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Abstract

The emergence of collective and universal behaviour is at the heart of
many of the exotic phases of matter that challenge our physical under-
standing until today. Fermionic superfluidity and superconductivity, for
example, are found in a wide range of strongly correlated materials. And
while it is understood that pairing is the fundamental prerequisite for
their occurrence, the microscopic mechanisms for pair formation remain
in many cases unknown.
In this thesis, we study the emergence of collective behaviour and su-

perfluidity at the most fundamental level — from the bottom up. To this
end, we deterministically prepare the ground state of a mesoscopic Fermi
gas consisting of up to 20 atoms in a two-dimensional harmonic potential.
Our ultracold quantum gas allows us to freely tune the interactions from
a completely non-interacting state to a regime of strong binding. We
apply a novel fluorescence imaging technique to extract the momentum
distribution of the strongly interacting Fermi gas and with full spin and
single particle resolution. We observe a few-body precursor of a phase
transition from a normal to a superfluid phase for a system consisting
of as few as six interacting particles. It is revealed by the presence of
Cooper pairs we detect directly as correlations between particles of op-
posite spin and momentum at the Fermi surface. When the attraction
strength is increased, we observe how the pair character changes and a
transition from Cooper pairs to tightly bound molecules occurs. The col-
lective behaviour we discover in our mesoscopic system is closely related
to observations in atomic and nuclear physics, superconducting grains
or quantum dots. Our platform, with its completely programmability
of interactions, particle numbers, the quantum state and the potential
landscape, opens up new pathways to study such strongly correlated
mesoscopic systems and their connection to the macroscopic world.





Zusammenfassung

Die Entstehung von kollektivem und universellem Verhalten liegt vielen
der exotischen Materiezustände zugrunde, die bis heute unser physika-
lisches Verständnis herausfordern. Beispielweise lassen sich fermionische
Suprafluidität und Supraleitung in einer Vielzahl stark korrelierter Ma-
terialien finden. Und obwohl bekannt ist, dass Paarbildung die grundle-
gende Voraussetzung für das Auftreten dieser Effekte ist, sind die mikro-
skopischen Mechanismen die zur Paarung führen oft unbekannt.
In dieser Arbeit untersuchen wir die Entstehung von kollektivem Ver-

halten und Suprafluidität auf der grundlegendsten Ebene – von kleinen
hin zu größeren Systemen. Dazu präparieren wir den Grundzustand von
bis zu 20 Atomen eines mesoskopischen Fermigases deterministisch in
einem zweidimensionalen harmonischen Potential. Das ultrakalte Quan-
tengas ermöglicht es uns, die Wechselwirkungen von einem völlig wech-
selwirkungsfreien Zustand bis zu einem Regime starker Bindung beliebig
einzustellen. Wir wenden eine neuartige Fluoreszenz-Abbildungsmethode
an, um die Impulsverteilung des stark wechselwirkenden Fermi-Gases mit
Spin- und Einzelteilchenauflösung zu bestimmen. Wir beobachten die
Wenig-Teilchen-Vorstufe eines Phasenübergangs von einem normalen zu
einem superfluiden Zustand für ein System aus nur sechs wechselwirken-
de Teilchen. Der Übergang wird durch das Vorhandensein von Cooper-
Paaren offenbart, die wir direkt als Korrelationen zwischen Teilchen mit
entgegengesetztem Spin und Impuls an der Fermi-Oberfläche nachwei-
sen. Wenn die Anziehungsstärke erhöht wird, beobachten wir, wie sich
der Paar-Charakter ändert und die Cooper-Paare zu tief gebundenen Mo-
lekülen übergehen. Unser mesoskopisches Fermigas ist eng verwandt mit
Systemen in der Atom- und Kernphysik, supraleitenden Nanoteilchen
oder Quantenpunkten. Unsere Plattform, mit der vollständigen Kontrol-
le über Wechselwirkungen, Teilchenzahl, den Quantenzustand und die
Potentiallandschaft, eröffnet völlig neue Möglichkeiten um solche stark
korrelierten mesoskopischen Systeme und ihre Beziehung zur makrosko-
pischen Welt zu untersuchen.
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1

Introduction
“I think a good case can be made that science has now moved from an Age of
Reductionism to an Age of Emergence, a time when the search for ultimate
causes of things shifts from the behaviour of parts to the behaviour of the
collective.”

– Robert B. Laughlin, A Different Universe (2005)

The paradigm of reductionism —the idea that we can explain all phenomena by re-
ducing them to ever smaller entities— has historically always been the driving force of
natural sciences and physics in particular. Technical progress and experimental break-
throughs have led to an ever more refined understanding of the most fundamental laws
and particles of nature. At the end of the 19th century discoveries like the photo-
electric effect [Her87] or the Michelson–Morley experiment [Mic87] have triggered the
formulation of modern theories like general relativity or quantum mechanics. The de-
velopment has culminated in the formulation of the standard model and the detection of
the Higgs boson in 2012 as its last previously unobserved fundamental particle [Aad12].
And while a theory of everything still remains to be found, the Schrödinger equation
alone already covers almost all phenomena we experience in our everyday world in the
non-relativist limit [Lau00a]. It is the fundamental law of nature describing everything
from atoms to gases, fluids or solids and even more complex structures like molecules
or living cells.

The formulation of the Schrödinger equation in 1926 marks not only one of the
biggest accomplishments of reductionism but at the same time the beginning of its
end as the prevalent scientific worldview. New concepts, summarized under the term
emergence, came up at the time [Lau05; Wei07]. It was discovered that it is not
possible to simply extrapolate from the microscopic laws of nature to larger and larger,
increasingly complex structures but “more is different” [And72]. At every scale entirely
new collective behaviour emerges, with new effective laws and concepts. Often, the
properties of different many-body systems are even universal and do not depend on
the microscopic details of the system. The underlying theory of everything becomes
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1 Introduction

irrelevant in the sense that if it were modified within some limits, the phenomena we
observe on macroscopic scales would not be altered [Lau00a].

The higher organizing principles that determine the properties of the collective states
can generally be described in the framework of phase transitions and broken symmetries
[Lan36; Gol62; And72; Sac11]. They lead to self-ordering, new effective degrees of
freedom and quasi-particles and in many cases universal low-energy excitation spectra.
At a phase transition point, a system might spontaneously break an exact symmetry
of its underlying Hamiltonian, for example continuous translation invariance when a
crystal is formed. This explains in some parts why it is so difficult to predict such
effects from first principles even for a moderate number of particles. A further reason
is the exponential scaling of the dimensionality or Hilbert space size of the problem with
particle number N . No classical computer will ever be able to solve the Schrödinger
equations exactly for large particle numbers required to understand complex systems
like cells or proteins [Lau00a]. Instead, progress in the field of quantum many-body
systems depends more than ever on experimental discoveries and technical progress.

1.1 Superfluidity and Superconductivity
The related effects of superconductivity and superfluidity are prime examples for emer-
gent quantum states that are universally present in a broad range of systems and
materials from liquid helium to metals and cold quantum gases. Both phase tran-
sitions where first observed in 1911 in the laboratory of Kamerlingh Onnes after he
managed to liquify helium for the first time [Van10]. It took almost fifty years before it
was realized that the emergent phenomenon of superconductivity is the result of higher
organizing principles in the form of symmetries. The Ginzburg–Landau theory as a
phenomenological theory of superconductivity was formulated in 1950 [Lan66]. A mi-
croscopic explanation in terms of bound pairs of electrons or Cooper pairs by Bardeen,
Cooper and Schrieffer (BCS) followed shortly afterwards [Bar57].

Unconventional or high-TC superconductors are even more complex. They were first
discovered in 1986 in copper oxides also called cuprates [Bed86]. Understanding how
superconductivity emerges in these materials remains one of the most important prob-
lems in modern condensed matter physics, even after more than thirty years of extensive
research in the field [Zho21]. It is understood that pairing is an essential ingredient
also to high-TC superconductivity [Yan62]. The pair mechanism, however, is much
more complex than the comparatively simple electron-phonon interaction leading to
Cooper pairing in conventional superconductors. It is believed that genuine fermionic
correlations between the itinerant electrons in the material play the primary role. Ac-
cessing pair correlations in cuprates directly is very difficult and numerical or analytical
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1.2 Emergence in Ultracold Atoms

studies turn out to be even more challenging. This has motivated the search for new
experimental approaches to study strongly correlated Fermi systems in the past decade.

1.2 Emergence in Ultracold Atoms
Dilute gases of neutral atoms cooled close to absolute zero temperatures represent an
attractive platform for the study of many-body physics. They offer a rich palette of
tools and tuning knobs that grant control over everything from the external potential of
the atoms to their interaction strength or even external artificial magnetic fields [Sta12].
Together with the almost defect free optical potentials and the strong isolation from
the environment this allows for the exact implementation of many different theoretical
models [Blo08; Blo12]. At the same time, high resolution imaging techniques give access
to correlations, sometimes even with single atom and spin resolution, both in-situ and
in momentum space [Alt04; Ott16; Gro21].

Ultracold atoms offer the exciting possibility to study emergence starting from the
smallest possible building blocks. The system can be assembled from the ground up, one
atom at a time [Ser11a; Wen13a]. At the same time genuine collective behaviour and
phase transitions are accessible with samples of up to around one million atoms [Gre02].
Quantum gases even promise insights into the still largely unexplored world between
the macroscopic and microscopic scales. As Laughlin et al. put it, there is “life in the
desert” that exists in the many orders of magnitudes between both limits [Lau00b].
In mesoscopic systems entirely new, still undiscovered, organization principles might
appear and these might have profound implications for everything that appears at
larger scales. This idea extends to many other fields in science. Even the origin of
life might be founded on underlying mechanisms that allow small assemblies of driven
systems to self-organize and maximize their energy dissipation [Eng15].

In physics, experiments with helium revealed superfluidity at remarkably small par-
ticle numbers of only around 50 atoms [Gre98]. Strong attractive interactions in nuclei
generally lead to the emergence of collective modes as well [Gol48]. Spectra consistent
with a BCS superfluid have been found [Mig59]. Further examples for collective be-
haviour at the mesoscopic scale are found in quantum dots, metallic grains or atomic
clusters [Alh00; Del01; Cas09]. These different observations show that emergence and
self-organization become important already at the smallest scales. The range of tunabil-
ity in naturally occurring systems is quite limited, however. Ultracold quantum gases
with particle numbers and interactions that can be varied by orders of magnitudes
provide new opportunities for the field .

To summarize, the formulation of the Schrödinger equation as a fundamental theory
of (almost) everything does not provide an immediate solution to all open questions
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in many-body physics. Instead, it rather provides a starting point at the microscopic
level to go up from and reconstruct larger systems incrementally. Interesting collective
effects and new effective laws emerge at every step along the way. Even small meso-
scopic structures are more than just building blocks of larger entities. What makes
such systems attractive from an experimental viewpoint is that they are often already
much to large to be solved exactly. At the same time, with just tens to hundreds of
particles, they can not be accurately described by statistical models like thermodynam-
ics that generally work well in the macroscopic limit. Each particle or atom represents
a significant fraction of the whole system and the single particle spectra and gaps are
large enough to become relevant.

1.3 Outline of the Thesis
In our work, we are interested in exploring how collective behaviour and superfluidity
emerge in a two dimensional (2D) Fermi gas. The goal is to approach the system
“from the bottom up” and to directly study the microscopic (pairing) correlations that
lead to phase transitions in the macroscopic limit. To this end, we create an ensemble
of ultracold 6Li atoms that is confined by a highly anisotropic optical potential that
restricts all dynamics to a 2D plane. We are able to tune the contact interaction
strength between two spin components in the gas from zero all the way to the strongly
interacting limit [Zür12a]. A robust fluorescence imaging technique allows us to extract
the complete in-situ density or momentum distribution with single particle and spin
resolution [Ber18].

The 2D geometry increases the complexity of the quantum state significantly com-
pared to previous studies in one dimensional (1D) samples [Wen13a]. The radial sym-
metry results in degenerate energy levels and the formation of a shell structure similar
to the orbitals of the periodic table of elements. Spontaneous symmetry breaking and
long range order are non-existent in 2D systems with short range interactions [Mer66].
The normal to superfluid transition is driven by topological properties instead [Ber72;
Kos73]. Fermi gases in 2D are also very interesting from the perspective of high-TC
superconductivity. Many unconventional superconductors are layered structures where
electron transport and pair correlations occur predominantly in 2D planes. The rela-
tion between reduced dimensionality and high transition temperatures TC is an open
question in the field [Yu19; Sob21].
In chapter 2, the theoretical framework for all the measurements presented in the the-

sis is established. The discussion starts at the microscopic level with a brief discussion
of the Hamiltonian, single particle spectra and quantum statistics. Phase transitions
and spontaneous symmetry breaking are introduced with a focus on the normal to
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1.3 Outline of the Thesis

superfluid transition. BCS theory as the first microscopic model that explains conven-
tional superconductivity is introduced. The chapter is closed by a discussion about
the precursors of collective behaviour and modifications to mean field theories that are
required for mesoscopic systems.

