potential. As opposed to A, the unpaired
particles first occupy the free branch around k ∼ kF . D: Corresponding idealized
rf spectrum. Free atoms contribute a slightly asymmetric peak based on the signal
from k ∼ kF which is shifted by ∆ relative to the non-interacting transition. The
onset of the asymmetric paired peak is again at EB for the k = 0 contribution,
with the distance between the two peaks now given by ∆E = EB+∆ and density
dependent. Adapted from [18].
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Figure 3.7.: Validity of the LDA. Experimentally determined full width at half
maximum of the rf peak (free peak) as a function of the pulse duration. For
short rf pulses, the width is limited by Fourier broadening. For longer pulse
durations, the width increases due to diffusion in the trap. We choose to work at
a pulse duration of 4 ms corresponding to a frequency resolution of ∆ν = 222 Hz.
Adapted from [18].

record the atoms remaining in the initial state). However, on the scale of the
trap period, the atoms diffuse within the cloud and the rf signal is smeared out.
On the other hand, if the rf pulse is much shorter than the trap frequency (and
other intrinsic timescales), local resolution is at least partially retained. Based
on these considerations, it seems favourable to choose the rf pulse as short as
possible. However, if the pulse is too short, the energy resolution is reduced due
to the Fourier limit. We use an rf pulse which is approximately rectangular in
the time domain with a pulse duration τrf , such that the frequency resolution
is given by ∆ν ≈ 0.9 1

τrf
. For this set of experiments, we choose to work at a

pulse duration of τrf = 4 ms corresponding to a Fourier limited rf resolution of
∆ν = 222 Hz, which has to be compared to the typical radial trap frequency of
ωrad & 2π · 20 Hz, or equivalently a trap period of Trad ≈ 50 ms� τrf . We exper-
imentally confirm that the chosen pulse duration is reasonable by recording the
width of a rf response at a fixed density as a function of τrf . This measurement
is presented in figure 3.7.
As expected, we observe that for small τrf < 4 ms, the width is larger in accor-
dance with the Fourier limit. In turn, for τrf > 4 ms the width also increases,
which we attribute to diffusion during the rf pulse. By choosing τrf = 4 ms from
here on, partial position resolution is retained. We adapt the power of the rf pulse
separately for each experimental setting in order to retain a similar fraction of
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transferred atoms (Rabi rate Ω between 60 Hz and 250 Hz). For these settings, we
are not limited by power broadening. Due to the interaction-induced decoherence
rate of the order of 1 ms, the transfer has to be described in a (partially) inco-
herent framework (see below), in its most basic implementation given by Fermi’s
golden rule. We work in the approximate linear response regime.
We are now in the position to record spatially resolved rf spectra. Note that
depending on the situation, we will choose to work either with a |1〉 − |2〉 or a
|1〉 − |3〉 initial state mixture. In order to avoid confusion, I will always define
relative energies in such a way that a positive energy offset corresponds to an
attractive shift or pairing. In figure 3.8, an experimentally measured spectrum is
presented for a |1〉 − |2〉 mixture, with ln (kFa2D) ≈ 1.5 and T/TF ≈ 0.3 in the
centre of the cloud. In the upper panel, the density profile of the cloud, averaged
over a few realisations, is depicted with, n′(r, ωrf ), and without, n0(r), appli-
cation of the rf pulse. We infer the profile of the transferred density by taking
the difference δn(r, ωrf ) = n0(r) − n′(r, ωrf ). Indeed, a distinct feature can be
observed: Only at a certain density, corresponding to a specific radius, atoms
are transferred into state |3〉. This strongly indicates that density-dependent ef-
fects are required for the correct physical description of the system. In order to
quantify this, the response function is shown in figure 3.8. It is defined by

I(r, ωrf ) = δn(r, ωrf )
n0(r) . (3.2)

Experimentally, it is obtained by first averaging the the difference δn over pixels
corresponding to equal densities. For the trap geometry employed here, this
corresponds to an elliptical average, where the short radius is denoted by r.
Afterwards, the transferred fraction is calculated by normalizing δn to n0(r), and
the experiment is repeated for a range of different rf frequencies. In this way, a 2D
map of the rf response is obtained, where the frequency relative to the transition
of the non-interacting system is denoted on the y-axis while on the x-axis the
radius, corresponding to a specific density and thus also ln (kFa2D) and T/TF , is
shown. The response is plotted in a colour scale. In the response, a single peak
which is clearly density-dependent is observed. Based on this, we can now try to
find an interpretation in terms of (many-body) pairing.

3.2.3. Interpretation of the rf spectra

Given the complexity of the system, for a consistent interpretation of the data, a
range of different additional aspects has to be considered.
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Figure 3.8.: Measured rf response in the crossover regime. The system
is prepared in the |1〉 − |2〉 mixture, with ln (kFa2D) ≈ 1.5 and T/TF ≈ 0.3 in
the centre of the cloud. A: Measured cloud profile, with and without an rf pulse
applied at a specific frequency ωrf relative to the non-interacting transition fre-
quency. The transferred fraction δn is calculated by taking the difference of the
profiles. Only at a specific density, there are atoms transferred. B: By repeat-
ing the measurement from A for different rf frequencies, the response function
I(r, ωrf) is extracted. There is a single and strongly density-dependent peak vis-
ible. Adapted from [18].

Interaction shifts

An important hurdle to overcome when trying to interpret the measured rf re-
sponse is accounting for the final state interactions, as for 6Li the Feshbach res-
onances in all three combinations of states |1〉 , |2〉 , |3〉 are partially overlapping.
The short rf pulses used in our experimental setting are still partially coherent.
As a consequence, due to the absence of clock shifts in such a scenario [184, 185],
only the interactions between states |a〉 and |c〉 have to be taken into account.
Nevertheless, final state interactions can in principle be as complicated to de-
scribe as the ones in the initial states. Therefore, I will explain an observable
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mostly independent of these shifts in section 3.2.4. It is nevertheless important
to at least estimate their influence.
First of all, we have the freedom to switch between different initial state mixtures,
depending on the ratio between initial and final state interaction strength. Thus it
is possible to cover the full crossover regime with a central ln (kFa2D) ∈ [−0.5, 2]
in the initial state, while at the same time avoiding working in the crossover
regime of the final state altogether, such that the central ln (kFa2D) /∈ [−7, 4.5] in
the final state (calculated using kF of state |a〉 and the |a〉−|c〉 scattering length).
In addition, we can use the fact that we transfer only a small fraction of the atoms
in state |b〉 into state |c〉. This suggests a description of the final state in terms
of a Fermi polaron quasi-particle, that is a single impurity of a |c〉 dressed by
a background of |a〉 atoms [185–187]. Importantly, the (zero momentum) spec-
tral function of the Fermi polaron in two dimensions is split into two distinct
branches. For negative (and also small positive) ln (kFa2D), a broad short lived
repulsive polaron exists that is shifted towards positive energies. In addition, for
positive (and also small negative) ln (kFa2D), there is a much more narrow at-
tractive polaron correspondingly shifted towards negative energies [186]. In [186],
the polaron energies are calculated via a T-matrix approach. In the context of
this thesis, we can restrict ourselves to the limiting cases of small |1/ ln (kFa2D)|,
where perturbative results are applicable [185, 187].
In the limit EB/EF →∞, the repulsive polaron energy E+ is given by [187]

E+ = 2EF
ln (EB/EF ) (3.3)

while the attractive polaron energy E− can be calculated via [185]

E− = EF

∫ 1

0
du −2

− ln (EB/EF ) + ln
(√(

1− E−
2EF

)2
− u+

(
1− E−

2EF −
u
2

)) . (3.4)

In figure 3.9, the energy shifts calculated according to equations 3.3 and 3.4 are
shown as a function of ln (kFa2D). For the interaction regimes considered in this
chapter, we expect the spectral weight of the polaronic quasi-particle to be& 90 %
[186] such that a description of the final state in terms of a Fermi polaron seems
to be a promising approach. Note that, in addition, final state effects such as the
polaron also lead to a change in the expected line shape of the rf response, and
a finite lifetime of the final state quasi-particle results in a broadened transition.
This will be discussed below.
In addition, clock shifts in the initial mixture |a〉 − |b〉 (with respect to the final
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Figure 3.9.: Polaron energies. Perturbative results for the repulsive (red) and
attractive (blue) polaron energy shift as a function of the Fermi energy and the
(final state) interaction strength given in units of ln (kFa2D).

mixture) can result in an overall shift of all the transitions. We take these shifts
into account on a mean field level by considering the Hartree contribution U given
by

U = gn|a〉, (3.5)

with respect to the density n|a〉 in state |a〉 and the interaction parameter

g = ~
2m

ln (kFa2D)
ln (kFa2D) + π2 . (3.6)

We will include both the polaron and the Hartree shift in the following. Ulti-
mately, we are however interested in an observable which is (mostly) unaffected
by these interaction shifts. I will come back to this in section 3.2.4.

Suitable Fit function

In order to quantitatively describe spectra such as the one shown in figure 3.8,
we have to find a suitable functional form of the excitation spectrum. However,
the line shape and position are influenced by both the initial and final state
interactions, rendering this a very complicated task. Here, I am going to describe
a generic function which can account for different possible initial and final state
effects. In principle, the (free) parameters of the line shape model, extracted from
a fit to the data, are a valid set of observables to describe the relevant many-body
physics on their own. As the line shape is significantly broadened by the finite
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frequency resolution and the parameters are prone to statistical fluctuation, the
only parameters extracted from the model will be the position of the unpaired
peak and the threshold frequency of the paired peak. Note that small systematic
shifts, in particular on the threshold position, cannot be fully excluded due to the
methodology used. However, the further discussion will be based mostly on either
qualitative or very large effects, where small systematic shifts are not limiting.
We will try to describe the measured spectra with a line shape function Γ (ω) in
terms of the centre frequency of the rf pulse ω. The model is given by the sum
of the unbound and bound branch line shapes:

Γ (ω) = Γbound(ω) + Γfree(ω) (3.7)

We will see below that the peak Γfree(ω) originating from the unpaired particles
is mostly symmetric. Even if there are small asymmetries due to a more com-
plex dispersion relation, they are washed out by the finite frequency resolution.
Therefore, it is sufficient to describe this part of the spectrum by a Gaussian
profile with peak position, width and amplitude left as free parameters. We will
interpret the peak position as the unpaired or quasi-particle excitation frequency.
The bound branch line shape Γbound(ω) is more complex. Based on a Fermi’s
golden rule treatment of a bound-free transition, we get a threshold function

Γbound(ω) ∝ θ(~ω − Eth)
ω2 , (3.8)

in terms of the step function θ and the threshold energy. We will be interpret-
ing the threshold energy as the excitation energy of the paired branch, that is
Eth = EB. There are a few additional effects which we have to account for. The
frequency ω is given relative to the reference frequency. We have defined ω = 0 to
be the non-interacting transition frequency, while the proper reference in equa-
tion 3.8 is affected by (mean field) interaction shifts of the initial state. This
shift directly influences the line shape due to the 1

ω2 factor. We account for this
effect by introducing an additional free parameter η replacing 1

ω2 → 1
(ω−η)2 . In

[170, 188], a correction factor to the above line shape was presented which takes
into account final state interactions. It depends on the two-body binding energy
Ef
B of the final state mixture and takes the 2D nature of the scattering process

into account. Here, we include this factor to our line shape as well. Importantly,
it shifts the maximum away from the threshold frequency, such that the naive
approach of interpreting the peak position of the line shape as the binding en-
ergy would have lead to an overestimation of this parameter. Finally, we account
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for additional broadening of the line shape, mostly due to the finite (Fourier)
frequency resolution, and the finite lifetime of the final state polaron, by a Gaus-
sian convolution. The fit function to describe the paired branch excitations is
therefore given by

Γbound(ω) =
Ab θ(~ω − Eth)(ω − η)2

ln2
(
Eth/E

f
B

)
ln2

(
(~ω − Eth)/Ef

B

)
+ π2


∗

 1√
2πσ2

broad

e
− ω2

2σ2
broad

.
(3.9)

In this formula, Eth is given relative to the non-interacting transition frequency
and we have included the relative amplitude Ab of the bound branch contribu-
tion as well as the width σbroad of the Gaussian broadening. Together with the
frequency shift η, these are kept as free parameters, while the final state binding
energies calculated based on the magnetic field and are fixed.
In addition to the line shapes described above, we observe some additional signal,
which contributes a ‘shoulder’ to the recorded line shape (visible for example at
around 1 kHz in figure 3.8). We attribute this contribution to the spectrum to
a small number of atoms in adjacent layers of the SWT [183] and exclude the
corresponding frequency region from the fitting procedure.

Limiting cases

Before coming back to the discussion of spectra in the crossover regime, such as
shown in figure 3.8, it is instructive to discuss a few limiting cases. In figure 3.10,
two example spectra for rather large positive and negative interaction parameters
(yet still strongly interacting) are shown.
More on the BEC side, we observe a single excitation peak at a large energy
offset, showing the typical asymmetric shape of a bound to free transition. In
this situation, we can unambiguously identify the system to be mostly paired.
This is supported by the observation that the threshold energy is very similar
to the two-body binding energy and not significantly density-dependent. Also,
as the thermal energy scale (TF/kB ≈ h · 7 kHz) is well below the dimer binding
energy, a description in terms of a fully paired Bose liquid seems appropriate.
This is quite different for the second spectrum shown on the BCS side of the
crossover. Again, we observe only a single peak (and in addition the shoulder
feature mentioned above). The slight density dependence is consistent with a
Hartree shift. Otherwise we cannot draw too many conclusions in this situation.
It is not possible to distinguish any possible paired branch from a unpaired one,
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Figure 3.10.: Rf response in the limiting regimes. A: BEC limit. There
is a single, strongly asymmetric peak visible, corresponding to the bound state
transition. In red and blue, the contributions from the Hartree and the polaron
shift are indicated, respectively. For the white line, also the dimer binding energy
is added on top of the other interaction shifts. It is consistent with the observed
onset of pairing. B: Towards the BCS limit. There is again only a single sym-
metric peak visible. No definite statement can be made regarding the paired and
unpaired contributions to the observed spectrum. The peak position is consistent
with a Hartree shifted transition of unpaired atoms alone. The scale of the dimer
binding energy (EB = 2π · 40 Hz) is not resolved in this case.

as the energy scale set by the two-body binding energy scale (EB = 2π · 40 Hz)
is well below our frequency resolution. It should be noted that, in this limit, any
pairs are expected to be broken up thermally. In addition, going further towards
the BCS limit, the temperature T ∗ where the pairs form has to converge to the
critical temperature T ∗ = TC as given by BCS theory. The most interesting
regime is the crossover regime in-between, where for a reasonable temperature
regime T ∈ [TC , TF ], we observe only a single excitation branch as for example
shown in figure 3.8. It is not a-priori clear whether to attribute this peak to a
paired or unpaired branch. We can presume, based on the line shape and the
fact that the threshold position is not at all described by interaction shifts as
introduced above alone, that this should be a bound branch. However, a theory
also including the two-body bound state is still not sufficient, as the energies do
not match. This is shown for one example in figure 3.11. In addition, based
on the expected molecular binding energy EB and the temperature, a significant
part of the pairs should be broken up resulting in two peaks in the spectrum,
which is not observed.
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Figure 3.11.: Spectrum in the crossover regime. Indicated are the expected
Hartree (red) and polaron (blue) shifts with the two-body binding energy on top
of these shifts (white). In this regime, the observed spectrum is not consistent
with these shifts alone.

The onset of pairing

Before I discuss an important technical trick which we will use to unambiguously
identify the distance between the unbound and the bound branch, I will introduce
two important crosscheck measurements, which already allow us to draw some
conclusions based on the spectra shown above. First of all, we can prepare a
system which is in the centre of the cloud well below the critical temperature for
superfluidity (which we check with the methods developed in [15, 16]). A local
density approximation is in this regime not fully valid any more. However, we will
still have thermal wings at lower densities4, which can be interpreted as a region
above TC . In figure 3.12, a measurement of the threshold energy for different
local densities converted into different local T/TF is presented. Interestingly, for
all densities only a single peak is observed again, with the threshold position
showing a smooth dependence on the density. This indicates that we indeed only
see the paired branch and the pairing gap opens up significantly above the critical
temperature and features a smooth evolution across the critical temperature in
accordance with a pseudogap behaviour.
The second important crosscheck measurement is to study the onset of pairing
at very high temperatures. As stated before, below T/TF . 1.5 no significant
unpaired fraction is observed. Nevertheless, for very low densities or very high
temperatures, a regime with a significant fraction of unpaired atoms is eventually

4The finite correlation length of a 2D superfluid indeed allows for something like a constricted
local density approximation.
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Figure 3.12.: Threshold energy across the superfluid transition. A: Spec-
trum where the central ln (kFa2D) is well below the critical temperature (the
corresponding radius is, based on an LDA, indicated in white). Only a single
peak is visible for all densities. B: Threshold energy extracted by a fit to the
data shown in A (blue points; grey: guide to the eye). The applicability of the
LDA in this regime is limited. Nevertheless, it can be stated that only a single
peak with a continuously changing threshold energy is observed even when ap-
proaching the low density thermal wings of the cloud. Adapted from [18].

reached. This is shown in figure 3.13, for a system prepared at 844 G (central
ln (kFa2D) ∼ 1.4) in the |1〉 − |2〉 mixture. By a slightly different evaporation
scheme, we have prepared a similar sample at different temperatures. Note that
the higher temperature sample has, at a similar total atom number, a slightly
smaller central density. With these settings we indeed observe two branches above
T/TF ≈ 1.5. We can compare the fraction of unpaired atoms to the expectations
based on the simplified model of a non-interacting mixture of free atoms and
dimers in thermal equilibrium. Here, the fraction of unpaired atoms is given by
the so-called Saha formula

n2
f

nd
= mkBT

4π~2 e
− EB
kBT , (3.10)

in terms of nf (nd), the free (bound) density of particles. It is shown in figure 3.13
for the experimental parameters that the Saha formula is drastically overestimat-
ing the unpaired fraction. For a temperature of T/TF = 0.54, around 35 % of the
atoms should be unpaired while experimentally, we do not observe a significant
unbound contribution. Also at very high temperatures, no consistency is seen.
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Figure 3.13.: Onset of pairing. A: Rf response in the crossover regime, where
also the very low density regime is shown. Above T/TF ≈ 1.5, two peaks are
visible. B: The same rf response at a higher initial temperature. Two peaks
are visible up to very high temperatures. C: Comparison to the Saha formula.
The expected unpaired fraction is plotted for global temperatures corresponding
to the spectrum in A (red line) and B (blue line). At the local temperatures
indicated by the dotted black lines in A and B, an unpaired fraction significantly
higher than observed experimentally is expected. D: Based on a fit to the cut
(black dotted line) through the spectrum in B, an unpaired fraction of around one
third is expected (blue: data points; red: model fit, grey dotted lines: determined
free particle peak position and threshold energy, respectively). The Saha formula
predicts a fraction almost twice as large. Adapted from [18].

Preliminary conclusions

All the measurements presented so far, including measurement in limiting regimes
and several crosscheck measurements, support the conjecture made that we in-
deed observe pairing above TC which is going beyond physics described by simple
molecular bound states. We observe only a single branch of bound particles in the
crossover regime. This is the case even for ln (kFa2D) & 0.5, where, based on the-
ory calculations and other experiments [126], the chemical potential is expected
to be greater than zero. In addition, the pairing energy does not seem to be
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3.2. Measurement of high temperature pairing

consistent with a two-body molecular binding energy, and appears to be density-
dependent. The latter two points are certainly the most important. However,
up to now, they are also the weakest statements as they are dependent on the
models used. In the following section, I will describe a final set of measurements
which will fix this issue and will allow me to draw a set of remarkable conclusions
about the normal phase of a strongly correlated 2D quantum fluid.

3.2.4. Observation of many-body pairing

I have concluded, based on the observations presented above, that the fraction
of paired atoms is strikingly enhanced in the crossover regime. This result alone
is already a very important step towards understanding the strongly correlated
regime in 2D. However, it is still challenging to draw any conclusions about the
value of the pairing energy and in particular its density dependence, as the results
obtained so far are highly dependent on a model-based theoretical description of
final state effects. Importantly, we are missing a suitable reference energy, which
already includes (most of) the final state effects. The canonical reference scale
would be given by the excitations of the unpaired branch. In particular, all mean
field (Hartree) shifts as well as polaronic shifts only depend on the density and
the scattering length, such that the paired and unpaired branches are shifted
common mode.
From these considerations, we can conclude that a sufficient population in the
unpaired branch is needed in order to make any progress. It is possible to achieve
this based on a quasi-particle spectroscopy method first used in [189] in the
context of measuring the gap of a 3D Fermi superfluid. The key idea is to inject
a very small fraction of additional atoms in one of the spin-states into the system.
Due to the resulting density mismatch, these atoms remain unpaired and occupy
the unpaired branch of the dispersion relations (see figure 3.6). The imbalance has
to be large enough to result in a resolvable rf response but small enough in order
to not significantly alter the dispersion relations. Here we use a spin-imbalance
P of around

P = n|b〉 − n|a〉
n|b〉 + n|a〉

. 0.15. (3.11)

The imbalance is created by sequence of Landau-Zener sweeps, transferring a
fraction of the atoms in state |a〉 into |c〉 at a large magnetic offset field B =
1000 G where the interaction strength is comparably weak. For 6Li, a three-
component mixture is unstable and the atoms in state |c〉 (together with some
of the atoms in states |a〉 and |b〉) are lost via three-body recombination. Due
to these three-body losses, we are limited to temperatures above T/TF & 0.4.
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Figure 3.14.: Density imbalance. Measured radial density profile of the major-
ity (red) and minority (blue) component. In the inset, the imbalance P is shown
as a function of the radius. The measured imbalance is observed to be mostly
uniform. Adapted from [18].

The resulting density profile for a typical realization is shown in figure 3.14.
Importantly, as opposed to similar experiments with superfluids [189, 190], no
separation into a balanced central region and spin polarized wings is observed.
The local polarization varies only very weakly with the local density. Based on the
fitting procedure presented above, we can now determine the energy difference ∆E
between the centre position of the unpaired peak and the threshold position of the
paired peak. We will identify ∆E with the pairing energy (see also figure 3.6).
This allows us to distinguish different pairing regimes. In a regime where the
pairing is dominated by two-body effects, that is molecular pairing, we expect
∆E = EB. On the other hand, if a density-dependent pairing energy with ∆E >

EB is observed, we can associate this with many-body pairing. More precisely,
we can at least conclude that the relative wave function is strongly altered by
the presence of the surrounding strongly interacting medium. In addition, we are
working in a temperature regime where without the medium the paired fraction
would be almost negligible. Therefore, the pairing is not only altered by the
medium but also induced by it. In order to gain intuition, this can be compared
to the limiting case of a BCS state where the Cooper pairing is induced only by
the presence of the Fermi surface. In particular within BCS theory, the difference
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3.2. Measurement of high temperature pairing

between the pairing energy and the two-body binding energy is exactly given by
the gap parameter,

|∆| = ∆E − EB (3.12)

Despite the fact that we do not want to rely on BCS theory in the crossover
regime, ∆, as defined in equation 3.12, is still a useful figure of merit quantifying
the excess pairing energy on top of the two-body pairing.
In figure 3.15, two examples of spectra measured in the crossover regime are
presented. In the left panel, a spectrum with a central ln (kFa2D) of around −0.5
is shown (B = 672 G in a |1〉 − |3〉 mixture with EB = 2π · 9.31 kHz). Therefore,
while the system is still strongly interacting, the chemical potential is expected
to be negative for the whole cloud [126] such that the state mostly governed by
bosonic statistics. Indeed, we observe two distinct branches, which we attribute
to unpaired (close to zero offset frequency) and paired (around 10 kHz to 15 kHz
offset frequency) atoms. Note again that the unpaired branch is only visible
due to the imbalance introduced, as we have observed that it is not thermally
occupied. Both the paired and the unpaired branch shift slightly with density,
the distance between the two peaks mostly stays constant however and is to
a good approximation given by the two-body binding energy. This is in stark
contrast to the second spectrum shown (B = 692 G in a |1〉 − |3〉 mixture with
EB = 2π ·1.37 kHz). It has a central ln (kFa2D) of around 1, such that, at least in
the central region, the system is expected to be governed by fermionic statistics
with a positive chemical potential. Again, we observe two branches. While the
unpaired branch shifts only weakly with density, there is a much more dramatic
(yet continuous) shift of the paired branch. This can be attributed to additional
many-body correlations strongly altering the pairing mechanism. Therefore, only
in the outer wings of the cloud (that is at large radii), the distance between the
peaks is approximately given by the two-body binding energy. In the central
region, this gap even increases to around twice EB.
Based on these spectra, it is now possible to extract the pairing energy in units
of EB for various different thermodynamic parameters. The measurements of
the pairing energy are presented in figure 3.16, with a set of representative cuts,
including a fit to the data, shown in figure 3.17. The two crucial observations
are that first of all the pairing energy, well above TC can be as large as 2.5
times the two-body binding energy (comparable to the Fermi energy, ∆E ≈
0.6EF ). In addition, the effect of an enhanced pairing energy is surprisingly robust
against thermal fluctuations as the effect persists up the Fermi temperature and
even above. We can use this data to generate a map of ∆E/EB as a function
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Figure 3.15.: Quasi-particle injection spectroscopy. A: Spectrum of the rf
response (indicated both on the vertical axis and the colour scale) slightly on
the bosonic side of the resonance. Only due to the small imbalance, two peaks
are visible. Both peaks shift slightly with density (black line: free particle peak,
red line: threshold energy), with the distance mostly given by the dimer energy
EB (binding energy gap indicated by the black dotted line). In light grey, the
radius corresponding to T/TF ≈ 0.7 is indicated. B: Spectrum of the rf response
(same colour-scheme as in A) in the crossover regime. The free particle peak shifts
slightly in energy, while the bound peak shows a pronounced density dependence.
The distance between the peaks is consistent with EB only in the low density
regime. In light grey, the radius corresponding to T/TF ≈ 1.0 is indicated. C,D:
Cuts along the grey lines of the spectra in A and B with a fit to the data (blue).
Again, the peak position of the free peak (black), the threshold of the bound
peak (red), as well as the distance ∆E between these two energies are indicated.
In C, ∆E is mostly consistent with EB, as opposed to the situation in D where
∆E � EB. Here, in addition, the individual contributions of the free peak (light
grey) and bound peak (light red) to the total fitted model are shown. Adapted
from [18].

of ln (kFa2D) for a fixed T/TF . Here we choose T/TF ∼ 0.5. It this context
this is a very high temperature, as it is far above the highest observed critical
temperatures for fermionic superfluidity of T/TF ≈ 0.17 [15], which in turn are
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Figure 3.16.: The high temperature pairing regime. A: Measured pairing
gap ∆E in units of the dimer binding energy for different experimental settings
(different colours, points indicate measurements, the shaded region the statistical
uncertainty. In order to increase the visual clarity the data points are connected
by lines.). Indicated is the central interaction parameter for each dataset. A
significant enhancement of the pairing gap is observed in the crossover region. B:
Measured pairing gap as a function of the interaction strength for a fixed relative
temperature of T/TF ∼ 0.5. Red data points are measured using a |1〉 − |3〉
mixture, blue data points using a |1〉− |2〉 mixture. The data taken with the two
different mixtures show consistent results. The dashed line is a guide to the eye.
Indicated is the approximate regime where the pairing mechanism shifts from a
two-body effect (blue) to a many-body phenomenon (green). Adapted from [18].

already considered anomalously large. This ‘phase diagram’ is also shown in
figure 3.16. Despite the fact that we expect the influence of final state interactions
to be mitigated, at least to leading order, we always choose the specific mixture of
hyperfine states such that the interaction parameter ln (kFa2D) of the final state
is minimized. Based on this map of the pairing energy we can draw the following
conclusions:

• We identify a parameter regime around ln (kFa2D) = 1 where we have pair-
ing in the normal phase above the critical temperature with a strongly
enhanced and density-dependent pairing energy. This observation is robust
against thermal fluctuations up to at least the Fermi temperature.

• The regime of many-body pairing is consistent with the regime where the
interparticle spacing reaches the order of the scattering length and where
the chemical potential changes sign.

• Due to the anticipated presence of a Fermi surface and the strong density
dependence, we expect the pairing correlations to be centred around a finite
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Figure 3.17.: Spectra in different regimes. Typical example spectra across
the crossover. Indicated in blue are the measured data points and in red the
model fit to the data. Both the threshold and the free particle peak positions are
indicated, in addition to the region (grey shaded area) which we exclude from
the fit due to contributions from adjacent layers of the SWT. The plots range
from slightly on the bosonic side (A, |1〉 − |3〉 mixture), to the crossover regime
(B, |1〉 − |3〉 mixture), including an example for a different initial and final state
configuration (C, |1〉 − |2〉 mixture). Adapted from [18].

single-particle momentum. This has to be rigorously confirmed, however,
with another experimental scheme.

• Towards the BEC regime, we observe that the pairing in the normal phase
becomes consistent with the presence of a two-body molecular state. This
is a trivial version of a pseudo gap regime. These results are consistent with
previous studies such as [170].

• For very large ln (kFa2D), towards the BCS regime, where the pairing tem-
perature T ∗ and the critical temperature are expected to coincide, we ex-
pect the relative pairing energy ∆E/EB to converge to one. We observe
first indications of such a behaviour, however, we are limited by the finite
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frequency resolution (and at some point also by the finite temperature)
when approaching the BCS regime. Above ln (kFa2D) ≈ 1.5 we observe
only a single branch for all temperatures (above and below TC) signalling
any gap is below our experimental resolution. This is consistent with the
expectation of a gapless Fermi liquid above TC [191].

On a qualitative level, it is also instructive to go back to the (very much) sim-
plified intuitive model presented in the beginning, according to which a mean
field BCS theory is applied also to the crossover regime. In this case, the BCS
critical temperature is identified with the pairing temperature T ∗ instead of TC .
Therefore, the model acknowledges that (at least in 2D) quantum fluctuations
destroy phase coherence down to the actual critical temperature, while it still as-
sumes that the absolute value of the gap is left intact. We therefore identify the
absolute value of the superfluid gap with the pairing gap |∆|. In figure 3.18, the
BCS pairing gap is plotted for a range of different relative temperatures. It is an
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Figure 3.18.: Finite temperature BCS theory. The paring gap is plotted
as a function of the interaction parameters for different temperatures (different
colours). BCS theory is not expected to be accurate in the strongly interacting
regime. Adapted from [18].

interesting observation that at least on a qualitative level, the BCS gap appears
to be consistent with the experimental results of figure 3.16. However, let me
point out again that here, the theoretical model has been applied well outside
its expected range of applicability. In particular, the position of the crossover is
inaccurately predicted to be around ln (kFa2D) = 0 within this mean field model.
Finally, I would like to stress that a full theoretical description of the crossover
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regime is currently not within reach, underlining the importance of experiments
studying these intricate strongly-correlated quantum fluids.

3.2.5. Concluding remarks

In the experiments presented in this chapter, major progress was made identifying
a regime where many-body induced pairing in the normal phase is a defining fea-
ture. The careful analysis of the strongly correlated many-body system allowed
us to draw a range of different conclusions. It became clear that pairing above
the critical temperature is indeed present and a defining feature of a rather large
region of the phase diagram (see figure 3.16). The pairing is surprisingly robust
against thermal fluctuation. In addition, it was possible to map out what I called
the pairing gap |∆| across the BEC-BCS crossover. Finally, and crucially, we
concluded, based on the density dependence of |∆|, that all these phenomena are
driven by correlations going beyond simple two-body correlations. Further stud-
ies are needed, however, to unambiguously confirm that the pairing takes place at
finite single-particle momenta. A promising path would be to adapt techniques
used in a recent measurement of the momentum dependence of the superfluid gap
[192] to the normal phase, or to record the momentum of the transferred atoms
in the rf measurement similar to an angle-resolved photoemission spectroscopy
method [169, 193].
In any case, we infer information on microscopic (pairing) correlations based on
macroscopic observables, such as the rf response. Similar situations also occur
for a much broader range of systems, where relevant density dependences are
observed [11]. Progress can, for example, be made by carefully recording the
scaling with density, which allows us to draw conclusions on the order of density
correlations which play a role. In addition, these measurements can be combined
with other results on global collective effects such as phase coherence [15, 16],
the equation of state [17], the superfluid gap [192] as well as fundamental exci-
tation modes [21, 22] to name just a few. However, it should be clear now that
a major breakthrough in studying and understanding many-body systems would
be constituted by the ability to directly measure the microscopic correlations,
ideally on a single-particle level. In the example presented in this chapter, this
would mean to start by calculating pairing correlations based on density correla-
tions measurements either in momentum or position space. The limiting cases of
Cooper pairing and molecular pairing would already be covered by correlations
up to second order in the density, while in the crossover regime, possibly also
higher order correlations are needed.
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3.2. Measurement of high temperature pairing

Currently, a scheme to experimentally measure correlations in such a system does
not exist, at least for continuous systems [194]. In this thesis, I will however out-
line an agenda allowing us to approach this vision step by step. I will present the
progress we made during my the course of thesis along this path and point out
interesting physics which can already be learned at intermediate steps.
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Part III.