Chapter 3 contains a review of the most important properties of neutral atoms at
ultracold temperatures. Their universal collisional behaviour together with convenient
energy spacings in the internal electronic structure have led to the many achievements
of quantum gas experiments in the past decade. In chapter 4 all the experimental
methods and tools required for the preparation, manipulation and detection of our 2D
Fermi gas are presented. This includes a novel spilling technique, initially developed
for 1D systems [Ser11a], to prepare pure quantum ground states with deterministic
particle numbers for up to 20 atoms. A single atom and spin resolved imaging scheme
is introduced that allows us to extract correlations directly in momentum space [Ber18].

In the second part of the thesis, starting with chapter 5, all the experimental results
are presented. First studies of completely non-interacting samples in the ground state
are shown. We directly observe the Pauli exclusion principle in our continuous system.
It manifests itself in the form of higher order correlations that can be visualized with
so-called Pauli crystals [Hol21b]. The measurement demonstrates that we can extract
single particle resolved correlation functions from continuous systems where all the
wavefunctions in the initial state overlap. It lays the foundation for the following work.

In chapter 6, attractive interactions are introduced to the system. We perform mod-
ulation spectroscopy with ground states of different particle numbers. This allows us
to observe a precursor of a quantum phase transition from a normal to a superfluid in
our mesoscopic system [Bay20a]. The transition is identified by the non-monotonous
energy dependence of a coherent pair excitation resonance together with a detailed
comparison to the theory.

The measurement presented in chapter 7 combines all the techniques and abilities
that we developed in the preceding studies. We directly observe Cooper pairs in a
mesoscopic, weakly attractive 2D Fermi gas [Hol21a]. When we increase the interaction
strength, the pairs turn into deeply bound molecules breaking up the Fermi surface.
Our observables allow us to precisely characterize the strongly interacting quantum
state in terms of the number of pairs and their correlations.

Chapter 8 deals with experiments performed much closer to the thermodynamic
limit and with up to N = 50 000 atoms. The full phase diagram of the 2D BCS-BEC
crossover is investigated. We find preformed pairs in the normal phase with an energy
that significantly exceeds the expected value from two-body calculations [Mur18b].
They appear in the strongly interacting regime and raise important questions about
their relation to the phase transition temperature TC. A second study of collective
breathing oscillations reveals a quantum anomaly of the gas in the same region [Hol18;
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Mur19]. The quantum anomaly describes the violation of a classical scaling symmetry
that is present in the 2D gas. The symmetry violation has a profound influence on
the collective behaviour of the system. The measurements highlight the richness of
the phase diagram of the 2D Fermi gas in the macroscopic limit. This motivates fur-
ther studies of breathing modes and finite temperature systems also in the mesoscopic
regime.

Chapter 9 contains the conclusion of the thesis. Here, the implications of all our
measurements for the emergence of collective behaviour in mesoscopic 2D Fermi gases
are reviewed. Some of the most promising prospects for future studies with our appa-
ratus are presented in addition. This includes spin imbalanced and finite temperature
samples or studies of the emergence of hydrodynamics behaviour at the mesoscopic
scale. Our methods hold the potential to improve our understanding of many strongly
correlated systems in an unprecedented way.
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Quantum Many-Body Systems
Solving the equations of motion for any quantum mechanical system with interacting
particles is remarkably difficult [And72]. Even state of the art supercomputers are
limited to tens of particles for the most basic models. Materials in nature typically
consist of more than 1023 particles. The complexity originates from the exponential
scaling of the Hilbert space with particle numbers and interactions that lead to large
amounts of quantum correlations and entanglement. The amount of information in the
full many-body state becomes too large to even store the wavefunction, let alone use it
for calculations.

Instead of solving the problem completely, effective theories and approximations have
to be found [Pop99]. In the last century, great progress in the development of such
concepts in the field of condensed matter theory has been made. They can be loosely
grouped into two subjects [Wen07]. The first one includes models like the band struc-
ture and perturbation or Fermi liquid theory. They successfully describe properties
like the electric resistivity, heat capacity or optical response of many solids, especially
metals and semiconductors. The second group is based on ideas like spontaneous sym-
metry breaking and renormalization group theory. They are the foundation for phase
transitions and descriptions in terms of universal low-energy excitation spectra that
emerge due to higher organizing principles. We stress again that the approximate de-
scriptions above are not derived from first principles but rather tailored to experiments
[Lau00a].

The discovery of the fractional quantum hall effect in some semiconductors has
opened yet another chapter in condensed matter theory [Tsu82]. These materials show
a series of plateaus in the Hall conductance that are robust against small perturba-
tions. The plateaus and their values cannot be explained by spontaneous symmetry
breaking. Instead, the effect is driven by the topological order of the system [Lau83].
A hole new set of phenomena was discovered including, for example, fractional charges,
non-Abelian statistics and edge states. This list highlights the richness of emergent be-
haviour and represents just the beginning of collective effects that are not completely
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2 Quantum Many-Body Systems
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Figure 2.1: High temperature superconductivity in cuprates. Segment of the
crystalline structure of a yttrium–barium cuprate with a superconducting
transition temperature of up to TC = 92 K (a). The Yttrium atoms act
as barrier, confining electron motion to 2D layers. A rich phase diagram
emerges in such materials as function of their doping value (b). For small
doping an antiferromagnetic (AF) state is found. Superconducting (SC)
domes exist left and right of the AF region and at even smaller temper-
atures. A pairing pseudogap region exists in the normal phase above. It
is defined by a significant reduction of the density of states close to the
Fermi surface. For very large doping the material is well described by
Fermi liquid theory (FL).

understood until today [Col03]. High temperature superconductors (see Figure 2.1) and
heavy fermion compounds are further prominent examples falling in the same class of
strongly interacting fermion systems. Unravelling the mysteries behind these materials
belongs to the most important challenges in the 21st century.

In this chapter, the most important concepts developed to describe emergence in
many-body systems are presented. The focus is placed on phase transitions and sponta-
neous symmetry breaking. The BCS-BEC crossover is introduced as general framework
describing a large range of interacting Fermi systems. For a more complete introduc-
tion to quantum many-body theories the reader is referred to one of the many excellent
books on the topic [Alt06; Sac11; Col15]. The chapter is divided into three sections.
First, the single microscopic model describing all the systems we study in our exper-
iments is introduced. This is followed by a discussion of the many-body physics that
is expected on a macroscopic scale and with large particle numbers. The last section
deals with the mesoscopic world in between both limits. Important modifications of
the collective behaviour occur in the case of small and deterministic particle numbers.
The goal of this thesis is to study how collective behaviour emerges starting from the
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2.1 Microscopic Model

smallest possible building blocks of a system.

2.1 Microscopic Model
A pure quantum state of N particles can be represented by its many-body wavefunction
in real space ΨN (r1, . . . , rN , t). Here, ΨN expresses the probability amplitude of finding
the particles at the N positions r1, . . . , rN and at time t. The wavefunction obeys the
Schrödinger equation:

i~
∂

∂t
ΨN (r1, . . . , rN , t) = HΨN (r1, . . . , rN , t) . (2.1)

Often, we are most interested in the stationary eigenstate solutions given by the time-
independent Schrödinger equation HΨN = EΨN . A vast amount of interesting Hamil-
ton operators H exists, describing many different aspects of nature. We focus on the
specific microscopic model underlying all the experimental studies discussed in this
thesis:

H = −
N∑

i=1

~2

2m∇
2
i +

∑

i<j

~2

2mg0 δ
(d) (ri − rj) +

N∑

i=1
Vext (ri) . (2.2)

Here, the first term describes the kinetic energy of the particles with mass m. The sec-
ond term describes pair-wise, zero-range (or contact) interactions between the particles
with coupling constant g0 and in d dimensions. The last term describes an external
potential Vext that is the same for all particles.
In this thesis, we are most interested in the two dimensional case, where d = 2.

The reduced dimensionality has some profound implications for the behaviour of the
system. Even though the Hamiltonian is rather innocuous-looking, it actually leads to
the emergence of a very complex phase diagram and collective behaviour that is very
challenging to predict.

2.1.1 Scale Invariance
A close look at equation (2.2) reveals a very intriguing symmetry of the Hamiltonian
in 2D and for δ interactions. Ignoring the external potential Vext for now, the total
Hamiltonian transforms as H → H/λ2 under a scale transformation r → λr. This
does not effect the equations of motion and the 2D system is consequentially scale
invariant [Pit97]. The sample becomes fully integrable and the dynamics of the full
time-dependent many-body wavefunction ΨN (ri, t) can be expressed directly in terms

11



2 Quantum Many-Body Systems

of the initial state ΨN (ri, t = 0) [Mur19]. The presence of the scale invariance symme-
try on the level of the classical Hamiltonian is therefore expected to greatly simplify
the description of collective behaviour of the system.

The truth is, as it turns out so often in many-body systems, much more complicated.
A direct quantization of the δ2 interaction potential is impossible and gives rise to
inconsistent results. A well-defined quantum theory can only be obtained through a
renormalization procedure. A new length scale, the 2D scattering length a2D, has to
be introduced that brakes the scale invariance of the bare Hamiltonian. This violation
of the exact symmetry of the classical action in the corresponding quantized theory is
referred to as quantum anomaly [Ols10].

The quantum anomaly in 2D represents a first example for a mechanism by which
the collective behaviour of a system can violate the symmetries of its microscopic
description. More details on the anomaly and its influence on macroscopic scales can
be found in chapter 8.

2.1.2 External Potential
As a result of the external potential, the non-interacting or single particle spectrum
of the system becomes gapped with discrete energy eigenvalues E. Often, it is useful
to expand the many-body wavefunction in the corresponding basis of single particle
wavefunctions ΨE as:

ΨN (r1, . . . , rN , t) =
∑

E1...EN

c (E1 . . . EN , t) ΨE1 (r1) . . .ΨEN
(rN) , (2.3)

where the sum runs over all combinations of non-interacting energy eigenvalues E for
each particle. In our experiment, we confine the particles in attractive traps that can be
approximated by harmonic potentials. The external potential can generally be written
as:

Vext (r) = 1
2m

d∑

i=1
ωir

2
i , (2.4)

where ωi is the harmonic oscillator frequency in direction i. In 1D this leads to the well
known spectrum of single particle levels, denoted by |n〉 (n ∈ N0) and spaced equally
in energy En = ~ω (n+1/2). The corresponding eigenfunctions Ψn(x) in real space are
given by Hermite-Gaussian functions. These are invariant under continuous Fourier
transforms and therefore the single particle wavefunctions of the harmonic oscillator
in real and momentum space are equivalent Ψn(x) ≡ Ψn(p). This peculiarity of the
harmonic potential will become important again for the discussion of Pauli crystals in
chapter 5.
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2.1 Microscopic Model

n = 0 m = 0

n = 1 m = -1 n = 1 m = +1

n = 2 m = -2 n = 2 m = 0 n = 2 m = +2

E = 1 ħω

E = 2 ħω

E = 3 ħω

En = (n+1) ħω

. .
 .

m=+2

m
=-2

m= 0

m=+1
m=-1

m=0

a b

Figure 2.2: Single particle spectrum of a 2D harmonic oscillator. The non-
interacting levels can be labelled by the quantum numbers n and m (a).
The 2D probability density distribution corresponding to each wavefunc-
tion is depicted in red. The nth energy oscillator level is (n + 1)-fold
degenerate. When filled with non-interacting fermionic particles of two
different spin components this leads to a shell structure with an energy
spacing of ∆E = ~ω (b). Particularly stable, closed-shell configurations
exist for the magic numbers N = 2, 6, 12, 20, ... . These states are akin to
the noble gases of the periodic table of elements.

In 2D and with rotational symmetry ω = ωx = ωy, the single particle spectrum shows
the same energy spacing En = ~ω (n+ 1) as in the 1D case. The important difference
is that the nth level is now (n + 1)-fold degenerate (see Figure 2.2 a). The single
particle levels can be labelled by |n,m〉, where n ∈ N0 indicates the energy level and
m = −n,−n+ 2, . . . , n− 2, n corresponds to the angular momentum Lz perpendicular
to the 2D plane. The typical length and momentum scales of the harmonic potential
are defined as the harmonic oscillator length lHO =

√
~/mω and momentum pho =

~/lho =
√
~mω respectively.