The next step:
Single-particle resolved correlation

measurements
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4. Strategy and roadmap

In the previous part, results on high temperature pairing in the normal phase of a
strongly interacting quasi-2D Fermi gas were discussed. Based on the unexpect-
edly large and density-dependent pairing gap, we concluded that pairing in this
regime is induced and influenced by many-body physics. However, to unambigu-
ously confirm this, microscopic correlations have to be measured. This will be an
important observable for other general many-body systems, as well. Therefore,
it is instructive to set up an agenda, to achieve this goal:

• Prepare the system of interest.

• Take an educated guess of what the system looks like.

• Find the best possible measurement basis.

• Develop a method to record arbitrary correlations.

• Measure the relevant correlation function.

Of course, none of these steps is straightforward. Already the preparation step
imposes a major challenge. Due to the overall small energy scales in ultracold
atoms, low entropy phases of matter (in particular in quantum spin models) can
be shifted to extremely low temperatures [11]. Even if we only focus on intrigu-
ing quantum states at relatively high temperatures, as discussed in the previous
chapter, we have to acknowledge that these states are quite messy. This is due
to thermal fluctuation, varying density, final state interactions, fluctuations in
the preparation scheme and many additional aspects. Let me stress again that
ultracold atom systems are still astonishingly clean and separated from the en-
vironment compared to other condensed matter systems. However, identifying
individual microscopic correlations and relating them to macroscopic behaviour
is still extremely challenging, as the individual contributions to the full system
cannot be studied in isolation.
An alternative approach is to use the microscopic control over individual atoms
to prepare and study very small but in turn deterministic systems with exquisite
control [160]. They can show minimal instances of the microscopic correlations
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within the Hamiltonian studied [163], yet lacking of course the many-body na-
ture of large scale systems. The naive approach would now be to combine many
of these small systems to form a macroscopic system. This has proven to be
very difficult however (with first steps taken for example in [195]), mostly due
to non-local correlations (and thus exactly what renders the many-body system
interesting) in the macroscopic system. For example, a - on first sight - promising
idea is to build up the antiferromagnetic ground state of a Fermi-Hubbard model
by coupling many states of local singlets. However, the actual ground state is far
more complicated and in fact has a significantly reduced singlet fraction due to
quantum fluctuations [196, 197]. Thus, the state built up only of local singlets
is not the ground state and again of higher temperature.1 While for this spe-
cific model there are a few ideas, for example based on so-called resonant valence
bond states, on how to approach this problem [195, 202–204], a general scheme
to assemble a many-body state in this way has yet to be developed.
Establishing intuition on what correlations to expect in the system is equally
important and challenging. The prime example in this respect are results of
Bardeen, Cooper, and Schrieffer over 40 years after the discovery of superconduc-
tivity [4]. Based on the BCS theory, we now have the intuition that measuring
momentum-momentum correlations is a promising approach to identify Cooper
pairing [27]. Similarly, only due to the trial wave function proposed by Laughlin
[205], we can infer the best way to measure the correlations in specific quantum
hall systems. Without any such prior intuition, an unfortunate choice of basis or
observables to measure the correlations can significantly complicate the interpre-
tation of the results. We will see examples of this in the following chapters.
Finally, in order to measure arbitrary correlations, the properties of all the con-
stituents have to be measured with a high fidelity. This means that in particular
both single-particle and position or momentum resolution are desirable. It is
possible to get away without full single-particle resolution, when studying strong,
low order correlations [27]. This is not the case any more when small, subtle
higher order correlations are relevant.
Due to these reasons, I have to conclude that directly following the above agenda
is currently not within reach. Here, I would instead like to point out an alterna-
tive, more realistic, route which I followed during my doctoral studies. Therefore,
this agenda can also be understood as an outline of the remainder of this thesis.
I have structured the agenda into different milestones. In this part of the thesis,

1This can also, in a formal way, be phrased on more general grounds in terms of (many-body)
gaps closing up at quantum critical points and the Kibble-Zurek mechanism [198–201]. See
also chapter 7.
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I will discuss how each of these is reached.

• MILESTONE 1: Develop an imaging scheme suited for correlation mea-
surements.

• MILESTONE 2: Identify the most basic few-body systems which feature
prototypical correlations or pose typical challenges interpreting the results.

• MILESTONE 3: Develop a toolbox for measuring correlation functions.
Apart from the above prototypes, this includes also intuition on which basis
to choose, where the limitations of all used methods or interpretations lie,
and how to further extend them.

• MILESTONE 4: Scale up the system size. The crucial questions will be:
A) what is the minimum instance model which incorporate the many-body
features of interest and B) how much control over imaging and preparation
fidelity am I allowed to sacrifice in order not to lose the access to interesting
correlations when scaling up the system size.

• MILESTONE 5: Characterize a mesoscopic system which features first
signatures of many-body effects.

• MILESTONE 6: Characterize a strongly correlated many-body state
based on suitable correlation measurements.

In the following chapters I will discuss our progress towards these goals. In
chapter 5, I will discuss a new imaging scheme which is single-particle and hy-
perfine state resolved, has a good position resolution, and works in free space. I
will explain how this imaging scheme allows for measuring correlations with full
single-particle resolution in a range of different basis sets, at least for small and
medium-sized atomic quantum systems. With this first milestone, many possi-
bilities to precisely measure microscopic correlations, also at higher orders, open
up.
Before jumping right back to full many-body systems, it is instructive to first
identify and study smaller systems. I will present in chapter 6 a set of mea-
surements, where we prepare and fully characterize few-body systems based on
correlation studies. In this way, I develop a toolbox for characterizing correlations
and entanglement in interacting Fermi systems. In particular, it will become clear
that there are still a lot of relevant open questions concerning the correlation and
entanglement properties already for very small systems. This is in particular true
when indistinguishability is involved. Therefore, first isolating and understanding
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4. Strategy and roadmap

the basic ingredient, constitutes the second and third milestones.
Even with small systems fully understood, there is a large conceptual step in be-
tween the microscopic and macroscopic world. In particular, collective behaviour
and the notion of phases of matter and phase transitions only come into play
when approaching the thermodynamic limit. In chapter 7, I will present results
on a mesoscopic system, where we study the emergence of a pairing phase transi-
tion in a system closely related to the BEC-BCS crossover studied in the previous
chapter. Taking this intermediate step on the road towards many-body systems
is very relevant, even beyond the major conceptual importance of mesoscopic
systems itself: In these systems we can still achieve deterministic control, thus
taking thermal fluctuations out of the equation. In addition, all the energy gaps
are still finite, such that an adiabatic preparation scheme of the ground state is
still feasible. Finally, in a mesoscopic system the imaging scheme remains fully
applicable without compromises. Therefore, the milestones 4 and 5 are defined
to be preparing and studying a mesoscopic 2D system.
Ultimately I am interested in studying many-body physics. Therefore the final,
ambitious milestone is to fully characterize a many-body system based on corre-
lation measurements. I will recapitulate in the outlook in chapter 8 how far we
got on this path and which ingredients are still missing.
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5. Imaging

In this chapter, I will present the first important milestone outlined in section 4: A
single-particle and hyperfine-state resolved imaging scheme, with a good position
resolution and a focus on versatility. Parts of the results shown in this chapter
are published in [28].
Before delving into any detail, I will summarize the fundamental requirements
the imaging scheme has to meet:

• Single-particle resolution: Ultimately, we would like to measure arbi-
trary microscopic correlations between the individual constituents of our
quantum system as outlined in section 2.2. Therefore, full single-particle
resolution combined with unity detection probability is required. Slightly
lifting this strict requirement will result in noise on the particle densities and
thus reduced measured correlation amplitudes. This will limit the small-
est amplitude we can detect as well as up to which order we can measure
correlations for a fixed finite measurement time.1 Therefore, we aim at al-
most unity detection probability at least for small system sizes. In certain
situations, it can however be beneficial to relax the requirement of perfect
single-particle resolution in order to be able to measure lower-order corre-
lation functions of - in turn - larger systems. This situation is similar to
the so-called noise-correlation scheme [27]. In any case, it is important to
note that in addition to a rather innocent reduction of contrast, imperfect
single-particle resolution can also add spurious correlations if false positives
or false negatives appear in a correlated way. This will be relevant in the
context of a detection hole discussed below and in chapter 6.

• Hyperfine state resolution: In the systems described in this thesis, dif-
ferent hyperfine states will act as iso- or pseudospins. Therefore, we have
to image all populated hyperfine states in the same realization in order to
measure correlations between different spin projections and avoid averaging

1In a slight oversimplification, if you measure a correlation function of order O(nj) in the
density n with a single-particle fidelity f , you can expect a reduction in the correlation
amplitude of O(f j).
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5. Imaging

over different subsets of the Hilbert space. In this thesis, I only discuss
two-component hyperfine mixtures. The imaging scheme will however also
be applicable to three-component systems.

• Position resolution: We will always measure correlations between indi-
vidual particles at different positions. Even if we are interested in other
quantities (e.g. the momentum or a specific relative phase), we will use
time-of-flight methods together with generalized interference methods in
the spirit of matter wave optics in order to map the desired quantity onto
position-dependent densities. Therefore, the position resolution is crucial
and will determine how well we can represent individual states in position
space. We always have to ensure that the position resolution is significantly
better than the smallest correlation feature of interest.

• Free-space: The imaging system is designed with bulk systems and gener-
alized interference measurements in mind, which are typically realized by a
tailored time-of-flight measurement. Therefore, ideally the imaging system
does not require any trapping potential during imaging exposure, and thus
can be used for any continuous system. In situations where the resulting
position resolution is not sufficient, the next best option is to sample the
density in a grid formed by a so-called pinning lattice potential prior to
imaging. However, this comes at the price of additional collective effects in
the light scattering (light assisted collisions in particular) due to locally in-
creased densities. When starting out with a lattice system, it is in principle
also possible to realize all interference measurement without time-of-flight
by a specific set of quantum gates [39] and therefore avoid any free expan-
sion. Due to limited gate fidelity in conjunction with a large number of
gates needed, this is extremely challenging and not pursued any further in
the context of this thesis.

• Simplicity: Developing an imaging system with the above prerequisites
poses by itself an enormous technical challenge. This alone justifies keep-
ing everything - wherever feasible - as simple as possible. In addition,
oftentimes simplicity and versatility complement each other. Other highly
successful but also highly involved position- and single-particle resolved
imaging schemes, the quantum gas microscope [206] scheme in particular,
offer an outstanding performance in the specific situation they are designed
for (in-situ imaging in a lattice system in this case). On the other hand,
it can be extremely challenging (albeit not impossible [194]) to adapt it to
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5.1. Overview of different imaging methods

imaging a quantum system after a set of general matterwave optics opera-
tions. Similar statements can be made about other high resolution lattice
imaging schemes [207] or specific time-of-flight detection methods such as
multichannel plate imaging of helium [208]. With the imaging scheme de-
scribed in this chapter, we are aiming at a conceptually more simple, and
therefore possibly more versatile approach.

In the following sections, I will first briefly introduce a few common and relevant
imaging methods before presenting our newly developed scheme. Apart from the
status-quo, I will also elaborate on possible further improvements. Furthermore,
as it can be a hard task to choose the best possible imaging scheme for a system
at hand, I will afterwards elaborate on which imaging scheme to use for a specific
task. As the imaging system was specifically designed for rather small systems,
this discussion is of great interest for the endeavour of scaling up the system size.
Finally, I will summarize how far I got in my agenda outlined in section 4.

5.1. Overview of different imaging methods

There is a large variety of possible imaging schemes for ultracold atoms. The
vast majority2 is based on light scattering. Most of the times this is resonant or
near-resonant scattering. It is destructive in the sense that the recoil energy scale
of a single photon is much larger than typical energies in the system, such that
the state is strongly altered in the imaging process. There are however also efforts
towards a weakly destructive imaging scheme, where off-resonant light elastically
scatters off the atoms which can afterwards be detected by phase shifts [209].
In this thesis, only resonant imaging schemes, more specifically absorption and
fluorescence imaging, will be covered.
In absorption imaging, the sample is illuminated with resonant light and the
shadow cast by the atoms due to absorption is imaged. This is a very versatile
and easy to implement imaging method and well suited for extracting densities of
larger systems as described in section 3.1. It is usually not possible to identify in-
dividual atoms with absorption imaging, though, as the photon number absorbed
per atom is typically smaller than the photon number fluctuation of the probe
beam. The only way to circumvent this is by resonantly enhancing the scattering
cross section by for example a cavity in combination with a non-classical light
source, or by choosing extremely long exposure times. For a certain regime of
densities and rather strong correlations of lower order (typically second order in

2Ionisation detection being an important exception which I will not cover here.
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density), it is nevertheless possible to extract some correlations. This analysis
method goes by the name of noise correlations [23, 27, 183]. In the experiments
presented below, absorption imaging is only used for diagnostic purposes.
In fluorescence imaging, the sample is also illuminated by resonant light, however
this time the fluorescence light scattered into a certain solid angle is imaged. Here,
single-particle resolution is in principle possible, as the (statistically fluctuating)
number of collected fluorescence photons competes with the imaging noise alone,
rather than the probe light fluctuations on top of this. Therefore, for a sufficiently
large number of collected photons (for example by a long exposure time), single-
particle resolution is achieved. There are hurdles to overcome though: First of
all, with many photons scattered, the atoms are significantly heated up. If a long
exposure and thus many scattered photons are needed, it is often necessary to
cool the atoms during imaging. One method, which is used in our experiment
to count small atom numbers with almost unity fidelity, is to recapture them
in a MOT [210]. Here, the near-detuned probe light also acts as the cooling
light and the atomic sample is kept at a temperature slightly above the Doppler
temperature. In this realization, any position information is lost, and, as the
pseudo-spinstates are not well defined at zero magnetic field, also the spin infor-
mation. To circumvent this, the atoms have to be trapped locally (as opposed to
one global trap formed by the MOT). For this, the space is discretized and each
spatial region is attributed to an individual trap. One possible implementations
is an array of optical tweezers as formed for example by a lattice potential. As
these lattice wells are typically orders of magnitude more shallow compared to
the MOT confinement, the atoms have to be kept at a lower temperature for ex-
ample by Raman sideband cooling. This is the (simplified) idea behind so-called
quantum gas microscopes, which have proven to be very successful in recent years
(see [206] and references therein). It should be stressed, however, that the actual
implementation is highly demanding as a number of complications arise [206].
All this complexity of achieving singe-particle resolution is rooted in the fact that
a lot of photons per atom are needed to unambiguously identify it. The natural
question arising is: Can we work out a way to identify atoms and their positions
based on only a few scattered photons? In this chapter, I will present a successful
imaging scheme based on only a few hundred scattered photons.
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5.2. Spin-resolved single-atom imaging of 6Li in free space

5.2. Spin-resolved single-atom imaging of 6Li in free
space

The results obtained with our first generation of a spin-resolved single-atom imag-
ing of 6Li in free space have been published in [28]. This section is based on this
publication. Further details can also be found in [158, 159]. In addition, similar
ideas have been used in [211–213].

200ns

Vacuum window

x y

z

ε

B
8.5 Isatσ++σ-

Figure 5.1.: Schematic illustration of the imaging scheme. The atoms (red
circle) are probed via fluorescence imaging. The two probe beams are counter-
propagating along the x-axis and are pulsed on and off alternatingly in rapid
succession (total pulse length typically 20 µs, individual pulse length 200 ns). The
quantization axis is set by the uniform magnetic field of strength B aligned along
the z-axis in the lab frame. Therefore, the probe beams, which are linearly
polarized along the y-axis, can drive the σ± transitions. Around 11 % of the
scattered light is collected via the objective with a high numerical aperture of
NA= 0.55. Adapted from [28].

The general idea is quite simple: As shown schematically in figure 5.1, we illumi-
nate the atoms for a certain exposure time with light resonant to the D2 line of
6Li and collect the fluorescence photons through an objective with high numerical
aperture (NA) on an electron-multiplying CCD (EMCCD) camera. In addition,
we use the fact that for all magnetic fields of interest, the different hyperfine
states labelled |1〉 , |2〉 , |3〉 (see section 2.4 and also figure 5.5) can be addressed
selectively as the resonance frequencies differ by around ω = 2π · 80 MHz (to be
compared to the natural line width of the D2 line of around Γ = 2π ·6 MHz) [154].
Therefore, we can image all spin states in quick succession, without scattering
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photons on atoms in other hyperfine states. All this is conceptually quite simple
(as it should be in accordance with the above requirement list), but - as always
- the devil is in the detail.

5.2.1. Diffusion in momentum space

Every time an atom absorbs a photon, it gets a momentum kick. For 6Li and
the D2 line, the velocity change is on the order of 0.1 µm/µs per scattering event.
Therefore, if an atom absorbs, for example, a very modest number of 300 photons
with the same k-vector, this would result in a linear velocity of 30 m/s (or equiva-
lently an impressive 600 µm travelled within 20 µs). We can avoid this by making
sure that the mean k-vector of the absorbed light is zero. In the experiment, we
achieve this by two counter-propagating probe beams, which are linearly polar-
ized perpendicular to the magnetic field axis, driving the σ− transition. As we
noticed that the standing wave potential of the counter-propagating beams can
have a negative impact on the imaging performance, we instead alternatingly and
rapidly (f = 5 MHz) flash the beams on and off (see figure 5.1). While we have
now eliminated any net momentum transferred to the atoms, they nevertheless
diffuse during imaging due to a random walk in momentum space driven by spon-
taneous emission momentum kicks. The diffusion is particularly detrimental for
6Li as it is very light compared to other elements typically used for cold atom
experiments. The width of the position-distribution after an exposure time t in
the horizontal plane is given by a Gaussian with width [211, 214]

σ(t) =
√
Rα

3 vrect
3/2, (5.1)

in terms of the scattering rate R, the recoil velocity vrec, and a correction factor
α taking into account the dipolar nature of the emission. While the position after
the exposure follows a Gaussian distribution, the measured width of the mean
signal from a single atom, which is obtained by integrating the mean position
over time, is not Gaussian anymore and has slightly more weight in the wings
(for details see section 5.4.4, equation 5.2 and in addition [28, 214]). A typical
mean fluorescence signal of a single atom (averaged over several realizations) is
displayed in figure 5.2.
Due to the diffusion, we have to find a suitable trade-off in order to detect enough
photons for reliable atom identification without losing too much position informa-
tion. Increasing the exposure time and the scattering rate both linearly increases
the number of scattered and also detected photons. According to equation 5.1,
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5.2. Spin-resolved single-atom imaging of 6Li in free space
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Figure 5.2.: Mean fluorescence signal of a single atom. A: Map of the
mean signal recorded for a single atom at a fixed position with a probe light
intensity of I = 8.5Isat and t = 20 µs exposure time. A single pixel corresponds
to 2.7 µm× 2.7 µm in the atom plane. The colour scale indicates the number
of secondary photoelectrons in units of the gain of the amplification register,
which is an estimate for the number of primary photoelectrons. B: Cut along
the white dashed vertical line in A. In blue, a Gaussian fit to the data is shown.
This simplified model does not account for the increased weight at larger position
offsets. In red, also a fit of the full momentum space random walk model is shown.
C: The root-mean-square width w of the measured signal distribution is shown
as a function of the exposure time. The blue line is a guide to the eye. For the
exposure time t = 20 µs shown in A, a spread of w = 10.1± 1.4 µm is measured.
Adapted from [28].

it is beneficial to rather saturate the transition, thus increasing the scattering
rate, instead of choosing longer exposure times. However, this also cannot be
done without limit. For intensities far above the saturation intensity, the scat-
tering rate only changes marginally while the transition gets increasingly power
broadened.3 Therefore, the off-resonant scattering rate in other hyperfine states
is increased, which becomes problematic as soon we try to image both spin states
in the same realization (see below). The optimum imaging intensity slightly de-
pends on the mixture of hyperfine states employed and the physical system to be
imaged. For a typical application with a few atoms, an intensity of I = 8.5Isat
(corresponding to a power broadened linewidth of Γ ′ = 2π · 18.1 MHz) in units
of the saturation intensity Isat = 2.54 mW/cm2 of the 6Li D2 line is used. With
the exposure time set to t = 20 µs, we scatter a mean number of around 330
photons and measure a root-mean-square radius of the signal from a single atom
of w = 10.1± 1.4 µm. Note that this is significantly larger than the optical reso-
lution of the imaging system of around 1 µm.

3Explicitly, the resonant scattering rate γ scales as s/(1 + s) as a function of s = I/Isat and
the linewidth Γ scales as

√
1 + s.
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5.2.2. Identification of single atoms

As explained above we have to rely on only a few hundred photons scattered per
atom in order to retain sufficient position resolution. It is therefore important
to collect as many of these photons on our camera as possible. For this, we
make use of a custom made high resolution objective with a numerical aperture
of NA= 0.55. With an effective focal length of f = 20.3 mm, it is placed directly
above the upper re-entrant viewport of the vacuum chamber (see figure 5.1) and
has a lateral (axial) resolution of 0.8 µm (4.4 µm) and a field of view of roughly
200 µm. In order to calculate the fraction of photons collected by the objective,
we have to integrate the anisotropic dipole radiation pattern of the σ− transi-
tion over the NA (with the NA of 0.55 corresponding to 8.2 % of the full sphere
covered), which leaves us at a 11.4 % collection efficiency. We image the emitted
light onto an EMCCD camera4, which for the parameters used has a quantum
efficiency of around η = 0.85. In addition we have to suppress any stray light at
other optical frequencies as much as possible and therefore add a bandpass filter
to the optical setup.5 Together with all other optical elements, we are left with
around 90 % transmission of the fluorescence light and thus can expect to detect
around 9 % of the total scattered photons on the camera, leaving us with around
25 primary photoelectrons (PPE) per atom to work with.
Due to the diffusion during imaging, the signal from a single atom is spread on
average over around 10 µm× 10 µm in the atom plane. Our imaging system has
a magnification of 5.9 such that our effective resolution is neither limited by the
pixel size nor the finite resolution of the objective, even if we take into account the
defocussing due to diffusion along the axial direction. Each pixel of the camera
corresponds to an area of 2.7 µm× 2.7 µm in the atom plane.
We identify individual photons impinging on the camera using the photon count-
ing mode provided by the EMCCD as shown in figure 5.3. This read-out mode is
based on a stochastic multiplication of the primary photoelectrons of each pixel.
Therefore, each PPE is amplified to several hundred secondary electrons. The
exact distribution of secondary electrons is described by a so-called Erlang distri-
bution [216, 217]. Most importantly, the ratio of the gain of this amplification to
the read noise of the camera is very large, g/σread = 64, such that we have a very
good discrimination between the signal from one or more PPEs and the readout
noise [215]. In turn, the discrimination capability between one and two PPEs per
pixel is quite limited, such that the information we can extract from the images

4ANDOR iXon DV887, back illuminated. For a discussion of the role of the specific camera
model on the overall performance, see 5.4.

5Semrock, FF01-675/67-25 centred at 675 nm.
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Figure 5.3.: Single photon counting with an EMCCD camera. A his-
togram of the pixel values (in ADU) of a dark image in photon counting mode.
The histogram can be explained by a large contribution of empty pixels (without
a PPE present), and a few (around 1.7 %) pixels with a single PPE. Each PPE is
amplified stochastically, leading to an exponential secondary photoelectron distri-
bution. The read-out noise can be accounted for by a convolution with a Gaussian
read-noise distribution. In the semi-logarithmic plot, the exponential distribution
manifests itself as a linear slope. We extract the gain (red line) and the read-
noise (green line) by a fit to the slope of the distribution and the region around
zero ADU, respectively. A gain over read-noise of g/σread = 64 is extracted. In
addition to the parallel CICs which are produced in the parallel shifting process
and thus fundamentally cannot be differentiated from signal PPEs, additional
serial CICs can be created at different stages of the serial multiplication register.
They can partially be suppressed, at the cost of a reduced extraction efficiency,
by choosing a larger binarization threshold of 8σread. This is possible as the CICs
created at different (on average later) stages in the serial multiplication register
feature (on average) a smaller gain [215]. Inset: Probability density function
of the stochastic amplification for different PPE numbers, in a semi-logarithmic
plot according to an Erlang distribution. Only a partial discrimination between
the distributions is possible. Adapted from [28].

is mostly binary. Based on this discussion, it is now clear that the main noise
contribution are spurious PPEs, as they fundamentally cannot be discriminated
from signal PPEs. One major source of noise photons can be stray light. By
carefully shielding the imaging path and the experimental table and reducing
unwanted reflections (in particular in and close to the vacuum chamber), we can
reduce the stray light to around 0.004 PPE/px. The dominant noise contribution
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left are clock induced charges (CICs), which occur on the camera chip in the
parallel transport process prior to readout, when shifting pixel lines on the chip
towards the readout register. While these result in the same signature as any
other PPE, in addition we observe a small contribution of serial CICs with (on
average) smaller secondary photoelectron numbers.
We choose to binarize our images with a threshold of 8σread. In doing so, we
suppress most of the serial CICs while retaining a sufficient extraction efficiency
of 88.5 %. We measure a CIC occurrence rate of 0.017 /px (see figure 5.3). In
the binarization process, we indeed achieve single photon counting, while we lose
any information on the occurrence of two or more PPEs. Note, however, that
this discrimination ability was small from the beginning, and, in addition, for the
imaging parameters chosen, the probability of having two PPEs per pixel is (by
construction) small. Putting everything together, we are now left with around
20.0± 4.5 bright pixels per atom, spread over an area of around 25 pixels with
about half a CIC on average for the same area. This means that if we exactly
know the position where an atom might be, we can discriminate one atom from
none with almost 100 % fidelity. The task left, as shown in figure 5.4, is now to
reliably identify the positions of all the atoms.
To this end, we use the fact that bright pixels caused by CICs are spatially un-
correlated while the signal is clustered. We therefore have a clear separation in
spatial frequencies, and by applying a low-pass filter with a cut-off frequency of
3 px in-between the characteristic frequencies of noise fnoise = 1/px and signal
fsignal ≈ 1/4 px, we suppress the noise without deteriorating the spatial resolu-
tion. Local maxima in the low-passed image are now potential positions of single
atoms. For each of these maxima, we can estimate the likelihood that the max-
imum is due to an atom. Importantly, the detection fidelity for a single atom
somewhere depends on our prior knowledge on the approximate position of the
atom, which manifests itself in an appropriately chosen region of interest (ROI).
The larger this ROI, the more likely it is that an accidental cluster of CICs oc-
curs. For a small image size of 21 px × 21 px we reach single detection fidelities
of 99.4± 0.3 %, while for around 5000 px2 the fidelity drops to about 98 %. For
these settings, we achieve a spatial resolution - defined by the spread of positions
determined for an atom prepared at a fixed position - of σpos = 4.0± 0.4 µm. It
is important to keep in mind that while we can pinpoint a single atom to 4 µm,
two atoms on the same image (that is, in the same spin state) have to be much
further away from each other in order to distinguish them as the identification
method relies on the signal distributions not significantly overlapping. We de-
termine the minimum distance two atoms have to have to be discernible with
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5.2. Spin-resolved single-atom imaging of 6Li in free space

over 90 % probability to be 32.4 µm. I will present in section 5.4.4 an alternative
analysis method which is capable of improving these numbers.

5.2.3. Spin resolution

We are mostly interested in quantum systems consisting of atoms in several dif-
ferent hyperfine states.6 Each hyperfine state therefore takes on the role of a
pseudospin state where we would like to measure correlations between different
spin states. Therefore, in the same realization, we have to selectively detect both
(all) states. In this context, it is instructive to take a closer look at the actual
imaging transitions used in experiment.
As discussed above in section 2.4, and shown in figure 5.5, we employ the lowest
three hyperfine states of the 2S1/2 manifold in the experiment. We image on the
D2 line by shining in light resonant on the σ− transition from the mj = −1/2 to
the mj = −3/2 manifold. As already sketched in figure 5.1, we employ a probe
light beam which is linearly polarized in the lab frame, therefore in general it
is also possible to drive σ+ transitions from mj = −1/2 to mj = +1/2. They
are however energetically fully suppressed, due to a detuning of at least 1.1 GHz
above 300 G. From the mj = −3/2 manifold, only a decay back to mj = −1/2
is possible. At high magnetic fields above 300 G we are already perfectly in the
Pashen-Back regime of the hyperfine structure of the excited state mj = −3/2
manifold, while due to the larger hyperfine coupling this is only approximately
the case for the ground state mj = −1/2 manifold (see section 2.4 and [154]). Ex-
cept for the stretched-state |3〉 = |mj = −1/2,mI = −1〉, our states of interest are
therefore only approximate eigenstates of the total electron angular momentum
operator Ĵ and the optical transitions are not fully closed. Atoms in states |1′〉
and |2′〉 have a probability of a few permille per optical cycle to decay into states
|5〉 and |4〉, respectively. We can circumvent these atoms from going dark by also
imaging states |5〉 and |4〉 with a separate imaging beam at the corresponding
frequency. These σ+ transitions from the mj = +1/2 to the mj = +3/2 manifold
are again (only) approximately closed and with a small probability they decay
back into the original states |1〉 or |2〉. It should be stressed that this is in fact not
a repumping scheme, but rather should be described as a bichromatic imaging
as both involved transitions are almost closed. As shown in figure 5.5, without
the second imaging beam, there is only limited discrimination capability between
the signal from a single atom in state |1〉 or |2〉 and the background distribution.

6Typically two, however with 6Li also the preparation of three-component systems is possible.
While we are able to create stable weakly interacting quantum few-body states with three
components, larger and strongly interacting systems are limited by three-body loss [218].
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Figure 5.4.: Single atom detection. A: Example regions of interest of cam-
era images after binarization (upper panel) and application of a low-pass filter
(lower panel). In the first four images, a single atom is present, indicated by
a signal-cluster on top of an uncorrelated background and the large-amplitude
local maximum, respectively. B: Histogram of all local maxima obtained in a set
of images with at most one atom present in the region of interest. A bimodal
distribution is observed. We identify atoms by selecting a threshold in the am-
plitude. The threshold is determined by comparing the signal distribution (blue
line, obtained by a Gaussian fit) with the background distribution (obtained by
analysing a region of interest without atoms). Local maxima above the threshold
are identified as atom positions (blue dots in A). Inset: Detection fidelity mea-
sured for different ROI sizes. C: Histogram of the determined atom positions for
a system where the atom before the imaging process is always fixed to the same
position. We obtain a root-mean-square resolution of 4 µm, significantly smaller
than the spread of the mean signal (grey line). D: Section of an image with five
atoms present. Indicated is the distance between two of the local maxima which
is still sufficient to identify the maxima as different atoms. Adapted from [28].
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5.2. Spin-resolved single-atom imaging of 6Li in free space
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Figure 5.5.:Hyperfine resolution. A: Schematic drawing of the 2S1/2 and 2P3/2
manifolds in the range from 0 G to 300 G, together with the σ− and σ+ transitions
employed in the bichromatic imaging scheme. B: The same level scheme at a fixed
finite magnetic field. Indicated are the relevant optical transitions for imaging
states |3〉 (red) and |1〉 (blue) (with |2〉, which is similar to |1〉, not shown for
visual clarity). The σ− transition of the D2 line is fully closed for the stretched
state |3〉 (red arrows). When imaging state |1〉, after being optically excited with
a σ− transition the state |3′〉 decays back to state |1〉 with above 99 % probability
(strong blue arrows), but with a small probability may also decay into state |5〉 as
well (weak blue arrow). Therefore, also state |5〉 is imaged on the σ+ transition.
C: Distribution of the integrated signal of a single atom in blue (left panel: |3〉,
right panel: |1〉) using the bichromatic imaging scheme. The blue lines represent
the expected signal distributions based on a mean photon number of 24.7 and
21.0, respectively. In grey, the distribution without an atom present is shown and
in green (for state |1〉) the distribution without using the second imaging beam
on the σ− transition. D: Mean signal of a single atom in state |3〉 and |1〉, each
imaged in the same experimental run. Adapted from [28].

However, with the bichromatic imaging in place, the signal distributions become
mostly independent of the state imaged.
At high magnetic fields, the resonance frequencies for the different hyperfine
states differ by approximately ω = 2π · 80 MHz. This is more than a factor 10
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larger than the natural line width of the transitions (and still significantly larger
than the power broadened linewidth for the parameters used above). This allows
us to selectively address the different spin states. We therefore first image one
of the spin states as explained above. Then we shift the laser frequency within
around 30 µs to the resonance frequency of the second spin state while at the
same time triggering the fast kinetics mode of the EMCCD camera, which shifts
the collected signal out of the exposed sensor area at a rate of 0.5 µs per line.
Therefore, after typically 50 µs to 100 µs (depending on the image size), we can
take the image of the other spin state. This method works as long as any typical
internal timescale of the system imaged is much larger than the time between
two images. While this strongly depends on the actual system of interest, this
requirement can typically be fulfilled. Furthermore, off-resonant scattering due
to the imaging light of the first image on atoms in the second transition cannot be
neglected. Therefore, the in this respect more favourable |1〉−|3〉 mixture is used
whenever possible. In addition, there is some potential for optimizing the imag-
ing parameters, in particular with respect to the saturation intensity used. In a
typical scenario, we measure a position uncertainty which is 10 % larger in the
second image, corresponding to one off-resonantly scattered photon on average.