2.1.3 Symmetrization
So far, we have ignored the symmetry properties of the wavefunction in the case of
indistinguishable particles. For fermions (bosons), the complete many-body wavefunc-
tion has to be fully antisymmetric (symmetric) when any two identical particles are
exchanged. The Pauli exclusion principle, as fundamental law of structure formation,

13



2 Quantum Many-Body Systems

follows directly from this symmetry: No two fermions can occupy the same quantum
state! For the harmonic oscillator discussed above, this leads to a shell structure in the
ground states when the potential is filled with non-interacting particles. In the case
of a single spin component, competently filled or closed shell configurations appear at
the magic numbers of N = 1, 3, 6, 10, ... particles. We typically work with two different
spin components in our experiment so that each level can be occupied by two atoms
instead (see Figure 2.2 b).

For a fixed number of fermions, an antisymmetric many-body wavefunction expanded
in terms of single particle orbitals ΨE like in equation (2.3) can be constructed through
a so called Slater determinant:

Ψasym.
N (r1, . . . , rN) = 1√

N !

∣∣∣∣∣∣∣∣∣∣

ΨE1(r1) ΨE2(r1) . . . ΨEN
(r1)

ΨE1(r2) ΨE2(r2) . . . ΨEN
(r2)

... ... . . . ...
ΨE1(rN) ΨE2(rN) . . . ΨEN

(rN)

∣∣∣∣∣∣∣∣∣∣

. (2.5)

The number of terms in this determinant scales as the factorial of N . For 10 particles
in the ground state of the 2D harmonic oscillator, for example, this leads to a total
of around 720 million Legendre polynomials for the full wavefunction in real space. A
much more efficient representation of the many-body state is possible in the language
of second quantization [Neg18]. Here, the many-body state is created by acting with
fermionic creation operators of the form c†i ≡ c†σ,n,m on the vacuum state |0〉. A ground
state of three fermions in the 2D harmonic oscillator, for example, can be written as

|GS〉 = c†↑,1,1c
†
↑,1,−1c

†
↑,0,0 |0〉 . (2.6)

The correct symmetry is imposed by the anti-commutator relations between the cre-
ation operators {c†i , c†j} = 0.

2.1.4 Correlation Functions
Arbitrary many-body states |Ψ〉 can generally be characterized by analysing the corre-
lations between their constituents [Alt04; Sch17]. By studying the correction functions
order by order, this perturbative approach can reveal new properties about the col-
lective quantum state at each level. The knowledge of all correlations is equivalent to
a full solution of the quantum theory. However, the amount of available information
scales exponentially with the system size [Fla12]. It is therefore crucial to identify and
detect only those microscopic correlations that most efficiently describe a given state
of matter [Zac20].
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2.2 Macroscopic Description

For an arbitrary operator Ô(α), the nth correlation function is defined as

C(n) (α1 . . . αn) = 〈Ψ| Ô(α1) . . . Ô(αn) |Ψ〉 , (2.7)

where α represents a generalized quantum number like the harmonic oscillator level n,
position x or momentum p. The expectation value 〈...〉 can be evaluated experimentally
by averaging over many realizations or large ensembles. A good choice for the charac-
terization of quantum states of attractively interacting fermions are density correlations
in momentum space, where Ô(α) → n̂(p). They allow us to directly access quantities
like the paired fraction and pairing mechanism. The latter are key ingredients to emer-
gent superfluid behaviour in fermionic samples. The corresponding measurements are
discussed in more details in chapter 7.

2.1.5 Energy Scales
Even without an exact solution it is still possible to make some qualitative predictions
about the behaviour of the system from the microscopic Hamiltonian in equation (2.2).
Each of the three terms can be associated with a different energy or length scale (see
Figure 2.3). The kinetic energy term is related to the inter-particle distance d ∝ 1/kF
or Fermi energy EF . The contact interactions lead to the presence of a bound state
(more on the special role of 2D in section 3.2.8). The binding energy EB or size
(∝ a2D) of this bound state can be used to characterize the interaction strength. In
the previous sections we have already discussed how the harmonic confinement leads
to a shell structure with energy spacing EHO = ~ω. Often, we study thermal mixtures
instead of pure quantum states in the experiment. In this case the Temperature T
defines a fourth energy scale ET = kBT .
The collective behaviour of the system is determined by the competition between its

different intrinsic energy scales. In general, the description becomes simple whenever
a single term dominates over all the others. When two or more scales are on the same
order, however, this generally leads to the emergence of complex phases that are much
more difficult to understand. The qualitative phase diagram of the macroscopic system
as a function of the different energy scales will be discussed in detail in the next section.

2.2 Macroscopic Description
The limitations of first quantization, where observables are represented by operators
x̂, p̂, ... and the quantum state by the many-body wavefunction ΨN , have already be-
come apparent in section 2.1.3. In nature, we are often concerned with systems that are
in equilibrium with their environment and, for example, with fluctuating or unknown
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Fermi Energy EF H.O. Energy EHO Thermal Energy ETBinding Energy EB

EHO = �ω ET = kBTEB = �2

ma2
2D

EF = �2k2
F

2m

kF ∝ 1/d

Figure 2.3: Competition between energy scales of the 2D Fermi gas. The
qualitative behaviour of a system can be predicted by comparing its in-
trinsic energy scales. Each energy scale can also be associated with a
length or momentum scale and a temperature.

particle numbers. For macroscopic materials a much more efficient quantum descrip-
tion of the relevant degrees of freedoms at low energies is required, independent of the
location of every single particle. The solution is provided by the language of quantum
field theory, directly related to the ideas of second quantization.

The first step is to replace the description in terms of single particle wavefunctions
by one in terms of field operators [Col15]:

Ψ (r) ,Ψ∗ (r)→ Ψ̂ (r) , Ψ̂† (r) with {Ψ̂ (r1) , Ψ̂† (r2)} = δ(n) (r1 − r2) , (2.8)

where {...} denotes the anti-commutator in the case of fermionic particles. The action
of the operators Ψ̂ (r) and Ψ̂† (r) on some state |Ψ〉 annihilates or creates a single
particle at position r respectively. The many-body state can be constructed particle
by particle from the empty vacuum state |0〉 as:

|r1, . . . , rN〉 = Ψ̂† (rN) . . . Ψ̂† (r1) |0〉 , (2.9)

With annihilation and creation operators efficient descriptions of mixed states with
different particle numbers become possible, for example in a grand canonical ensemble.
As already discussed in section 2.1.4, the quantum field operators offer an approach
that is naturally pertubative and their correlations allow us to characterize the many-
body state order by order. In the case of fermionic particles in a 2D harmonic oscillator,
it is often useful to express the field operators in real or momentum space in terms of
the creation or annihilation operators of the respective eigenstates |σ, n,m〉 like

Ψ̂†↑ (r) =
∑

n,m

Ψn,m (r) c†↑,n,m, (2.10)
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2.2 Macroscopic Description

where Ψn,m are the corresponding single particle (Hermite-Gaussian) wavefunctions.
The basis transformation for field operators in momentum space follows analogously.

The most important feature of quantum field theory is that it establishes a formalism
for the description of the coarse grained behaviour of a many-body system. The exci-
tation spectrum of some solid might for example be described by collective fields. The
corresponding quasiparticle excitations are created by the action of those fields on the
ground state |GS〉. A simple example are acoustic and optical phonons that appear as
quantized excitations in crystalline lattices like metals. In general, the action of some
collective field Φ(r) involves many different creation and annihilation operators, or in
other words, many different particles [Col15]

Φ(r) =
∑

k

[
φ(k)Ψ†(k) + φ̃(k)Ψ(k)

]
. (2.11)

Here, φ(k) and φ̃(k) are some general expansion coefficients. By formulating an effective
action S for the collective fields in the low energy limit, predictions about the dynamical
response and phase transitions in large systems become possible.

2.2.1 Phase Transitions and Symmetry Breaking
Phase transitions lie at the very heart of emergent phenomena in many-body systems.
They describe a significant and often discontinuous change in the physical properties
like the conductivity or volume of some medium as a result of a change in the external
parameters like temperature T or pressure p. Many phase transitions go hand in
hand with a reduction of the symmetry of the system. For example, the continuous
translational invariance is broken when water freezes or rotational symmetry is violated
by iron when it becomes magnetic [Col15]. There are, however, also some very notable
exceptions where the phase transition is driven by topological effects rather than the
symmetry of the material, as already pointed out in the beginning in this chapter
[Col03].

Landau was the first one to develop a general phenomenological model for symmetry
breaking phase transitions in 1937 [Lan37]. He introduced the abstract concept of an
order parameter Ψ that quantifies the behaviour of the medium at the phase transition
point, for example as a function of the temperature:

|Ψ| =




0 for T > TC,

|Ψ0| > 0 for T < TC.
(2.12)

In general, the order parameter is zero in the unordered phase, typically at larger
temperatures and becomes finite in the symmetry broken state. A classification into two
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2 Quantum Many-Body Systems

groups of phase transitions is possible. A first order phase transition is characterized
by a jump in the order parameter at the critical point and involves latent heat, for
example when ice is melting. The second group of continuous phase transitions does
not involve a jump of the order parameter, as the name suggests. Typical examples are
the transition from a para- to a ferromagnet or from the normal to the superconducting
phase.

While Landau’s description is applicable to a broad range of materials, the form
of the order parameter Ψ varies from case to case. It can be expressed as a single
complex number for example or a spinor or a vector field. On the microscopic scale, any
order parameter is connected to the expectation value of a quantum field [Col15]. For
example, the order parameter for a Heisenberg ferromagnet is given by the expectation
value of the spin vector m = 〈S〉. A very simple and instructive case, we discuss in
the following section, is given by superfluid or superconducting states. Here, the order
parameter can be expressed as the expectation value of the bosonic quantum field itself
Ψ = 〈Ψ̂B〉, where Ψ̂B ∝ Ψ̂↑Ψ̂↓ for fermionic particles.

2.2.2 Ginzburg-Landau Theory
Based on the ideas of spontaneous symmetry breaking, Ginzburg and Landau developed
the first accurate description of superconductivity in 1950, the so-called Ginzburg-
Landau theory [Gin50]. While it describes many of the properties of conventional
superconductors correctly, it is a purely phenomenological model, inspired by a close
comparison to experiments rather than microscopic insights. Motivated by the close
similarities to Bose–Einstein condensates (BECs), especially the long range order and
phase rigidity of the medium, the order parameter is defined as a macroscopic complex
scalar field Ψ(r) = |Ψ(r)| eφ(r).

In absence of external electromagnetic fields, the effective action describing the equi-
librium state of the order parameter Ψ(r) near the superconducting phase transition
is defined as [Sac11; Pek15]

S [Ψ]static =
∫

d3r

[
~2

2m∗ |∇Ψ|2 + α |Ψ|2 + β

2 |Ψ|
4
]
. (2.13)

Here, m∗, α and β are phenomenological parameters that depend on the temperature
T and have to be fitted to experiments. Since the action should be bound from below,
we require β > 0. One of the most important properties of the action (2.13) is that it is
invariant under the U(1) symmetry group. These transformations can be represented
as Ψ→ Ψeiφ with φ ∈ [0, π].
The expectation value of the order parameter in equilibrium 〈Ψ〉 is obtained by

minimizing the action δS/δΨ = 0. In a spatially uniform situation, we can neglect the
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a b
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Figure 2.4: Spontaneous breaking of U(1) symmetry. The effective potential
V (Ψ) in the action for the complex field Ψ is shown in red for different
signs of the parameter α. In the normal phase, when α > 0, the potential
minimum is located at Ψ0 = 0 (a). Below the phase transition point,
when α < 0, the effective potential has the shape of a Mexican hat (b).
An infinite number of degenerate minima exists at a finite value for the
order parameter Ψ0 =

√
−α/βeiφ (φ ∈ [0, 2π]). By choosing a single

minimum with some phase φ0, the medium spontaneously breaks the U(1)
symmetry of the underlying action. The low energy excitations around
the minimum in amplitude or phase direction are referred to as Higgs
(grey arrow) and Goldstone (black arrow) modes respectively.

first term and are left with the effective potential V (Ψ) = α |Ψ|2+β
2 |Ψ|

4 (see Figure 2.4).
We can distinguish between two important cases: If α > 0, the potential minimum is
located at Ψ = 0. Consequentially, the ground state is U(1) symmetric and the system
is in the normal phase without long range phase coherence. If α < 0, the potential
takes the shape of a Mexican hat and there are an infinite amount of degenerate ground
states at Ψ0 =

√
−α/βeiφ (φ ∈ [0, 2π]). By spontaneously picking one phase φ0, the

ground state of the system breaks the U(1) symmetry. The expectation value for the
order parameter becomes finite and long range phase coherence builds up. The material
is in the superconducting state.