5.3. Matter wave optics

Because the imaging method is designed to work in free space, we are not re-
stricted to in-situ measurements but are free to use standard time-of-flight meth-
ods to access different measurement bases. To this end, we will always measure
the position of the atoms in the imaging process. Before the exposure, however,
we can use a toolbox explained below to map a basis of interest onto position
space. This will be of particular importance for more complicated quantum sys-
tems, where it might be useful to engineer a basis transformation into a suitable
basis by matter-wave optics methods. As the name suggests, these methods can
be understood by an analogy to (quantum) optical systems. For this thesis, in
particular measurements in momentum space will be of importance. In anal-
ogy to an optical Fourier-transform in (quantum-)optics, this will be the most
important fundamental building block of the matter wave optics framework. In
principle, a Fourier transform can be achieved by a free (that is ballistic) time-
of-flight expansion as long as the final spread of the signal is much larger than
the initial in-situ distribution (analogy: the far field distribution of a diffraction
pattern). In turn, in analogy to a perfect lens in optics, we can bring the far
field (long time) distribution to a finite focal length (time), by using a suitable
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5.3. Matter wave optics

phase imprinted onto the atoms. This can be achieved by a quarter period time
(T/4) evolution in a harmonic confinement [180, 219]. The basic idea can be
easily understood for a classical harmonic oscillator, where after a T/4 time evo-
lution, any initial deflection is converted into momentum and vice versa. This
principle can be generalized also for the phase-space distribution of a quantum
state due to the quadratic nature of the phase imprinted. In the implementation
for the imaging scheme described here, we have to make sure in addition that we
always stay in the focal plane of the objective. Therefore, the atoms are always
confined with an optical potential in all three spatial dimensions. If the poten-
tial is separable in all directions, the free time evolution spatially decouples and
the expansion for a quarter of the trap period T/4 along one of these directions
maps the initial momentum along this axis onto the respective positions (see fig-
ure 5.6). Therefore, if we are interested in extracting the 1D momentum along a
specific dimension (for example the axis of a double-well system), we use a weak
harmonic confinement along the double-well axis in conjunction with a tighter
confinement along the other axes. Experimentally, this is achieved by an optical
dipole trap formed by a single focussed far off-resonant trap beam. After a T/4
time evolution in the weak axis, we image the system and extract the position
along this axis, effectively integrating out the two other spatial dimensions. We
are thus left with a measurement of the 1D momentum. We can set the size of
the proportionality factor between position after time of flight and momentum
by adapting the trap frequency (analogy: focal length of a lens). It is important
to note, however, that both non-separable contributions to the trap geometry
and interactions between atoms during time-of-flight couple the different axes.
A further limitation arises from anharmonicities of the potential, which cause
aberrations and distort the mapping to momentum space. Therefore, only if the
potential landscape is very well under control, more complicated matter wave
optic methods can be employed. This is typically very challenging with optical
potentials. Consequently, magnetic potentials should be employed if possible. On
the other hand, engineering small-scale and very specific magnetic potentials at
the centre of our vacuum chamber is an almost impossible task, such that we
often times have to rely on optical potentials.
Building on the fundamental block of a matter wave Fourier transform, also other
methods of possible benefit directly come to mind. The only additional ingredient
will be locally applied phase shifts, which could be engineered for example by lo-
cally changing the energy landscape by quenching on an optical tweezer potential
for a short time. These methods include:

• A mixed basis measurement somewhere between position and momentum
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Figure 5.6.: Momentum space measurements. Illustration of the matter
wave Fourier transform on the example of the single-particle ground state of
a balanced double-well. A: The ground state of a single atom in the balanced
double-well created by two tunnel-coupled optical tweezers (vertical red beams) is
given by

√
1
2 (|L〉+ |R〉). Time-of-flight expansion is performed in a single beam

ODT oriented along the double-well axis, as indicated by the light red beam
(ωax = 2π · 75 Hz, ωrad = 2π · 300 Hz). B: Schematic illustration of the phase
space evolution during a T/4 time evolution. A distribution initially well localized
in position space (red ellipse) is mapped at t = T/4 onto a distribution well
localized in momentum space (blue ellipse), with the position after time-of-flight
proportional to the initial (in-situ) momentum. C: In analogy to Young’s double-
slit experiment with a single-particle, we sample the single-particle interference
pattern by repeatedly measuring the position of the atom after time-of-flight.
D: Reconstruction of the interference pattern in the form of a histogram of the
individual measurement results from C. Top-panel: Two-dimensional distribution
in the horizontal plane. Bottom panel: The axis orthogonal to the double-well
axis is integrated out. The contrast of the interference pattern is a measure for
the initial state purity in addition to the fidelity of the time-of-flight expansion
and the imaging system.

space. This can help to extract certain coherence factors as will be seen in
the next chapter.

• A matter-wave telescope build out of two T/4 expansions with different
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5.4. Margins of improvement

trap periods in order to magnify the in-situ distribution.

• Filtering methods based on momentum. For example, it might be inter-
esting to study the in-situ distributions of atoms with momenta close to
the Fermi momentum. This could be realized with the telescope explained
above and a local filter after the first T/4 expansion.

• Phase-contrast imaging as the most prominent example of self-interference,
where in addition to the above telescope setup at the Fourier time an ad-
ditional phase shift (by lifting the energy) is added to the zero frequency
component.

In a slight oversimplification, it could be stated that such a toolbox would repre-
sent the (continuous system) quantum gas analogue to digital quantum gates as
employed successfully in for example ion chains and superconducting qubits [220].
This intuition will be of importance in the context of quantum state tomography
discussed below.

5.4. Margins of improvement

With the single-particle and hyperfine state resolved imaging scheme, which al-
lows us to measure in both position and momentum space (and possibly also more
complicated bases), the first milestone outlined in section 4 is reached. Coming
back to the list of requirements presented in the beginning of this chapter, for the
microscopic systems used as examples here, all five7 prerequisites have been met.
While this is clearly an important step towards detecting correlations in small
systems, there are however also clear limitations is terms of spatial resolution and
scalability to larger systems. Therefore, before discussing the application of this
imaging system to correlation measurements, I will explain margins of improve-
ment. A particular focus will be on the scalability towards larger systems.
As we have learned above, the actual imaging fidelity and the spatial resolution
are a result of a suitable trade-off between several key ingredients, such as expo-
sure time, magnification, signal filtering, and others. Importantly, the optimum
parameter set can quite significantly differ when imaging different physical sys-
tems. Therefore I will try to also outline a general strategy for choosing the
optimum imaging system and parameter set below. These considerations will
be very important when trying to scale up the system size, and may provide a

7Single-particle resolution, hyperfine resolution, position resolution, working in free-space and
also (relative) simplicity.
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guideline when to choose a imaging scheme like this.
There are a number of possible improvements which I will consider:

1. Choosing a different atomic species.

2. Implementing a better camera and objective.

3. Implementing a pinning lattice.

4. Improving the image analysis procedure.

5. Optimizing the imaging parameters.

In addition, all measurements based on time-of-flight require that interactions are
fully quenched during the expansion. Therefore, I also discuss possible schemes
for this purpose, which are based on Raman and microwave transitions.

5.4.1. Different atomic species

While it is clearly beyond the scope of this thesis to implement a different atomic
species into the experiment, for the imaging alone it would have been the most
effective. Going back to equation 5.1, we see that for a fixed number of scattered
photons, the width of the integrated photon signal scales according to 1/(mλΓ ).
It is clear that 6Li is - in this respect - an unfortunate choice as it is rather
light.8 Other examples of atomic species which can be laser cooled are typically
much heavier while featuring similar optical transition. Two examples are 87Rb
(Γ = 2π · 6.1 MHz, λ = 780 nm) or 168Er (Γ = 2π · 29.7 MHz, λ = 400 nm) which
potentially would allow for a 20 times or even 80 times smaller diffusion with
the same number of scattered photons. This would push us to a regime where
the resolution of the signal is limited by the optical point spread function rather
than the diffusion. As will be briefly discussed below, in this regime it might be
actually favourable to replace the EMCCD by a regular sCMOS camera with a
very low read-noise.

5.4.2. Different camera and objective

If it is not possible to lower the diffusive spread per scattered photon, the next
best option is to reduce the number of photons scattered, ideally by reducing
the exposure time. For a reliable atom detection, this has to be counterbalanced

8On the other hand, this can be a huge advantage in terms of interaction and tunnelling
timescales.
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5.4. Margins of improvement

by either reducing the noise of the imaging system or increasing the effective
photon collection rate. For the latter, the NA of the objective as well as the
quantum and extraction efficiency of the EMCCD camera are possible candidates
for improvements. The margins are typically quite small, though. I am not aware
of any commercially available EMCCD camera which performs significantly better
in terms of quantum and/or extraction efficiency, and even if this changes in the
near future, there is nothing more than a few percent improvement to be expected.
There is a little more potential in the NA: The objective employed in this thesis is
already well optimized for the situation of optical access through one viewport of
a steel chamber. A glass cell might provide a slightly higher NA, and in particular
imaging from two optical axes with two objectives and two cameras can provide
a significant benefit. While the effectively doubled collection efficiency comes at
the price of also doubling the noise, correlating the two individual images instead
of simply adding them up can suppress additional noise. Within the scope of this
thesis, instead of improving the collection efficiency, reducing the noise in form of
CICs is the more promising path to take. Through a specific optimization of the
read-out process, NüVü camēras claims to provide a significantly reduced CIC
rate at similar read-out settings for their EMCCD cameras [221]. We have tested
a few versions of the camera in-house and indeed can expect an improvement in
CIC rate of almost one order of magnitude, as shown in figure 5.7. A few hard-
and software features needed for our imaging scheme are still in an advanced
prototype phase and we expect to upgrade the camera in our experiment soon. I
will provide some more details on the consequences of reduced CICs below.

5.4.3. Pinning lattice

In certain situations, it might be beneficial to give up the free-space aspect of our
imaging system in order to improve the position resolution. For this, we would
need to confine the atoms during imaging with a confinement depth of approxi-
mately the total recoil energy transferred during imaging. With the one photon
recoil energy of ER = kB · 3.5 µK, we need O(mK) confinements. In figure 5.8,
the effect of confining the atoms during imaging is presented. In this example, a
single atom is confined during the exposure time in a microtrap with a depth of
290ER. It can be observed that the measured width of the mean signal is mostly
constant for exposure times below around 15 µs. As during this time around 250
photons are scattered, this is consistent with the depth of the pinning potential
employed.
As we are typically dealing with continuous density distributions (this is of course
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Figure 5.7.: Performance of the NüVü. A: Example image illustrating the
performance of the NüVü camera, where 10 atoms spread out in the horizontal
image were identified based on binarization and a low-pass analysis B: CIC per-
formance of the NüVü measured for different read-out parameters and different
prototypes. Typically, the camera is used at a lower gain setting (relative to the
read-out noise) such that the extraction efficiency is slightly lower. Therefore, a
cut-off of 5σread instead of 8σread is chosen. Importantly, the CIC rate is signifi-
cantly reduced compared to the Andor camera with around 1.7 % CICs.

the fundamental implication behind the free-space aspect), we would have to dis-
cretize space by ramping on an optical pinning lattice with a lattice spacing
significantly smaller than the resolution we want to achieve. There are two op-
tions for an experimental implementation: Either a conservative potential using
(infrared) far detuned light, as in the example above, or a lattice formed by near
resonant light. In the latter case, the optical power needed would be vastly re-
duced. However, close to the optical resonance, the trap potential is significantly
different for the ground and excited states. In addition, spin resolution is much
harder to achieve due to off-resonant scattering. Up to now, a pinning lattice has
not been implemented in our experiments.

5.4.4. Optimizing image analysis

An important question to raise is which fraction of the information available to
us we actually use in the image reconstruction. I have already mentioned that
we discard (albeit very little) information by the binarization of all the images.
In particular, two PPEs on a single pixel result in exactly the same signal as
one PPE. Furthermore, we effectively identify atoms by checking if the number
of bright pixels in a certain area (as defined by the point spread function of the
filter applied) surpasses a chosen threshold. We ignore at this point that we know
a lot more about the signal distribution. Either from first principles or based on
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Figure 5.8.: Effect of confinement during imaging. Shown is the measured
width of the mean signal obtained for a single atom initially fixed at the origin. A
probe light intensity of I = 8.5Isat is used and the exposure time is varied. The
blue data points are obtained without confinement during the exposure (data
identical to figure 5.2). The experiment is repeated with the atom confined in a
pinning potential (formed by the microtrap) with a depth of 290ER. Solid lines
are a guide to the eye. Adapted from [28].

measurements of the effective point spread function, we have access to the fol-
lowing three quantities in ascending order of complexity: Firstly, the mean point
spread function. Secondly, the fluctuations on top of the mean distribution, which
differ, due to the random-walk nature, from simple binomial statistics. And fi-
nally, the full statistics of individual signal occurrences, which add information
on the spatial connectivity to the pixel-wise fluctuations considered in the second
point. This suggests two possible approaches based either on a maximum likeli-
hood approach or machine learning techniques.
For a likelihood estimation, we would rasterize the image (with a subpixel grid-
size), restrict ourselves to a range of possible atom numbers, and then calculate
for each configuration of positions and number of atoms a likelihood of this dis-
tribution to describe the observed signal. We then guess the actual distribution
of atoms to be the one corresponding to the highest likelihood. Obviously, the
computational effort scales very badly with raster size and possible atom number.
For a possible range of atoms between Natom ∈ [α, β] and a grid of d×d positions,
the number of configurations is d2β+2−d2α

d2−1 . As an example, take a region of inter-
est of 100 px × 100 px and a grid spacing of around 0.5 µm. Let us assume for
this example that we expect the atom number to be restricted to below 20. The
number of possible configurations is now O(10108), which shows that a straight-
forward application is impossible for already modest atom numbers. However,
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it might be possible to further restrict the possible number of configurations by
either independently measuring the particle number, or only specifically testing
situations which are inconclusive based on a simpler analysis method. For exam-
ple, each time the low-pass method identified the presence of at least one atom
at a certain position, within a region of interest around this position, various hy-
potheses based on configurations of one or two atoms could be tested against each
other. Note that similar considerations are actually well known in other fields of
physics, in particular in the context of clusterfinding in astrophysics [222–224].
As an alternative to likelihood methods, also machine learning techniques can be
of interest. The biggest challenge here is to provide a sufficiently good reference
set for a supervised training approach. While it is possible to provide a set of
data where with a fidelity of around 98 % an atom was at a point-like position
(as used in figure 5.4), it is not possible to have a perfect training set and any
experimental imperfections which might occur for example after time of flight
are not taken into account. For these reasons, in exploratory studies including
various cluster finding algorithms and machine learning techniques we did not
achieve significant gains so far for small systems of a few atoms. It will, however,
become very important to revisit these ideas when studying larger systems where
any simple image analysis tool begins to fail.
As a first step in this direction, and as a benchmark of possible margins of im-
provement, I will here presents results obtained by with likelihood analysis on
simulated data. For this I set up a three-step framework

• Step 1: Simulate atom positions.

• Step 2: Simulate diffusion of the atoms and the camera response.

• Step 3: Perform image reconstruction and correlation detection.

The first step is, at least for this benchmark, straightforward. For simplicity,
I will restrict the discussion to the situations of either no atom present, one
atom at a fixed position, or two atoms at fixed positions with a variable distance
between each other. I will however make sure that in-between runs, the position
of the atoms relative to the pixel grid is not fixed. For future applications, also
a sampling of a more complicated many-body wave function is implemented in
this step.
The diffusion of the atom is implemented with the help of a 2D probability
density function (PDF). The PDF used here is based on the time integral of
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the momentum space diffusion [214],
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rec. Here, we will use the width as a free parameter to adjust the PDF
to the measured distribution [28, 214]. It is perfectly reproduced for w = 3 px.9

From this PDF, the (fluctuating) number of primary photo electrons detected
on the camera is sampled. Based on this PPE map, the readout response of
the camera is simulated. This includes the stochastic amplification based on an
Erlang distribution, the read noise, and the distribution of parallel CICs. The
resulting images resemble very well those experimentally measured, as presented
in figure 5.9. Note, that spatial correlations within individual atomic signal dis-
tributions are not included in this analysis. However, for the exposure times used
in this thesis, they were not unambiguously detectable in the experimental data
either.
Based on these simulated images, the reconstruction algorithm is tested. As a first
test, the standard reconstruction algorithm is employed and indeed the fidelities
and the spatial resolution are very close to those presented in this chapter. In ad-
dition, also a likelihood algorithm is employed. For all images, three hypotheses
- none, one and two atoms present - are tested. A likelihood map is calculated by
explicitly calculating the logarithm of the likelihood for each combination of the
atom positions on a sub-pixel grid; here using 5× 5 super-sampling. For the hy-
pothesis test, the known PDF of the PPEs as well as the known camera response
is used. It is important to state that the full statistics of the fluctuations on top
of the mean value (which are explicitly not Gaussian) are taken into account. In
this analysis, a uniform (i.e. unity) prior is used, as no prior knowledge on the
atomic position can be employed. The results based on 400 simulated images per
setting and a region-of-interest of 40 px × 40 px are presented in figure 5.9 and
table 5.1.
Based on this analysis, we can make the following observations: We have a slightly
better position resolution for a single atom using the maximum likelihood method,
as we now use the full information on the signal distribution. The improvement
is however not very large, as the centre of a distribution can be quite reliably
determined even without knowledge of the exact distribution. However, while

9Note that this is exactly the functional form of the red line in figure 5.2.
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Figure 5.9.: Illustration of the likelihood study. A: A set of simulated ex-
ample images after binarization, based on the assumption of a single atom in the
centre of the image, with parameters otherwise close to those presented in this
chapter. B: Cut through the mean signal from one atom within the simulation.
The distribution is consistent with the experimentally observed signal presented
in figure 5.2. C: Two-dimensional likelihood map of the one-atom hypothesis.
The most likely position of a single atom is at the maximum of this distribution,
while the width of the peak is a measure for the credibility interval in the posi-
tion of the reconstructed atom. This likelihood map has to be compared to the
likelihood value of the zero atom hypothesis, and the four-dimensional map of
the two-atom hypothesis in order to draw a conclusion on the most likely config-
uration of atoms.

the low-pass method fails to identify two atoms closer than 30 µm together, the
likelihood method is capable of reliably detecting two atoms only 10 µm apart
from each other. In addition, only with this method we can at least partially dis-
tinguish two atoms from one even in the case that they are sitting directly on top
of each other. It is crucial to keep in mind that this will fundamentally never be
possible with full fidelity, as first of all the number distributions of primary photo
electrons for two and one atom overlap, and in addition the Erlang distribution
only allows for a partial discrimination capability between one and two PPEs per
pixel. In this context, it is also clear why the fidelity of detecting a single atom
is smaller for the likelihood method than for the low-pass method, as the latter
method effectively only tests for at least one atom present instead of exactly one.
In conclusion, it is clear that the likelihood analysis method indeed offers po-
tential for significant improvement. Only within this approach it is possible to
include all the information available on the system and the imaging in the recon-
struction. In particular, any additional a-priori knowledge can also be directly
included. For example, the independently measured particle number distribu-
tion can be directly implemented in the form of a prior. At the same time, the
improved reconstruction capability comes at the expense of an increased com-
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5.4. Margins of improvement

0.5 % CICs
Low-pass method Maximum likelihood method

Setting [p(0),p(1),p(2)] rms spread [p(0),p(1),p(2)] rms spread
0 atoms [1,0,0] - [1,0,0] -
1 atom [0.013,0.987,0] 3.3 µm [0.003,0.867,0.13] 2.8 µm

2 atoms d=30 µm [0,0.065,0.935] 3.3 µm [0,0,1] 2.7 µm
2 atoms d=20 µm [0,0.84,0.16] - [0,0.005,0.995] 3.1 µm
2 atoms d=10 µm [0,1,0] - [0,0.02,0.98] 3.7 µm
2 atoms d=0 µm [0,1,0] - [0,0.033,0.967] -

1.7 % CICs
Low-pass method Maximum likelihood method

Setting [p(0),p(1),p(2)] rms spread [p(0),p(1),p(2)] rms spread
0 atoms [0.997,0.003,0] - [0.965,0.033,0.003] -
1 atom [0.018,0.98,0.003] 3.3 µm [0,0.837,0.163] 3.0 µm

2 atoms d=30 µm [0,0.078,0.922] 3.4 µm [0,0,1] 3.0 µm
2 atoms d=20 µm [0,0.813,0.187] - [0,0,1] 3.3 µm

Table 5.1.: Results of the likelihood study. For this study parameters as
presented in section 5.2 are assumed. Two different CIC rates are used, in order
to also reflect a possible improvement using a new camera. Several configurations
are simulated: No atom present, one atom roughly in the centre of the image
(however not exactly, in order to avoid a possible bias due to the symmetry
of the problem), and two atoms at variable distance d. For all settings and
based on 400 images each, the occurrence rate p to reconstruct zero, one or two
atoms is calculated alongside the rms spread of the detected positions (where
applicable). This procedure is performed for the low-pass based method as well
as the likelihood approach.

putational cost. Therefore, it will be necessary to restrict the relevant region of
interest in a pre-analysis of the images. In addition, the reconstruction presented
above is a limiting case in the sense that it was the theoretically best possible re-
construction (up to numerical errors and the finite grid size). The same fidelities
can only be reached if, like in this case, the exact statistical distribution of signal
counts is known. By a careful imaging calibration this is however within reach.
For the experiments presented in this thesis, the likelihood approach was not yet
employed.

5.4.5. Optimizing imaging parameters

In this section, I will outline how to optimize the imaging parameters, with a
focus on the specifications discussed in section 4. The discussion is based both on
the current status of the imaging system, as well as possible future improvements.
The following physical situations are of particular interest:

• Very few atoms per spin state. This is the situation where the imaging
performs best. As the initial atom number is fixed and known, postselection
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is possible to mitigate the effects of a finite detection probability.

• O(10) atoms per spin state. These are system sizes where we can still near
deterministically prepare a quantum system and observe the emergence of
many-body effects. In order to make full use of our preparation capabilities,
also a full single detection scheme is needed. This will be the limiting
case for a true single-particle imaging and postselection will already be
challenging.

• O(100) atoms per spin state. For these atom numbers, we will have to rely
on (quasi) thermal systems without a fixed particle number and cannot
hope for full single-particle resolution.

I will assume that the following experimental tools are at hand. These are based
on existing state-of-the-art equipment or tools which will be available in the near
future.

• A high NA objective

• EMCCD camera

• sCMOS camera

• Pinning lattice

For the objective, I will use the parameters of the objective used in our experi-
ment. The parameters of importance will be the photon collection efficiency, the
field of view, and as a limiting case for any point spread function the optical
resolution. The magnification M will be an optimization parameter but for all
realistic situations be approximately in the range M ∈ [5, 10]. I will compare the
performance of an EMCCD camera to the performance of a scientific complemen-
tary metal-oxide-semiconductor (sCMOS) camera. For the EMCCD, the relevant
parameters are the effective extraction efficiency and the CIC density. I will use
the parameters of the NüVü camera but assume the functionality of the Andor
camera used in the previous sections. In figure 5.7, the extraction efficiency is
plotted as a function of the CIC density. For an sCMOS camera, the signal has
to be compared to the read noise (dark current is typically negligible for our ap-
plication). As a typical example, I will use the Andor Neo 5.5 sCMOS camera. It
features a quantum efficiency of QE = 0.55 and a read noise of σread = 2.5e− with
settings applied that allow us to take two images in quick succession. Note that
there are back-illuminated sCMOS cameras with significantly higher quantum
efficiency and lower read noise. However, none of these feature a (true) global
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shutter needed for this imaging scheme.10 Finally, I will also take into account
additional pinning potentials. I will assume a far off-resonant pinning lattice, as
this is the only configuration which can readily be integrated into our experiment.
For example, in a bow-tie configuration a lattice depth of several 100 µK can be
reached.

A few spread out atoms

As outlined above, based on an average of 330 scattered photons within 20 µs, of
which we collect around 20, we reach a detection fidelity of 99.4± 0.3 %. This is
combined with a position uncertainty of 4.0± 0.4 µm while keeping full hyperfine
state resolution. By virtue of a T/4 expansion in a waveguide potential with a
trap frequency of for example ωwg = 2π · 75 Hz (see [28]), we can spread out the
atom distribution across around 100 µm. Therefore, in this example the position
uncertainty translates into a momentum uncertainty of σmom = 0.18 /µm (or 4 %
of the maximum momentum).
All these values are optimized for the parameters of the Andor. With the NüVü,
due to a reduced CIC rate, we can get away with fewer scattered photons and
thus a better position uncertainty. This can already be seen in the most basic
model: We assume that our signal is spread over around n x n pixels, such
that there are rarely more than two PPEs per pixel in order to keep the full
counting statistics. Now we compare the number distribution of the signal to the
probability of a coincidental cluster of CICs. As a function of for example the
exposure time, the signal distribution is given by a binomial distribution with N
photons/decision where the probability is set by the effective collection efficiency,
given by the collection efficiency of the imaging system as well as the quantum
and extraction efficiency of the camera. If the position of the atom is already
known beforehand, the appropriate noise distribution is also easy to calculate
and given by a binomial distribution as well (with n2 decisions with a probability
given by the CIC rate). Here, we rather calculate the probability that somewhere
on the image of size R x R pixels, a number of k CICs occurs within a region of
interest of size n x n pixels.11 For the parameters of the NüVü and the Andor,
this is shown in figure 5.10. Note that these plots in general have a third axis,
10There exists a first prototype of a back-illuminated camera which might be used with a global

shutter, however not yet matching any other requirements needed for scientific use [225].
11The number of total CICs C is given in terms of the binomial distribution B and the CIC rate

pCIC via B(C|R·R, pCIC). The number N of potential clusters of size k, possible to form out
of C CICs, is given by N =

(
C
k

)
. Assuming periodic boundary conditions, the probability

that the CICs are within the region of interest n x n is given by
(

n
R

)2(k−1). Finally we have
for the mean number M of clusters of size k: M(k) =

∑
C B(C|R ·R, pCIC) ·N ·

(
n
R

)2(k−1).
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Figure 5.10.: Detection efficiency of a single atom. Calculated probability
of at least one false negative or false positive occurring (logarithmic colour scale)
as a function of the total photon collection efficiency and the CIC density. A
typical image size of 200 px by 200 px is assumed, with the results depending
on this specific choice. The probability of less than k photons detected on the
camera is compared to the probability of at least one coincidental cluster of k
CICs in a region of interest n, set by the typical spatial extent of the signal from
one atom. An optimum cut-off size kopt is chosen such that the sum of false
positives and negatives is minimized. White dots show combinations of photon
collection efficiency and CIC density possible with the NüVü camera, while the
white cross corresponds to the respective value of the Andor camera. A: For
a mean number of 150 scattered photons, a region of interest n = 4 px × 4 px
is suitable (see figure 5.8). According to this model, for typical parameters of
the Andor, the probability of a false positive/negative is around 1.3 %. With
the best Nüvü settings, the probability is at 0.9 % slightly lower. In turn, the
number of scattered photons could be reduced to ∼ 140 photons in order to have
the same fidelity as the Andor. B: For a mean number of 300 scattered photons,
a region of interest n = 6 px × 6 px can be chosen. Both with the best Nüvü
and the typical Andor values, the probability of a false positive/negative is below
10−4. With the best Nüvü settings, the number of scattered photons could be
reduced to ∼ 270 photons in order to have the same fidelity as the Andor. All
experimentally measured fidelities are slightly lower, due to additional technical
limitations.

as the exposure time also changes the size of the point spread function and thus
the size of the region of interest n. From the plot, we can read off that there is
indeed some prospect of optimization by using the NüVü. As we will be able to
use a slightly smaller number of scattered photons, the position resolution will
improve. Note that this simple model underestimates the improvements expected
from switching the camera model, as the effect of a reduced counting statistics
due to more than one PPE per pixel is not included.
It is important to state that in this regime, an EMCCD is always the better
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5.4. Margins of improvement

choice compared to an sCMOS:12 Even if the effective point spread function is
on the order of one pixel, as the position of the atom is not fixed with respect
to the pixelgrid, the signal is spread over a few pixels. Therefore, a typical
photon number of 15 to 25 is not enough for reliable atom detection in an sCMOS
based approach, if a typical quantum efficiency QE = 0.55 and electron readnoise
σread = 2.5e− is assumed. Increasing the number of photons further without
massively deteriorating the resolution would require active cooling and thus result
in a full quantum-gas-microscope setup.

Several spread out atoms

One additional complication arising when several atoms per spin state are imaged,
is that the probability of two signal distributions overlapping becomes finite. As-
suming roughly 20.0± 4.5 PPEs collected per atom and accordingly 40.0± 6.3
PPEs for two atoms, there is some discrimination potential. However, at the same
time, we do not want to deteriorate the spatial resolution by spreading out the
signal over more pixels, such that the approximation of at most one photon per
pixel made in the context of figure 5.10 does not hold any more. Thus, we have to
account for the imperfect discrimination potential between one and two photons
per pixel. We have seen above that at least up to distances of around 10 µm, a
likelihood approach is still capable of identifying single atoms, nevertheless.
In this regime, we also first encounter the important hierarchy of length scales:
The size of the correlation feature we are interested in has to be much larger than
the effective resolution. In addition, the system size itself has to be much larger
than the size of the correlation feature, as the finite system size also introduces
a correlation length scale (manifesting itself typically as an envelope on top of
the correlation features of interest). Experimentally, we will first encounter this
hierarchy in chapter 6. For smaller and in particular discrete systems, it will be
still possible to deal with the different scales. However, for larger and continuous
systems it becomes much more challenging as we will see in chapter 8.
Playing into this and not considered explicitly so far is the magnification. With
a smaller magnification, and as a consequence a larger part of the field of view of
the objective imaged on the camera, we can spread out the atoms more. Thereby,
the overlap of the imaging point spread functions is reduced. On the other hand,
we have to make sure that we spread the signal of one atom over several pixels
for the identification procedure. For our camera, we work at a magnification of
M = 5.9 and thus both image the whole field of view and spread the signal suf-

12The situation is different in [213], where several hundred photons are collected per atom.
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ficiently. In the case of a pinning lattice (or in general a smaller effective point
spread function), a camera with more pixels or a smaller magnification can be
beneficial however.
Independently of the exact image analysis method used, we will always have to
deal with a reduced probability of detecting atoms of the same hyperfine state
which are close to each other. Crucially, this detection hole will result in (strong)
spurious correlations on the length scale set by the minimum distance at which
atoms can still be discerned from each other. In the worst case (think of fermionic
antibunching), these spurious correlations can also look very similar to expected
physical correlations. We will therefore always make sure to carefully exclude the
parameter range influenced by the detection hole from the analysis of the under-
lying physical system. In addition, as a general rule, it has to be ensured that
the typical interparticle distance is (much) larger than the scale set by the detec-
tion hole (ideally taking into account correlations leading to increased/decreased
typical distances between particles).
There is another more subtle complication arising for intermediate scale systems.
We can prepare very small systems with a very high fidelity of typically 95 % to
98 %. Together with the detection fidelity, which is even for larger regions of inter-
est at least 98 %, we have only a very small fraction of false positives/negatives.
Therefore we can compensate a drop in either the preparation fidelity or the
detection fidelity by postselection without significantly introducing noise on the
correlation measurement. This is much harder for intermediate scale systems.
Assuming 98 % single-particle detection fidelity we have a combined detection fi-
delity of only 67 % for 20 particles. Also the preparation fidelity will have dropped
to typically 70 % to 85 %.13 Thus, postselection to the correct atom number re-
sults in significant false positives or negatives and reaches its limitations. For
even larger atom numbers as will be briefly discussed below, we thus have to
slightly adjust perspectives away from deterministic preparation and detection.

Around 100 spread out atoms

If the atoms are uniformly spread out over the whole field of view, for example
with a box potential, 100 atoms correspond to a mean interparticle distance of
almost 18 µm. However, there are very few situations where such a uniform den-
sity seems realistic: Any in-situ preparation of a low entropy state in an optical
box potential would be extremely challenging due to excitation energies at the
13Note that the preparation fidelity of the combined state does not drop with the single-

particle fidelity to the power of the number of atoms, as we typically make use of closed
shell configurations or gapped many-body states in the preparation.
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Fermi surface of O(1 Hz). This is a general problem for any in-situ measurement,
as a length scale can always be converted into an appropriate energy scale. A
particular useful one, in the context of pairing, is the energy of a two-body bound
state (in two dimensions). Here, 10 µm correspond to E = h · 16 Hz.
Despite the fundamental difficulty of preparing systems in-situ at such small en-
ergy scales, a time-of-flight expansion from a smaller trap to the size of the field of
view can be still possible.14 In order to include realistic measurements of systems
in a harmonic trap with larger densities in the central region, a typical interparti-
cle distance of 10 µm is assumed in the following discussion of a system of around
100 particles.
A few observations can be made straight away:

• The general picture, that within a suitably defined region of interest the
presence of at least a certain photon number indicates the presence of at
least one atom, remains exactly the same.

• As the probability of having two atoms closer than the point spread function
size is rather large, we have a significant signal overlap and individual single
atom detection is impossible for any number of scattered photons even with
a pinning lattice built in.

• For 20 PPEs on average we are still (albeit barely) in a regime were we
have on average less than one photon per pixel detected. Thus, we can still
expect significant granularity in the reconstructed density.

• We are in a regime where it might prove beneficial to reduce the number of
photons scattered in order to lose less information due to having more than
two photons per pixel.

As long as there is significant granularity in the density which is (mostly) due
to atom number fluctuations, there is potential to extract correlation functions.
The correlation signal will be of course reduced by the convolution of the density
with the point spread function, the granularity caused by the CIC noise, and the
information loss due to more than one photon per pixel being present.
Importantly, there is a smooth transition to the case of correlations between in-
dividually identified atoms, when reaching the limit where the point spread func-
tions are well separated.15 Postselection is not possible in this regime anymore,
while there is again a smooth transition from perfect postselection to discrete
14With the help of a matterwave telescope this nevertheless can be an in-situ measurement.
15There is a subtle difference in the autocorrelation peak appearing for density correlations wich

is not present when individual particles are correlated, which will be discussed in section 6.3.
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noise caused by false positives and negatives to continuos noise by imperfect sin-
gle atom resolution.
The advantage of these correlation measurements described here to standard noise
correlation measurements [23, 27, 183] based on absorption imaging is that the
contribution from atom noise compared to other noise source can be much larger.
This is true in particular when working close to the single atom resolution limit,
resulting in smaller correlation amplitudes which still can be detected. I will
present first preliminary results in this regime in chapter 8. In order to illustrate
the potential of this method, I present in addition also an example of simulated
data in figure 5.11. Shown here is a simplified toy model of real space pairing in
the crossover region (compare to chapter 3). I simulate an ensemble of N = 150
atoms without number fluctuations in a Gaussian cloud of size σ = 54 µm. A
fraction of f = 0.5 of the atoms is paired with a pairing wave function of Gaus-
sian shape. The size of the pairing wave function is chosen to be the inverse
of the interparticle distance corresponding to 11 µm, in line with the two-body
pair size in the crossover regime. This model is of course not capable of captur-
ing the true many-body nature of the atomic ensemble in the crossover regime.
However, it constitutes a reasonable limiting case of purely two-body pairs and
can be used to benchmark the correlation reconstruction. Shown in figure 5.11
are the normalized second order density correlations obtained by directly corre-
lating the EMCCD images without any image reconstruction in the spirit of a
(near) perfect noise correlation analysis. Indeed, we can reconstruct the pairing
correlations. However, it also becomes apparent that it will always be a major
challenge to realize a separation of the scales between the resolution of the cor-
relation feature (pair size) and the size of the envelope set by the system size. In
particular in an experimental correlation analysis, we will have additional spuri-
ous correlations due to time-dependent fluctuations of the cloud geometry [183].
Here we consider a situation where the cloud already covers a significant fraction
of our field of view. Even for this situation, the pair size has to be finely tuned
to a range where it is slightly larger than the effective resolution while still being
smaller than the cloud size.
Also in this regime an sCMOS camera offers no improvement. Without any pin-
ning, we have around one photon per pixel and therefore are dominated by read
noise. However, it is crucial that this is very specific to our imaging scheme
collecting only a few photons per pixel. As soon as there are more than O(10)
photons per pixel, an sCMOS camera is always advantageous, as the EMCCD
has limited photon number resolution.
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Figure 5.11.: Simulated in-situ correlations. Simulation for 150 atoms per
spin state with a paired fraction of 50 %. On the camera, there are on average 15
photons per atom impinging. Correspondingly w = 1.5 is chosen for the effective
point spread function according to equation 5.2. The Gaussian width of the cloud
is σ = 54 µm, corresponding to a peak density of 0.06 atoms/pixel. The pair size is
set to be equal to the central interparticle spacing of 11 µm A: Example image of
a single realization after binarization. B: Cut through the calculated second order
density correlation map (G2). Details on the correlation analysis are discussed
below. The correlations are dominated by the envelope set by the system size.
C: Correlation map with the envelope divided out (g2 map). In the centre a
correlation peak due to the real space pairing can be observed. D: Cut through
the correlation map of C. The pair correlations are clearly visible. The correlation
amplitude is however already significantly reduced below the ideal value of 0.5,
based on the paired fraction.

5.4.6. Quenching interactions

For the interacting few-body systems discussed below in chapter 6, we will not
explicitly quench interactions by tuning the scattering length. We rely on the fact
that due to the fast initial expansions after the tight optical tweezers are switched
off, the reduced density quasi-instantaneously quenches the interactions. As we
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have shown and used to our advantage in [33], this assumption does not hold
in general. For a straightforward improvement, the time-of-flight could be per-
formed in a 2D trap similar to the one employed in section 3, and discussed
further in chapter 7. This is a valid option even for a 1D system, in order to re-
duce the density during time-of-flight. Nevertheless, in particular for larger scale
systems, a strategy to actively quench the scattering length is necessary. A possi-
ble method is to (quasi-) instantaneously change the hyperfine state composition
of the system into a mixture with a small scattering length. Similar to the rf
methods employed in chapter 3, these transitions do not change the momentum
of the transferred atoms and thus do not alter the quantum state encoded in the
atoms. Unfortunately, all possible combinations of the states |1〉 − |3〉 feature
broad overlapping Feshbach resonances. Therefore, we have to rely on a different
mixture. A possible candidate is the |1〉 − |4〉 mixture, which is expected to be
mostly collisionally stable and very weakly interacting [154]. The energy differ-
ence between the states |3〉 and |4〉 is typically around E/h ≈ 1.7 GHz for the
employed magnetic field range and thus in the microwave regime. Hence, driving
microwave transitions in analogy to the rf transitions considered before seem to be
a promising approach. As the microwave transitions change the electron spin, the
matrix element between state |3〉 = |mj = −1/2,−1〉 and state |4〉 ≈ |+1/2,−1〉
is comparably large. Therefore, with a resonant microvave circuit at reasonable
powers of around 10 W, we achieve Rabi rates of around ωmw = 2π · 400 kHz
at specific magnetic offset fields. Unfortunately, most likely due to resonant be-
haviour of the vacuum chamber and setup, it is currently not possible to freely
shift the resonance frequency of the microwave circuit. Therefore, it is not yet
possible to use the microwave setup at arbitrary magnetic offset fields.
An alternative to microwave pulses is given by optical transitions. As we have
to couple two hyperfine states of the electronic ground state, we can make use
of two-photon transitions in a Raman configuration. In this setup, we phase
coherently drive a two-photon transition formed by either a π transition up in
energy and a σ− down, or a σ+ transition up and a π transition down, in order
to change the mj projection of the atom by +1. The two-photon detuning is set
to the energy splitting between states |3〉 and |4〉. In addition, the probe beams
are counter-propagating such that there is no net momentum transfer. The indi-
vidual beams are detuned in-between the D1 and D2 line, far off-resonant from
both single photon transitions. The following considerations are based on the
explicit calculation of transition rates, a set of measurements performed with a
phase locked laser setup described in [226], and comparison to literature [227].
The calculations are taking into account the actual light polarisations in the lab
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frame16, and all optical transitions of the D1 and D2 line with their respective
matrix transition elements including the full hyperfine structure.
The contributions from the D1 and the D2 line to the total Rabi rate inter-
fere constructively for a detuning in-between them, however destructively if both
transitions are blue or red detuned with respect to the Rabi beams. Since for
6Li the splitting between the two lines is approximately 10 GHz and therefore
rather small, residual off-resonant scattering becomes limiting. The theoretical
best ratio between the timescale of a π/2 pulse and the off-resonant scattering
rate is at typical magnetic fields of a few hundred Gauss around or below 100. In
the experimental implementation, this factor is worse, roughly by a factor of two,
most likely due to deviations of the employed laser from a purely monochromatic
light source. Additional complications arise due to the strong magnetic field de-
pendence of the transition of around 2π · 2500 kHz/G, requiring both exquisite
magnetic field control and large Raman rates. In addition, as the intensity of
the Raman beams is directly proportional to the coupling strength of the hy-
perfine states, the intensity has to be homogeneous across the sample and very
well stabilized. Due to these constrains, it would be advantageous to drive a
Landau-Zener sweep to transfer the hyperfine population instead of a single π/2
pulse. However, this is (even in theory) not possible with a fidelity of above 95 %
due to the off-resonant scattering. In the experiment, we measure Raman rates
of around 300 kHz at intensities of the individual beams of around 44 mW/mm2.
While Landau-Zener passages are out of reach, this is significantly faster than
the timescale of fluctuations of the magnetic field of O(10 mG), such that these
values still allow for a single π/2 pulse to be performed with 98 % fidelity (see also
[227]). In addition, the optical powers needed for a beam which is homogeneous
across a mesoscopic quantum system with a size of O(10 µm) still are feasible.
Currently, both a setup based on Raman-transitions and on microwave transi-
tions is implemented at a prototype stage, with a final setup under construction.

5.5. Concluding remarks

In conclusion, in this chapter I have described an imaging scheme which allows
us to measure correlations with single-particle resolution in real and momentum
space. Correlation measurements between both different and identical hyperfine

16As it is not possible to have counter-propagating beams which drive only π + σ− transitions
(or σ+ +π), we use two linear polarized beams in the lab frame and have to take additional
off-resonant scattering processes into account.
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components are possible. Therefore, it is ideally suited for systems featuring an
interplay between interaction-based correlations between different hyperfine com-
ponents and symmetrization-based correlations between identical particles. Due
to its versatility based on the free space nature of the scheme, a set of matter-
wave manipulations are possible prior to imaging. Together, these achievements
constitute the first important milestone of chapter 4. The imaging scheme is first
and foremost developed with small and medium scale systems in mind. Nev-
ertheless, in this chapter, I have also discussed to which extend it is applicable
to significantly larger systems as well. Before going back to many-body systems
however, in the following chapter, I will discuss correlation measurements in small
few-body systems which became possible due to this imaging scheme.
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6. Correlations in microscopic
systems

In the previous chapter, I have discussed how to record the position and hyperfine
state of all the atoms in a small or medium scale quantum system. Following the
strategy outlined in section 4, the next step will be to utilize these capabilities
for detecting correlations in a quantum system of interest, while trying to distil
as much information on the underlying state as possible out of these measure-
ments. Despite the huge progress made in terms of detection capabilities, it is
not advisable to directly go back to studying full large scale many-body systems,
however. On the technical side of things, we would be again reaching limitations
of the imaging scheme in terms of scalability towards larger system sizes. But
this is not even the most important argument: Also conceptually, it is a pri-
ori not at all obvious how to identify and interpret different correlations which
might be present in a many-body system. Typically, only in the very weakly
interacting limits, there is a clear expectation for the relevant correlation struc-
ture measurable based on low-order correlation measurements (see for example
[27]). In a general, strongly correlated system, the complex interplay of indistin-
guishability and interactions can and will lead to a complex correlation structure,
with the relevant features needed for a better understanding of the underlying
physics oftentimes hidden in plain sight. There is not yet an established method
to characterize correlations in this limit such that existing measurements (see for
example [228]) are often times very hard to interpret. For these reasons, I will
instead start out by discussing very small systems of up to three particles. I
will furthermore conceptually simplify matters by only studying systems with a
few discrete spatial modes as given by different wells of our double- or triple-well
microtrap geometry introduced in section 2.5.2. Parts of the results presented
here have been published in [29–31]. We have also studied systems where many
spatial modes are of relevance in [33], these results will not be discussed in detail
here though.
Based on these small systems, I will outline how we build up a toolbox for classi-
fying different states based on correlation measures. We will focus on correlations
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Figure 6.1.: Second order momentum density correlations. Experimentally
measured correlation functions 〈nkαnkβ〉 with α, β ∈ [↑, ↓], together with the pop-
ulation of the spin modes Pαβ. The correlation map is obtained by a histogram of
coincidence measurements, thus sampling the correlation function. More details
will be given below. Adapted from [31].

which are prototypical for larger systems as well, and will develop a procedure
to learn as much as possible about the prepared states. This will include a re-
construction of the density matrix and a discussion of entanglement properties.
At first glance, all this might sound like a very technical procedure and merely
an intermediate step towards interesting larger states. However, it will turn out
that there are a lot of open questions even for rather small systems, in particular
when delving into entanglement properties. Crucially, the approach presented
here will go beyond the description of states with exactly one immobile particle
per site, as typically encountered in trapped-ion [220] or superconducting-qubit
systems [229] but also often times engineered in optical lattice or tweezer arrays
[230–232]. For these immobile particles, which behave classically in their exter-
nal degrees of freedom, pure spin models can be applied, while the description
becomes conceptually more challenging for mobile particles in itinerant systems.
This is in particular the case in combination with indistinguishability introduced,
as individual particles at individual sites can no longer be used as a natural par-
titioning of the system.
As an appetizer, and to illustrate these points, consider the correlation measure-
ments of a - for now - unknown state shown in figure 6.1: Presented are second or-
der correlation measurements between momentum space densities (extracted via
time-of-flight methods) of two atoms initially prepared in a double-well potential.
We observe very strong correlations (as indicated by a correlation structure with
very high visibility) for all combinations of the hyperfine states. Naively, I might
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therefore try to infer that this has to be a complicated state, possibly even highly
entangled. As it will turn out however, the state prepared is conceptually very
simple, namely two identical particles prepared independently from each other
in two close-by microtraps. The mistake I made, which lead to the conclusion
of a complicated state, was on the one hand that I ignored the fact that already
the Pauli principle can lead to strong correlations; and on the other hand, that
the measurements were performed in an unfavourable basis by choosing a spin
projection basis which was rotated with respect to the natural quantization axis.
From this example it can already been seen that an essential discussion point in
this chapter has to be how to choose the basis and observable you describe and
measure your states in. This can be of practical interest, as for a complicated
many-body state knowing or at least guessing a suitable basis can dramatically
simplify the description and the measurement protocols. In addition, the whole
notion of entanglement, as introduced in section 2.1, is based on a specific choice
of partitioning, as a state is defined to be entangled if it is not separable into
a product state with respect to a specific partitioning of the Hilbert space. For
example, if the total Hilbert space H is subdivided into two subsystems A and B
with H = HA⊗HB, a general state |Ψ〉 ∈ |Ψ〉A⊗B is bipartite entangled if it can-
not be written down as a product state of |ψ〉A ∈ |Ψ〉A and |ψ〉B ∈ |Ψ〉B. Similar
concepts apply also for tri- and higher order partite entanglement as introduced
in section 2.1. The notion of entanglement is of course invariant under a local
basis change within subsystem A or B, but strongly depends on the global basis
and thus partitioning choice.
Let me illustrate this while at the same time introducing the basis states used
in this chapter. From here on, for the ease of notation and visual clarity I will
always label the hyperfine states by a (pseudo-)spin projection |↑〉 and |↓〉. Note
that therefore |↑〉 and |↓〉 might correspond to different specific hyperfine states
for different sets of experiments. I assume that each site of the double or triple-
well will contribute exactly one spatial mode which I will denote by left L, right
R, and for the triple-well also central C.
We will encounter situations where we can distinguish the atoms by their spin
projection. In these situations, the particle partitioning can be the most obvious
choice where each atom is its own subsystem. Thus, we might denote a single
atom of spin up in the leftmost well by |L〉↑. If we add another atom of spin
down to the leftmost well, the state is given by |φ〉 = |L〉↑ ⊗ |L〉↓ =: |LL〉. The
state space of two distinguishable atoms in a double-well is thus spanned out by

{|LL〉 , |LR〉 , |RL〉 , |RR〉} . (6.1)
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By construction, the above state |LL〉 is a product state and thus not entan-
gled. A prototypical example of an entangled state is the Bell state |ψ+〉 =

1√
2 (|LR〉+ |RL〉). I will discuss a scheme to prepare this and also other bi- and

tripartite entangled states below.
Another possible choice is the mode partitioning, where we subdivide the system
according to the different spatial modes given by the different sites of the double-
or triple-well potential. For example, the state of two distinguishable particles
both in the left well of the double-well is now given by |LL〉 = |↑↓〉L ⊗ |0〉R =:
|↑↓, 0〉, or more in general, any state is spanned out by

{|↑↓, 0〉 , |↑, ↓〉 ; |↓, ↑〉 , |0, ↑↓〉} . (6.2)

This partitioning is also quite useful for particles of the same spin projection,
which cannot be labelled based on internal parameters. Nevertheless, also for
indistinguishable atoms, a particle partitioning is possible. In this case, and
in a first quantization description, formal labels 1 and 2 are introduced for the
particles, which in turn forces us to manually symmetrize the state afterwards.
Thus, the state of two particles in two wells can be written down as |ψ−〉 =

1√
2 (|1, 2〉 − |2, 1〉), where in analogy to above |i, ii〉 denotes the state where the

particle i (ii) is in the left (right) well. This state is formally identical to a Bell
state and thus maximally entangled. On the other hand, this ‘entanglement’
is only an artefact of the first quantized description. It is heavily discussed in
the literature whether such a state should be considered entangled [37, 100–104].
I will try to shine some light on this question in section 6.4, and even more
importantly discuss how this indistinguishable particle entanglement manifests
itself in measurements and how to differentiate between correlations rooted in
symmetrization and interactions.
To summarize, the questions I would like to address in this chapter are:

• Interaction-induced correlations and entanglement: Is it possible to
characterize small but strongly interacting few-particle systems by measur-
ing correlation features? Can we connect the correlations measured also to
entanglement? Can we identify prototypical correlation and entanglement
features which will also help us to study larger many-body systems?

• Identical particle correlations: The necessity for antisymmetrization
of fermionic wave functions already results in strong correlations. Can we
measure these and what do we learn about indistinguishability?

• Identical particle entanglement: Does this also mean that these states
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feature entanglement? Is it somehow possible to differentiate between cor-
relations and entanglement caused by interactions and by symmetrization
and how can we make sure that if we measure (strong) n-th order correla-
tions in a system, this actually tells us something about how complicated
your state is?

6.1. Preparing and detecting few-body states

In this section, I will describe the preparation of the relevant two and three
particle states of either the same or different spin projection in two or three
tunnel-coupled microtraps. From this pool of states, we will avail ourselves of
the correlation and entanglement studies presented. For the preparation, we will
make heavy use of our capabilities of preparing deterministic quantum states in
individual microtraps as introduced in section 2.5.2. We will use that by applying
spin-selective gradients during the spilling process, we can prepare the number
states almost independently for the different hyperfine states. In addition to the
preparation scheme, I will explain how we detect the atoms afterwards. This will
of course build upon the methods introduced in chapter 5 making use also of the
matterwave manipulations introduced in section 5.3.

6.1.1. Preparation of few-body states

The relevant states used in this chapter are sketched in figure 6.2. They include:
Two or three identical particles in two or three wells (states |A〉 and |B〉), two
identical particles in two wells with the quantization axis on the equatorial plane
(state |C〉), two interacting and tunnel-coupled atoms in two wells (a Hubbard
dimer state |D〉), the same state with an uncoupled spectator atom next to it
(state |1〉), and three interacting and tunnel-coupled atoms in three wells (state
|2〉).

Identical particles in two or three wells

The most straightforward extension of the preparation of a number state in a
single well is to prepare n independent copies of this state in n copies of the
microtrap. As explained in section 2.5.2, we can apply an rf signal, built up of
the sum of different frequencies, to the AOD in order to create multiple copies
of our tweezer potential. If we separate the microtraps in the atom plane by
at least 10 µm, the lowest lying states are not coupled even if a magnetic field
gradient is applied for the spilling process. In this way, we can prepare for example
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|A |B |C

|D |1 |2

Figure 6.2.: Schematic illustration of the relevant classes of states. |A〉:
Two identical particles (spin triplet) in the lowest spatial modes of a double-
well without tunnel coupling. |B〉: Three identical particles in the lowest spatial
modes of a triple-well. |C〉: Two identical particles in the lowest spatial modes
of a double-well, with the total spin polarized along the horizontal axis. |D〉:
Hubbard dimer of two particles distinguishable by their hyperfine state and ap-
proximately in the lowest band of a tunnel-coupled double-well. Repulsive or
attractive interactions can be turned on. |1〉: Hubbard dimer with an additional
spectator atom in an isolated microtrap close-by. |2〉: Three atoms (two spin-up,
one spin-down) in a triple-well with tunnel coupling and interactions turned on.

two (three) atoms of state |↑〉 = |1〉 in two (three) independent wells. We can
adiabatically bring the wells closer to each other after preparation, making sure
that there is no overlap between the on-site wave functions, such that the lowest
band (more precisely lowest mode) approximation is well met. Note that this is
equivalent to the above assumption that each site contributes exactly one mode.
We reach a preparation fidelity of typically 0.95 (0.92) for two (three) particle
states (labelled |1〉 and |2〉) compatible with the assumption of an independent
preparation in each well. It is important to stress that these identical particles in
different wells are fully independent1 and blind to each other except for constraints
due to the Pauli antisymmetrization. Thus, any correlations observed can solely
be caused by the fermionic nature of the particles.

1Being slightly pedantic, it could be noted that the particles do share a common history before
the loading into the microtraps. However, at the corresponding temperatures and densities
there are no correlations at the length scale of & 10 µm. In the language of Bell tests, this
could be considered a loophole nevertheless.
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6.1. Preparing and detecting few-body states

(Partially) distinguishable particles in two or three wells

In addition to the product states of indistinguishable particles, we also prepare
interacting states of two distinguishable (by their hyperfine state) particles, in
addition to states with three or more particles, where both interactions and spin
statistics play a role. In each case, we start by a product state of ni,σ particles
of spin-projection σ in well i with the tunnel coupling switched off. Afterwards
we can turn on the tunnelling by bringing the wells closer towards each other.
If at this stage the different wells still have a different depth, the coupling is
off-resonant, though. Now we can adiabatically turn on interactions by means of
tuning the magnetic field, or tune the tunnel coupling into resonance by adjusting
the relative depth of the wells. We calibrate the tilt of the tweezers by mapping
out the tunnel resonance for a single-particle tunnelling between two of the wells
as shown already in figure 2.13. Based on this set of experimental steps, a broad
range of different states can be prepared, as I will present in this section. In order
to discuss this in a systematic way, first a theoretical treatment of the system is
needed:
To describe the system of interacting particles theoretically, we assume that it is
described by a Fermi-Hubbard Hamiltonian of the form [163]:

H = −J
∑
{i,j}

∑
σ

ĉ�i,σ ĉj,σ + U
∑
j

n̂j↑n̂j↓ +
∑
j,σ

n̂jσ∆i, (6.3)

where ĉ(�)
jσ is the fermionic annihilation (creation) operator on site j corresponding

to spin state σ ∈ {↑, ↓}, n̂jσ = ĉ�j,σ ĉj,σ denotes the particle density, and {i, j} runs
over nearest neighbours alone. J denotes the tunnel coupling and U the on-site
interaction energy. In addition, ∆i is a site-dependent (but spin-independent)
offset of the potential, taking over the role of a chemical potential. The rele-
vant approximations made are that the tight-binding approximation holds, and
that the relevant physics is described by a single band only. Within the tight
binding approximation, a basis of local Wannier states on the individual lattice
sites j is chosen, resulting in only next neighbour tunnelling. For not too large
tunnel rates, this is well fulfilled as the tunnel rate of T ≈ 2π · 100 Hz is much
smaller than typical trap frequencies of ωax ≈ 2π ·5 kHz. Within the tight binding
approximation, we can also describe the interaction strength by an on-site inter-
action strength U alone, which is calculated according to equation 2.29. We can
calibrate U either by comparison to the Hubbard model, more directly by a shift
in the tunnel resonance or by direct calculations based on the known scattering
length and the trap parameters.
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For the single band approximation to hold, the on-site interaction energy U has
to be smaller than the single-particle excitation energy. These assumptions are
reasonably fulfilled for intermediate scales of the interaction energy (see [163] for
a qualitative discussion of the case of two wells and two particles, in addition to
a description of the experimental calibration of the parameters). Note however,
that we are also specifically interested in the limit |U |/J � 1 where this ap-
proximation will be less accurate. Nevertheless, the Hubbard results will provide
valuable intuition in this regime as well. For a few wells, we can easily write down
the Hamiltonian in a matrix form. For example, for two particles in a double-
well where the single-particle modes are given by |L〉 , |R〉 and we have a tilt of
∆R = ∆ and ∆L = −∆, we can write down the Hamiltonian in the two-particle
basis {|LL〉 , |RL〉 , |LR〉 , |RR〉}:

H =


U − 2∆ −J −J 0
−J 0 0 −J
−J 0 0 −J
0 −J −J U + 2∆

 (6.4)

We can solve for eigenstates and eigenenergies by diagonalizing the Hamiltonian
for any parameter of the model. In particular for more complicated N-body
Hamiltonians, the diagonalization is performed in this thesis with the help of the
Python package QuSpin [233, 234]. We can use the results in two distinct ways.
We can identify interesting states and in addition work out a possible adiabatic
scheme for their preparation. This is shown for two particles of different hyperfine
states (corresponding to the Hamiltonian in equation 6.4) in figure 6.3: For ∆ = 0
we have for each ratio of U/J four eigenstates labelled |a〉 to |d〉. State |d〉 is the
spatial singlet and thus not influenced when varying U/J . Similarly, the state |b〉
scales trivially with U/J . More interesting are the states |a〉 and |c〉 where the
competition between delocalization and interactions leads to a change in nature
as a function of U/J . For this thesis, mostly the ground state, which is in a spin
singlet, is considered. Its functional form is given by

|a〉 =
√

1
2

√ 1
1 +N 2 (|LL〉+ |RR〉) +

√
N 2

1 +N 2 (|LR〉+ |RL〉)
 , (6.5)

where

N = U

4J +
√

1 +
(
U

4J

)2
. (6.6)
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Figure 6.3.: Energy spectrum of the Hubbard dimer. A: Lowest band
eigenstates of the balanced double-well as a function of the interaction strength
U . Indicated are the states written down in the particle basis for the limiting
cases of U/J = 0 and U/J → ±∞. B: Eigenstates as a function of the tilt ∆ for
U = 0. Indicated are the states for the limiting cases of ∆ = 0 and ∆ → ±∞.
Importantly, the relevant state |a〉 takes the form of a product state for a large
tilt, indicating a possible path for an adiabatic preparation scheme. Adapted
from [163].

For very strong attractions, U → −∞, it takes the form of what can be in-
terpreted as the few-body analogue of a charge-density wave: The symmetric
coherent superposition of both particles left and both particles right |a〉U→−∞ =√

1
2 (|LL〉+ |RR〉). When tuning towards strong repulsive interactions (U →∞)

the state develops an ‘antiferromagnetic’ order, with the symmetric coherent su-
perposition of particle one left and particle two right and vice versa, |a〉U→+∞ =√

1
2 (|LR〉+ |RL〉).

Also from figure 6.3, we can identify a preparation scheme for these states. Here,
the eigenenergies and states for U = 0 as a function of ∆/J are shown. It can
be observed that for a strongly tilted double-well, the eigenstate are given by the
trivial product state of both particles in one of the wells. Such a state can be
prepared with a high fidelity using the methods introduced above. Subsequently,
we can slowly and adiabatically balance the wells to end up either in state |a〉 or
|b〉. From this starting point, we can then also adiabatically tune the interaction
strength in order to reach any desired state. Experimentally, we obtain a measure
for the fidelity of preparing the desired state by first (adiabatically) ramping into
the state and than on the same adiabatic path back to the product state. Here,
we can measure the full occupation statistics and extract the overlap with the
initial state. From this, a lower bound of the preparation fidelity is extracted.
We infer that we can prepare the ground state of the interacting double-well
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with above 90 % fidelity (corresponding to a purity of ∼ 0.86, when modelling
the experimental state by the theoretical ground state with a 10 % white noise
contribution). It is also possible to compare the realized state with the expected
state in a Hubbard model. This procedure is presented in [163] with more details
presented in [158, 235] and shows good agreement for intermediate tunnel rates
and interaction strength. In figure 6.2, the state of two interacting tunnel-coupled
atoms forming a Hubbard dimer is labelled |D〉.
In a similar fashion, we can also study a system of three atoms in three wells.
I will restrict the discussion to the case of two atoms in state |↑〉 and one atom
in state |↓〉. In the most interesting case of very strong repulsive interactions,
double occupancies will be suppressed. Therefore, to get a first intuition, we can
assume that the eigenstates are built up out of the states |↑↑↓〉,|↑↓↑〉 and |↓↑↑〉.
The corresponding Hamiltonian in this basis is thus given by

H = Jse
2


−1 1 0
1 −2 1
0 1 −1

 , (6.7)

where Jse = 4J2

U
is the second order tunnelling process called superexchange

coupling. First order tunnelling is fully suppressed in this limit, as it always leads
to double occupancies. The next leading perturbative term, given by Jse, is thus
the process where the doubly occupied state is only a virtual intermediate state,
resulting in the expression for the superexchange coupling [236]. The ground
state for the balanced triple-well is given by

|W 〉 = 1√
6

(|↑↑↓〉 − 2 |↑↓↑〉+ |↓↑↑〉) (6.8)

This is the so-called W state [88, 237] which is tripartite entangled and thus not
biseperable.2 The energy gap from the ground state to the first excited state (of
the same symmetry) is Jse. For a realistic parameter set with U = 10J , we have
Jse = 0.25J which is only on the order of 2π · 25 Hz such that the preparation of
such a state is very challenging but not yet fundamentally impossible. We nu-
merically confirm that for U = 10J , now taking into account all states within the
Hubbard model, the ground state is indeed close to the W state. A possible adia-
batic route to this state is illustrated in figure 6.4 and builds on the same ideas as

2For two qubits, as in the case of the double-well, all maximally entangled states can be
transformed into each other by local operations and thus fall into the same class of Bell
states. As introduced in section 2.1, this is not the case for three qubits any more as there
exists both the class of W and GHZ states which cannot be transformed into each other by
local operations [88].
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Figure 6.4.: Energy spectrum of the lowest band Hubbard model of three
particles in three wells. A: Lowest band eigenstates of the balanced double-
well as a function of the tilt δ1. Here U = 10J and δ2 = 20J . This is conceptually
very similar to figure 6.3 B, and for a large detuning δ1 the state again separates
into a product state. B: Eigenstates as a function of the tilt δ2 for U = 10J and
δ1 = 0. For δ2 = 0 the state is to a good approximation given by the (maximally)
tripartite entangled W state. Therefore these plots show that there is a suitable
adiabatic route from a product state to the W state with the energy gap always
larger than the final state gap Jse.

used before in the double-well case. Here, the tilt δ1 between the middle and the
right well, as well as the tilt δ2 between the leftmost and the middle well, is intro-
duced. The experimental preparation of this state pointed out some fundamental
limitations of our preparation scheme: We set the depth of the individual wells
by stabilizing the optical power of the microtraps recorded with a photodiode
via a digital PID loop. In order to enable tunnel coupling, the individual light
distributions have to overlap. Therefore, it is not possible to directly record the
power of the wells independently, and we instead measure only the total power of
all tweezers. In turn, we have to rely on the assumption that the relative power
between the wells is stable and does not drift over time. This is approximately
the case, as we precisely control the rf power which sets the percentage of light
deflected into the respective microtrap path in the AOD. However, in particular
as this is an active element, we can have (among other effects) temperature drifts.
Note that, as the small energy scale of the tunnel coupling of O(100 Hz) is, for a
fixed distance between the wells, set by the much larger energy scale of the overall
trap depth of O(50 kHz), we need a very high relative stability of at least 10−4 in
order to study itinerant systems. For a fixed experimental sequence we can indeed
achieve this. The requirements for studying systems where the relevant energy
scale is given by the superexchange instead of the regular tunnelling become even
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more stringent, however. In addition, adapting the experimental sequence (for
example with a different time when the microtraps are switched on) can also lead
to a different steady state temperature. As a consequence, we have to calibrate
the relative depth between all pairs of microtraps in principle for each different
sequence. This is already extremely challenging for three wells and nearly impos-
sible for larger systems.3 Due to these limitations, it was not possible to prepare
the W state near deterministically. Instead, the prepared state (labelled |2〉 in
figure 6.2) will be used as a test ground to study a priori unknown (mixed) states
with the methods which will be developed in this chapter.
In addition to the states outlined above, we can also prepare hybrid states by
placing a spectator atom in an isolated microtrap next to a double-well of inter-
acting and tunnel-coupled atoms (state |1〉). In addition, we can use tailored rf
pulses to drive transitions between |↑〉 and |↓〉 atoms. By applying a global π/2
pulse to the state |↑↑〉, we prepare the state |C〉 = 1

2 (|↑〉+ |↓〉)L ⊗ (|↑〉+ |↓〉)R
which will provide an important example of a simple state (as it might be sym-
bolically written down as |→→〉), which can appear to be strongly correlated if
measured in an unfortunate choice of basis. In fact, as will be discussed later,
the results shown in figure 6.1 above are for exactly this state.

6.1.2. Detection of atoms in real and momentum space

For the state reconstruction and entanglement certification, we will rely on mea-
suring the single-particle resolved densities of the different spin states in real and
momentum space based on the scheme introduced in chapter 5.

In-situ measurements

The typical spacing between different wells for the experiments described in this
chapter are on the order of 1 µm to 10 µm. Unfortunately, this is smaller than
our resolution of the imaging method, thus prohibiting direct in-situ imaging.
However, we still have the the matterwave optics toolbox described in section 5.3
at our disposal. In-situ imaging is thus achieved with a three-step protocol as
illustrated in figure 6.5:

• Projection: We project the wave function onto the individual wells by
rapidly increasing the depth of the tweezers to a depth were tunnelling is

3In order to make progress in this direction, a stabilization of the individual wells is needed.
One possible idea is to use that the AOD not only deflects the light in different directions
but also changes the frequency. The frequency difference between the wells is typically on
the order of a few MHz. It might be possible to resolve it with a very fast photodiode. Such
a stabilization setup is not yet implemented.
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Figure 6.5.: In-situ measurements in a three well system. A: Schematic il-
lustration of the three-step protocol based on projection, imprinting a momentum
and time-of-flight expansion. The protocol for a two-well system follows analo-
gously. B: Typical example of an in-situ measurement. Shown is the histogram
of measured positions after time of flight expansion in the waveguide potential
before (upper panel) and after (lower panel) integrating out the momentum or-
thogonal to the 1D axis. Note that the middle well features a much more narrow
distribution, as the atoms were confined during the time-of-flight. As the distri-
butions from different wells fully separate, we discretize the measured positions
into three bins and recover the in-situ populations with a fidelity of above 99 %.
Adapted from [99].

fully suppressed.