There are several important properties that can be derived from the model [Col15].
Since the transition occurs by definition when T = TC, it is useful to expand α to
leading order in T as:

α = α0(T − TC) (2.14)

We identify m∗ with the effective mass of the bosonic particles (or pairs). The correla-
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tion length ξ is then given by [Col15]

ξ =

√√√√ ~2

2m∗ |α| = ξ0

∣∣∣∣1−
T

TC

∣∣∣∣
− 1

2
, (2.15)

where we define the coherence length ξ0 as

ξ0 =
√

~2

2m∗α0TC
. (2.16)

ξ0 corresponds to the length scale over which a local perturbations in the density |Ψ(r)|2
affects the medium around it. Finally, the penetration depth λ, indicating the distance
over which an external magnetic field decays inside the superconductor, is given by

λ =
√

m∗

4µ0e2 |Ψ0|2
=
√

m∗β

4µ0e2 |α| . (2.17)

In order to understand the low energy behaviour of the superconductor, we need to
consider the possible excitation around the ground state. To this end the full action
S = Sdynamic + Sstatic including the dynamical part

S [Ψ]dynamic =
∫

d3r

[
iK1Ψ∗ (r, t) ∂

∂t
Ψ (r, t)−K2

(
∂

∂t
Ψ∗ (r, t)

)(
∂

∂t
Ψ (r, t)

)]
(2.18)

has to be considered [Pek15]. By solving the equations of motion and expanding the
low energy modes into amplitude and phase fluctuations as Ψ(r, t) − Ψ0 ≈ δa(r, t) +
iδφ(r, t) + ... respectively, we obtain two coupled differential equations [Pek15]

(−2α + ~2

2m∗q
2 −K2ω

2)δa + iK1ωδφ = 0, (2.19)

(+ ~2

2m∗q
2 −K2ω

2)δφ − iK1ωδa = 0. (2.20)

Here, we have already Fourier transformed to the wave-vector q and frequency ω vari-
ables. Equation (2.19) shows that the amplitude δa and phase δφ fluctuations are
generally coupled in the Mexican hat potential. As a result, no independent stable
amplitude mode can be observed [Pek15].
A special situation occurs whenK1 = 0, as for example guaranteed in particle physics

since K1 6= 0 would violate Lorentz invariance. Here, phase and amplitude modes
decouple into separate excitations (see Figure 2.4 b) with dispersion relations

ω2
φ = ~2q2

2m∗K2
and ω2

a = ~2q2

2m∗K2
+ 2 |α|

K2
. (2.21)
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The massless phase excitations are generally referred to as Goldstone modes, while
the gapped or massive amplitude excitation is known as the Higgs mode in particle
physics [Hig64]. In condensed matter systems, a different mechanism is required in
order to make the observation of a distinct Higgs mode possible [Pek15]. This is
provided by (approximate) particle-hole symmetry, that analogously leads to K1 ≈ 0.
Amplitude modes have successfully been observed in a range of different mediums from
superconductors to cold atoms [End12; Mat13; Méa14; Léo17]. Even without a perfect
particle-hole symmetry a distinct Higgs mode can still be observed if the coupling K1
is small enough [Beh18]. The amplitude mode simply becomes broadened and unstable
due to possible decay channels into the Goldstone modes that are much lower in energy.

2.2.3 BCS Theory

While the Ginzburg-Landau theory predicts many effects of the superconducting phase
transition correctly, it does not explain the microscopic mechanism behind the forma-
tion of a condensate and electron pairing. A complete microscopic picture was provided
only a few years later by Bardeen, Cooper and Schrieffer (BCS) [Bar57]. The devel-
opment was triggered by the experimental discovery of the isotope effect that brought
the attention to interactions between electrons and the ionic crystal lattice of the su-
perconductors. The final connection between the microscopic and phenomenological
model was achieved by Gor’kov in 1959 [Gor59].

The origin of conventional superconductivity is an attractive interaction between
electrons in a metal that is mediated by phonons of the ionic crystal lattice [Tin04].
Intuitively, it can be imagined as originating from a tube of ions that are displaced
towards the path of an electron moving with momentum k through the lattice. Their
positive charge acts as a negative, attractive potential for other electrons. They feel the
force to a full extend only when moving head on with respect to the original electron
with opposite momentum−k [Wei81]. In general, a weak attractive force alone does not
guarantee the presence of paired bound states if the interaction is not strong enough.
This is different in the presence of the Fermi sea that is created by Pauli blocking
between the fermions. For two electrons, opposite to each other on the quasi-2D Fermi
surface, an arbitrary weak attraction with coupling strength g is enough to form a
bound state with energy EB = 2ωDe

−2/gν0 [Coo56]. Here, ωD is the Debye frequency
and ν0 is the density of states at the Fermi surface. The presence of the bound state
leads to a macroscopic ground state that consists of a coherent superposition of many
of these Cooper pairs.

A simplified Hamiltonian, implementing the phonon mediated attractions and with-
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out external fields can be written down as [Col15]:

HBCS =
∑

k,σ

ξkc
†
kσckσ −

g

V

∑

k,k′
c†k↑c

†
−k↓c−k′↓ck′↑, (2.22)

where ξk = ~2k2

2m − µ is the electron dispersion relative to the chemical potential, V
is the volume and in the second sum k and k′ run over a small shell around the
Fermi sphere |εk| < ωD. An approximate solution to the problem can be obtained by
expanding the pair operator 1

V

∑
k c−k↓ck↑ around its expectation or mean-field value

∆ = g
V

∑
k 〈c−k↓ck↑〉 as

1
V

∑

k

c−k↓ck↑ = ∆
g

+
[

1
V

∑

k

c−k↓ck↑ −
∆
g

]
. (2.23)

For weak interactions, we assume that the correction term in [...] is small and we only
keep it to first order. This leads to the following mean-field BCS Hamiltonian

HMF =
∑

k

(
c†k↑ c−k↓

)( ξk −∆
−∆∗ −ξk

)(
ck↑
c†−k↓

)
+
∑

k

ξk + V |∆|2
g

. (2.24)

It is important to note that the Hamiltonian contains terms like ∆c†k↑c
†
−k↓ and it is

therefore not particle number conserving. It can be diagonalized by applying the Bo-
goliubov transformation that expresses the electron creation operators (ckσ, c

†
kσ) in

terms of new fermionic quasiparticles (γkσ, γ
†
kσ) [Bog58]

γk↑ = cos θkck↑ + sin θkc
†
−k↓, (2.25)

γ†−k↓ = sin θkck↑ + cos θkc
†
−k↓. (2.26)

In the new basis, the Hamiltonian becomes diagonal

HMF =
∑

k,σ

Ekγ
†
kσγkσ +

∑

k

(ξk − Ek) + V |∆|2
g

, (2.27)

with the excitation energy Ek =
√
ξ2
k + |∆|2 and sin2 θk = 1

2

(
1− ξk

Ek

)
.

The quasi particle excitations γ consist of both particle creation and annihilation
operators. Therefore, the bare electron dispersion ξk splits into two branches ±Ek that
are gapped with distance 2∆ at |k| = kF (see Figure 2.5 a). In the ground state, the
lower branch is completely filled, while the upper branch is empty. No low-energy quasi
particle excitations are possible below a certain threshold in the superconductor.
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Figure 2.5: BCS dispersion relation and occupation probability as a function
of the momentum. The attractive interactions between the electrons
at the Fermi surface lead to a splitting of the bare dispersion relation
(a, dashed blue line) into two branches gapped by ∆ (red lines). In the
ground state, the lower branch is completely filled while the upper branch
is empty. This leads to a minimum energy that is required to excite
the superconductor. In (b), the electron occupation probability in the
BCS ground states is shown as a function of the wavenumber k (red).
Cooper pairs are excited across the Fermi surface (dashed line) by the
interactions. The inset shows the occupation probability in 2D. In the
limit of vanishing attraction strength ∆ → 0, the non-interacting Fermi
sea is restored (black).

From equation (2.27) it is clear that the BCS ground state |BCS〉 is the state without
any quasiparticle excitations, defined by γkσ |BCS〉 = 0. It can be constructed as

|BCS〉 = N
∏

k

γ−k↓γk↑ |0〉 =
∏

k

(
cos θk − sin θkc

†
k↑c
†
−k↓

)
|0〉 . (2.28)

Compared to a non-interacting Fermi sea this shows that a conventional superconductor
is described by the coherent excitations of electron (Cooper) pairs with opposite spin
and momentum (c†k↑c

†
−k↓) above the Fermi surface (see Figure 2.5 b). Close to the

Fermi surface and in the limit of small interactions ∆ → 0, a BCS superconductor
is particle hole symmetric (red and blue curves), as required for the observation of a
stable Higgs mode. The BCS model is directly implemented by the Hamiltonian we
access in our experiments (see equation 2.2) in the limit of weak, attractive contact
interactions g0 → 0− and in a homogenous gas Vext → 0. In terms of the characteristic
energy scales of the medium this corresponds to the case where EF � EB. Note that
EB refers to the two-body bound state in 2D here and not to the Cooper pair binding
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energy. The superfluid gap is given by ∆ =
√

2EFEB � EB in this case [Ran89]. In our
experiment, we are not limited to this regime but, in contrast to a real superconductor,
we are able to tune the interactions freely until EF ∼ EB or even EF � EB. Here, the
BCS description brakes down and quantum fluctuations around the mean-field value
become significant.

2.2.4 BCS-BEC Crossover
When the binding energy EB is increased, starting from the BCS limit of Cooper pairs,
the ground state remains the superfluid and there is a smooth transition all the way
to the point where EB � EF. In this opposite limit the description of the macroscopic
system becomes simple again, as expected whenever a single energy scale dominates
over all others. The fermions form tightly bound molecules that interact repulsively
and that can be approximated by point-like bosonic particles. The ground state of the
gas is described by a molecular BEC [Joc03; Gre03; Zwi03]. The smooth transition
of the superfluid between both limits is referred to as the BCS-BEC crossover [Zwe12;
Par14; Str18].
In our experiments we can access a large region of the phase diagram of the BCS-

BEC crossover in 2D by tuning the interaction parameter g0 and temperature T (see
Figure 2.6) [Rie15a]. We observe a phase transition at temperature TC from a normal
to a superfluid at any value for the interaction strength (dashed black line). The
highest transition temperature TC is found in the strongly correlated region EB ∼ EF,
where any mean-field model like the BCS theory breaks down. No accurate theoretical
descriptions for macroscopic particle numbers are known in this regime and new insights
require further experimental research [Par14; Str18].
The macroscopic condensate wavefunction breaks the U(1) symmetry of the Hamilto-

nian. The low temperature spectrum of the superfluid is therefore given by the different
excitation modes in the Mexican hat potential (see section 2.2.2). A particle-hole sym-
metry is, however, only present in the BCS limit and the stable Higgs mode vanishes
when going towards the BEC regime [Beh18]. The BEC superfluid is described by
the Gross-Pitaevskii equation and its low energy modes are referred to as Bogoliubov
quasi-particles [Pet08]. Single particle, pair-breaking, excitations are gapped by the
two-body binding energy EB in the BEC limit. This is in contrast to the BCS limit,
where the many-body gap ∆ is generally much larger than EB.

Emergent behaviour is found not only at the lowest temperatures but also in the
normal phase of the gas. In the BCS theory both the formation of Cooper pairs
and their condensation occur at the same critical temperature TC. This is obviously
different far in the BEC limit when EB � ET, EF. Here, the normal phase consists
of bosonic molecules. The strongly correlated region where EB ∼ ET ∼ EF is most
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Figure 2.6: Phase diagram of the 2D BCS-BEC crossover. A measurement
of the pair condensed fraction Nq/N of a 2D Fermi gas as a function of
temperature T and interaction parameter ln (2EF/EB)/2 is shown. In
the BEC limit (left), the pair size is much smaller than the inter-particle
spacing EB � EF and a molecular BEC forms. The opposite limit, where
a Fermi sea is formed EB � EF, is well described by the BCS theory
(right). There is a smooth crossover between both limits with a maximum
critical temperature TC (black dashed line) in the region where pair size
and inter-particle spacing are of the same order. The white dashed line
shows the BCS prediction for TC. Adapted from [Rie15a].

complex. Here, in a measurement that is discussed in more detail in chapter 8, we have
found preformed pairs in the normal phase with a larger binding energy than what is
expected from a two-particle solution [Mur18b]. This indicates that the pair formation
is a genuine many-body effect in this region and raises important questions about the
relationship of this phase to the superfluid below.