• Imprinting momenta: We imprint a distinct relative centre-of-mass mo-
mentum ki onto the wave function of each well by displacing the position
of the wells, followed by a time evolution of a quarter of the trap period in
the microtrap.

• Time-of-flight expansion: After the first T/4 evolution, we switch off
the microtraps and let the atoms expand in a much more shallow waveguide
potential (as in figure 5.6) aligned onto the axis connecting the microtraps
to extract the momentum of the atoms.

Note that this procedure is an implementation of the matterwave telescope ex-
plained in section 5.3. The only difference is that in particular for the first T/4
expansion, the tight tweezer potential is not well approximated by a harmonic
confinement. Therefore, we measure a significant distortions of the wave func-
tions. Crucially, as we imprint a relative centre of mass momentum ki which is
much larger than any momentum spread of the on-site wave function δk, we can
nevertheless reliably infer the population of each well with around 99 % fidelity.
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Momentum space measurements

We measure the momentum space density by a T/4 time-of-flight expansion in
a very elongated optical waveguide potential as explained in section 5.3. To this
end, we use various configurations of optical dipole traps with typically around
40 Hz trapping frequency along the multi-well axis, resulting in expansion times
of around 6 ms. The weak axis of the waveguide is misaligned with respect to the
multi-well axis by about 1°, which manifests itself in a slightly reduced correla-
tion amplitude measured as discussed below. In addition, we also slightly probe
the anharmonicity of the waveguide potential such that the mapping between
momentum and position after time of flight becomes non-linear. We compensate
this to first order by a quadratic rescaling of the measured momenta [99].

6.1.3. Single-particle coherence

Before discussing correlations of two and more particles, it is instructional to first
understand the results of a single particle in one or two wells.
The on-site wave function of a single particle in the ground state of a single
well is given by the corresponding Wannier function. For this discussion, it is
fully sufficient to assume a Gaussian shape. Therefore, also the momentum space
wave function is Gaussian with an inverted width. If we detect the atom after
time-of-flight and repeat the experiment many times, we thus sample this wave
function. This is fully analogous to a single slit diffraction experiment, where the
on-site wave function takes the role of the aperture function of the slit. In turn,
if a single-particle is delocalized over two wells, this is analogous to a Young’s
double-slit experiment. Experimentally, we can directly prepare the states |φ±〉 =√

1
2 (|L〉 ± |R〉) (in the double-slit analogy, in case of the ‘-’ sign an additional π

phase shift has to be imprinted on one of the slits). A histogram of the measured
momenta, which corresponds to the sampled momentum space wave function, was
already shown in figure 5.6. We observe only a few diffraction orders as the scale
of the inverse lattice spacing is not much smaller than the scale of the Wannier
function in momentum space, which is inherent to the scheme of tunnel-coupling
the sites by partially overlapping the individual microtraps. This challenge of
scale separation will show up also for large systems, where in general we have to
ensure that the length scale of the full system is larger than the typical correlation
length, which in turn has to be larger than the spatial resolution.

148



6.2. Correlations and entanglement in a double-well

6.2. Correlations and entanglement in a double-well

The first important set of states to be considered are the ground states of the
balanced double-well populated with two particles, distinguishable by their spin
projection in a broad range of U/J , covering both the strongly attractive and re-
pulsive regime. For very strong attractive interaction, the ground state is approx-
imately given in the particle basis by |ψ−∞〉 =

√
1
2 (|LL〉+ |RR〉), while for strong

repulsive interactions it is given by |ψ+∞〉 =
√

1
2 (|LR〉+ |RL〉). Both states can-

not be written as a product state in this partitioning and thus feature particle
entanglement. On the other hand, the state for vanishing interaction strength
|ψ0〉 = 1

2 (|LL〉+ |LR〉+ |RL〉+ |RR〉) =
√

1
2 (|L〉+ |R〉)↑ ⊗

√
1
2 (|L〉+ |R〉)↓ is

fully separable and thus does not have particle entanglement. How do we charac-
terize these states and ultimately also certify the entanglement? We could start
by measuring in-situ correlations. For example for the state |Ψ+∞〉, we expect
very strong correlations of the form that each time the spin up atom is detected
in the one well, the spin down atom is detected in exactly the other well. These
correlations therefore tell us that the state is built up of the basis states |LR〉 and
|RL〉. We could however still have any incoherent superposition of these basis
states. In order to reconstruct the state and certify the entanglement, we have to
additionally extract the coherence between the two states |LR〉 and |RL〉, by a
suitable (two-particle) interference experiment. As I will explain in detail below,
we can achieve this by measuring second order density correlations in momentum
space. The intuition is that the two states are connected by an exchange process
(here this is the tunnelling dynamics) with a certain momentum scale associated
to it. If there is a fixed phase relation between these states, this coherence thus
manifests itself in a two-particle correlation feature of the corresponding momen-
tum scale. This is very similar to the case of Bell measurements, where also a
measurement in two different (conjugate) bases is needed to extract the entan-
glement [36, 48, 238].
It should be stressed that we can also apply the second natural partitioning,
namely the different spatial modes. Here, the state |ψ0〉 can be written down as
|ψ0〉 = 1

2 (|↑↓, 0〉+ |0, ↓↑〉+ |↑, ↓〉+ |↓, ↑〉), which is in fact not a separable state.
Thus this non-interacting state of delocalized particles features mode entangle-
ment.
In the experiment, we prepare the ground state of our two-site Hubbard model
for different values of U/J . We fix the tunnelling rate to J = 2π · 77± 1 Hz and
tune the on-site interaction strength U by tuning the magnetic field in the range
B ∈ [525 G, 625 G], corresponding to U/J ∈ [−5.9, 18.5]. Experimentally, it is
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easier to prepare states with strong repulsive interactions compared to strong
attractive interactions, as we are limited by the stability of the relative depth of
the tweezers, which is less detrimental for U/J � 1 where the atoms are forced
onto different tweezers by the repulsive interaction strength. As described above,
we record the in-situ position of all atoms for approximately 1000 independent
realizations. In addition, we measure the (in-situ) momentum distribution of all
atoms for approximately 4000 independent realizations. We postselect the data
for all images where we identify exactly one atom per spin state. The postselec-
tion rate, which is a combination of preparation and detection fidelity, is ≥ 80 %
for all datasets. In order to visualize the data, we construct a two-dimensional
histogram of position (momentum) of the first atom in one dimension and the
position (momentum) of the other atom in the second dimension using a bin-
size of 5.4 µm× 5.4 µm. Therefore, each entry in the histogram is the result
of a combined coincidence measurement of both particles. This is shown for a
selection of datasets in figure 6.6. In the in-situ distribution, we observe that
for strong attractive interactions the probability of detecting both particles in
either the left or the right well is strongly enhanced over detecting one in the
left and the other in the right well. In return, for strong repulsive interactions
the atoms populate almost exclusively different wells. In-between, for vanishing
interactions, all four combinations {|LL〉 , |LR〉 , |RL〉 , |RR〉} are approximately
equally likely. Note that while the conditional probabilities have this interesting
structure, if we integrate out the position of one of the particles by integrating
out the corresponding axis of the 2D histogram, we do not observe any struc-
ture as each particle individually is equally likely to be observed in each of the
wells. From this we can infer that indeed the second order correlations are rel-
evant in this situation.4 As we are only interested in the discretized position of
the atoms, we can subdivide the histogram into four quadrants corresponding
to {|LL〉 , |LR〉 , |RL〉 , |RR〉} and thus interpret the data as a direct measure-
ment of the correlation function 〈n↑(x1), n↓(x2)〉, where x1, x2 ∈ [L,R]. For the
momentum space density measurement, we can similarly interpret the data as
a measurement of the momentum correlation function 〈n↑(k1)n↓(k2)〉. Here, al-
ready the non-interacting case seems to show quite intricate behaviour. This can
be understood by first integrating out one of the atoms, by again integrating out
one of the axes of the histogram. We arrive at a single-particle distribution which
corresponds to the interference pattern of a single particle delocalized over the
double-well as discussed above. The full two-dimensional pattern is thus consis-

4More formally, we could extract the connected part of the second order correlation function
to arrive at the same conclusion. I will come back to this below.
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Figure 6.6.: Correlations in the Hubbard dimer. A: Measured in-situ cor-
relations. Shown are the spatial coincidence measurements after the in-situ mea-
surement protocol introduced above. By discretisation into the four quadrants,
the populations in the different two-particle modes can be extracted. B:Measured
momentum correlations. Shown in the upper panel are the spatial coincidence
measurements after the momentum measurement protocol introduced above. In
the lower panel, the single-particle momentum distribution, obtained by inte-
grating out the momentum of one of the particles (corresponding to one spatial
dimension of the above correlation map), is shown. C: Measured pair and centre-
of-mass correlators ξ(d) and χ(s) extracted from the data shown in B. Indicated
by the grey shaded area is the regime of momentum correlation strength which, in
conjunction with the measured in-situ correlations, cannot be explained without
any entanglement present. Adapted from [29].
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tent with the pattern of two independent delocalized particles, as given by the
outer product of the single-particle interference pattern (just like in position space
as well). This correlation structure directly reflects the expected two-particle
state, which also can be written as the product state of two delocalized particles
|ψ0〉 =

√
1
2 (|L〉+ |R〉)↑ ⊗

√
1
2 (|L〉+ |R〉)↓. In turn, we expect the two-particle

coherence, which would indicate that we indeed realize a strongly correlated and
even (particle-) entangled state, to show up as a deviation of the correlation
function from the outer product structure. Indeed, for strong attractive and
repulsive interactions, a ‘stripe pattern’ along the diagonal and antidiagonal, re-
spectively, is observed in the correlations. At the same time, the single-particle
distribution approaches the single slit pattern of a localized particle. In the mo-
mentum density correlations shown in figure 6.6, the diagonal axis represents the
relative momentum between the two particles, while the antidiagonal represents
the centre-of-mass momentum. Therefore, the results indicate that for strong
repulsion, there are certain relative momenta which are strongly suppressed or
enhanced while for strong attractions, there are certain centre-of-mass momenta
enhanced or suppressed. Together with the periodicity of the pattern, we can
indeed conclude that this effect is a consequence of the two-particle coherence
between |LR〉 and |RL〉 or |RR〉 and |LL〉, respectively. In order to make this
even clearer and more quantitative, we extract the pair correlators in the relative
momentum coordinate d = k1 − k2 as

ξ(d) =
∫

dκ 〈n↑(κ− d/2)n↓(κ+ d/2)〉
〈n↑(κ− d/2)〉 〈n↓(κ+ d/2)〉 , (6.9)

and in the centre-of-mass coordinate s = k1 + k2 as

χ(s) =
∫

dκ 〈n↑(κ+ s/2)n↓(s/2− κ)〉
〈n↑(κ+ s/2)〉 〈n↓(s/2− κ)〉 . (6.10)

Here, we have also divided out the envelope on top of the correlations due to the
finite spread of the individual momentum distributions.
The pair correlator is also shown in figure 6.6. We observe oscillations in the rela-
tive coordinate for repulsive interactions with almost full visibility. For attractive
interactions, we observe oscillations in the centre-of-mass coordinate. They have
a slightly reduced contrast due to the limited stability of the relative depth of
the tweezers as explained above. Without interactions, we do not observe oscil-
lations. From the discussions above we anticipate that we indeed have particle
entanglement for strong interactions, as we observe strong correlations in two
conjugate basis sets. We certify this by constructing, in close analogy to typical
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6.2. Correlations and entanglement in a double-well

Bell measurements, an appropriate entanglement witness. The exact form of the
witness is worked out in [29, 239] and indicated in figure 6.6 by a grey shaded
area. Indeed, we can certify particle-entanglement for |U |/J & 5.
At this point, it is useful to take one step back and recapitulate what we did
and also did not achieve so far. We have prepared a strongly correlated initial
state of two distinguishable particles. By the combined measurement of second
order correlations in position and momentum space, we showed that the systems
indeed features two-particle coherence for sufficiently strong interactions which
does not allow for a description in terms of product states alone. However, we
did not draw any quantitative conclusions on for example the purity or fidelity of
the state prepared or on the amount of entanglement, and we also did not discuss
the extension of these methods towards larger systems. Therefore, what is left to
discuss is:

• Entanglement measure: Instead of only certifying that we have some
entanglement by using a witness, we could try to quantify it with the help
of an entanglement measure.

• State reconstruction: We can try to characterize the initial state com-
pletely, corresponding to a reconstruction of the density matrix. From there
on, we can calculate any given quantity of interest.

• Larger systems: We can try to identify quantities which will be also useful
for larger systems.

For a qualitative discussion, it was enough to only compare to the pure ground
state of the Hubbard model. For a quantitative discussion, however, we have to
consider the full density matrix of the potentially partially mixed state. We write
it down in the particle basis {|LL〉 , |LR〉 , |RL〉 , |RR〉} where it takes the general
form

ρ =


PLL ρ1,2 ρ1,3 ρ1,4

ρ∗1,2 PLR ρ2,3 ρ2,4

ρ∗1,3 ρ∗2,3 PRL ρ3,4

ρ∗1,4 ρ∗2,4 ρ∗3,4 PRR

 , (6.11)

with the real valued population on the diagonal and the complex valued coher-
ences. Thus, we have in total 16 real parameters fixing the state. The density
matrix is also shown in figure 6.7. We can extract the populations directly from
the in-situ measurement. Similarly, we can expect to extract the coherences from
the momentum space correlation measurements, where the magnitude of a coher-
ence factor will be determined by the strength of a correlation pattern and the
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Figure 6.7.: Reconstruction of the density matrix. A: Density matrix of
the Hubbard dimer. The diagonal entries are given by the (in-situ) populations
(green), the off-diagonal entries by the two-particle coherences (blue), and the
other entries by single-particle coherences (red). B: The populations can be
directly extracted from the measured in-situ correlations by discretizing the co-
incidence histogram into the four quadrants. C: The two-particle coherences and
the sum of two respective single-particle coherences can be extracted by fitting
the basis functions obtained from equation 6.16 to the momentum space coinci-
dence histograms. Adapted from [29].
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6.2. Correlations and entanglement in a double-well

phase set by the phase of the pattern. More explicitly, within the framework of
the Hubbard model we can define the operator annihilating (creating) a particle
of spin σ ∈ {↑, ↓} centred at position xi ∈ {L,R} or momentum k in terms of
the Wannier function Φ and its Fourier transform Φ̃ by

Φ̂(�)
σ,i = Φ(∗)(x− xi)ĉ(�)

σ,i, (6.12)
ˆ̃Φ(�)
σ =

∑
i∈{L,R}

Φ̃(∗)(k)e−ikxi ĉ(�)
σ,i. (6.13)

Neglecting, for the ease of notation and visual clarity, the envelope given by the
Wannier function from now on, we can write down the second order momentum
correlation function

〈n̂k1↑n̂k2↓〉 = 〈 ˆ̃Φ�
↑(k1) ˆ̃Φ↑(k1) ˆ̃Φ�

↓(k2) ˆ̃Φ↓(k2)〉
=

∑
k,l,m,n∈{L,R}

eik1(xl−xk)+ik2(xn−xm) 〈ĉ�↑,kĉ↑,lĉ
�
↓,mĉ↓,n〉 .

(6.14)

Already here we can observe, that the intuition of coherences being related to a
certain correlation pattern given above, is reflected in the formal structure of the
density matrix by the oscillating phase factors. In particular, it is clear that the
discrete nature of the double-well leads to discrete frequencies in the correlation
function. To carve out the connection to the density matrix, we also write out
the correlation matrix C in the same representation as the density matrix

Cn̂k1↑n̂k2↓
=


1 e−iak2 e−iak1 e−ia(k1+k2)

1 e−ia(k1−k2) e−iak1

1 e−iak2

h.c. 1

 , (6.15)

where a = xL − xR denotes the spacing of the double-well. In writing down
the correlation function in the matrix representation, we explicitly calculated
the expectation values of the various combination of creation and annihilation
operators ĉ(�)

σ,i, encountered in 6.14, with respect to the different combinations of
basis vectors.
Finally, we can relate the measured correlations 〈n̂k1↑n̂k2↓〉 = Tr

(
ρCn̂k1↑n̂k2↓

)
to
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the density matrix

〈n̂k1↑n̂k2↓〉 = PLL + PLR + PRL + PRR

+2R
[
(ρ1,3 + ρ2,4) eiak1

]
+2R

[
(ρ1,2 + ρ3,4) eiak2

]
+2R

[
ρ1,4e

ia(k1+k2)
]

+2R
[
ρ2,3e

ia(k1−k2)
]
,

(6.16)

or, equivalently, written down in quadrature components and using that PLL +
PLR + PRL + PRR = 1

〈n̂k1↑n̂k2↓〉 = 1
+2R [ρ1,3 + ρ2,4] cos (ak1) + 2I [ρ1,3 + ρ2,4] sin (ak1)
+2R [ρ1,2 + ρ3,4] cos (ak2) + 2I [ρ1,2 + ρ3,4] sin (ak2)
+2R [ρ1,4] cos (a(k1 + k2)) + 2I [ρ1,4] sin (a(k1 + k2))
+2R [ρ2,3] cos (a(k1 − k2)) + 2I [ρ2,3] sin (a(k1 − k2)) .

(6.17)

This leads us to an important conclusion: By extracting different correlation
patterns with a discrete frequency, set by the distance between the wells, we can
directly extract the two-particle coherences ρ1,4 and ρ2,3, showing up as (anti-)
diagonal patterns, and in addition constrain the one-particle coherences ρ1,3 +ρ2,4

and ρ1,2 + ρ3,4 showing up as horizontal and vertical patterns. In total, we can
thus extract 12 out of the 16 real parameters. In practice, we determine the
parameters by fitting the different basis patterns to the data. Here, the spacing
a and the envelope function, which now has to be reintroduced, are is fixed and
extracted independently. For a typical example, this is also shown in figure 6.7.
With most of the entries of the density matrix fixed, we can can come to more
qualitative conclusions. In [29], we have for example used this information to
construct a bound on the concurrence (see also section 2.1) based on the measured
entries. The concurrence is a measure of entanglement (of formation) and thus
not only certifies the existence of entanglement, but also quantifies it in units
of the entanglement of a perfect Bell pair. This is a quite important step for
the exact system at hand, but it is only applicable to a two-qubit system as the
relation between the concurrence and the entanglement of formation has no known
extension to larger systems (in particular as no single class of entanglements exists
beyond two qubits). Therefore, I will not elaborate on the concurrence here and
rather focus on concepts where there is some potential of scalability.
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6.2. Correlations and entanglement in a double-well

A very successfully concept also for larger systems is the entanglement entropy
[37, 114]. The general intuition is the following: For a pure state, the entropy as
measured by the Rényi or von Neumann entropy is by construction exactly zero.
If this state is a product state in a certain partitioning, also the entropy of the
individual subsystems has to be zero. Only if there is entanglement between the
systems, each subsystem individually has a finite entropy (and even might appear
to be thermal [41]) despite the total entropy remaining zero.5 More in general, an
entropy of a subsystems in a specific partitioning which is higher than the total
entropy of the combined system indicates entanglement [86]. Importantly, this
concept is not limited to the particle partitioning but instead can also be used
when partitioning the system into modes.
For this discussion, we will use the Rényi entropy of second order which is defined
as

S = − ln Tr
(
ρ2
)

= − lnP, (6.18)

where P is the purity of the density matrix and ρ can be either the full density
matrix or the reduced density matrix with one subsystem traced out. If we want
to determine the entanglement entropy in the particle partitioning, we have to
trace out one of the hyperfine states (without loss of generality we choose the
spin down state) and are left with the reduced density matrix

ρ↑ =
PLL + PLR ρ1,3 + ρ2,4

h.c. PRL + PRR

 . (6.19)

We can directly extract all of the entries from the measured correlation functions
as described above.
Instead of tracing out one spin state, we can also trace out one of the two wells
(here, the right well) and thus assume a partitioning with respect to the spatial
modes. In the basis {|↑↓〉 , |↑〉 , |↓〉 , |0〉} we arrive at

ρL =


PLL

PLR

PRL

PRR

 . (6.20)

5While the formal concept of the entanglement entropy was only written down in the second
half of the 1990s (see [37, 240–242]), it can actually be seen as a defining property of
entanglement. Already Erwin Schrödinger wrote in his take on the EPR paradoxon in 1935:
‘The best possible knowledge of a whole does not include the best possible knowledge of its
parts.’ [35].
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As only populations and no coherences contribute in this case, we can also directly
determine this density matrix. As a result, we can calculate the entanglement
entropy SL = − ln Tr (ρ2

L) in the mode partitioning and S↑ = − ln Tr
(
ρ2
↑

)
in the

particle partitioning for all values of U/J . This is illustrated in figure 6.8.
Indeed, we observe that the entropy in the subsystem is finite and strongly de-
pendents on the interaction strength. In the particle partitioning, we have a
minimum for vanishing interactions and the entropy increases for increasing in-
teractions |U |/J . Quite contrary, the entropy in the mode partitioning is largest
for U/J = 0 as the system is maximally delocalized in this case. Interestingly,
the mode entanglement entropy is always larger than the particle entropy (while
approaching each other for |U |/J � 1). This is due to the fact that the coherent
(single-particle) tunnelling dynamic always ensures that, without knowledge of
the other spin state, the spatial mode of a single spin component is unknown.
We can also calculate the expected ground state entropy of the Hubbard dimer. In
particular for positive interaction strength, we observe a reasonable agreement.
However, in order to actually quantify the entanglement, we have to compare
to the total entropy of the full system, as we do not want to assume that we
have fully deterministically prepared the ground state. Crucially, for this, we
either need the full density matrix, or, alternatively, additional collective mea-
surements involving multiple copies of our system [114]. For larger systems, the
more promising path is most likely to aim for collective measurements. For rather
small systems, estimating the full density matrix is however still feasible and thus
what we opt for here. Note that we have already determined 12 out of the 16
entries. In principle, we could also try to measure the remaining entries and thus
perform a full quantum-state tomography. In order to access the single-particle
coherences, we would have to either implement single spin rotations selectively
on the individual wells and spins, specific gate operations involving one ore two
wells [29, 243], or alternatively and more in line with the matter-wave optics
framework, perform a time-of-flight expansion for T/8 to access the density in-
between position and momentum space [244]. Here, we instead try to infer the
most likely density matrix based on the measured entries (including their error
bounds) based on a Bayesian estimate.
Our reconstruction scheme is based on [245], with additional details on our im-
plementation given in [99]. In particular, in the reconstruction, we have to make
sure to restrict ourselves to the space of physical density matrices, even though
statistical and systematic measurement uncertainties can lead to unphysical prop-
erties, such as small eigenvalues becoming negative. We construct a likelihood
function L(ρ) = p(M |ρ)/p(M) in terms of the measured data M = {Mj} (pop-
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Figure 6.8.: Reconstructed density matrices and measured Rényi en-
tropy. A: Reconstructed density matrices for three different values of U/J . The
absolute value of the entry is represented by the size of the square, the phase
is encoded in colour. This representation allows for an instructive qualitative
interpretation: The block structure visible for strong interactions (U/J = 18.5
and U/J = −5.9) indicates particle entanglement as population and coherence
of a subset of two-particle states are large and of similar magnitude, while the
maximum delocalization over all entries visible for U/J = 0 suggests mode en-
tanglement. B: Measured Rényi entropy in the mode partitioning tracing out
the right mode (green), in the particle partitioning tracing out the spin down
mode (red), and in the full system (blue). The Rényi entropy of the subsystems
is calculated based only on the directly measured entries of the density matrix.
The entropy of the full system is calculated based on the Bayesian estimate of
the full density matrix. Adapted from [29].
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ulations and coherences) and the conditional probability p(M |ρ) with respect to
the hypothesis density matrix ρ. Assuming the errors on Mj to be Gaussian
distributed with a width σj, we arrive at

L(ρ) =
∏
j

1√
2πσ2

j

exp

−
(
Mj − Tr[M̂jρ]

)2

2σ2
j

 , (6.21)

where M̂j is the projector corresponding to the measurement Mj. Ultimately, we
are interested in the posterior distribution πf (ρ) dρ, which can be interpreted as
the probability distribution of possible density matrices describing the measured
data. As a consequence, it can be used to estimate the expectation value of any
observable O via

〈O〉 =
∫
O(ρ)πf (ρ) dρ. (6.22)

Within this procedure, all the measurements and their uncertainties are fully
reflected in the estimate. In a similar fashion, also the best estimate of the full
density matrix is given by

ρBME =
∫
ρπf (ρ) dρ. (6.23)

The posterior distribution is obtained, up to a proper normalization, from the
likelihood function multiplied with a prior distribution π0(ρ) dρ which contains
any prior information we have on the system,

πf (ρ) dρ ∝ L(ρ)π0(ρ) dρ. (6.24)

We do not want to assume any specific prior knowledge on the states. However,
via this step we can implement the restriction to physical density matrices, as the
likelihood method itself is not formulated in a quantum mechanical framework.
Therefore, the Hilbert-Schmidt prior is used here, which only requires positive
definiteness and unity trace but is otherwise unbiased. In practice, we parametrize
the density matrices as ρ = T̂ �T̂ in terms of the random complex 4× 4 matrix T̂ .
This form ensures that ρ is always a positive semidefinite Hermitian matrix with
trace 1. We now sample the posterior distribution using a Hamiltonian Monte
Carlo algorithm. As we sample the space of physically allowed entries with the
measurement errors on the individual entries taken into account, we can also
directly extract credibility intervals of ρBME or any observable. I would like to
stress the importance of this result. The credibility intervals directly translate to
uncertainties on any observable calculated according to equation 6.22, thus allow-
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A B C

= + = +

Figure 6.9.: Bayesian reconstruction scheme. A:We experimentally measure
the real populations, as well as the complex two-particle coherences together
with the sum of two respective single-particle coherences. B: The reconstructed
density matrix based on the measurement results (and measured uncertainties)
shown in A. In addition to the most likely matrix which is shown here, we also
obtain the full posterior distribution of density matrices. C: Real values of the
covariance matrix as a measure for the uncertainty of the individual entries. Note
that the entries are partially correlated. For example, the diagonal entries are
correlated by the requirements of Trρ = 1, while ρ1,2 and ρ3,4 (ρ1,3 and ρ2,4) are
anti-correlated due to the sum of the two entries being constrained. Adapted
from [29].

ing for qualitative statements in addition to merely a best guess. The Bayesian
reconstruction process is illustrated in figure 6.9.
With the density matrix reconstructed, we can now extract the entropy of the
full system according to equation 6.18. Note again that the second order Rényi
entropy is directly related to the purity of the system. The results are also pre-
sented in figure 6.8, together with a few relevant examples of reconstructed density
matrices. Only now we can make a definite statement about the entanglement
entropy in the system, as we now no longer have to assume a more or less pure
state prepared based on other observations, but directly calculate the purity from
the measurements taken. Indeed, we see that the particle entanglement surpasses
the full state entropy for strong repulsive interactions. In addition, we observe
that the purity of the system, as already anticipated above, is reduced for strong
attractive interactions, such that here entanglement cannot be clearly certified.
The entanglement entropy in the mode partitioning is always larger than the pu-
rity of the full system, indicating coherent delocalization.
Here we encounter the first example of a general question which will also become
relevant in section 6.4: Which partitioning is actually relevant? The most com-
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mon form of entanglement as a resource for computation or communication is the
entanglement between the hyperfine states. Here, each party (typically referred
to as Alice and Bob) take control over one spin sector. In this language, our
first image of the spin up states would be Alice’s measurement and the second
image Bob’s, with the entanglement between the two parties a possible resource.
On the other hand, we measured also entanglement between modes. In this
context, I should recall the observation made in the introduction that also the
single-particle state |φ〉 =

√
1
2 |0, ↑〉± |↑, 0〉 of a delocalized atom already features

mode entanglement. Thus, typically this entanglement is rather interpreted as
the computational cost of representing this state classically in terms of its particle
number fluctuations. It has been realized, though, that also mode entanglement
can be used as a resource for quantum teleportation [116]. We will come back to
this question with the additional complication of indistinguishability introduced
in section 6.4.
For now, let me summarize what was achieved in this section:

• I showed that the imaging scheme introduced can be indeed used to measure
correlations in position and momentum space.

• Based on this, I presented a characterization of the correlation and entan-
glement properties of a Hubbard dimer for a broad range of interaction
strengths. It was possible to certify and quantify both mode and particle
entanglement.

• It was possible to fully reconstruct the density matrix though a Bayesian
estimate.

• It became obvious that it can be a major advantage to use any intuition
you already have on the state to be characterized in order to choose an
appropriate measurement basis. This was rather straightforward in this
case as I could assume with some confidence that the state is close to the
ground state of the Hubbard dimer. For a true many-body state, this can
in general be a hard task.

• Based on the methods introduced here, in line with the ultimate goal of
a general toolbox, also specific measurements on larger systems now seem
possible. For example, pairing in momentum space, as encountered for
a BCS state, should also manifest itself as correlations at finite relative
momenta, similar to the ‘stripes’ observed in this section.
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6.3. Identical particle correlations

6.3. Identical particle correlations

In the previous section 6.2, I discussed different manifestations of correlations and
entanglement in a double-well of two atoms with different spin projections. As
both particles were distinguishable by their hyperfine states, the fermionic nature
of the particles did not play any role and all correlation features observed were
induced by interactions between the atoms (and their delocalization). In a more
general many-body scenario, we will however encounter a very complex interplay
between correlation effects based on quantum statistics and interactions. This
is one important reason to first study correlations arising from the many-body
interference of indistinguishable fermions isolated from interaction effects. The
many-body interference of massive fermionic fields is however also an important
research topic on its own. The development of quantum optics has been one of
the driving forces in our modern understanding of quantum mechanics [246, 247]
and is rooted in correlation studies of massless bosonic fields, in particular facili-
tated by the advent of high purity single photon sources [248, 249]. Comparable
fermionic sources and detection methods, on the other hand, are not yet read-
ily available. In particular, as opposed to massless photons, fermionic fields are
fundamentally massive and thus relevant also for questions involving quantum
gravity [57, 250]. For an overview over the current status see [251].
Independent and thus non-interacting indistinguishable particles are completely
unaware of each other except for the necessity to properly symmetrize the total
wave function. In this section, I will discuss the setting where all internal degrees
of freedom are identical. Therefore, the symmetrization has to be performed in
the external degrees of freedom which are the position or momentum.6 In second
quantization, this is implicitly captured by the commutation relations of the field
operators while in first quantization, the symmetrization is explicitly performed.
Independently of the description, second (and higher) order correlations will be
exclusively introduced by pairwise exchange operations. In general, the correla-
tions arising are often times summarized by fermionic antibunching or bosonic
bunching. The latter effect was famously used by Hanbury Brown and Twiss
in the context of intensity interferometry of extended stellar objects [252, 253].
There are however also several experiments with ultracold atoms observing this
effect [254–256]. In order to gain some intuition, in figure 6.10 a toy model is
depicted and explained. An important distinction of the experiments I describe
in this section is that we are preparing a deterministic number of fermions in a

6Note that we implicitly assume the validity of the lowest band approximation throughout
this chapter.
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Figure 6.10.: Toy model of the Hanbury Brown and Twiss effect. In
this toy model, two distinct emitters (single atoms, single photon sources etc.)
depicted in green with a distance a from each other, and two distinct detectors in
the far field (that is with l � a) and a distance d from each other are assumed.
Coincident measurements of the signal from one emitter in one detector and
the signal from the other emitter in the second detector are studied. There are
two distinct two-particle paths P1 and P2 leading to a coincidence measurement.
Interference based on the phase difference between the two paths is observed.
Upon varying d, sinusoidal (cosinusoidal) oscillations in the coincidence rate are
therefore expected for fermionic (bosonic) emitters, while for classical emitters
(where a which-way information is provided), there is no interference between P1
and P2. If the number of emitters is increased (grey circles), the (Fourier) sum
of all possible two-path interference terms has to be taken into account.

discrete set of modes. This can be seen as a direct implementation of the model
depicted in figure 6.10. Thus, the experiments presented are specifically related
to single photon quantum optics experiments, in particular the Hong-Ou-Mandel
effect [249, 257]. In this section, I will focus on correlation measurements to study
many-body interference, while in section 6.4 also the entanglement properties are
discussed. The results presented in this section have been published in [30].