2.2.5 Role of Dimensionality
In this thesis, we are primarily concerned with systems in 2D. The reduced dimen-
sionality has a profound influence on the collective behaviour of the gas. In 2D no
spontaneous breaking of continuous symmetries, like U(1), is possible in systems with
finite range interactions and at non-zero temperatures [Mer66]. The reason are low-
energy excitations of the Goldstone modes that destroy phase coherence on large length
scales in 1D and 2D and restore the symmetry of the Hamiltonian [Hoh67]. There are
different mechanisms that explain emergent behaviour in lower dimensions instead. One
of the most important examples is the Berezinskii–Kosterlitz–Thouless (BKT) phase
transition to a superfluid with quasi-long range order [Ber72; Kos73].
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The BKT phase transition is linked to the topology of the macroscopic wavefunction.
In the normal phase free vortices, local windings of 2π in the phase of the wavefunction,
proliferate and destroy any coherence [Had11]. These vortices cannot be unwound by
a continuous deformation — they affect the topology of the wavefunction. At the
transition temperature TC, vortices of opposite winding bind together and form pairs,
effectively annihilating each other. Only the effect of the phononic excitations remains.
They lead to smooth variations in the field Ψ that can, in contrast to the vortices, be
smoothed out by continuous transformations. Below the phase transition, the gas is
topologically equivalent to a medium with true long range order, for example a three
dimensional (3D) superfluid [Had11].

It is useful to quantify the degree of coherence or long range order to apply it as a cri-
terion for the presence of a superfluid [Pen56]. At the microscopic level, this is possible
through the definition of the first order correlation function g1(r) = 〈Ψ̂†(r0)Ψ̂(r0 + r)〉
[Yan62]. For a homogeneous superfluid in 3D, phase correlations are finite even at large
distances and limr→∞ g1(r) = α, with a constant α > 0. The hallmark of quasi-long
range ordered systems in 2D are correlations that decay algebraically instead [Had11]

g1(r) ∝ e−r/γ for T > TC,

g1(r) ∝ r−η for T < TC.
(2.29)

We have confirmed experimentally that this type of quasi-long range order is present
in our system at low temperatures [Mur15b].

Another important consequence of the choice of a 2D geometry is the scale invariance
symmetry of the classical Hamiltonian with contact interaction we already discussed
in section 2.1.1. In 3D, scale invariance is not a symmetry of the Hamiltonian but it
appears at a particular point in the centre of the BCS-BEC crossover. In this so-called
unitary regime, all observables can be expressed in terms of the only remaining scale
of the systems: its density or Fermi energy EF. The description of the unitary Fermi
gas becomes remarkably simple [Zwe16]. For a 2D system, scale invariance is present
everywhere in the crossover, at least on the classical level. However, as opposed to 3D,
there is a quantum bound state with energy EB present at any interaction strength.
Scale invariance is restored when EB → 0 or EB → ∞ and the description of the
collective behaviour becomes simple in the BCS and BEC limits. In the centre of
the crossover, scale invariance is broken and a quantum anomaly appears [Ols10] (see
chapter 8).

2.2.6 Open Questions
Emergent collective behaviour in Fermi gases with contact interactions has been studied
in great detail both on the experimental and theoretical level [Str18]. Above, we have
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reviewed some of the most important mechanisms leading to the phase diagram of the
BCS-BEC crossover. Both limiting cases are well explained by mean-field models and a
direct link between the collective behaviour and the underlying microscopic theory has
been established. This is different for the central region of the 2D superfluid. Here, the
nature of the correlations between Fermions is not fully understood. Are they similar
to molecules as in the BEC regime, or rather explained by Cooper pairs in momentum
space? Due to the strong interactions in this region, even higher order correlations,
between three or more particles are most likely present. All of these questions extend
to the normal phase of the gas and the region of preformed many-body pairs. A more
detailed understanding of the strongly correlated, central region of the crossover might
help to address many general questions in the field, like the role of the 2D geometry
for unconventional superconductivity beyond the BCS model [Sob21].

The work presented in this thesis is the starting point of a new approach to un-
derstanding strongly correlated Fermi systems in general. We want to establish new
methods to link the macroscopic collective behaviour to the underlying microscopic de-
scription of the systems. To this end, we prepare many-body states starting from the
smallest instances and with precise control over the macroscopic details. Single atoms
detection allows us to observe emergent behaviour starting at a much smaller scale and
particle number. The mesoscopic world promises to provide new paths between the
atomic and macroscopic scales in the regimes where they are still missing [Lau00b].

2.3 The Mesoscopic World
There is no rigorous definition that distinguishes the discipline of mesoscopic physics
from the microscopic or macroscopic limits. The field covers everything starting from
ensembles of a few atoms on the nanoscale up to materials of several micrometers size.
One common property of mesoscopic composites is that the coherence- or wavelength
of the particles is generally of the order of the system size. As a result, quantum con-
finement effects become important, leading to discrete spectra with finite single particle
energy gaps [Kha03]. Descriptions in terms of local quantities like conductivity break
down and the whole sample has to be treated as a whole [Alh00]. The small particle
number leads to large relative amplitudes of quantum and thermal fluctuations and
mean-field or statistical theories cannot be applied directly. The persistent advances in
the development of semiconductor devices and photolithography, leading to smaller and
smaller process sizes, are demanding for better insights into the world of mesoscopic
systems. Nanotechnology and nanofabrication promise to remain at the forefront of
technological breakthroughs in the coming decades [Poo03].

In this thesis, we are interested in the mesoscopic limit of the BCS-BEC crossover.
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We want to find answers to questions like how many-particles are required to observe
emergent behaviour like phase transitions and superfluidity and in what ways the small
and fixed particle numbers affect their description. Our 2D Fermi gas closely resem-
bles many other systems in nature, for example nuclei [Boh98; Lau17], quantum dots
[Alh00], small helium droplets [Gre98], atomic clusters [Cas09] or small superconduct-
ing grains [Del01]. Indications of superfluid behaviour have been found for as few as
tens of particles in these systems [Mig59; Gre98]. Apart from performing experiments,
there are two main approaches to solving mesoscopic quantum systems, where mean
field models like the standard BCS theory break down. The size of the Hilbert space
can be reduced far enough, for example by introducing some energy cut-off and work-
ing at very small particle numbers N . 20, such that numerical techniques like exact
diagonalization or Monte-Carlo methods become applicable. Or, as presented in this
section, the microscopic model can be modified such that it can be applied to meso-
scopic systems and simplified enough to be solvable. Here, the art lies in identifying
which approximations are justified while retaining a correct physical description of the
sample. This process relies heavily on experimental feedback and verification, as we
will see in chapter 7.

2.3.1 Quantum Confinement Effects
The confinement required to obtain a mesoscopic sample of interacting fermions does
inevitably lead to a discrete single particle spectrum. In section 2.1.2, we have already
discussed how a 2D harmonic trap introduces a shell structure with an additional
energy scale EHO. For small particle number ground states, when EHO ∼ EB, EF
this clearly affects the phase diagram of the BCS-BEC crossover. A breakdown of
superconductivity is expected as soon as the distances between single particle levels in
the spectrum are larger than the many-body pairing gap EHO & ∆ [And59; Del01].
This effect can be observed for example in band insulators, where a critical interaction
strength is required before particles can surpass the band gap and a phase transition
from a normal to a superconducting state occurs [Koh90; Noz99].

Interacting Fermi gases confined to harmonic 3D potentials have been extensively
discussed in Refs. [Bru01; Bru02b; Hei02; Bru02a]. Here, we focus on a 2D geometry
[Bru14; Bje16]. Depending on the total particle number N , two possible situations can
occur that determine the nature of the ground state. Either all of the degenerate states
of the highest energy level nF of the harmonic oscillator that contains atoms are filled
(a closed shell) or some of the degenerate levels remain empty (an open shell). For two
interacting spin components, closed shell configurations occur at the magic numbers of
N = 1 + 1, 3 + 3, 6 + 6, ... particles (see Figures 2.2 and 2.7). Here, we have introduced
the notation N = N↑ + N↓ that will be used throughout this thesis. For open shells,
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Figure 2.7: Pairing in closed shell configurations. At zero temperature and
for closed shell configurations pairing is suppressed for small interaction
strength (a). A critical two-body binding energy EC

B is required before
the ground state becomes superfluid and a many-body gap emerges (red)
[Bru14]. The low energy excitation spectrum of the system is shown in
(b). In the non-interaction limit the lowest monopole mode consists of pair
excitations across the Fermi surface with an energy cost of Eex = 2EHO
(inset). With increasing interaction strength, the energy cost of pair ex-
citations reduces until the excitation gap closes and the phase transition
occurs. In the superfluid phase, the lowest excitation mode is given by
the Higgs mode with energy 2∆. The solid and dashed lines correspond
to numerical and analytical calculations respectively. Pabel (b) adapted
from [Bje16].

the ground state is degenerate and in the spectrum there is no gap between filled and
empty levels. At zero temperature a normal to superfluid phase transition occurs at
any arbitrary small attraction strength larger than zero [Bru14].

A more interesting situation occurs for closed shells. Here, the ground state is unique
and the next empty states are separated by the harmonic oscillator energy EHO = ~ω.
This energy gap stabilizes the state against small perturbations, similar to noble gases
in the periodic table of elements. Pairing for small binding energies EB � EHO is
suppressed and even at zero temperature the system remains in the normal state. A
critical interaction strength EC

B is required before it becomes energetically favourable
for fermions to occupy the empty states at higher energies and to form pairs. The value
of EC

B depends on the highest filled harmonic oscillator level nF =
√
N + 1/4 − 3/2,
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where EF = (nF+1)EHO. It can be calculated in a mean-field approximation as [Bru14]

EC
B = EB

γ + 4ln 2 + lnnF
2ζ(2)



√√√√1 + 4ζ(2)

(γ + 4ln 2 + lnnF)2 − 1

 . (2.30)

Here, γ = 0.577 is the Euler-Mascheroni constant and ζ(z) the Riemann zeta function.
When EB > EC

B the ground state becomes paired and a quantum phase transition into
a superfluid occurs (in the limit nF →∞). The many-body gap ∆ in the weakly paired
but superfluid regime (EHO > EB > EC

B) is then given by [Bru14]

∆
EHO

=

√√√√nF + 1
7ζ(3)

[
EHO

EC
B
− EHO

EB
+ ζ(2)

(
EB

EHO
− EC

B
EHO

)]
. (2.31)

The result for N = 12 and nF = 2 is plotted in Figure 2.7 (a) together with the
mean-field approximation for the homogeneous 2D Fermi gas ∆ =

√
2EFEB [Ran89].

The quantum phase transition from a normal to a superfluid (in the limit nF →∞)
at the critical interaction strength can be identified and understood by studying the low
energy excitation spectrum of the gas. In the non-interacting limit, the lowest energy
monopole mode (without angular momentum transfer ∆Lz = 0) of a closed shell ground
state is given by coherent pair excitations across the Fermi surface (see Figure 2.7 b).
It is separated from the ground state by a gap of 2EHO = 2~ω. When the attractive
interaction strength is increased, the particles that are now located in the almost empty
higher energy level nF + 1 can make use of the degenerate unfilled states and increase
their wavefunction overlap. This allows them to gain binding energy and reduces the
cost of the monopole excitations monotonously as the interaction strength increases
(solid black line). At the critical binding energy EC

B the gap closes and coherent pairs
can be excited without any energy cost. The system becomes unstable and a second
order phase transition to a superfluid state takes place. The lowest energy monopole
excitation of the trapped superfluid is given by the Higgs mode with energy 2∆ (dashed
red line).

For nF → ∞, the number of degenerate states in the highest filled (nF) and first
empty (nF + 1) energy levels is almost equal. Therefore, the system is particle-hole
symmetric and the Higgs and Goldstone modes decouple into independent excitations.
A peculiarity of the closed-shell configuration is that they lead to a stable Higgs mode
even in the low-particle number limit nF → 0. All other collective monopole excitations
in the harmonic oscillator require excitations energies of Eex ≥ 2~ω [Pit97]. The Higgs
mode at Eex = 2∆ is isolated in the spectrum and separated in energy from the discrete
Goldstone modes. No direct decay channels are available and the Higgs modes becomes
long-lived [Bru14].

30



2.3 The Mesoscopic World

In our experiment, we study what remnants of the many-body phase transition at
EC

B can be observed in mesoscopic closed shell configurations with as little as N = 3+3
particles. An advantage of the small system size is that we can compare our results
directly to precise numerical solutions before advancing to larger particle numbers
[Bje16]. The numerical and experimental results for the excitation spectra of mesoscopic
systems are discussed in great detail in chapter 6. We are able to detect and identify
the few-body precursor of the stable Higgs mode that is discussed above.

2.3.2 Reduced BCS Model
The systems we study in our experiment are described to a very good approximation
by the Hamiltonian in equation (2.2), we already discussed in the beginning of the
chapter. In the mesoscopic limit, it is natural to express the contact interaction term
δ2 (ri − rj) in second quantization in terms of creation and annihilation operators c†σ,i
and cσ,i in the harmonic oscillator basis. Here, σ is the spin projection and i = [n,m] is
used as a generalized quantum number, encoding both the energy level n and angular
momentum m of the harmonic oscillator state. This leads to the following expression:

Vint = ~2

2mg0
∑

i,j,k,l

Vijkl c
†
↑ic
†
↓jc↑kc↓l, (2.32)

where the matrix element Vijkl = 〈↑, i; ↓, j| δ2 (r̂↑ − r̂↓) |↑, k; ↓, l〉 is most conveniently
evaluated in the real space basis.

A sequence of approximations allows us to simplify the interaction term significantly
(see Figure 2.8). In the intrashell regime, defined by EHO & EB, we can assume that
significant pairing correlations occur exclusively between time-reversed levels [Bru02b;
Bru14; Bje16]. The time-reversed state corresponding to a harmonic oscillator level
with quantum numbers |↑, i〉 ≡ |↑, n,m〉 is given by |↓, i′〉 ≡ |↓, n,−m〉. Keeping only
the coupling between these pairs reduces the interaction to

Vint = ~2

2mg0
∑

i,j,k,l

Vii′jj′ c†↑ic
†
↓i′c↑j′c↓j′ , (2.33)

In closed shell configurations and in the limit nF →∞ only harmonic oscillator states
close to the Fermi surface with Ei ∼ EF > EHO contribute to pair correlations in
the ground state. When the interacting system is large enough, such that a local
density approximation is applicable, this leads to approximately constant couplings
Vii′jj′ ≈ g̃ for all time-reversed pair wavefunctions close to the Fermi surface |↑, i; ↓, i′〉
with Ei ≈ EF. Including the harmonic oscillator spectrum Ei, we arrive at the full
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Figure 2.8: Contact interactions and the reduced BCS model. The full contact
interactions leads to a coupling between opposite spins and any combi-
nation of harmonic oscillator levels (a). When the energy spacing EHO
is large enough, it is justified to assume that pairing correlations occur
predominately between time-reversed pairs i, i′ at the same energy level.
The coupling between other states can be neglected (b). The assump-
tion of a constant coupling term Vii′jj′ ≡ g for scattering between any of
the time-reversed pairs leads to the reduced BCS Hamiltonian (c). The
so-called Richardson model generalizes this problem to arbitrary energy
level spectra Ei (d). It provides an exact analytical solution to our sys-
tem given that the approximations (b,c) are well fulfilled. Note that each
energy level (black lines) in (d) directly represents an empty or filled
time-revered pair state in the many-body system. In panels (a-c) the sin-
gle particle states of the Hamiltonian are shown instead.

Hamiltonian of the form:

HBCS =
∑

i,σ

Eic
†
σicσi − g

∑

i,j

c†↑,ic
†
↓,i′c↑,jc↓,j′ . (2.34)

We immediately recognize the reduced BCS hamiltonian we already introduced in equa-
tion (2.22), the only difference being the discrete energy spectrum Ei of the 2D harmonic
oscillator compared to particles in free space with E ∝ p2.
It is not a priori obvious that the approximations we used in order to arrive at the

reduced BCS Hamiltonian are accurate for mesoscopic samples as N → 0. Nevertheless,
they have been applied with great success to systems like nuclei [Bri05] or small metallic
grains [Bla96; Del01]. In chapter 7, we present experiments allowing us to examine to
what degree the simplified description captures the physical behaviour of ultracold
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atoms. The important feature of the model is that it can be solved analytically as
presented briefly in the following.

2.3.3 Richardson’s Solution
An exact solution to the reduced BCS Hamiltonian in equation (2.34) and for arbitrary
sets of single particle states Ei was found by Richardson in the context of nuclear
physics [Ric63; Ric64]. Here, we follow the review in Ref. [Del00] to recall the most
important ideas of the solution. We start from a set S of time-reversed states with
arbitrary energies Ei and i = 1, ..., NS (see Figure 2.8 d). The interaction term in
the Hamiltonian does not couple to any singly occupied level that we denote by the
subset B ⊂ S. Consequentially, a general eigenstate of NB singly occupied levels and
n time-reversed pairs can be written as [Del00]

|n,B〉 =
B∏

i

c†σi




S\B∑

j1,... ,jn

aj1,... ,jnb
†
j1 ... b

†
jn


 |0〉 , (2.35)

where we have introduced the pair operator b†i = c†↑,ic
†
↓,i′ . The n pairs are distributed

among the remaining set of U = S \ B available levels with expansion coefficients
aj1,... ,jn . The sum runs over all possible combinations ji ∈ U with ji 6= ji′ for all i 6= i′.
The singly occupied levels c†σi remain blocked by the Pauli principle independent of
the interactions and the solution of the problem factorizes into the unblocked U and
blocked B level subsets.

We can separate the Hamiltonian into two parts of the form H = HB + HU with
[Del00]

HB |n,B〉 =
B∑

i

Ei |n,B〉 = ξB |n,B〉 (2.36)

and
HU |n,B〉 =

U∑

ij

(2Eiδij − g)b†ibj |n,B〉 = ξn |n,B〉 . (2.37)

We note that the singly occupied states merely add an overall energy offset ξB to the
total eigenstate while the solution to the unblocked sector is given by the eigenvalue
equation (2.37). If we assume for now that the creation operators b†i correspond to
true bosonic particles with commutation relations [bi, b

†
j] = δij, the eigenenergies ξn are

simply obtained by the roots of the equation [Del00]:

1−
U∑

i

g

2Ei − ξJ
= 0. (2.38)
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This equation is of order NU = NS − NB in ξJ and therefore has multiple solutions
J = 1, ..., NU . The many-body ground state |Ψ0〉 is given by the state where all n pairs
occupy the lowest energy time-reversed state, denoted by ξ0:

|Ψ0〉 =
B∏

i

c†σi

n∏

j=1
b†0 |0〉 with HU |Ψ0〉 = nξ0 |Ψ0〉 . (2.39)

The full solution of the reduced BCS Hamiltonian is more complicated. The bosonic
pairs b†i consist of fermionic particles and therefore no more than one pair can occupy
each quantum level at any given time. Hard-core bosonic commutation relations have
to be imposed [Del00]:

(
b†i
)2

= 0, [bi, b
†
j] = δij

(
1− 2b†ibi

)
. (2.40)

This leads to a further coupling of the eigenvalue equations. This is expected since the
levels that are available for scattering of a single pair depend on the location of the
other pairs that block an additional n − 1 levels of the subset U . The full solution of
equation (2.37) for hard-core bosons is given by [Del00]:

1−
U∑

i

g

2Ei − (ξν)J
+

n∑

µ=1(6=ν)

2g
(ξν)J − (ξµ)J

= 0, with ν = 1, ..., n. (2.41)

This equation describes a set of n coupled equations for the list of n time-reversed pair
energies ξν , ν = 1, ...n. The total number NT of different solutions (ξν)J is given by all
possible combinations of distributing the n pairs across the NU available levels and can
be calculated as NT = NU !/(NU − n)!n!. The total eigenenergy ξJ of each many-body
state J = 1, ... , NT is given by the sum ξJ = ∑

ν(ξν)J .
In Figure 2.9 we show the numerical solution of equation (2.41) for the level structure

of the 2D harmonic oscillator with Ei ≡ En,m = (2+2n)~ω. Note that here En,m already
represent the energies of the time-reversed pairs instead of single particle harmonic
oscillator levels Ẽn,m = (1 + n)~ω. The calculation is carried out with 3 pairs or
N = 6 particles and without any singly occupied levels such that the ground state
corresponds to one of the closed shell configurations. The harmonic oscillator levels Ei
are constrained to a total number of 4 shells (n ≤ 3) to reduce the computation time.
The number of available single particle levels is therefore given by NU = 10 and there
areNT = 120 many-body states in the spectrum. For moderate values of the interaction
strength EB . EHO the energy cut-off leads only to small quantitative changes in the
energies of low lying states in the spectrum. Higher lying harmonic oscillator orbitals
with (n ≥ 4) are only occupied significantly for large binding energies or for states
higher up in the spectrum.
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Figure 2.9: Richardson’s solution for n = 3 pairs in a 2D harmonic oscillator.
In (a) different solutions to the eigenvalue equation of the reduced BCS
Hamiltonian are shown as a function of the interaction strength (red lines).
The calculation is restricted to the four lowest shells to reduce computa-
tion time. The many-body spectrum of the non-interacting Hamiltonian is
shown as a comparison (dashed lines). Note that only time-reversed states
are coupled by the interactions and all other states are neglected. From
the spectrum we can directly obtain the low energy modes of the medium
(b). The lowest energy mode shows a non-monotonous dependence on the
attractive interaction strength. The inset shows a less accurate calcula-
tion with smaller energy cut-off (Ei ≤ 6~ω). Here, all NT solutions of the
eigenvalue equation are found (blue).

We find that all the many-body states are lowered in energy compared to their non-
interacting values as the interaction parameter g is increased (see Figure 2.9 a). This
is expected for the purely attractive interaction term in the Hamiltonian. To map each
coupling strength g to its corresponding two-body binding energy EB, we perform the
same calculation for just two particles in the trap. The binding energy is calculated
as the energy difference between the non-interacting and interacting ground states
EB = 2~ω− ξ0. The numerical method we apply to extract the roots of the eigenvalue
equation misses some of the NT = 120 solutions. To obtain the complete spectrum,
the degeneracy between the harmonic oscillator levels has to be lifted by adding a
small offset ∆En,m = mε. This drastically increases the required computation time
and becomes unfeasible for larger systems with the hardware and numerical methods
currently available to us. Nevertheless, we have checked that the full NT states in the
spectrum are found as solutions to equation (2.41) for an even smaller energy cut-off (see
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Figure 2.9 inset). At this level, our calculation is sufficient for qualitative statements.
One observation that is particularly interesting can be made in the low energy exci-

tation spectrum of the interacting many-body system (see Figure 2.9 b). The lowest
mode energy is calculated by simply subtracting the energy of the ground from the one
of the first-excited state. We find that the excitation is non-monotonous as a function
of EB with a minimum at some finite value for the binding energy EC

B . As we will
discuss in great detail in chapter 6, the non-monotonous behaviour signals the presence
of a precursor of the normal to superfluid phase transition that exists in the many-body
limit (see Figure 2.7). This demonstrates that even the highly simplified Richardson
model can capture some of the emergent collective behaviour in our mesoscopic systems,
at least on a qualitative level.
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Atomic Physics
Since the first realizations of BECs in 1995 [Dav95; And95], cold atoms experiments
have quickly become one of the major platforms for simulating quantum many-body
systems [Blo08; Blo12]. In this chapter, we review some of the most important features
of neutral atoms having enabled this success. The discussion can be divided into three
general topics: internal structure of the atoms, interactions between them, and their
response to external electromagnetic fields.

Compared to other platforms, like experiments based on ions for example, the in-
teractions of a neutral gas of atoms with stray electromagnetic fields are rather small.
This is advantageous since it facilitates the design of quantum systems that are well
isolated from the environment and have very long coherence times. At the same time,
by choosing the right frequency or sufficiently large field intensities, we have an un-
precedented amount of control over the many-body state of assemblies of cold atoms.
From the inter-particle interaction strength over the single particle potential landscape
to the topology the gas evolves in, almost every aspect of ultracold gases is tunable
in a very large range. Until today, few tens of different elements and isotopes have
been Bose-condensed [Sta12]. Each element comes with its own properties and benefits
like, for example, strong dipolar interactions or finely tunable scattering rates. Most
importantly, the choice of the isotope determines the most fundamental quantity of the
many-body system: the inter-particle exchanges statistics. In this thesis, we will focus
the discussion on Lithium and omit details that are important only to other species.
This element is used for all the experiments presented in the following chapters.