Two atoms in a double-well

In a first set of experiments we prepare, as described above, two identical and
independent copies of a tweezer with exactly one atom in the ground state a =
1.7 µm apart from each other. In first quantization, we expect the wave function
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6.3. Identical particle correlations

to be given by

|A〉 =
√

1
2 (|LR〉 − |RL〉) . (6.25)

This is exactly the situation depicted in figure 6.10. Note that in practice, we
actually have one atom per spin state in each tweezer. However, we always make
sure that the interactions are tuned to zero such that the spin sectors fully sep-
arate and we each time prepare two realizations of the same experiment. This
effectively doubles our statistics and allows us to limit certain systematic errors.
For each experimental run, we record the momenta of both particles. We re-
peat the experiment several thousand times, and postselect for exactly the right
atom number detected. We achieve a postselection rate of around 80 %. As be-
fore, we visualize the correlation function through the conditional momentum
distribution. The resulting histogram is shown in figure 6.11. Note that in the
construction, we had to assign artificial labels to the atoms detected.
Comparing this correlation pattern with the pattern of two distinguishable par-
ticles in the coupled double-well shown in figure 6.6, we observe a qualitative
similarity between the results shown here and and the correlations for strong re-
pulsive interactions. This is not surprising, as the wave function of two identical
fermions in first quantization |A〉 =

√
1
2 (|LR〉 − |RL〉) is identical to the ground

state wave function of the Hubbard dimer for U/J → +∞ except for a relative
phase factor of π. This phase also manifests itself in the correlation pattern as
the oscillatory pattern is shifted by half a period. As done before, we can di-
rectly relate the measured histogram to a correlation function of second order
in the momentum density 〈: nk1nk2 :〉, where we have indicated normal ordering
by : · :. The normal ordering of the operators accounts for a very subtle differ-
ence between density correlations as obtained for example by noise correlations
and single-particle based correlations. Here, we do not double count two atoms
at the same momentum, as opposed to the case of continuous density or noise
correlations, thereby avoiding the additional strong autocorrelation peak:

〈nk1nk2〉 = 〈Φ̂�
k1Φ̂k1Φ̂�

k2Φ̂k2〉 = −〈Φ̂�
k1Φ̂�

k2Φ̂k1Φ̂k2〉+ 〈Φ̂�
k1Φ̂k2δk1,k2〉

= 〈: nk1nk2 :〉+ 〈nk1〉 δk1,k2,
(6.26)

where Φ̂ is the fermionic field operator as defined before. Note that this sub-
tlety did not show up for the distinguishable particles presented above as in this
case (due to the creation and annihilation operators commuting) 〈: nk1nk2 :〉 =
〈nk1nk2〉. Very similar to before, we can define the normalized correlation function
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Figure 6.11.: Second order momentum density correlations of two iden-
tical fermions. A: Measured correlation map. In the construction arbitrary
particle labels (1 and 2) had to be introduced. As a consequence, the correlation
map is symmetrical around the antidiagonal as 〈nk1nk2〉 = 〈nk2nk1〉. B: Normal-
ized correlation function C2(d) extracted from the data shown in A. Indicated in
red is a fit to the data according to equation 6.28. Greyed out is the detection
hole where a reliable two-particle coincidence measurement is not possible. The
correlation pattern has almost full visibility. Adapted from [30].

via
C2(d) =

∫
dk 〈: nknk+d :〉
〈nk〉 〈nk+d〉

. (6.27)

It is shown in figure 6.11 as well. In all of these correlation functions, we cannot
distinguish the particles. Therefore, k1 = kα, k2 = kβ corresponds to the same
situation as k2 = kα, k1 = kβ. As a consequence, the two-dimensional correlation
function is symmetric about the diagonal k1 = k2 by construction and similarly
C2(d) = C2(−d). In addition, we suffer from spurious correlations due to a higher
probability to not detect particles if they are close to each other. We therefore
exclude this detection hole from any further analysis.
The strong correlations shown in figure 6.11 indicate a strong non-separability of
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6.3. Identical particle correlations

the wave function. This is the discrete version of fermionic antibunching observed
in continuum systems. In order to quantify this, we extract the modulation
contrast by fitting a damped cosine function, with the detection hole taken into
account, to the correlator C2. The general cosine form can be calculated in close
analogy to the calculations in 6.17, while a phenomenological decay model is
added to account for the loss of contrast at larger distances. Therefore, we use
the following function:

C2(d) = 1
2

(
1 + erf

(
|d| − s
w

))(
y0 − c · e

− d2
2χ2 cos (πd/klat)

)
. (6.28)

Here, the error function (parametrized by s and w) accounts for the detection hole
and the length scale χ for the decay of contrast for large separations. In addition,
the lattice momentum is given by klat, the offset by y0 and the contrast by c.
We determine the contrast to be 79± 2 %. The contrast is a direct measure of
the indistinguishability in our system. Very similar to the entanglement entropy
determined above for the Hubbard dimer, also in this case the strength of the
correlations (here measured by the contrast) determines how non-separable the
system is. In the example shown here, this can be interpreted as the degree to
which we have to take the antisymmetrization for indistinguishable particles into
account. We therefore explicitly certify a high degree of indistinguishability in
our system.
While the contrast is certainly large, it is in fact smaller than anticipated based
on our preparation fidelity of 95 % and the corresponding expected purity. We
attribute most of the difference to the slight misalignment angle between the
double-well axis and the imaging axis mentioned already in the beginning of this
chapter. This misalignment provides some degree of distinguishability to the wave
functions as the spatial modes do not fully overlap any more when projected onto
each other on the imaging axis defined by the waveguide potential. In fact, we
can even tune the overlap and thus the distinguishability in a controlled way.
To this end, we tune the distance between the individual wells. With a fixed
misalignment angle, this is equivalent to the relative shift of the wells’ position
in the auxiliary dimension orthogonal to the double-well axis. In the language
of quantum optics, we therefore introduce which-way information in a controlled
way. Note that in photonic experiments (as in the original HBT experiments),
such a which-way information is typically introduced by a time delay. The results
of this measurement are shown in figure 6.12
It is instructive to note the differences between the correlations observed here
and the case of (bosonic or fermionic) noise correlations in a lattice system [256].
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Figure 6.12.: Which-way information. Second order correlations are measured
for different separations of the two wells (top panel) and the contrast of the
interference pattern is extracted (bottom panel). The blue line is a guide to the
eye. The observed drop of the contrast with the separation is consistent with an
angle of around 1° between the double-well axis and the imaging axis. It allows
us to introduce wich-way information in a controlled manner, but also limits
the maximum contrast which can be observed based on the minimum separation
possible. Adapted from [30].

For noise correlations, the signal given by the density fluctuations is partially
masked by noise of the imaging light and other technical noise. Thus, the observed
contrast is smaller by several orders of magnitude and does not allow for certifying
a high degree of indistinguishability such as shown above. In addition, the noise
correlations are typically performed in a lattice, where also multiples of the lattice
spacing (or equivalently fractions of the lattice momentum) contribute. Each of
the combination of lattices sites will contribute a correlation signal as presented
above. It is straightforward (yet instructive; I have previously presented and
illustrated the calculation in [183]) to show that the expected correlation signal
in momentum space (assuming fully independent lattice sites) is thus proportional
to the Fourier sum of the real space distribution. In an infinite lattice system
(ignoring the finite resolution), thus delta peaks (or dips) at multiples of the
fundamental lattice constant are expected. With our deterministic source of
indistinguishable fermions at hand, we can directly observe the ‘build-up’ of the
Fourier sum as a weighted sum of the individual spatial distances contributing.
More precisely, for N localized sources of identical but independent fermions, we
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6.3. Identical particle correlations

expect a second-order correlation function of the form

C2(d) = 2
N2

∑
〈i,j〉

(1− cos (d(xi − xj))) , (6.29)

where 〈i, j〉 runs over all distinct pairs of emitters (atoms) at positions xi and xj.
Experimentally, we can test this expectation as we can measure each contribution
to the sum independent of the full correlation function. In addition, we have the
freedom to use different, and in particular incommensurate, lattice spacings such
that a more complex structure arises. Here, I present two datasets of a triple-
well with a12 = a23 = 2 µm and a12 = 1.6 µm, a23 = 1.5a12, respectively. For
each dataset, we prepared three identical fermions in these three different and
uncoupled tweezers and measured the momenta of all particles. For each distinct
setting, we repeated the experiment a few 10 000 times. The postselection rate is
around 60 %. In addition, we measured the correlation function for each distinct
combination of two atoms in two wells with a few thousand repetitions. The
resulting second order correlation functions are shown in figure 6.13.
For the commensurate spacing, there are three contributions with two distinct
frequencies contributing; two at the lattice momentum klat = π/a from the neigh-
bouring atom pairs and one contribution from the outermost atoms at twice the
lattice momentum. Already with only two distinct frequency components, it
can be observed that the antibunching minima become more narrow, while the
maxima are starting to get flattened out. If we would add one tweezer (with
one atom) after each other, we would thus build up the Fourier sum ultimately
leading to delta dips; one Fourier order at a time. Importantly, we can exactly
reproduce the measured second order correlation function for three atoms by a
weighted sum over the correlations measured for each combination of two atoms,
as shown in figure 6.13. By tuning the distance between the individual tweezers
to be incommensurate, we effectively double the unit cell (defined with respect
to the smallest spacing), as now all combinations of distances contribute with a
distinct frequency. This is a prototype for correlation measurements in lattices
with a more complex unit cell. Indeed, a more complex structure is observed in
figure 6.13. Nevertheless, we can again reproduce the full correlator by a weighted
sum over the individual contributions from two of the sites.
We can conclude from the measurements above that the second order correla-
tion function of any configuration of tweezers is fully described by the contribu-
tions from the pairwise exchange correlations. This is not too surprising as the
physical origin of the correlations is rooted in the pairwise anticommutation of
fermionic operators (more precisely the creation and annihilation operators and
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Figure 6.13.: Interference of three fermions in three wells. A: Schematic
illustration of the different contributions to the full correlation function (compare
to figure 6.10). B: Measurement of all possible individual correlation contribu-
tions of two atoms in two of the three wells for both a commensurate and an
incommensurate triple-well. C: Second order momentum correlations of three
atoms in a commensurate triple-well. In the bottom panel, the normalized cor-
relation function is shown. The correlation pattern is fully explained by a sum
over the individual two-particle contributions. This is indicated in red, where the
weighted sum (without any free parameters) over the two distinct two-particle
contributions, extracted by a fit to the data shown in B, is presented. D: Second
order momentum correlations of three atoms in an incommensurate triple-well.
The correlation pattern is explained by the sum over contributions from all three
distinct two-particle contributions. Adapted from [30].

crucially not the density operator). Therefore, we might prematurely conclude
that we have fully characterized the system by studying the second order corre-
lation functions. This would imply that there is no structure left in third order
density correlations. Since we have measured the momenta of all the atoms, we
can directly construct the third order correlation function 〈: n̂k1n̂k2n̂k3 :〉. The
correlation function is a three-dimensional object. In analogy to before, we can
however also construct the - now two-dimensional - normalized correlation func-
tion

C3(d1, d2) =
∫

dk 〈: n̂kn̂k+d1n̂k+d2 :〉
〈n̂k〉 〈n̂k+d1〉 〈n̂k+d2〉

. (6.30)

For both the commensurate and the incommensurate spacing, the correlation
function is displayed in figure 6.14. As can be clearly seen, there is a significant
structure in the correlation function even at third order. Once again, we have
to carefully evaluate the influence of spurious correlations. They show up if any
two of the momenta are (almost) the same, that is for either d1 = 0, d2 = 0, or
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Figure 6.14.: Third order correlation function of three fermions in three
wells. A: Measured (left) and calculated (right) third order correlation func-
tion for the commensurate triple-well. The full correlation function is three-
dimensional, therefore the normalized correlation function in the two relative
coordinates d1 and d2 is shown. There is a significant structure visible, with the
essential features shared between the measurement and the theoretical calcula-
tion. B: Measured (left) and calculated (right) third order correlation function
for the incommensurate triple-well. Again, a significant structure consistent with
the theoretical expectation is visible. Adapted from [30].

d1 = d2. But even if we exclude these regions from further discussion, there is a
significant structure left. At this point, we have to formally discuss the connected
and disconnected parts of the correlation function, a concept we implicitly already
used throughout this chapter.
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Connected correlation function and Wick’s theorem

Already when discussing the second order correlation function for either iden-
tical or distinguishable particles, we normalized the correlation function C2 by
removing the envelope on top of the correlation signal. The physical origin of the
envelope was the (auto-)correlation of the single-particle momentum distribution
(see equations 6.9, 6.10, 6.28). By dividing out these first order (that is, mean
value) density correlations from the second order correlator, we removed any in-
formation which we already could have inferred based on lower order correlations.
Similarly, I argued in the discussion of figure 6.6 that without interactions the
correlation of second order can be reproduced taking into account only the outer
product of the single-particle distributions. Also, in the definition of the third
order correlation function in 6.30, the contributions from the first order corre-
lations have already been removed. However, there are still contributions from
second order correlations which are not yet taken care of. More formally, we can
define the disconnected part of a correlation function as the sum of all contribu-
tions from lower orders and consequently the connected part - giving the intrinsic
correlations at given order - as the remainder when the disconnected part is sub-
tracted from the full correlation function. The exact form of the disconnected
part can be explicitly calculated with the help of Wick’s theorem, which formal-
izes the combinatorial problem of evaluating all the commutation relations in the
normal ordering process [118]. For more complicated (and interacting) systems,
there is a whole machinery of (diagrammatic) rules on how to disassemble the
correlation functions. Here, we can still explicitly write down the different terms.
In particular, we have

〈: n̂k1n̂k2 :〉 = 〈n̂k1〉 〈n̂k2〉 −G1
k1,k2G

1
k2,k1 , (6.31)

where the expectation value is taken with respect to the prepared state and
G1
k1,k2 = 〈ψ̂�(k1)ψ̂(k2)〉 is the propagator. Note that 〈n̂〉 and G1 are the popula-

tion and the coherence of the one-body density matrix, respectively. We can fur-
ther simplify this expression by using G1

k1,k2 = (G1
k2,k1)∗ such that G1

k1,k2G
1
k2,k1 =∣∣∣G1

k1,k2

∣∣∣2. The result of 6.31 is already very important. By measuring second
order density correlations, the absolute square of the first order coherence can be
extracted. This is the mathematical basis of the original HBT method for stellar
interferometry, but can also be used to study interacting systems such as heavy
ions [258, 259] or Bose-Einstein condensates and coherent excitations on top of it
[260, 261]. To this end, it is important to note that a Wick composition indeed
also works in an interacting system.
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Continuing with the decomposition, at third order we have

〈: n̂k1n̂k2n̂k3 :〉 = 〈n̂k1〉 〈n̂k3〉 〈n̂k3〉 − 〈n̂k1〉G1
k2,k3G

1
k3,k2 − 〈n̂k2〉G1

k1,k3G
1
k3,k1

− 〈n̂k3〉G1
k1,k2G

1
k2,k1 +G1

k1,k2G
1
k2,k3G

1
k3,k1 +G1

k1,k3G
1
k3,k2G

1
k2,k1

= 〈n̂k1〉 〈n̂k3〉 〈n̂k3〉 − 〈n̂k1〉
∣∣∣G1

k2,k3

∣∣∣2 − 〈n̂k2〉
∣∣∣G1

k1,k3

∣∣∣2
− 〈n̂k3〉

∣∣∣G1
k1,k2

∣∣∣2 +G1
k1,k2G

1
k2,k3G

1
k3,k1 +G1

k1,k3G
1
k3,k2G

1
k2,k1

=− 2 〈n̂k1〉 〈n̂k3〉 〈n̂k3〉+ 〈n̂k1〉 〈: n̂k3n̂k3 :〉+ 〈n̂k2〉 〈: n̂k1n̂k3 :〉
+ 〈n̂k3〉 〈: n̂k1n̂k2 :〉+ 2R

[
G1
k1,k2G

1
k2,k3G

1
k3,k1

]
(6.32)

From 6.32, we can read off the disconnected correlator to be

〈n̂k1n̂k2n̂k3〉dis =s1(N) (〈n̂k1〉 〈: n̂k2n̂k3 :〉+ 〈n̂k2〉 〈: n̂k1n̂k3 :〉+ 〈n̂k3〉 〈: n̂k1n̂k2 :〉)
− 2s2(N) 〈n̂k1〉 〈n̂k2〉 〈n̂k3〉 ,

(6.33)

where the scaling factors s1(N) and s2(N) depending on the total particle number
N were introduced for later convenience. For a fully fermionic theory as consid-
ered above, both factors are exactly equal to one for all N .
Before discussing the measured connected and disconnected correlation data, we
have to take care of a quite intricate subtlety in the normalization of our cor-
relation function. We have constructed the disconnected correlation function in
a fully fermionic many-body theory. Thus, in addition to the measured correla-
tions at lower order, also the fact that the Pauli principle holds has been used
in its construction. As a consequence, a system of uncorrelated classical par-
ticles (or particles obeying any other statistics) would, within this framework,
show a connected correlation contribution at third order due to it explicitly not
following the antisymmetrization condition. This leaves us in a slightly uncom-
fortable situation, as our primary experimental imperfections result in a partial
distinguishability of the atoms, such that they are in this effective model not
fully fermionic any more. As a consequence, we would rather like to gauge our
disconnected contribution such that the limit of fully distinguishable (and thus
classical) particles corresponds to the limit of the connected correlation signal at
third order exactly vanishing. We can achieve this by a suitable redefinition of
s1(N) and s2(N). This can be motivated as follows: In a system of N classical
particles, if one particle is detected at a specific location, this reduces the prob-
ability of detecting another particle at any other location by 1

N
due to number
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conservation. This is a very familiar concept and for example the mathemat-
ical basis of the well known Monty Hall problem (known as Ziegenproblem in
German). In the quantum Monty Hall scenario, where the classical particles are
replaced by bosonic or fermionic entities, this counting statistics changes due to
(anti)bunching. For bosons, the factor is 1− 2

N
(as seen for example in [46]), while

for fermions, as a consequence of Pauli exclusion the factor is exactly equal to 1.
I should stress that all this is ultimately a consequence of explicitly imposing a
fixed finite particle number. All the factors coincide in the many-body limit. As
a consequence of the above discussion, we will use the following definitions from
here on:

s1(N) = N(N − 1)(N − 2)
N2(N − 1) (6.34)

s2(N) = N(N − 1)(N − 2)
N3 , (6.35)

such that for any N the connected part is exactly zero for classical particles and
that in the limit N → ∞, the definition coincides with the full fermionic theory
given in 6.32.
In figure 6.15, the measured data of the disconnected and the connected part
of the correlation function are shown together with the theoretical expectation
based on a fully fermionic theory.
We can observe that the main features expected from the theory calculation are
well reflected in the measured data. In particular we indeed - and somewhat
surprisingly - measure significant intrinsic third order momentum density corre-
lations.7 By comparison with 6.32, we can observe that the term

〈n̂k1n̂k2n̂k3〉con = R
[
G1
k1,k2G

1
k2,k3G

1
k3,k1

]
(6.36)

is responsible for the correlations. In other words: There are intrinsic third order
correlations in the (momentum) density despite the mechanism responsible for
the correlations being only of second order in the field operators. The reason is
that we only measured the absolute value of the propagator, and crucially not
its phase, in the second order correlation function. Therefore, the cyclic phase
measured by 〈n̂k1n̂k2n̂k3〉con known as Triad phase first shows up in third order of
the density [262]. The equivalent of third order fermionic interference has already
been studied with bosonic photons [262, 263], while this is the first measurement
of intrinsic third order correlations in a non-interacting fermionic and massive
field.

7Independent of the exact definition of s1(N) and s2(N) above.
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6.3. Identical particle correlations
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Figure 6.15.: Third order connected and disconnected parts of the corre-
lation function. In A for the commensurate and in B for the incommensurate
triple-well, the experimentally measured (top panel) and theoretically expected
(bottom panel) connected and disconnected parts of the correlation function al-
ready presented in figure 6.14 are shown. Part of the correlation structure is due
to contributions of lower (second) order which are captured by the disconnected
part. Significant structure is left in the connected part of the correlation function,
indicating intrinsic correlations at third order in the density. Adapted from [30].

I will conclude this section by again recapitulating what we achieved so far and
which open questions are still left:

• I have shown that we are able both to prepare and characterize very pure
sources of indistinguishable fermions.

• I have presented first experiments in the flavour of quantum optics, however
with massive matter fields instead of massless bosonic fields (i.e. photons).
In fact, while not discussed any further in the context of this thesis, this
opens up a whole new research direction in the flavour of many-body inter-
ference [264]. Here, fermion sampling [265] and interference in the context
of random unitarities [266] constitute two distinct examples.

• In a typical quantum many-body system, we will have both correlations
induced by interactions and by quantum statistics. As an important first
step, I have presented in this section how we have studied both effects
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isolated from each other, such that each relevant contribution could be
identified and classified independently.

• The topic of entanglement and indistinguishability has not been touched so
far. When we study larger systems of mixed statistics, we therefore have to
develop a consistent framework to describe entanglement in these systems.

6.4. Interactions vs Pauli principle

In section 6.2, I have discussed the correlations between interacting particles in
a double-well, prepared for example in a state close to the Bell state |ψ+〉 =√

1
2 (|L〉1 |R〉2 + |R〉1 |L〉2). I have furthermore discussed the entanglement prop-

erties of this state, in particular the particle entanglement, where the system
is partitioned according to the particle labels 1 = ↑ and 2 = ↓, which in this
case are given by the spin projection. In order to avoid confusion, I will in this
section refer to this specific situation as spin entanglement. On the other hand,
within the framework of first quantization, the state of two independent but in-
distinguishable particles two spatial modes could be written down in the particle
basis as |A〉 =

√
1
2 (|L〉1 |R〉2 − |R〉1 |L〉2). In this notation, it is obvious that the

state, at least formally, features particle entanglement. As opposed to the spin
entanglement, here the labels 1, 2 are artificial however, in the sense that we fun-
damentally have no way of determining which of the atoms is the first subsystem
and which the second. Therefore, also a standard Bell test where one party takes
control over one subsystem and one party over the other is not possible. Thus the
question arises if this should be considered real entanglement [100, 101]. I would
argue that this is merely a matter of definition and the relevant question is rather
if the identical particle entanglement is useful in any way, as has been argued
recently [102–104]. Importantly, the identical particle entanglement definitely
has physical consequences, as it results in measurable correlations very similar
to correlations rooted in spin entanglement. Therefore, the focus of this section
will be on a slightly rephrased question: Independent of the exact definition of
entanglement and its usefulness, identical particle entanglement is fundamentally
different from spin entanglement. However, in a strongly interacting system with
multiple spin components, both concepts play a major role, sometimes contribut-
ing very similar correlations features. It is a very important open question how
to measure and also distinguish identical particle entanglement. To this end, in
this chapter, I will present a promising scheme based on a novel entanglement
measure [31, 267, 268]. The results of this chapter have been published in [31].
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6.4. Interactions vs Pauli principle

Relevant states

Already above, I have presented measurements on correlations in identical fermion
systems of two or three particles in two or three wells. These datasets will be
used as examples with only identical particle entanglements. As an additional
complication, we will also use a global π/2 rf rotation in order to rotate the
global spin of these states into the equatorial plane. This is equivalent to the
situation where we keep the state the same but measure in the x-basis instead
of in the z-basis. Thus, the spin projection is not conserved any more and we
can measure all three combinations, {↑↑, ↑↓, ↓↓}, of spin correlations. This will
constitute the important test whether our method is capable of distinguishing
apparent from inherent complexity. In addition, we will also use a hybrid state
of a strongly repulsive Hubbard dimer |+∞〉 with an additional spectator spin-up
particle independently prepared and placed next to the dimer without coupling
the systems. This is an example of a state which features both spin and identical
particle entanglement. Finally, we use the strongly interacting tunnel-coupled
triple-well with two spin up and one spin down atoms introduced in section 6.1 as
the prototype of an unknown state with potentially even tripartite entanglement.
All the relevant classes of states have already been sketched in figure 6.2.

6.4.1. Antisymmetric negativity

In the seminal paper by Ghirardi, Marinatto and Weber [101], it was argued that
any state of identical particles, which can be obtained by pure antisymmetriza-
tion of a (thus non-physical) product state, should be labeled as not entangled.
This GMW criterion can be directly demonstrated for the familiar state of two
atoms in a double-well. Here, A will refer to the operator performing the anti-
symmetrization. Starting from the product state |L〉1 |R〉2, we have

A(|L〉1 |R〉2) =
√

1
2 (|L〉1 |R〉2 − |R〉1 |L〉2) , (6.37)

such that according to the GMW criterion this state is not entangled. Building
upon this criterion, and based on [31, 267, 268], we define the following functional
acting on the physical fermionic two-particle density matrix ρA

EA(ρA) = min
σ≥0
{E(σ) : PAσPA = cρA} , (6.38)

where PA is the projector on the antisymmetric subspace and E can be any
entanglement measure. The factor c = max Tr (PAσps) is the maximum projection
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possible for a fully separable state given by the density matrix σps. In the bi- (tri-
)partite case we obtain c = 1/2 (c = 1/3). The functional EA(ρA) searches over
all positive semidefinite density matrices of trace 1, which are not yet restricted
to any symmetry constraints but have a specific antisymmetric projection onto
the target density matrix ρA. We can explicitly perform this search for the above
example. The density matrix of the state

√
1
2 (|L〉1 |R〉2 − |R〉1 |L〉2) in matrix

representation in the (reduced) basis {|LR〉 , |RL〉} is given by

ρA = 1
2

 1 −1
−1 1

 (6.39)

If we guess the first density matrix σ to be used in the search to be σg =
|LR〉 〈LR|, we get, using the explicit form of the projectors:

PAσgPA = 1
2

 1 −1
−1 1

 ·
1 0

0 0

 · 12
 1 −1
−1 1

 = 1
4

 1 −1
−1 1

 = 1
2ρA (6.40)

For any entanglement measure, E(σg) = 0 such that we can stop the search
immediately, and conclude that prior to antisymmetrization there was no entan-
glement. In this basic example, we could have come to this conclusion based on
the GMW criterion alone straight away; however, the crucial step forward is that
the functional E can be applied to any density matrix also of mixed states and
states of mixed symmetry. Based on this, we define the antisymmetric negativity
NA(ρA) (AN ) for the entanglement measure E given by the standard negativity
N [269]. The advantage of the negativity is that equation 6.38, in this case, can
be explicitly calculated when cast into a semidefinite programme. To this end,
we adopt a first-quantized formalism by introducing particle labels {1, . . . , N}.
In this process, the 4× 4 density matrices of the double-well system are mapped
onto the 16-dimensional basis {|Xσ〉 |Y τ〉}, with X, Y ∈ {L,R} and σ, τ ∈ {↑, ↓}.
The 9× 9 density matrices of the triple-well system are correspondingly mapped
onto the 216-dimensional basis {|Xσ〉 |Y τ〉 |Zκ〉}, with X, Y, Z ∈ {L,C,R} and
σ, τ, κ ∈ {↑, ↓}. This mapping is performed using the Slater determinant substi-
tution rule, such that for example |X〉↑ |Y 〉↓ → (|X ↑〉 |Y ↓〉 − |Y ↓〉 |X ↑〉). For
computational details on theAN and in particular the semidefinite programming,
the reader is referred to [31, 99, 267, 268]. Here, we will focus on experimentally
benchmarking the usefulness of this novel entanglement measure, in particular
when facing experimental noise on the measured density matrices.
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6.4. Interactions vs Pauli principle

Figure 6.16.: Scheme for determining the AN . An unknown state is pre-
pared and the respective density matrix is partially reconstructed. The resulting
density matrix is incomplete and not necessarily physical due to measurement
uncertainties. The posterior distribution of the most likely physical density ma-
trices ρ is determined by a Bayesian likelihood approach. For all density matrices
in the posterior distribution, the space of positive definite (yet not symmetrized)
density matrices σ is searched for the respective density matrix σopt, minimizing
the negativity under the constraint of a specific (antisymmetric) projection PA to
ρ. The posterior distribution of the antisymmetric negativity is the distribution
of minimized negativities obtained this way. Adapted from [31].

General scheme

I have presented above how we reconstruct the density matrices of an experimen-
tally prepared Hubbard dimer. Here, we extend this method to indistinguishable
fermions and also to three-particle systems in triple-wells. The general scheme
we follow is thus, as also depicted in figure 6.16, given by:

• Measuring correlations in different conjugate basis sets.

• Extracting or restricting as many density matrix entries as possible.

• Determining the most likely physical density matrix ρA and in particular
also extracting the full posterior distribution of the density matrices. These
matrices are by construction fully symmetrized.

• Determining theAN for the matrices of the posterior distribution by search-
ing the more general space of physical density matrices prior to symmetriza-
tion and comparing it to the standard negativity.

6.4.2. Experimental results

In this section, we will test and exemplify the usefulness of the AN by apply-
ing the general scheme presented above to a range of different experimentally
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prepared states.

Identical particles

There are three different states prepared, with only identical particles involved
(see figure 6.2):

• State A: two identical fermions in a double-well

• State B: three identical fermions in a triple-well

• State C: two identical fermions in a double-well with the total spin rotated
into the equatorial plate

For both the states

|A〉 =
√

1
2 (|L〉1 |R〉2 − |R〉1 |L〉2) (6.41)

and

|B〉 =
√

1
6 (|L〉1 |C〉2 |R〉3 + |R〉1 |L〉2 |C〉3 + |C〉1 |R〉2 |L〉3

− |R〉1 |C〉2 |L〉3 − |L〉1 |R〉2 |C〉3 − |C〉1 |L〉2 |R〉3) ,
(6.42)

where the number of spin up atoms is fixed, only one physical density matrix is
possible within the one-dimensional Fermi Hubbard model, which is still assumed
to be applicable here. This is due to the fact that there is only a single state
of two (three) spin polarized particles without any double occupancies which is
properly symmetrized. Therefore, we do not perform the Bayesian density ma-
trix estimation for these states. The other way around, for the corresponding
density matrix we would expect full contrast of the correlation features, which
is as discussed above not the case. This discrepancy is explained by excitations
in the physical system not captured by the in this case too simplistic model. In
particular, as explained above, this is due to a mismatch between the double-well
axis and the observation axis, but also the finite detection fidelity, other imaging
defects, and in general any experimental imperfection. In all the situations con-
sidered above where distinguishable particles were involved, this was not directly
apparent as this contribution resulted in an uncorrelated background in the cor-
relations, and thus was absorbed in an incoherent contribution to the density
matrix. In particular, this mechanism did not introduce any additional spurious
entanglement. Without any incoherent contributions allowed, this is no longer
possible for systems of only identical particles. In the specific case of states A
and B, we would have to introduce an artificial auxiliary dimension to absorb the
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6.4. Interactions vs Pauli principle
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Figure 6.17.: (Antisymmetric) negativity of the rotated spin triplet. Pos-
terior distribution of the extracted values of the negativity in A and the antisym-
metric negativity in B based on the correlation measurements of the rotated spin
triplet shown in figure 6.1. The data suggest a positive negativity while being
consistent with an antisymmetric negativity of zero. Adapted from [31].

partial distinguishability. Alternatively, we could only refer to an entanglement
witness instead of a measure. To this end, it could be for example used that
the visibility observed for the two particles in the two wells significantly exceeds
the bound of

√
1/2, which is required for quantum locality tests employing these

massive fermions [243, 270].
State C is identical to state A, except that we have chosen an unfavourable mea-
surement axis rotated by 90° with respect to the natural quantization axis. Thus,
we measure significant correlations between all combinations of spin projections,
as shown already in the beginning of this chapter in figure 6.1. In this mea-
surement campaign, we did not measure the in-situ populations independently as
before, such that in addition to the two-particle coherences we can only extract
the populations P↑↑, P↓↓ and the sum P↑↓+P↓↑. Nevertheless, we can perform the
Bayesian state estimation. From the full posterior distribution, we can extract
the best guess and the corresponding error bounds of the (antisymmetric) nega-
tivity. To this end, we evaluate the two measures on each entry of the posterior
distribution, afterwards taking the mean value and the 68 % confidence bounds
of the respective distribution obtained. This is shown in figure 6.17. We obtain
for the negativity N (ρA) = 0.5, N (ρB) = 1 and N (ρC) = 0.66+0.13

−0.11, and for the
antisymmetric negativity AN (ρA) = AN (ρB) = 0, and AN (ρC) = 0.048+0.064

−0.048.
The standard negativity treats particle entanglement of distinguishable particles
and identical particles on equal footing and is thus blind to the fact that the
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labelling of the particles is artificial only. We therefore obtain a negativity con-
sistent with the value of a Bell state for states A and C, and also for state B the
negativity would suggest maximum entanglement. On the other hand, as already
anticipated, for the states A and B the AN is exactly zero as the density matrix
can be constructed by proper antisymmetrization of a product state. Importantly
also for state C, that is in a setting where there is noise on the measured density
matrix and correlations between all spin components are present, the result is
consistent with zero. This is a first important indication that this scheme is in-
deed capable of removing any identical particle entanglement based on measured
correlations.

Hubbard dimer

We have already reconstructed the density matrices for two interacting particles
in a spin singlet in section 6.2. We can now use them to calculate the AN as a
function of the interaction strength U/J and compare the results to the negativity.
This is shown in figure 6.18.
We can observe that for both measures, the value is lowest for U/J = 0 and
increases monotonously with increasing |U |/J . The fact that the baseline for
the negativity is 0.5 rather than exactly 0 is due to the fact that in the full
density matrix, the antisymmetrization of the spin degree is included, which is
interpreted by the negativity as particle entanglement in analogy to the result
of 0.5 obtained for the state A above. This contribution is reliably removed by
the antisymmetric negativity such that it assumes a minimum of 0 at U/J = 0.
This supports the claim that the AN is useful for extracting the entanglement
caused by interactions alone, in particular as the AN is fully consistent with all
other measures taking into account only the entanglement in the spin sector, as
presented in section 6.2. We can compare the measured values to the theoretical
expectations based on the two-site Hubbard model. Indeed, the general behaviour
is well reflected in the data; however, as discussed before, due to the finite purity
of the prepared state we measure a reduced (antisymmetric) negativity.

Three wells with three particles

Finally, we can take one further step and consider systems of three particles in
three wells. Here, two additional ingredients are added. First of all, as these
states will now include both interactions and indistinguishability, differentiating
between the two contributions will be more challenging. Secondly, more intricate
multipartite entanglement, where the entanglement is shared between more than
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Figure 6.18.: Negativity in the Hubbard dimer. Based on the correlation
measurements in the Hubbard dimer for a broad range of U/J already presented
in section 6.2 (for reference the correlation functions for U/J = 0 (U/J = 18.5)
are shown in the upper left (right) panel again), the negativity (red circles) and
antisymmetric negativity (blue circles) are extracted. Both measures are smallest
for vanishing interactions and increase upon increasing |U |/J , with the negativ-
ity offset by 0.5 but otherwise consistent to the antisymmetric negativity up to
a linear rescaling. The experimentally extracted values are compared to the the-
oretical expectation based on the pure ground state of the Hubbard dimer (blue
and red line). The measured negativities are smaller due to the finite purity.
Adapted from [31].

two parties, can show up and has to be tested for. Here, we use two different
states as prototypes for these effects:

• State 1: a strongly repulsive Hubbard dimer with an auxiliary spectator
spin up particle placed next to it

• State 2: two spin up and one spin down particle in a fully tunnel-coupled
triple-well
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For both of the states, we measure the momentum density correlations up to third
order as well as the in-situ populations, based on a sample size of around 20 000
images with a postselection rate of around 70 %. In analogy to the discussion
around equation 6.17, also for the third order correlation function, we can extract
a subset of the density matrix entries. The state space is spanned out by the nine
basis vectors
{
|RC〉↑ |L〉↓ , |RL〉↑ |C〉↓ , |CL〉↑ |R〉↓ , |RC〉↑ |R〉↓ , |RC〉↑ |C〉↓ ,

|RL〉↑ |L〉↓ , |RL〉↑ |R〉↓ , |LC〉↑ |L〉↓ , |LC〉↑ |C〉↓
}
,

(6.43)

where |i, ii〉↑ |iii〉↓ denotes the state where the spin up particles i and ii and the
spin down particle iii are in the left (L), central (C), or right (R) well, respec-
tively. We can experimentally fix 69 out of the 81 real parameters of the density
matrix. The full posterior distribution of physical density matrices is inferred
based on a Bayesian estimate as before. Based on this, the bipartite negativity
and AN is evaluated for the experimentally prepared states |1〉 (Hubbard dimer
with a spectator atom) and |2〉 (approximation of the |W 〉 state). This is shown
in figure 6.19.
For both states the negativity is finite, as this measure cannot differentiate be-
tween interaction and symmetrization-based non-separability. In fact, the nega-
tivity is even slightly larger for state |1〉 due to the perfect symmetrization of the
left well with the other two compared to the imperfect interaction-based entangle-
ment of state |2〉. On the other hand, the antisymmetric negativity is compatible
with zero for state |1〉 despite the fact that there is bipartite entanglement be-
tween the central and the right well. This is due to the fact that in each possible
partitioning 1|23, 2|31, 3|12 (but of course not in all partitionings at the same
time), the density matrix in the first quantized state space {|Xσ〉 |Y τ〉 |Zκ〉} in-
troduced above can be written in a form where a single atom is factorized out.8

This is not expected to be the case any more for the W state. The fact that
we nevertheless do not reconstruct a finite AN for the experimentally measured
state |2〉 therefore indicates that we did not succeed in preparing the W state
with a good fidelity.
The definition of the AN in equation 6.38 also allows for an evaluation of the
tripartite antisymmetric negativity, based on a suitable definition of the tripar-
tite negativity. Based on [271, 272], we infer a finite multipartite negativity if,
and only if, the density matrix ρ cannot be expressed as a mixture of biseparable

8Note that the hyperfine state cannot be used as a label for the partitions any more.
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Figure 6.19.: Bipartite (antisymmetric) negativity in a triple-well. A:
The sketched state |1〉 is experimentally prepared and characterized. Based on
the measured correlation functions, the posterior distribution of possible physical
density matrices is inferred as before. For each entry of the posterior distribution,
the (antisymmetric) negativity is calculated. The resulting values are shown as a
histogram in red. From the histogram, we extract a finite N = 1.39± 0.02 while
the AN is compatible with zero. B: The sketched state |2〉 is experimentally
prepared and characterized as before. From the histogram (in blue), we extract
a finite N = 1.14+0.05

−0.04 while the AN is again compatible with zero.

states ρsep in the different possible bipartitions:

ρ 6= p1ρ
sep
1|23 + p2ρ

sep
2|31 + p3ρ

sep
3|12 (6.44)

Therefore, in order to quantify the tripartite (antisymmetric) negativity, the bi-
partite negativity is minimized over all possible bipartitions as well as for all
possible convex combinations of biseparable density matrices. Due to computa-
tional limitations, these calculations are performed only on a (randomly sampled)
subset of 1000 density matrices of the posterior distribution. In addition, also
the theoretically expected density matrices for the Hubbard dimer with specta-
tor atom and the fully tunnel-coupled triple-well are evaluated. The results are
presented in figure 6.20.
I will first discuss the results obtained for the standard negativity. First of all, it
should be noted that the calculations of the bi- and tripartite negativities actually
result in the same value. As before, this is due to the fact that the negativity
does not differentiate between non-separability due to the total antisymmetriza-
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Figure 6.20.: (Antisymmetric) negativity and multipartite entanglement.
A: For the two sketched states |1〉 (red) and |2〉 (blue), the theoretical bipartite
(lines) and tripartite (dots) negativity is calculated. Due to the antisymmetric
structure of the density matrix, the bi- and tripartite negativities are always iden-
tical. Indicated in shaded areas are values of the negativity witnessing bipartite
(red) and tripartite (blue) entanglement. For both experimental realizations of
the states, bipartite entanglement is witnessed with no statement about tripartite
entanglement possible (red and blue data points). B: For the same states, the
AN is calculated as well (colour scale as in A). For state |1〉 shown in red, both
the theoretical and experimentally determined AN is zero, while for state |2〉 the
theoretical tri- (bi-)partite AN shown as blue dots (blue line) takes a finite value,
while the experimentally determined value (blue data point) is compatible with
zero. Adapted from [31].

tion of the density matrices and the interaction effects. Nevertheless, it is still
possible to construct a witness (instead of a measure) for bi- and tripartite en-
tanglement. To this end, we use that the maximum negativity calculated for an
antisymmetrized but otherwise separable three-particle state is one (see state B
discussed above) and that the maximum negativity for an antisymmetrized bisep-
arable state is 1.9428. Using this, it can be certified that the theoretic model of
state 1 is indeed not fully separable for any finite interaction strength. In addi-
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tion, it is also possible to certify tripartite entanglement for the theoretical model
of state 2 for sufficiently large |U |/J , when it approaches the W state. In turn,
it is not possible to identify the finite amount of tripartite entanglement already
present for a smaller interaction strength. For this, we will need the AN . For
the experimental realization of state 1, we can certify based on the reconstructed
negativity that the state is not fully separable, albeit the value of the negativity
being reduced compared to the theoretical expectation due to the finite purity of
the state. Also, the experimental state 2 is identified as not fully separable, while
no tripartite entanglement is witnessed.
Turning towards the AN , the first observation is that the result of the AN is
indeed zero for all (experimental and theoretical) realizations of state 1; not only
for the tripartite but also for the bipartite antisymmetric negativity as discussed
above. The AN can therefore be used to explicitly certify that state 1 is not
tripartite entangled, while with the negativity alone it is only possible to state
that no tripartite entanglement is witnessed.
For the case of the (theoretical) second state, the AN indeed detects tripartite
entanglement, for any finite interaction strength. This is reflected in two ways in
figure 6.20. First of all, there is bipartite entanglement detected in all possible
partitioning (see equation 6.44). In addition, also the tripartite AN takes a finite
value for any finite |U |/J , allowing for a certification of genuine multipartite en-
tanglement even in a regime where the witness based on standard negativity does
not exceed the bound of 1.9428. Therefore, the AN can serve as a measure for
genuine multipartite interaction-induced entanglement, while via the negativity
only a witness could be constructed.
While for the measured state |1〉 - as engineered - indeed no tripartite entangle-
ment is detected, this is also the case for state |2〉, finally assuring us that we did
not succeed in preparing a state close to the W state. In order to nevertheless
prove the usefulness of the tripartite AN in the presence of noise, we generate a
set of density matrices based on the W state by adding white noise of the form

ρnoise = p1 + (1− p) |W 〉 〈W | , (6.45)

with the noise amplitude p ∈ [0, 1]. A finite tripartite entanglement is detected
up to p = 0.25, corresponding to a purity of around 0.6. While we clearly were
not able to reach such a purity with our state 2, it seems experimentally feasible
to reach sufficiently pure states. To this end, note that for the two-particle case
presented in section 6.2, we did in fact exceed this purity.
To summarize, in this section I introduced a conceptually and computationally
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useful scheme to distinguish non-separability of a density matrix due to quantum
statistics from ‘real’ entanglement due to interactions, based on [31, 267, 268]. We
have used a set of experimentally prepared few-body states as well as theoretical
density matrices to test several limiting cases and prove the usefulness. While this
is first of all an important technical and previously unavailable achievement, an
entanglement measure like the AN can also be a valuable contribution towards
a better understanding of the fundamentals of entanglement, as it allows us to
systematically classify different entanglement contributions. In the context of this
thesis, the important conclusion is that we have gained both a new tool and new
insight on how to study a general many-body state which will - quite in general
- always feature an interplay between indistinguishability and interactions.

6.5. Concluding remarks

In this chapter, I have presented a novel toolbox to study correlations and en-
tanglement in small systems driven by strong interactions, antisymmetrization,
or even an interplay between both effects. The rather small systems allowed
us to discuss the individual contributions independently and to prepare states
prototypical of different effects. For these systems, we built up a complete tool-
box to characterize them experimentally, based on density correlation measure-
ments up to third order in conjugate basis sets, and to classify them according
to different entanglement measures, including the novel antisymmetric negativ-
ity. Such a toolbox was not available before and constitutes the second major
milestone outlined in section 4. It is clear that we will encounter a similar but
much more involved interplay between indistinguishability and interactions also
in larger systems. A prototypical (yet still comparably simple) example is a (3D)
BCS superfluid. The BCS state is given by

|BCS〉 =
∏
k

(
uk + vkĉ

�
k,↑ĉ

�
k,↓

)
|0〉 , (6.46)

in terms of the BCS coefficients uk and vk. In other words, this is a state of
coherent pair excitations on top of a Fermi sea. The pair correlations are of
course mediated by interactions, while only due to the contribution from identical
particle correlations the effective phase-space for the scattering is reduced to two
dimensions, allowing for the pairs to even form. As a consequence, a BCS state
could be characterized by measuring second order momentum correlations similar
to what was shown above [27].
Another good example in the spirit of the BEC-BCS crossover is the regime of

188



6.5. Concluding remarks

strong interactions, where the Fermi surface is on the verge of breaking down.
In such a system, the interplay between interactions and indistinguishability is
much more intricate, and cannot be effectively ‘separated out’ as done for the
BCS ground state. A relevant observable might nevertheless be correlations of
momentum density, as they will be able to certify that we are facing pairing at a
finite momentum in contrast to molecule formation centred at k = 0. However,
it will be a necessity to measure correlations significantly beyond second order
to characterize the system to a good degree. Finding a suitable basis where the
smallest number of correlation orders has to be taken into account to capture the
essential features of the system is thus an outstanding and unsolved question. For
a system in the BEC-BCS crossover, correlations in real and momentum space are
a reasonable first guess though, as real- and momentum-space pairing constitute
the limiting BEC and BCS cases. It is therefore crucial to learn how to scale
up the systems and methods introduced in this chapter. In the next chapter, I
will present first results in this direction, where we study mesoscopic quantum
systems and their correlations.
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7. Correlations in mesoscopic
systems

Arguably one of the most cited phrases in the field of many-body physics is
‘more is different’, based on the article by P. W. Anderson of the same name
[273]. In simplified terms, the article states that while it is possible to reduce the
fundamental physics to microscopic models, laws, and symmetries, when studying
a many-body system, there is more to be expected than naively anticipated based
on an extrapolation of microscopic phenomena. Only in large systems, collective
behaviour such as collective excitations connected to broken symmetries and thus
also phase transitions can emerge [134], in turn defining the many-body regime.
Ultimately, this is a consequence of a separation of scales. While for example the
ground state of a given Hamiltonian has to obey its fundamental symmetries, a
non-equilibrium state may easily break this symmetry for a given time in terms
of an oscillation around the symmetric value. If the oscillation is of a collective
nature, it will depend on the particle number in the system. When approaching
the thermodynamic limit, the timescale given by the oscillation period might even
by shifted towards infinity. In this situation, the broken symmetry state becomes
quasi-stationary, and depending on its energy even the effective ground state of
the system, forming a symmetry-broken state.
The most instructive example for this, as used several times throughout this
thesis (see section 2.3.3 for more details), is the BCS superfluid.1 At the critical
temperature TC , the Fermi surface becomes unstable towards formation of Cooper
pairs. Therefore, the many-body induced pairs can spontaneously form. Above
TC , it is of course also possible to excite a paired mode. However, this excitation is
gapped in energy and in particular does not constitute the thermal ground state,
reflecting the symmetry of the system. Below the critical temperature, the many-
body gap is finite, as now the ground state is paired (see figure 2.6). Therefore,
the thermal phase transition is accompanied by the opening of a many-body

1I will restrict the already simplified discussion to second order phase transitions. I will ignore
any complications arising when going beyond this assumption as they are not relevant in
this section.
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7. Correlations in mesoscopic systems

gap, or equivalently by the fundamental correlation length and fluctuation decay
time diverging. Similarly, also quantum phase transitions are of interest, where
(at T = 0) the transition is driven by quantum fluctuations instead, with the
temperature scale replaced by an intrinsic energy scale of the model. In any case,
only in a macroscopic many-body system, a true divergence of time and length
scales and therefore a full closing of the gap is possible according to the above
discussion. Nevertheless, in a mesoscopic system we might be left with a softening
of the fundamental mode, the correlation length scale becoming large (compared
to the system size), and the fluctuation timescale becoming long (compared to
the trap period).
Based on this, a few conclusions can be drawn:

• There is a fundamental step missing between preparing and studying mi-
croscopic systems as presented in chapter 6, and preparing and studying
many-body systems as presented in chapter 3.

– The toolbox of detecting correlations has to be extended to include
collective effects. In this context, it should be stressed again that
the ‘charge density wave’ and the ‘antiferromagnetic order’ discussed
in the Hubbard dimer indeed serve only as toy models for their col-
lective many-body equivalents. For example, there are only around
60 % singlet correlations in the antiferromagnetic ground state of a 3D
Fermi-Hubbard model with U/J →∞.2

– In a similar fashion, there is no adiabatic connection between the mi-
croscopic constituents of the system (such as the singlets) and the
many-body ground state. Therefore, a naive approach of ‘stitching’ to-
gether individual microscopic systems to form the macroscopic ground
state will not work (perfectly). There are methods to approximate the
ground state, however. Most notably, this the resonating valence bond
approach [202, 203], which is the most promising path when aiming at
scaling up the lattice models presented in chapter 6 to a low entropy
many-body Fermi-Hubbard system [195, 204].

– In addition, adiabatically preparing the symmetry-broken ground state
from a non-interacting ground state is not possible. This is due to the
many-body gap opening up at the quantum critical point, such that
the energy for the symmetry-breaking excitations becomes zero at this
point. This fundamental diabatic nature can of course also be under-
stood as a consequence of the diverging timescale of the symmetry-

2The so-called Heisenberg model.
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6.5. Concluding remarks

breaking excitations as discussed above. This is formalized by the
so-called Kibble-Zurek mechanism [198–201].

• Mesoscopic systems, defined here as being large enough to already feature
collective behaviour, but still small enough such that deterministic prepa-
ration and control remain within reach, might constitute an important in-
termediate step. Apart from the possible (near) deterministic preparation
of the non-interacting ground state, adiabatic ramping is still an option, as
the gap closing is replaced by a softening with a finite gap persisting even
at the precursor of the quantum critical point or temperature. It has been
shown before that a many-body description can account for collective be-
haviour of nuclei or liquid helium droplets already for around 50 individual
constituents [274–276], while the emergence of a Fermi sea [277] or the on-
set of coherent Josephson oscillations are possible for even smaller particle
numbers.

• Studying mesoscopic systems is not only a compromise based on techni-
cal limitations. Due to the scale of the finite size introduced, mesoscopic
systems can feature a very complex structure and can be extremely com-
plicated to describe theoretically. On the other hand, mesoscopic systems
are very relevant in physics in the form of the electronic structure of atoms,
the nuclear structure of larger nuclei, liquid helium clusters, or small con-
densed matter systems [274–276]. An extensive review comparing nuclei
and ultracold atomic gases is for example found in [278].

With all of these considerations in mind, I formulated in section 4 the milestones
four and five, to identify, prepare and afterwards fully characterize mesoscopic
systems as both an intermediate step towards a full characterization of many-body
systems and an interesting research direction on its own. It should be clear that
there are many different, equally interesting paths to proceed from this point on.
Based on the experience built upon small lattice systems, a viable option could
be to take an array of singlets as a starting point to study larger systems in the
spirit of a resonating valence bond model. Alternatively, connections to the field
quantum simulation (analogue or digital) could be explored, for example by a
variational approach [279–282]. In this thesis, however, I would like to take the
most direct route towards closing the circle to the many-body system discussed
in the beginning by studying the interplay between pairing correlations and the
Fermi surface.
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7.1. Emergence of a quantum phase transition

I have argued above that studying mesoscopic systems as large as possible, but on
the other hand still featuring deterministic control, provides a promising platform
for studying the emergence of many-body physics. So where to begin? Based on
the results of chapter 6, I might be tempted, while starting from the triple-well,
to add one well after each other in a linear chain of tunnel-coupled tweezers.
Apart from the technical limitations discussed already, this is also conceptually
not the most direct way. What I am aiming for is the mesoscopic analogue of
a many-body system which features both a mechanism of pairing and a Fermi
surface. This is one of the defining features of a BCS superfluid and, as con-
jectured in chapter 3, also of a strongly correlated 2D system in the BEC-BCS
crossover. Only the interplay between sufficient degeneracy at the Fermi surface
(compare to the Fermi points in a 1D system) with interaction might be capable
of reproducing an instability towards the formation of many-body pairing.3

The requirement for deterministic control of the system ultimately boils down to
the necessity of introducing a finite (large) single-particle excitation energy. This
is of course nothing else than the (non-interacting) energy levels we encountered
for example in the microtrap, where the finite spacing between the energy levels
allowed for a spilling process where certain levels were selectively allowed to tun-
nel out of the system. Therefore, we are now interested in a system where the
single-particle levels at around the Fermi energy feature a significant degeneracy,
such that they can be interpreted as a Fermi surface.
Such a situation is actually quite common in typical mesoscopic systems such as
atoms and nuclei, where the degenerate single-particle energies are typically re-
ferred to as energy shells, a notion which I will adapt from here on. Interestingly,
both in atoms and nuclei, interactions lead to a fascinating interplay between
pairing correlations and the degeneracy due to the shell structure. In particular,
this results in a sub-shell structure known as Hund’s rule in this geometry [283,
284]. For very strong interactions, this competition of scales between the pairing
energy and the single-particle energy will lead to even more additional structure.
In particular, we will encounter a quantum phase transition not present in the
homogeneous many-body system with a continuous density of state instead of
discrete modes. Note to this end that while also the system in chapter 3 was of
course trapped, the single-particle excitation energy was small and separated in

3As we are dealing with mesoscopic systems with a finite number of individual modes, it is of
course also possible to engineer all the degeneracies and couplings in a 1D chain of tweezers
in a smart way. Alternatively, a 2D lattice geometry is extremely interesting to study in
this respect, too.
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E0 = 1ħωHO

E1 = 2ħωHO
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Figure 7.1.: Two-dimensional harmonic oscillator. Schematic illustration of
the level structure in the angular momentum basis with the lowest two shells filled.
The energy levels are given by Ek = k ·~ωHO, with a degeneracy of k+1 (per spin
state). Exciting one fundamental quantum of energy ~ωHO is accompanied by
an angular momentum change of ∆m = ±1. The energy of the lowest monopole
excitation is given by ∆E = 2~ωHO.

scale, reflected in the fact that it was possible to apply the local density approxi-
mation. As a consequence, while we are interested in the emergence of many-body
physics in a mesoscopic system, taking the actual many-body limit is not neces-
sarily straightforward.
I will argue that a trap geometry, which is approximately described by a 2D
harmonic oscillator, is an ideal setting to study mesoscopic systems. The energy
levels of an isotropic 2D harmonic oscillator are sketched in figure 7.1
In a 1D harmonic oscillator, the energy levels are equally spaced with ∆E =
~ωHO, where each energy level can be occupied by one atom per spin state. In
the two-dimensional analogue, there are two degenerate fundamental excitation
frequencies ωHO = ωx = ωy. Therefore, the energy spacing is again ∆E = ~ωHO,
however with a degeneracy of each level Ek (starting from E0 = ~ωHO) of k + 1.
This can easily by checked, as for example the first excited energy level can be
reached by either exciting a single x or y energy quantum. Due to the rotational
symmetry, it is instructive to write down the level structure in a relative angular
momentum basis as done in figure 7.1 in terms of the principal quantum num-
ber n = 0, 1, 2, 3, . . . and the angular momentum projection m = 0,±1,±2, . . . ,
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where
En,m = (2n+ |m|+ 1) ~ωHO. (7.1)

Note that the total angular momentum is not limited or fixed based on the prin-
ciple quantum number. Crucially, an excitation by ∆E = ~ωHO always changes
the angular momentum projection m by one, and the lowest energy to excite a
monopole mode (that is without changing m) is twice the fundamental frequency
and achieved by either lifting one particle up two shells, or two particles of op-
posite angular momentum one shell.
Before discussing any preparation schemes and experimental observations, I should
stress that choosing a 2D geometry (as opposed to 3D) is influenced far more by
technical, than by conceptual reasoning. For a 2D system, we can use the axis
which is integrated out in the model to gain access to the system for imaging and
manipulation. This is in line with the geometry of the experiment, where the
objective is aligned on the z-axis, singleing out the focal plane, but also with the
magnetic field geometry which is designed to be axially symmetric. Of course,
the connection to the system discussed in chapter 3 allows for an instructive nar-
rative; however the subtleties of the reduced dimensions (i.e. the increased role of
quantum fluctuations) are due to the respective density of states. In this chapter,
I discuss systems with a finite number of discrete modes, such that these general
statements, based on a universal structure of the density of states, are no longer
possible. Nevertheless, the existence of a two-body dimer for each interaction
strength in two dimensions will still provide us with the relevant scale for the
interaction strength in the mesoscopic system as well.
Based on the considerations in this section, I will now discuss results on preparing
and probing mesoscopic 2D systems. In particular, I will discuss the emergence
of a zero temperature quantum phase transition in such a system. The following
results have been published in [32]. Note that, even though working towards
the study of mesoscopic systems - in particular including the development of the
conceptual ideas and experimental strategies - has been a major part of my doc-
toral studies, I will keep this section rather short, as an extensive discussion has
already been given in [285].

7.1.1. Preparation of deterministic 2D systems

In this chapter, I will briefly present the scheme used to prepare a deterministic
two-dimensional system. This constitutes an important experimental milestone,
allowing us for the first time to study the interplay between (pairing) interac-
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7.1. Emergence of a quantum phase transition

tions and degeneracy in a controlled deterministic way. Nevertheless, the basic
prerequisite is straightforward: We have to engineer a trap geometry where cer-
tain energy levels are bound, while all others are not. We will again use magnetic
field gradients, trying to achieve a separation in scale between the tunnelling times
of the energy levels below and above a fine-tuned energy scale. If the trap geom-
etry is known, these timescales can be directly calculated or at least estimated.
Therefore, also taking experimental imperfections into account, we can estimate
based on the experience from the one-dimensional systems that a single-particle
energy scale of a few hundred Hertz will be needed. In an (at most weakly inter-
acting) 2D system, we have to take the degeneracies of the single-particle energy
levels into account. Therefore, we will always prepare a filled or closed shell con-
figuration, where the cut-off energy is tuned in-between two shells. Introducing
strong interactions, it can be also interesting to use interaction-induced gaps in
the energy spectrum in order to prepare other atom numbers.
The preparation scheme is based on the same standing wave trap already used in
chapter 3. As discussed, typical axial trap frequencies are on the order of 7 kHz.
Due to the very large aspect ratio, the effective radial trap frequency is only a
few tens of Hertz at most. This was the perfect geometry for the preparation of
low-temperature many-body 2D systems. On the other hand, there is at least
one order of magnitude missing in the lowest single-particle excitation energy in
radial direction to allow for deterministic control over individual levels. There-
fore, we have to increase the radial trap frequency in a controlled way. This is
achieved by superimposing an additional optical tweezer potential. If the laser
frequency responsible for the tweezer potential is detuned by O(100 MHz), there
is no interference between the SWT and the tweezer, and the effective trap po-
tential is given by the sum over the two individual potentials. We cannot use
the same tweezer employed already in chapter 6, as this setup was designed with
axial instead of radial excitations in mind. In particular, the ratio of the har-
monic oscillator length to the waist of the potential is with aHO/w0 ≈ 1.3 for a
typical radial trap frequency of 1 kHz rather large. In other words, radial exci-
tations will be sensitive to anharmonic contributions to the trap potential such
that the harmonic oscillator assumption breaks down. The obvious solution is to
increase the waist of the tweezer potential. It should be noted again, that this
cannot be done without limit, as the optical power required for the same trap
frequency increases upon increasing the waist. In addition, the potential becomes
more prone to wavefront errors. Here, we use a tweezer beam with a focal waist
of around 5 µm (aHO/w0 ≈ 0.26). Note that the aspect ratio for this tweezer is
already significantly larger (ωrad/ωax ≈ 21). Therefore, the radial and axial trap
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Figure 7.2.: Preparation scheme. A: The atoms are trapped in the hybrid
trap formed by a single layer of the SWT and an additional tweezer potential.
B: Preparation, excitation and detection scheme. First, in a quasi-1D geome-
try, around 20 atoms are prepared similar to before (microtrap power in blue,
magnetic field gradient not shown). Then the microtrap power is ramped up in
order to decrease the axial size of the wave function. Now, first the 2D trap is
ramped on (SWT trap power in red) and subsequently the size of the tweezer
(green) together with the power is increased in order to transfer the system from
a quasi-1D to a quasi-2D geometry. Afterwards, two or three filled shells are
prepared by a 2D spill. Pair (single-particle) excitations can be driven by mod-
ulating the SWT (microtrap) power. The excited particles can be removed by
means of a second 2D spill. Subsequently, the atoms can be transferred back into
a quasi-1D geometry and detected for example by recapturing them in a MOT.
Adapted from [32].

frequencies of the combined trap can be almost independently set by the power
in the tweezer and SWT, respectively. For the experiments described below, we
set a typical radial trap frequency of 1 kHz, corresponding to an aspect ratio of
ωax/ωrad ≈ 7 (see equation 2.4). As is expected, due to discretizing the radial
excitations the 2D-ness of the trap geometry decreases. Nevertheless, at least
the lowest shells can still be considered to be quasi-2D, even if some excitations
to higher shells are taken into account. In the setup for this set of experiments,
we can tune the size of the Gaussian beam forming the tweezer potential in the
Fourier plane by means of a spatial light modulator (for more details see [285]).
As a consequence, we can continuously tune the size of the waist in the focus be-
tween almost the diffraction limit of around 1 µm up to the aforementioned 5 µm,
significantly influencing the trap geometry. In figure 7.2, a schematic drawing of
the effective trap geometry together with the preparation scheme explained below
is shown.

198



7.1. Emergence of a quantum phase transition

The starting point for the preparation is a cigar-shaped potential formed by the
tweezer alone, set to a waist of 1 µm with an aspect ratio of around ωrad/ωax = 5.
This geometry is very similar to the situation described in section 2.5.2. There-
fore, the particle number can again be set by a loading and spilling procedure as
described before. The only difference is that we do not spill to the ground state
of one or two particles per spin state, but rather to around 20 atoms in the states
|1〉 and |3〉. As a consequence, there are both radial and axial excitations present,
and the spilling is not fully deterministic. Nevertheless, the final state has a very
low entropy, with the lowest trap levels filled with almost unity fidelity. After-
wards, we change the effective geometry by adiabatically transferring the atoms
from a geometry with ωrad/ωax = 5 in the tweezer alone to the final setting in the
combined trap discussed above with ωrad/ωax = 1/7. To this end, first the SWT
potential is ramped on. In this step it is ensured that the atoms are sufficiently
compressed in axial direction, such that they are loaded into a single layer of the
SWT. Subsequently, the size of the tweezer is ramped within 20 ms from 1 µm
up to the final size of 5 µm with the help of the spatial light modulator. In this
process, by controlling the optical power as well, the radial trap frequency is adi-
abatically tuned from 20 kHz to 1 kHz. The system is therefore slowly transferred
from a mostly 1D geometry through a point where all the frequencies are of the
same order to a mostly 2D geometry. It is important to take into account that
ramping slowly does not guarantee adiabaticity. This is particularly true for a
dimensional crossover. In a fully harmonic theory (without any other terms),
there are several level crossings which are not avoided, as there is no coupling
between the different fundamental excitations. Therefore, the initial state is adi-
abatically connected to a highly excited final state. Small anharmonicities and
anisotropies couple the axes however. In the experiment, we have to engineer a
situation where all avoided crossings are large enough to allow for an adiabatic
dimensional transfer. We ensure this by performing the transfer additionally at
a finite scattering length at a magnetic field of 750 G. The finite interaction
strength increases the coupling while it is not strong enough to break the single-
particle shell structure. In this way, we achieve the dimensional crossover. The
state we have prepared at this point is quasi two-dimensional with a very low
entropy. The lowest few shells are occupied with almost unity fidelity, while the
residual entropy is reflected in fluctuations at the Fermi level. Similar to before,
we can therefore try to set an energy threshold above the first, second or third
shell, removing all atoms at higher energies by means of tunnelling. To this end
(still at 750 G), a magnetic field gradient of 70 G/cm along the axial direction is
applied. The gradient has also small contributions in the radial direction due to
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the geometry of the magnetic field coils. The gradient is sufficiently strong such
that all states in the SWT alone become unbound and tunnel out within a few
ms. Therefore, only atoms within the trap volume of the tweezer remain bound.
By setting an appropriate depth of the tweezer potential, while the gradient is
on, a final atom number of two, six or twelve atoms corresponding to one, two
or three filled shells can be chosen, before ramping off the gradient and ramping
back the trap depth. This approach is, on a fundamental level, slightly different
to the spill procedure in the 1D cigar-shaped trap. In the latter case, we have a
rather deep trap with the atoms populating only the mostly harmonic potential
region close to the minimum. The gradient cuts into this potential, such that
only the lowest levels remain bound with the other levels shifted into the con-
tinuum. In the current situation, the total depth of the tweezer is reduced with
only a few levels bound in the tweezer alone even without taking into account the
gradient. Therefore, we have to rely on the fact that during the spilling the shell
structure remains intact, even taking the strong anharmonicities into account. In
figure 7.3, the success of this method is illustrated.
In this set of experiments, the trap depth of the tweezer is varied during the
spilling, and the total atom number is recorded for each shot by recapture in the
MOT as discussed in section 5.1. In the plot of the mean atom number, plateaus
can be seen for approximately two, six, and twelve atoms, corresponding to a
closed shell configuration. These plateaus correspond to the situation where the
cut-off energy is tuned right in-between two shells. This interpretation and the
near deterministic nature of the scheme are confirmed when studying the fluctua-
tion of the atom number as a function of the trap depth. The standard deviation
is minimized exactly when a closed shell configuration is prepared, while maxi-
mized when tuning the cut-off right to the energy of one of the shells. By carefully
optimizing all the parameters of the preparation scheme, we achieve fidelities of
97± 2 %, 93± 3 %, and 76± 2 % for two, six and twelve particles, respectively.
This near deterministically prepared system is the ideal starting point for study-
ing mesoscopic strongly interacting (quasi-) 2D systems. It therefore constitutes
a further milestone outlined in section 4. Left to show is now, that this system
indeed already features precursors of many-body physics. This is what I will
discuss in the following section.

7.1.2. Measurement of a Higgs mode precursor

In this section, I will present experimental results on a collective mode in a system
of six particles in a closed shell configuration. I will illustrate that this mode can

200



7.1. Emergence of a quantum phase transition

3 4 5 6 7 8

0

4

8

12

2 9
0

1

2

14

10

6

2

Microtrap depth V [a.u.]