3.1 Internal Structure
The main requirement for the creation of an ultracold gas of neutral atoms is a cycling
transition in its electronic excitation spectrum at or close to optical wavelengths. This
is generally fulfilled by Alkali metals and is, together with their simple hydrogen-like
electron configuration, one of the reasons for their popularity in experiments. We have

37



3 Atomic Physics

2 2S1/2

2 2P1/2

2 2P3/2

F=1/2

F=1/2

F=1/2

F=3/2

F=5/2

F=3/2

F=3/2

D
2=

 6
71

nm
10

G
hz

a

2 2S1/2

2 2P1/2

2 2P3/2

F=1/2

F=1/2

F=1/2

F=3/2

F=5/2

F=3/2

F=3/2

D
2 

10
 G

H
z

a
D

1

22
8 

M
H

z
4.

4 
M

H
z

26
 M

H
z

b

2 2S1/2

Magnetic Field [Gauss]0 400

-600

-600

0

En
er

gy
 [M

hz
]

|2>
|1>

|3>

|6>
|5>

|4>

80
 M

H
z

c

|1’>
|2’>
|3’>

Magnetic Field [Gauss]0 6

-15

0

En
er

gy
 [M

hz
]

15

2 2P3/2

Figure 3.1: Hyperfine splitting of 6Li. The electronic ground state is given by
22S1/2 and splits into two hyperfine manifolds at zero field (a). The next
higher excited states are the 22P1/2 and 22P3/2 states. They couple to
the ground state via the characteristic D1 and D2 lines of Lithium. At
small magnetic offset fields, the ground and excited states split further
with an energy shift proportional to the magnetic quantum number mF
(b, c). When the magnetic field is increased, the Paschen-Back regime is
entered and the energy splitting becomes proportional to mJ instead. In
our experiment, we generally use mixtures of the hyperfine states |1〉 and
|3〉. For cooling and imaging we use light resonant to the D2 line and,
more specifically, the σ− transition to the corresponding hyperfine states
|1′〉 and |3′〉.

chosen Lithium, the lightest of the Alkali metals, in our setup. It has a naturally
occurring fermionic isotope, 6Li, with stable hyperfine mixtures especially well suited
for precise measurements in the strongly correlated regime, as discussed below. A very
detailed presentation of the atomic properties of 6Li can be found in Ref. [Geh03], we
will limit ourselves to the most important details here.

3.1.1 Properties of Lithium
Like all other Alkali metals, 6Li has a single electron in the s-orbital of its outermost
shell and a total electron spin of S = 1

2 . Its nucleus consists of three protons and
neutrons each and has a total nuclear spin of I = 1. As a result, the total spin is half-
integer valued and the isotope is fermionic. The electronic ground state configuration
is given by 1s22s1 or equivalently 22S1/2. It is split into two manifolds by the hyperfine
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coupling with total spins F = 3
2 and F = 1

2 respectively and a distance of ν = ∆E
h

=
228 MHz at zero field. The next higher excited states are given by the 22P1/2 and 22P3/2
states (see Figure 3.1 a). They are separated from each other by ν = 10 GHz and from
the ground state by ν = 447 THz or λ = c

ν
= 671 nm. The optical transitions into these

states give rise to the characteristic red D1 and D2 lines in the spectrum of 6Li.
All our experiments are performed at finite magnetic offset fields. This leads to a

further splitting of ground and excited state manifolds due to the Zeeman effect. In
Lithium the Paschen-Back regime is entered already for fields on the order ofB = 100 G,
much lower than the fields of 300 G to 1000 G we typically work with. Here, the
Zeeman shift is proportional to the quantum number mJ and each line splits into
a triplet corresponding to the different nuclear spin orientations mI = ±1, 0. We
label the states of the ground state manifold 22S1/2 from |1〉 to |6〉 according to their
energy at a finite magnetic field (see Figure 3.1 b). In our experiments, we work with
different combinations of the high-field seeking states |1〉, |2〉 and |3〉. In the high-field
regime, they are split by 80 MHz and any of their possible two component mixtures is
collisionally stable.

3.1.2 Optical Transitions
For cooling and detecting neutral atoms we have to drive a cycling transition in the
optical range of the electronic excitation spectrum. To this end, we use the D2 line
from 22S1/2 to 22P3/2 exclusively. The excited state has a lifetime of τ = 27 ns before
it decays back into the ground state, corresponding to a linewidth of Γ = 5.87 MHz.
This is larger than the hyperfine splitting of 4.4 MHz of the excited state at zero field,
which is therefore not resolved in this case. In the high-field regime, we choose to drive
the σ− transition to the states |1′〉, |2′〉 and |3′〉 of the mJ = −3/2 manifold (see Figure
3.1 c).

It is important to note that only the optical transition of the so-called stretched
state |3〉 → |1′〉 has a closed cycle. For |1〉 → |3′〉 or |2〉 → |2′〉 there remains a small
probability to decay back into |5〉 or |4〉 rather than into the original state. There are
several options to deal with this issue in the experiment. The simplest solution is to
avoid imaging states |1〉 and |2〉 completely. Each state is converted to |3〉 with the help
of radiofrequency or microwave pulses prior to its measurement. Alternatively, the loss
in states |1〉 and |2〉 can simply be accounted for when the images are analysed. This
is especially useful when the atom number is large enough (N � 100) and for spatially
averaged observables without single atom resolution. The third possibility is to drive
the atoms back into |1〉 or |2〉 with a second laser while the image is exposed and to
close the imaging cycle in this way.

The saturation intensity of the D2 line is given by Isat = 2.54 mW cm−2. Together
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with the linewidth Γ this allows us to calculate the spontaneous scattering rate Γsc
when we excite the atoms with some laser field as follows:

Γsc = Γ
2

I/Isat
1 + I/Isat + (2∆/Γ)2 . (3.1)

Here, I and ∆ are the laser intensity and frequency detuning from resonance respec-
tively. In the limit of strong driving I/Isat & 8 where we typically perform our experi-
ment, this leads to scattering rates on the order of 16 photons/µs. This is close to the
maximal possible value of Γ

2 = 18.4 photons/µs.

3.2 Scattering of Cold Atoms
Interactions between particles are a fundamental ingredient to the emergence of non-
trivial quantum many-body states and rich phase diagrams (see chapter 2). From the
experimental viewpoint, collisions are essential as well, since they lead to thermalization
of the atom cloud and make efficient evaporative cooling possible (see chapter 4). At
the same time, inelastic scattering processes set a maximum limit to the achievable
densities and lifetimes in ultracold gases and have to be suppressed.

Scattering of neutral atoms at low temperatures is discussed in great detail in the lit-
erature, see for example [Dal99; Fri13; Sak17]. The crucial result is that their collisional
behaviour becomes astonishingly simple to describe with just a few parameters: the
interaction range r0, the s-wave scattering length a and the effective range re [Blo08].
Universal behaviour emerges making knowledge of the microscopic details, like the
exact shape of the interaction potential, irrelevant.

In the following, we review the most important steps in the derivation leading to
a universal description. Furthermore, we discuss some of the modifications that arise
when the atoms are trapped in anisotropic confinements so that the collisions become
effectively two-dimensional. In the next section, we see how an external magnetic field
can be used to tune the scattering rate of an ultracold gas at will.

3.2.1 Van der Waals Interactions
The interactions occurring between most species of neutral atoms available for ultra-
cold experiments are dominated by Van der Waals interactions. Only recently, break-
throughs in cooling exotic elements like Erbium or Dysprosium have made it possible
to study systems that show significant dipole-dipole interactions in addition [Bar12].
Since they are not relevant for experiments with Lithium we neglect them here. Van
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der Waals interactions, on the other hand, have a very short range (∼ r−6) of the order
of the so-called Van der Waals length defined as

r0 = (2µC6/~2)1/4, (3.2)
where µ is the reduced mass and C6 the Van der Waals coefficient.

For a dilute gas with density n, the inter-particle spacing is typically much larger
than the range of the interactions r0 � n−1/3. As a result, we can assume that the
collisional behaviour of the gas is described by binary interactions between two atoms at
a time. This approximation may break down in degenerate quantum gases with strong
interactions where inelastic three body collisions appear. They lead to particle loss and
limit the interaction range that can be accessed in experiments, especially for bosonic
particles [Dal99]. In two component Fermi gases, like the two 6Li hyperfine states
we use, the Pauli principle leads to a substantial suppression of three body collisions
even for strong interactions [Ket08; Zwe16]. Here, the approximation of purely binary
collisions holds and the description of interactions is strongly simplified.

3.2.2 Elastic Two-Body Scattering
For the description of two-body scattering, it is convenient to work in the relative
coordinate system with r = r1 − r2, R = (r1 + r2)/2 and reduced mass µ =
m1m2/(m1 +m2). Here, r1 and r2 are the three dimensional coordinates of the two col-
liding particles. The scattering potential Vint(r) depends only on the relative coordinate
r and therefore the calculation reduces to a single particle problem:

(
~2

2µ∇
2
r + Vint(r)

)
Ψk(r) = EkΨk(r), (3.3)

where we introduced the wave number k of the relative wavefunction. Since the po-
tential Vint(r) has a finite range r0, the solution for large particle separations r → ∞
before and after the collision reduces to that of a free particle with energy E = ~2k2

2µ .
The Van der Waals potential leads to elastic scattering and therefore both energy and
wavenumber k of the wavefunction before and after the collision are conserved. Only
the phase of the wavefunction can be affected by the scattering process. Making use of
the spherical symmetry of the interaction potential V (r) ≡ V (r), we can express the
general solution as follows:

Ψk(r) = Ψin(r) + Ψout(r) '
r→∞

eikz + f(k, θ)e
ikr

r
, (3.4)

where 0 ≤ θ ≤ π is the polar angle with respect to the ingoing wave Ψin and the scat-
tering amplitude f(k, θ) contains phase shift and magnitude of the scattered outgoing
wave Ψout (see Figure 3.2 a).
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Figure 3.2: Elastic two-body scattering. A general ansatz for the relative wave-
function of two particles scattering elastically in a short-range potential
is given by an ingoing plane wave Ψin and a scattered spherical wave Ψout
(a). The wavefunction has to be symmetrized according to the particle
exchange symmetry (b). For indistinguishable particles the two possible
paths interfere.

3.2.3 Partial Wave Expansion
The derivation of an expression for the scattering amplitude f(k, θ) from the Schrödinger
equation (3.3) comes down to the solution of the motion of a single particle in a central
potential. We omit the details here, but the key idea is to perform a partial wave
expansion and to write the wavefunction Ψk(r, θ) in terms of Legendre polynomials
Pl(cos θ) as:

Ψk(r, θ) =
∞∑

l=0
AlPl(cos θ)Rkl(r), (3.5)

where Al are the expansion coefficients and Rkl(r) satisfies the radial wave equations.
Here, we have already made use of the azimuthal symmetry of the problem that pro-
hibits any φ-dependent terms in the expansion. The radial wave equations are given
by: [

∂2

∂r2 + 2
r

∂

∂r
+ k2 − l(l + 1)

r2 − 2mr

~2 Vint(r)
]
Rkl(r) = 0. (3.6)

The crucial insight is that the total scattering potential is now given by an effective
potential Veff = Vl(r) + Vint(r)2mr/~2. Its difference to the bare interaction potential
Vint(r) is the rotational barrier Vl(r) = l(l+1)/r2 that appears for l > 0 (see Figure 3.3
a). In the small energy limit k → 0 this potential barrier prevents the particles from
entering the regime r < rb = l(l + 1)/k2 and the wavefunction decays exponentially
for r < rb. As a consequence, a short range interaction potential Vint with r0 < rb is
relevant only for the l = 0 (s-wave) term in this limit. The higher angular momentum
parts l > 0 of the radial wave equation do not lead to a phase shift of the scattered
wave Ψout and can therefore be neglected for collisions between ultracold atoms.
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Figure 3.3: Rotational barrier. A rotational barrier is present in the effective po-
tential for the radial wave equation with angular momenta l > 0 (a). For
particles scattering with small relative kinetic energies Erel (red) this leads
to a classically forbidden region r < rb where the wavefunction decays ex-
ponentially. As a result, in the low energy limit k → 0 and for short
range potentials with r0 < rb, the interaction potential Vint is relevant
only for the l = 0 term of the partial wave expansion. (b) The interaction
potential Vint leads to a phase shift δ of the reduced radial wavefunction
rRkl far away from the scattering centre r → ∞. For k → 0 the phase
shift is independent of k and can be described by the single parameter
named the scattering length a. The scattering length can be read from
the position of the first (virtual) node of the asymptotic wavefunction.