S
td

. d
ev

. σ
M

ea
n 

at
om

 n
um

be
r 

N

Figure 7.3.: Deterministic preparation of closed shell configurations.
Measured mean atom number (upper panel) and the standard deviation of the
recorded number (lower panel) as a function of the trap depth of the microtrap
in arbitrary units. In the mean atom number, plateaus corresponding to closed
shell configurations of two, six and twelve atoms are observed. These plateaus
coincide with a local minimum in the atom number fluctuation, indicating the
near-deterministic preparation. Adapted from [32].

be interpreted as the precursor of a Higgs mode, that is an amplitude oscillation
of the order parameter. Afterwards, in the following section I will also discuss
the emergence of the many-body aspect by also showing results on twelve-particle
systems.
This experimental campaign is motivated by the theory proposal [286] to study
the fate of the order parameter in small atomic Fermi systems. It is suggested that
already in a rather small system, signatures of an order parameter corresponding
to a broken symmetry might be present. Furthermore, it is proposed to study the
emergence of a collective mode, corresponding to vibrations around the broken
symmetry value of the order parameter, known as a Higgs mode [287, 288]. A
Higgs mode has been observed in the many-body limit in cold atom experiments,
but also in superconducting and ferromagnetic systems [22, 137–143]. Studying
the emergence of the mode in our mesoscopic system with full single-particle
control will constitute important progress in relating microscopic correlations to
macroscopic (or thermodynamic) behaviour. Based on intuition (and the results
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from [286]), we can expect that the collective mode will consist mostly of pair
excitations of a time-reversed pair, that is two particles with opposite spin and
momentum. To this end, compare this again to a BCS system, where the cor-
responding mode (in simplified terms) would correspond to lifting Cooper pairs
across the Fermi surface. In the following section, I will therefore first introduce
how we can couple to the pair excitation mode and afterwards present and inter-
pret the results of the precursor of a Higgs mode in a mesoscopic system.
The most common method to excite specific modes in an energy-selective way
is based on trap frequency modulation. For a non-interacting system of atoms
in a harmonic trap, it is straightforward to show4 that modulating the trap fre-
quency at twice the harmonic oscillator frequency resonantly couples all equal
parity states with ∆E = 2~ωHO. Therefore, in this scheme a single particle is
excited two shells up. This is a very valuable method as it is easy to implement
by modulating the optical power of the tweezer, which directly translates to a
modulation of the radial trap frequency alone. In fact, similar methods were used
throughout this thesis, whenever the trap frequency of an optical dipole trap had
to be determined. Here, we are however interested in pair excitations, that is
exciting two (time-reversed) particles one shell up. Without interactions, due to
the parity of the wave functions and the drive, this excitation scheme does not
allow for such pair excitations. This changes when interactions are introduced.
Nevertheless, at least for weaker interactions the transition matrix element re-
mains small. For this reason, we will use a different excitation scheme. It is
intuitively clear (and explicitly calculated in [286]) that directly modulating the
two-body binding energy strongly couples to pair excitations. The binding energy
depends on the 3D scattering a, which in turn can be modulated by varying the
magnetic offset field. Due to the large inductivity of the magnetic field coils im-
plemented in the experiment, the bandwidth of this modulation method is rather
small, however. Modulating the magnetic field with frequencies above around
1 kHz is therefore challenging. Here, we will use a different scheme. The binding
energy is a function of the 2D scattering length, which in turn is renormalized
by the trap frequency in axial direction. Therefore, by modulating the axial trap
frequency, the (confinement-induced) 2D binding energy is modulated as well.
It is important to ensure at all time that this modulation is off-resonant to ax-
ial excitations in order to avoid heating.5 We choose to modulate the binding
energy by around 2 % with a modulation time of 400 ms such that we are not

4Based on time-dependent pertubation theory, that is by calculating the transition matrix
element.

5Note that this is equivalent to requiring EB < ~ωax and therefore restricts us to the quasi-2D
regime we are anyway interested in.
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Figure 7.4.:Measurement scheme. A: Atom number distribution as a function
of the frequency of the binding energy modulation. In the colour scale, the
measured probability of different numbers of atoms remaining in the lowest two
shells after the modulation sequence is shown. The mean atom number (white
line) with the corresponding standard error (grey shaded area) is shown as well.
There are two peaks visible. The lower peak below 2~ωHO with mostly 4 atoms
remaining corresponds to the excitation of time-reversed pairs as sketched in the
upper panel. The peak above 2~ωHO corresponds to single-particle excitations
(also sketched above). B: Different excitation schemes at EB < ~ωHO. Due to
the finite interaction strength, both modulating the trap frequency (upper panel),
and modulating the dimer binding energy (lower panel) couple to single-particle
as well as pair excitations. The overlap with the pair excitation mode is however
significantly larger in the latter case. The modulation strength in this figure is
chosen such that the lower pair-breaking peak has a similar amplitude. Adapted
from [32].

Fourier-limited. Excitation spectra are obtained by counting, as a function of the
modulation frequency, the atoms which are not excited to higher shells. To this
end, after the modulation step, an additional spilling stage is implemented (see
figure 7.2). It is performed with identical parameters to the initial preparation
stage, such that only particles remaining in the initially filled shells are kept. In
figure 7.4, the two excitation methods are compared. In addition, a full excitation
spectrum obtained by the latter method for a moderate interaction strength is
shown.
Presented is the mean recorded atom number as a function of the modulation fre-
quency, with the trap frequency set to ωrad = 2π ·1.001 kHz. In addition, also the
full number distribution is shown. There are two resonances visible. The upper

203



resonance at 2.06 kHz corresponds to a single-particle excitation by lifting one
particle two shells up in energy. This is reflected in the atom number distribution
where mostly a single atom is lost. The full atom number distribution is consistent
with the assumption of an independent single-particle loss as given for example
by Fermi’s golden rule. With respect to the bare transition frequency 2ωrad, the
resonance is shifted up in frequency. This is explained by the attractive mean
field interactions. In other words, the initial state lowers its interaction energy
based on an increased wave function overlap (note the finite molecular binding
energy). In the many-body language, this could be interpreted as an attractive
mean field shift which could be taken into account by an effective stiffening of
the trap. This excitation branch in theory should be three times degenerate
((n = 0,m = 0)→ (n = 1,m = 0) and (n = 0,m = ±1)→ (n = 1,m = ±1)). In
the experiment, this degeneracy is lifted by the anharmonicity and anisotropy of
the trap (in addition also allowing transitions where m is changed), such that in
figure 7.4 only the single transition from the lowest shell is visible.
In the spectrum, also a second resonance below the bare transition frequency can
be seen. Importantly, this mode mostly consists of two-particle excitations as
revealed by the atom number statistics. Therefore, we identify this resonance as
the pair excitation mode, where two time-reversed atoms are lifted up in energy
by one shell. Crucially, the excitation energy of this mode is reduced in energy
compared to single-particle (bare) transitions. This can be intuitively understood
by realizing that we transfer two particles from an filled into an initially empty
shell. Therefore, there are more unoccupied states available in the final state,
such that the system minimizes its energy by increasing the wave function over-
lap. Rephrased - again more in a many-body language - we lift a time-reversed
pair of particles across the Fermi surface where the excited atoms use the available
density of states, which is not Pauli-blocked, to reconfigure in an energetically
more favourable way.
The next step is to vary the interaction strength and trace the modes identified
above through different scattering regimes. In section 3.1, the interaction pa-
rameter ln (kFa2D) was used in order to describe the scattering regime. This was
adequate for the many-body system, with a locally defined density, varying as a
function of temperature and spatial position. In this small system, where we keep
the atom number and trap frequency constant between different runs, a slightly
different description is favourable. We will use the two-body binding energy EB
as a measure for the interaction strength and compare it to the single-particle
excitation energy ~ωrad. Note that the structure is exactly the same as in the
many-body interaction parameter, which could be rewritten as the logarithm of
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7.1. Emergence of a quantum phase transition

the ratio between the binding energy and the interparticle spacing (set by the
trap frequency in addition to the particle number). In addition, this description
also allows for a direct comparison to theory such as [32, 286], where the system
is described by a Hamiltonian of the form

H =
N∑
i=1

(
− ~2

2mO2
i + 1

2mω
2
HOr

2
i

)
+ g

∑
k,l

δ(rk − rl) (7.2)

in terms of the spatial coordinates ri = (xi, yi) of particle i, with the sum k, l

running over coordinates of opposite spin atoms. The interactions are included
in the Hamiltonian by an attractive delta function with amplitude g < 0. When
solving for the eigenstates of the system, the interactions have to be regularized
and then renormalized, which is typically done by eliminating the coupling con-
stant and the energy cut-off introduced in the regularization step by the binding
energy as we had seen before [286]. Therefore, the eigenstates and energies ob-
tained by exact diagonalization of equation 7.2 are also given in terms of EB.
In the experiment, we change the binding energy with respect to the (fixed) trap
frequency in a range EB/~ωrad ∈ [0, 2]. For a small interaction energy with
EB/~ � 1 we expect only small corrections to the single-particle shell struc-
ture (as seen in figure 7.4). This changes when EB → ~ωrad, as the interaction
energy scale is large enough to significantly alter the shell structure. This can
be interpreted as the strongly correlated regime. For EB/~ � 1, the excitation
structure becomes dominated by the interaction energy. In particular the ground
state will at some point be formed by point-like (and three-dimensional) bosonic
molecules in the motional ground state of the (two-dimensional) trap. Therefore,
this regime can again be considered weakly interacting. In figure 7.5, a plot of
the excitation spectrum upon varying EB/~ωrad is presented.
It can be seen that by increasing the binding energy, the single-particle excitation
branch is monotonously shifted up in energy. This is fully consistent with the
picture of a mean field shift presented above. The pair excitation branch, on
the other hand, shows a striking deviation from the naive expectation. Below
EB/~ωrad . 1 the mode monotonously decreases in energy due to the increased
pairing energy in the final state. However at around EB/~ωrad ≈ 1.2, the exci-
tation energy has a minimum and for larger binding energies increases again. In
addition, there are two distinct pair excitation modes visible. We can attribute
this splitting of the lowest mode to the anisotropy (≈ 2 %) and anharmonicity
(ω1→3/ω2→4 ≈ 1.1) of the trap. As a consequence, we do not only drive the
monopole mode m = 0, but also the m = ±2 mode.
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Figure 7.5.: Excitation spectrum of the N = 6 system. A: Probability of
exciting a pair of particles (P4) relative to the probability of retaining all particles
(P6), scaled such that for each interaction strength the maximum amplitude is
unity. For reference, also the non-interacting excitation spectrum is shown, which
is obtained by modulating the radial trap frequency (instead of EB), and where
the normalized excitation probability 1 − P6 is shown instead. The modulation
strength is chosen for each interaction strength in a way to maximize the visibility
of the relevant modes, and is not necessarily in the linear response regime. The
two modes below 2~ωHO are non-monotonous in EB and show a minimum around
Ec
B ≈ 1.2~ωHO, while all higher lying modes monotonously increase in energy.

B: Probability of retaining N = 3, 4, 5, 6 particles (N = 1, 2 not shown due to
the very low rate of occurrence). It can be seen that to the mode below 2~ωHO
predominantly pair excitations contribute, while the higher lying modes are driven
by single-particle excitations. Adapted from [32].

Before interpreting this observed behaviour in terms of the emergence of many-
body physics in the next section, it can be stated without any additional assump-
tions needed that the non-monotonous behaviour of the pair excitation mode sig-
nals a drastic (yet continuous) change in the nature of the ground state of the
six-particle system around a specific value of EB/~ωrad. When the interaction
energy approaches the single-particle excitation energy, admixtures of higher ly-
ing shells become relevant when writing down the interacting ground state in
the non-interacting single-particle basis. Therefore, the ground state is allowed
to reconfigure and minimizes its energy by forming pair correlations. The non-
monotonous behaviour is therefore explained by a crossover from a Fermi sea of
particles to a state with significant pairing correlations. For this reason, we will
from here on refer to the position of the minimum as a ‘critical’ binding energy
denoted by Ec

B. In [286], the amount of time-reversed pair correlations in the
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7.1. Emergence of a quantum phase transition

ground state is calculated. The contribution of pairs is defined via

P =
∑
i

|Ci|2, (7.3)

where Ci are the expansion coefficients corresponding to the time-reversed paired
in the many-body basis used to diagonalize equation 7.2. In the regime exper-
imentally studied above, P increases monotonously from zero to around 20 %.
We have extended the methods used in [286] in [32] to calculate the eigenener-
gies of equation 7.2, such that the anharmonicity and the anisotropy of the trap
is included as well, thus taking into account the Gaussian nature of the exper-
imentally used trap beams.6 In addition, we can weight the spectrum with the
transition matrix element of the excitation scheme in order to recover only the
modes excited. The matrix element from ground state |G〉 to excited state |E〉
for modulating the binding energy (to first order) is given by

Γint =
∣∣∣∣∣∣〈G|

∑
k,l

δ(rk − rl) |E〉
∣∣∣∣∣∣
2

. (7.4)

The resulting spectra are shown in figure 7.6.
All qualitative features, in particular the non-monotonicity of the pair excitation
mode, are well recovered also in the numerical simulation. In addition, the lowest
pair excitation mode is indeed identified as the monopole mode with ∆m = 0.
Due to the parity of the excitation scheme, we (mostly) excite modes with ∆m =
0,±2, such that modes with ∆m = ±1 are neither observed in experiment nor
visible in the numerical transition matrix element.

7.1.3. Approaching the many-body limit

In this section, I will discuss how the experimental results can be interpreted as
the emergence of many-body physics in a mesoscopic system. As a first step in
this direction, I can use that we can also prepare a system of twelve particles with
three filled shells. Therefore, in figure 7.7 I present results obtained by repeating
the same set of experiments with one additional shell filled and compare the re-
sulting spectrum to the six-particle case.
First of all, it can be seen that there are already significantly more distinct single-
particle excitations possible, which cannot be fully discerned any more. As a

6The model is regularized by a two-parameter cut-off scheme corresponding to the highest
allowed single-particle energy and renormalized with respect to the molecular binding energy.
The full diagonalization uses implicitly restarted Arnoldi routines for sparse matrices with
a basis set of up to ten million states. See [32] and references therein.
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Figure 7.6.: Numerical excitation spectrum of the N = 6 system. A: Ex-
citation energies calculated by exact diagonalization (blue lines) and the centre
position of the experimentally measured excitation modes (red data points, ob-
tained by a Gaussian fit to the data shown in figure 7.5). The two pair excitation
modes corresponding to ∆m = 0 and ∆m = ±2, as well as the single-particle
modes with ∆m = 0,±2 (with additional higher lying modes not studied in the
experiment) are identified as well. They show an energy dependency compatible
with the experimental results. In addition, single-particle modes with ∆m = ±1
are identified, which are not observed in the experiment and weakly couple to the
pair excitation modes due to the non-separability of the potential. B: Numerically
calculated transition matrix element taking into account the excitation scheme.
Consistent with the experimentally obtained spectrum, two non-monotonous pair
excitation modes are recovered in addition to mean field shifted single-particle
excitation modes. The modulation scheme does not (strongly) couple to the
∆m = ±1 modes. Adapted from [32].

consequence, an effective description with a continuum of final states becomes
favourable. Importantly, the energetically well-separated pair breaking mode is
still present, however. By comparison to the six-particle results, we see that the
minimum in the excitation energy is significantly lower, and in addition shifted
to smaller interaction energies. We will interpret this as the emergence of a quan-
tum phase transition by comparison to the many-body expectation. First of all,
I have to specify how to take the many-body limit. The direct approach is to
keep the trap frequency constant and increase the particle number and thus the
density (while staying in the quasi-2D limit). In the thermodynamic limit, the
ratio of the Fermi energy with respect to the trap frequency becomes very large,
EF/~ωrad →∞, such that the finite single-particle energy spacings become negli-
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Figure 7.7.: Excitation spectrum of the N = 12 system. A: Probability of
exciting a pair of particles (P10) relative to the probability of retaining all particles
(P12), scaled such that for each interaction strength the maximum amplitude is
unity. For reference, as before, the non-interacting excitation spectrum is given,
where the normalized excitation probability 1 − P12 is shown instead. As for
the six-particle system, two modes below 2~ωHO which are non-monotonous in
EB are observed, while all higher lying modes monotonously increase in energy.
We observe a weaker coupling to the ∆m = ±2 mode compared to before. B:
Comparison of the pair and lowest single-particle excitation modes of the six- with
the twelve-particle system. The energy of the mode is determined by the peak
position of a Gaussian fit to each experimentally identified mode. Upon increasing
the particle number, the minimum of the pair excitation mode is shifted to smaller
energies and weaker interactions. Adapted from [32].

gible. This is the situation encountered in section 3.1. Therefore, as also seen in a
homogeneous BCS, already arbitrarily small attractive interactions lead (at T=0)
to a superfluid state where the ground state features time-reversed (Cooper) pair
correlations. We can see first indications of approaching this many-body limit
based on the fact that the critical binding energy, where the pairing correlations
are strong enough to allow for a back-bending of the corresponding mode, de-
creases upon increasing the particle number. This trend is numerically confirmed
also for larger atom numbers [286].
If we want to retain the shell structure of the system, on the other hand, we have
to rescale all energies by the critical binding energy Ec

B. In the above measure-
ment, this would correspond to rescaling the x-axis such that the back-bending
points coincide. It has been studied [286, 289–292] that a closed shell system
in the thermodynamic limit features a quantum phase transition (at T=0) from
a normal fluid to a superfluid upon increasing the interaction energy, enabled
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Figure 7.8.: Many-body limit. Schematic illustration of the Higgs mode emerg-
ing when approaching the many-body limit. Upon increasing the particle number,
while at the same time rescaling the interaction strength to the minimum of the
pair excitation mode Ec

B (blue and black lines, darker colour indicating larger
atom number), the mode softens. Only in the thermodynamic limit, the min-
imum of the mode reaches zero energy, such that it signals the opening of a
many-body gap at the critical interaction strength Ec

B for the normal to super-
fluid transition. In this limit, the mode is referred to as a Higgs mode.

by the competition between single-particle excitation energy and the interaction
energy scale. Above a critical interaction strength Ec

B in a symmetry-breaking
process (see section 2.3.3 and in particular equation 2.54), a many-body gap ∆
opens up. As a consequence, the ground state changes nature by forming coher-
ent pair correlations with a fixed (and spontaneously chosen) phase. On general
grounds, it can be stated [134], that such a quantum phase transition gives rise to
collective modes, with one of these modes softening (that is the excitation energy
becoming zero) at the critical point.7 In the case discussed here, and sketched
in figure 7.8, this mode corresponds to vibrations in the amplitude of the order

7Not only the fact that the mode is going soft is generic, but also the asymptotic way the ex-
citation energy approaches zero [134, 198–201, 291]. Neglecting deviations from the particle
hole symmetry [286], the energy of the mode is given by 2|∆|.
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7.1. Emergence of a quantum phase transition

parameter. In other words it consists of coherent time-reversed pair excitations
across the gap. This mode is usually referred to as the Higgs mode.
The fact that the energy of the Higgs mode becomes zero at the critical inter-
action strength can be intuitively understood. Below Ec

B, as in our mesoscopic
system, the pairs have to be lifted across the single-particle excitation energy.
Pairing correlations in the final state lead to a monotonously decreasing energy.
This mode corresponds to vibrations around the normal phase expectation value
of ∆ = 0. At the critical interaction strength, the Fermi surface becomes unsta-
ble towards pair formation, and pairing correlations can form without any energy
cost associated to it (phrased differently, the spatial correlations, and the coher-
ence time of spontaneously formed pairs diverge). Above the critical interaction
strength, the pairs have to be lifted across the many-body gap |∆| > 0 to be
broken up, such that the energy of the Higgs mode increases, again as in our
mesoscopic system.
Based on our measurements, the above considerations, and the sketch in fig-
ure 7.8, we can interpret the observed pair excitation mode as the precursor of
a Higgs mode signalling the emergence of a quantum phase transition from a
normal to a superfluid in a mesoscopic system:

• We observe a non-monotonous mode of predominantly pair excitations with
a minimum at a ‘critical’ binding energy Ec

B reminiscent of a Higgs mode.

– The few-body aspect of this mode is reflected in the fact that the
minimum excitation energy remains finite and that the asymptotic
behaviour of the excitation energy in the vicinity of the critical binding
energy is not yet recovered.

– A trend of the critical binding energy reducing, and the mode soft-
ening further upon increasing the particle number, is observed in the
experiment consistent with numerical modelling.

• The nature of the ground state changes character in terms of its pair cor-
relations when crossing the critical binding energy. Below Ec

B, pairing cor-
relations in the final state lead to a mode which is decreasing in energy. At
around Ec

B, the interaction strength is strong enough to allow for pairing
correlations (by admixtures of higher shells) in the initial state. There-
fore, the initial state develops increasing pairing correlations, leading to an
increase in the mode energy.

– The few-body aspect is reflected in the fact that the discrete phase
transition at Ec

B has to be replaced by a continuous crossover.
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7.1.4. Concluding remarks

There are a few interesting additional considerations to be made:
I have discussed above that the Higgs mode constitutes coherent oscillations on
the magnitude of the order parameter. While a Higgs mode has already been
observed in a many-body scenario [22, 137–143], the mode is usually not long
lived (i.e. coherent), due to the decay into continuum modes [291] (if not sta-
bilized by additional symmetries, in particular particle hole symmetry, see also
section 2.3.3). In the experiments presented above, we are working with discrete
available energy levels. Therefore, it is indeed possible to coherently drive the
Higgs mode. This is illustrated in figure 7.9.
Up to now I have only discussed the Higgs mode, that is oscillations in the am-
plitude of the order parameter. Equally important and interesting are however
also oscillations in its phase, as given by the Goldstone mode. In our system, it
was not possible to identify a precursors of a Goldstone mode. This is due to the
fact that in order to have oscillations on top of it, the phase has to be defined
on length scales much smaller than the system size [292]. In other words, the
(superfluid) gap has to be much larger than the single-particle energy spacing.
This regime is not (yet) accessible in the experiment.
Finally, I would like to relate the regime studied in this chapter back to the
macroscopic BEC-BCS crossover. By introducing the single-particle excitation
energy, we have shifted the critical binding energy for condensation from zero to
a finite energy. As a consequence, we cannot tune across the superfluid BEC-BCS
crossover by changing the binding energy (or experimentally the magnetic offset
field) without limits. Therefore, it is instructive to ask which regime we actually
accessed with our six and twelve-particle systems. In the continuous case, we have
compared the two-body binding energy to the the typical interparticle spacing
(as quantified by ln (kFa2D)) in order to estimate the regime. Here, we should
instead compare the magnitude of the gap to the single-particle excitation energy.
In the limit |∆| � ~ωrad, the pairing is predominantly intrashell [291]. This is
analogous to a BCS limit, where we have pairing at around the Fermi surface. In
our mesoscopic system, this translates to the condition that Ec

B � ~ωrad, as only
in this limit also the minimum of the Higgs-precursor excitation energy is signif-
icantly smaller than (twice) the single-particle shell spacing. To this end, note
that in the many-body limit, the asymptotic excitation energy (assuming particle
hole symmetry) is given by 2|∆|. On the other hand, we can always enter the
BEC regime by tuning the two-body binding energy larger than all other energy
scales such that intershell pairing becomes predominant. These considerations
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Figure 7.9.: Coherent excitation of the Higgs mode. We set the modu-
lation frequency to the centre position of the lowest pair excitation mode for
EB = 0.57~ωHO in the six-particle system. We record the probability of different
atom numbers retained in the lowest two shells as a function of the modulation
time. Shown is the mean value and the standard error of the mean based on
around 180 measurements per data point. The PN=4 (blue data points), and
PN=6 (red data points) probabilities coherently oscillate out of phase, with the
combined probability (green data points) remaining almost constant. All other
probabilities are small and constant (shown is PN=5, grey data points). Together,
this indicates that the mode can be described as a coherently driven two-level
system. Therefore, the PN=6 contribution is consistent with an exponentially
damped (due to dephasing) Rabi oscillation. Based on a fit to PN=6 (red line),
we extract a Rabi rate of 8.0± 0.1 Hz, with a 1/e decay rate of 4.5± 0.5 Hz.
Adapted from [32].

are in line with my previous, naive, interpretation of EB ≈ ~ωrad as the crossover
regime. As a consequence, in the mesoscopic system of six or twelve particles,
the system becomes ‘superfluid’ right in the crossover regime between BCS (that
is intrashell) and BEC (that is intershell) pairing.
This result closes the circle to the very first results shown in chapter 3 on a macro-
scopic system showing intricate pairing correlations in the crossover regime. Due
to the progress presented in this chapter, we now have also a mesoscopic system
in a similar regime at hand. The crucial advantage we have gained in the process
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is that we now have a full toolbox at our disposal to measure and classify the cor-
relations present. In particular, all ingredients are there to study single-particle
resolved correlation measurements in real and/or momentum space. This will be
a very exciting next step on the quest outlined in this thesis.
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8. Conclusion and outlook

The results presented in this thesis open up new ways to study correlations influ-
enced by interactions and indistinguishability. I have presented a toolbox capable
of measuring correlations in position and momentum space independent of any
specific trapping potential. This approach can possibly be combined with more
complicated matterwave manipulations to access further observables. Together
with the capabilities of preparing low entropy or even deterministic systems from
very small toy-models to full scale, extremely complicated, many-body systems,
I have presented several different but related studies on strong correlations and
entanglement. Nevertheless, all these results rather mark the beginning than
the end of studying correlations in microscopic, mesoscopic and ultimately also
macroscopic systems. Therefore, before concluding this thesis, I would like to
point out a few specific possible next steps.

8.1. Single-particle resolved correlation
measurements in mesoscopic systems

Based on the discussions in this thesis, the immediate next steps to take can be
readily formulated: With the deterministically prepared mesoscopic 2D systems,
an exciting prospect is to study momentum correlations within this setting. Nu-
merical calculations based on the exact diagonalization assure us that signatures
of pairing at a finite momentum can be observed when crossing the ‘phase transi-
tion’ identified in the previous section [286]. It is important to point out that the
techniques established in this thesis are directly and fully applicable to measuring
correlations also in theses systems, as preliminary measurements have confirmed.
Therefore, this will be next major step.
In addition, the capabilities of preparing deterministic 2D systems can be ex-
plored further. First of all, further increasing the particle number is a major
goal. There are indications that the deterministic initialization of systems with
one or two additional shells is within reach. Furthermore, the level structure of
partially filled shells can be explored in order to study the emergence of sub-shells
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due to interactions similar to a Hund’s rule in atomic or nuclear physics [283]. Fi-
nally, spin-imbalanced systems are of particular interest, where either minimum
instances of polaronic models could be probed, or the intricate phenomena of
pairing at finite centre of mass momentum studied [293].

8.1.1. Real space pairing correlations

It is important to ask whether it is already possible to directly apply the imaging
and correlation measurement scheme to even larger systems. Therefore, in a pre-
liminary study, we have prepared a system of around 60 particles per spin state in
the single layer of a very shallow 2D trap with a radial trap frequency of around
ωrad = 2π · 13.5 Hz (with the axial trap frequency of around ωax = 2π · 650 Hz).
For these settings, we have a typical radial cloud size of around 2σrad = 35 µm and
a typical interparticle distance in the centre of the cloud of around 6 µm (com-
pared to a typical value of 1 µm in other experiments on 2D quantum systems).
Due to the very small energy scale of the confinement, deterministic control is
not possible in this regime. Nevertheless, the prepared states are at a rather low
temperature of around T/TF ≈ 0.2. This system can serve as a first test to study
in-situ correlations. Based on several hundred individual realizations per setting,
we study the second order density correlation function g2(r↑, r↓) as presented in
figure 8.1.
Indeed, in the correlation map in the bosonic and the crossover regime, a single
peak is visible in the correlation function between different spin components. It
is centred around zero relative distance. This correlation peak directly indicates
pairing between spin up and spin down atoms, consistent with the simulations
presented in section 5.4.5. In particular, based on the weight of the peak, we
can make statements about the paired fraction at different magnetic fields, as
illustrated in figure 8.2. Less obvious is the interpretation of the shape of the
pairing peak. In fact, we have observed that the spatial extent of the correla-
tion peak is not significantly larger than the size obtained when correlating two
particles confined in a tight microtrap, and thus our effective resolution. In the
crossover regime, we expect the typical size of the pairs to be on the order of
the interparticle spacing. This is similar in scale to the resolution of the imaging
scheme, even though in this measurement campaign the imaging was adapted
such that significantly fewer photons are scattered per atom (with an exposure
time of 5 µs to 10 µs). Furthermore, also the system size is not fully separated
from the scale set by the pairing correlations. First of all, this means that we
average over significantly different densities, even when we study the correlations
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8.1. Single-particle resolved correlation measurements in mesoscopic systems
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Figure 8.1.: In-situ correlations in a mesoscopic quantum system. Nor-
malized second order density correlation function g2(r↑, r↓), for a system of 60
particles per spin state and a central interaction parameter of ln (kFa2D) = −1.3.
The full correlation function is four-dimensional. A:Map of g2(d↑↓) in the relative
coordinates d↑↓ = r↑ − r↓ (see equation 6.9) with the centre of mass integrated
out. A single strong peak on top of an uncorrelated background is seen, indicating
pairing between the different spin components. This is the most intuitive rep-
resentation of the correlation function, however the radial symmetry of the trap
is not used, and in addition the correlation function is averaged over different
density regimes B: The same correlation function as a function of the centre of
mass position R relative to the centre of the cloud and the relative coordinate d.
In this representation, the radial symmetry of the potential is used and different
density regimes can be discerned based on the centre of mass coordinate. This is
the most useful representation for studying in-situ density-dependent pairing. In
this plot, spurious correlations due to the finite size of the cloud (see also [183])
become most visible, for example by anti-correlations on the scale of the cloud
size (darker blue region).

in the relative coordinate only for a fixed value of the centre of mass position. In
addition, correlations on the scale of the cloud (caused for example by technical
fluctuations in the cloud size or atom number between different realisations), can
mask the correlations due to pairing. Finally, any direct indications of pairing
at the Fermi surface, which would manifest itself as oscillations in the pairing
correlations on the scale of the Fermi wave vector, are well below our resolution
limit.
While in this preliminary study it was not possible to study the nature of the
pairing mechanism in detail, this is nevertheless a promising path for future stud-
ies. In particular, shifting the measurements to momentum space can be quite
beneficial, as the relevant scale of the correlation feature is shifted to larger dis-
tances given by the scale of the Fermi momentum. While in a mesoscopic system,
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Figure 8.2.: In-situ correlations across the BEC-BCS crossover. Radial
average of g2(d) as a function of the radial (relative) distance d. The data points
in different colours result from samples prepared at different magnetic offset fields
and thus different interaction parameters. The number of particles and the tem-
perature were kept mostly constant. Note however that the cloud size changes
as a function of the interaction strength. The interaction parameter ln (kFa2D)
is calculated based on the central density. The weight in the pairing peak is
strongly dependent on the magnetic offset field, while the shape is dominated by
the imaging point spread function. The integrated weight of the peak is propor-
tional to the paired fraction and the peak height far on the BEC side is consistent
with a fully paired system.

by definition, it will never by possible to separate all involved scales (resolution,
correlation feature, system size), implementing the improvements presented in
section 5.4 indeed holds the promise to be sufficient to enable detailed correlation
measurements on pairing in similar systems of around 100 particles per spin state.
This approach is very well suited to complement the correlation measurements
on deterministically prepared systems outlined above. It will constitute the very
exciting step of bridging the gap between deterministic mesoscopic and thermal
macroscopic quantum systems.

8.2. Concluding remarks

To conclude, I would like to briefly recapitulate the main results of this the-
sis. Based on very intriguing measurements of high temperature pairing in the
crossover regime of a 2D BEC-BCS crossover, I formulated an agenda with the
goal to study microscopic correlations in such a system. The agenda consisted of
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8.2. Concluding remarks

the following six milestones:

• MILESTONE 1: Develop an imaging scheme suited for correlation mea-
surements.

• MILESTONE 2: Identify the most basic systems which feature prototyp-
ical correlations or pose typical challenges of interpreting the results.

• MILESTONE 3: Develop a toolbox for correlation functions and bench-
mark the measurement scheme.

• MILESTONE 4: Scale up the system size to the mesoscopic regime.

• MILESTONE 5: Characterize a mesoscopic system which features first
signatures of many-body effects.

• MILESTONE 6: Characterize an unknown strongly correlated many-
body state based on suitable correlation measurements.

Along these lines, I have presented a versatile imaging scheme. It proved suit-
able for the many challenges involved in measuring correlation functions in two-
component Fermi gases, thus achieving the first milestone. Afterwards, I dis-
cussed correlation measurements in few-body systems. Indeed, it was possible
to identify systems which are prototypical of certain phenomena and posed chal-
lenges in interpreting them. In particular, when both indistinguishability and
the notion of entanglement were involved, even these small systems offered fun-
damentally new insights. Therefore, it was crucial to include the second and
third milestone, which were achieved this way, in this agenda. Afterwards, I
identified a small 2D system with a single-particle shell structure as the ideal
intermediate step towards scaling up the system size. I presented measurements
on a collective excitation indicating first signatures of many-body behaviour in
this system. There is still great prospect in further work towards the fourth
and fifth milestone, for example by performing momentum density correlations
and investigating thermal systems. Finally, I have discussed in this outlook that
there is still some work to be done until the final milestone can be ticked of the
list. Importantly however, by combining all the results in this thesis, this ulti-
mate goal, which initially seemed completely out of reach, is now tamed to be a
number of challenging, yet realistic, additional steps. Only by tackling all these
intermediate, but by themself already major, milestones, I have explored many
intricate phenomena of quantum mechanics, where correlations lead to surprising
collective and entangled behaviour of very exotic and highly non-classical states
of matter!
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