The solutions for equation (3.6) in the far distance limit r → ∞ can be written in
terms of phase shifts δl as:

Rkl(r) '
1
kr

sin(kr − lπ/2 + δl). (3.7)

Following [Pet08], we expand the plane wave in equation (3.4) in Legendre Polynomials
as well and compare to equations (3.5) and (3.7). We find that Al = il(2l + 1)eiδl and:

f(k, θ) = 1
2ik

∞∑

l=0
(2l + 1)(ei2δl − 1)Pl(cos θ). (3.8)

As discussed above, the phase shifts δl ∝ k2l+1 for l > 0 vanish for k → 0 and the final
result for the scattering amplitude is:

f(k, θ) = 1
2ik

(
ei2δ0 − 1

)
= 1
k/tan δ0 − ik

(3.9)
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In the low energy limit, it is convenient to expand the s-wave phase shift δ0 in terms
of the wavenumber k:

k

tan δ0
= −1

a
+ 1

2k
2re + . . . , (3.10)

where a is the scattering length and re is the effective range.
Using the approximations above, the description of the scattering process between

cold atoms becomes completely independent of the details of the interaction potential
Vint. To first order, the s-wave phase shift δ0 of the wavefunction is k-independent and
determined solely by the scattering length a. It can be interpreted geometrically as the
position of the first node of the asymptotic r → ∞ wavefunction (see Figure 3.3 b).
The effective range re of the potential, on the other hand, describes the next term in the
expansion and determines at what point the approximation of a k-independent phase
shift δ0 breaks down. In the case of 6Li the effective range is re = 87 a0, where a0 =
5.3× 10−11 m is the Bohr radius [Zür12a]. As a result, the effective range and therefore
the momentum dependence of δ0 can be neglected for all measurements presented in
this thesis.

The scattering length for a repulsive hard sphere potential (Vint(r) = ∞ for r < r0
and 0 otherwise) is positive and given by a = r0. For attractive potential wells a
can generally also become negative. A general approximation that can be made for
short range potentials is that a ≈ r0. For Van der Walls interactions this leads to
a ≈ 50−100 a0. However, there are important exceptions to this simple guess, especially
when the interaction potential supports a bound state close to the continuum. In such
cases both the sign and absolute value of the scattering length are modified and values
of a� 10 000 a0 become possible [Wal19]. As discussed in the next section, scattering
resonances can be exploited to change the scattering length dynamically, for example
through magnetic fields. In this way, collisions between cold atoms are not only very
simple to describe but also highly tunable.

3.2.4 Scattering Cross Section
In the discussion above, we have focused on obtaining the scattering amplitude f(k, θ)
by solving the two-body scattering problem. To describe the scattering behaviour of
the gas it is often useful to translate the scattering amplitude to quantities like the
mean-free-path l or the collision rate ν that are more accessible in experiments. They
are given by:

l = 1
nσ

, (3.11)

and
ν = nvσ, (3.12)
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where the atomic velocity v and density n of the gas are set by the external trapping
confinement in the experiment. The remaining parameter is the collisional cross section
σ and can be calculated directly from the scattering amplitude f(k, θ). To this end, we
start from the partial cross section dσ(θ, φ) for scattering in the direction (θ, φ) defined
as:

dσ(θ, φ) = dIout(θ, φ)
jin

, (3.13)

where dIout is the probability current for scattering into an infinitesimal surface element
dΩ at (θ, φ) and jin is the probability current density of the incoming plane wave. Using
the ansatz for the asymptotic wavefunction (3.4) we obtain:

dσ(θ, φ) = |f(k, θ)|2 dΩ (3.14)

The total cross section σ follows after integration over all angles. With the solution of
f(k, θ) in terms of the s-wave scattering length as derived in equations (3.9) and (3.10)
we obtain:

σ = 4πa2

1 + k2a2 (3.15)

This leads to two different limiting cases for the collisional behaviour of the gas. If
ka� 1 we obtain:

σ = 4π
k2 , (3.16)

where the cross section is independent of the scattering length and the system can be
described completely in terms of a single scale: its density n. This is called the unitary
regime. If ka� 1, on the other hand, we obtain:

σ = 4πa2. (3.17)

Here, the scattering length a is the single parameter that determines all collisional
properties of the gas.

3.2.5 Effective Potential
In the discussion above, we have established a description of scattering between ultra-
cold atoms that is completely independent of the details of the interactions potential
Vint. This motivates the introduction of an effective zero range interaction potential:

Veff(r) = gδ(r), (3.18)

where the coupling constant g = 4π~2a/µ can be expressed directly in terms of the scat-
tering length a and δ(r) is the appropriately normalized Dirac delta function [Ket08].
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The effective potential is defined such that the same asymptotic scattering behaviour
is reproduced while calculations are much simpler than in more realistic descriptions
like the Lennard-Jones potential. The sign of interaction energy Eint ∝ g ∝ a justifies
the commonly used labelling of a > 0 as the repulsive and a < 0 as the attractive
interaction regimes.

3.2.6 Identical Particles
The ansatz for the wavefunction shown in equation (3.4) is valid only for distinguishable
particles. In the case of indistinguishable particles, like identical atoms in the same
internal state, the wavefunction of the relative motion has to be symmetric under par-
ticle exchange. It is not possible to distinguish between the situation where the particle
coming from the left scatters with an angle θ and the situation where the particle from
the right scatters with an angle π − θ (see Figure 3.2 b). Both possible paths interfere
and lead to the combined scattering amplitude. The asymptotic wavefunction with the
correct symmetrization for bosonic (+) and fermionic (−) particles is therefore given
by:

Ψk(r) '
r→∞

(
eikz ± e−ikz

)
+
(
f(k, θ)± f(k, π − θ)

)eikr

r
, (3.19)

where θ is limited to [0, π/2]. For the total s-wave cross section σ this results in:

Bosons: σ = 8πa2

Distinguishable Particles: σ = 4πa2

Fermions: σ = 0
(3.20)

From equation (3.20) it follows that at low temperatures a single component Fermi
gas is completely non-interacting (under the assumption that dipolar interactions are
negligible). Significant scattering rates only appear close to higher order partial wave
resonances, that exist for example in 6Li with l = 1 (p-wave) [Zha04]. In our experiment,
we make use of two different hyperfine components instead (see Section 3.1). Here, all
the equations for distinguishable particles, as discussed above, apply. This allows us to
enter the strongly interacting regime that is required both for efficient thermalization
and preparation as well as for the study of highly correlated quantum many-body states.

3.2.7 Scattering in 2D
All the measurements that are presented in this thesis are carried out in a quasi-2D
setting, where dynamics of the atoms along the third dimension are strongly suppressed
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(see chapter 4). While most of the assumptions made for 3D scattering between ultra-
cold atoms still hold, we discuss some of the important modifications for 2D scattering
here. In 2D, the partial wave expansion of the scattering amplitude f(k, θ) (compare
equation (3.8)) leads to [Lev15]:

f(k, θ) =
∞∑

l=0
(2− δl0)cos(lθ) −4

cot δl(k)− i , (3.21)

where δl0 is the Kronecker delta and δl the phase shift of the asymptotic wavefunction.
The l = 0 phase shift δ0 can be expanded as:

cot δ0(k) = 2
π
ln (ka2D) +O(k2), (3.22)

where we have introduced the 2D scattering length a2D > 0. Finally, the total elastic
s-wave cross section is given by:

σ = π2

4k2ln2(ka2D) + k2π2 . (3.23)

Similar to 3D, we can introduce an effective potential Veff(r) = g2Dδ(r) with [Frö12]:

g2D = −2π~2

µln(ka2D) . (3.24)

There are a few notable qualitative differences between 2D and 3D. First, the scatter-
ing amplitude and cross section are always k-dependent, even in the low energy limit.
There is no unitary regime where the scattering length dependence drops out com-
pletely. The equations above indicate that a good choice for a dimensionless parameter
to characterize the collisional properties of a 2D Fermi gas is given by ln(kFa2D). Here,
we have used the approximation k ≈ kF, where kF is the Fermi momentum of the gas
(see chapter 2). As in 3D, the s-wave cross section is the only relevant contribution in
the low energy limit while all higher partial wave terms l > 0 become zero [Lev15].

From equation (3.22) we find that the scattering phase shift δ0 diverges logarith-
mically in the low k limit and the scattering amplitude approaches zero (much more
slowly than the p-wave part however). Therefore, it is not possible to unambiguously
define the scattering length a2D in 2D as the low energy limit of the phase shift. More
generally, a zero-range potential Vint ≈ δ2(r) in 2D always leads to divergent quantities,
like for example mean-field interaction energies. We have to regularize and renormalize
the divergencies of the 2D contact interaction potential by introducing some momen-
tum or energy cut-off scale. This additional energy scale breaks the scale invariance
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symmetry of the bare hamiltonian and leads to a quantum anomaly. The implications
of the quantum anomaly —a concept originally known from high energy physics— for
the behaviour of the quasi-2D gas will be discussed in detail in chapter 8.

A well known peculiarity in quantum mechanics for attractive potentials Vint in 2D is
that they always support at least one bound state. This is different to 3D for example,
where the potential depth has to come below some threshold before the first bound
state is supported. It is convenient to make use of the 2D two-body bound state for the
renormalization procedure [Lev15]. By fixing its binding energy EB to a finite value,
we can remove all divergent terms and it is possible to obtain a well defined quantum
theory and scattering length a2D. Bound states in the interaction potential Vint are not
only important on a theoretical level as a means of renormalization, they also strongly
affect the scattering phase shift δl as we discuss in the following.

3.2.8 Two-Body Bound States
So far we have ignored the possibility of bound state solutions that might exist for the
two-particle Schrödinger equation (3.3). This is justified as long as the (virtual) bound
state energies EB are far away from the energy of the scattering particles. However, if
a bound state is coming very close to the continuum (EB . 0) or if there is a virtual
bound state that is almost bound (EB & 0), a so called shape resonance occurs. These
resonances strongly modify the scattering length and allow for values |a| � r0 and even
a → ±∞. While the shape and position of the resonances depend very much on the
details of the scattering potential Vint, the general behaviour when a bound state exists
close to the continuum is universal. Therefore, following [Wal19], we limit ourselves to
the discussion of scattering in a spherical potential well with flat bottom here.

The attractive potential is defined to have a constant depth of V0 < 0 for r ≤ r0 while
it is zero everywhere else (see Figure 3.4 a,b). By plugging Vint into the Schrödinger
equation (3.3) and solving for the scattering length, we obtain [Wal19]:

a = r0(1− tan γ
γ

), (3.25)

where γ = r0

√
−2mV0/~2 is called the well parameter. In 3D a bound state appears

when γ = (n + 1/2)π, where n is an integer. We find that as V0 is increased starting
from zero, the attractive potential pulls the wavefunction in and leads to a negative
scattering length (see Figure 3.4 c). The scattering length continues to increase towards
minus infinity until the first bound state appears at γ = 1/2 π. Here, the phase shift δ0
jumps from π/2 to −π/2 and the scattering length shifts from −∞ to +∞. The same
behaviour occurs at each new level n that becomes bound. For away from the positions
of the shape resonances we find that the naive guess a ≈ r0 holds.
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Figure 3.4: Scattering in a spherical potential well with flat bottom. The
presence of a bound state in the interaction potential Vint significantly
affects the phase of the asymptotic wavefunction (red) and therefore the
scattering length a. For a virtual bound state with EB & 0 the scattering
length becomes negative and diverges towards minus infinity (correspond-
ing to δ0 → +π/2) as EB → 0+ (a). For a bound state just below the
continuum EB . 0 the scattering is positive and becomes plus infinity
(corresponding to δ0 → −π/2) when EB → 0− (b). As the depths on
the potential well V0 increases, a shape resonance occurs whenever a new
level becomes bound (c). At these positions the scattering length diverges
a → ±∞, while the approximation a ≈ r0 holds far away from the reso-
nances.

From the solution of the spherical potential well we find that a positive scattering
length a is always related to the presence of a bound state with energy EB close to the
continuum. It turns out that this connection can be generalized for attractive interac-
tion potentials and the energy of the bound state can be approximated by [Sak17]:

EB '
~2

2µa2 . (3.26)

In 3D this two-body bound state exists only for repulsive interactions (a > 0). For
very small repulsive interactions a → 0+, the binding energy increases EB → ∞ until
the particles form point-like dimers. In this limit the atom-dimer aad and dimer-dimer
add scattering lengths are given by [Gio08]:

aad = 1.18 a add = 0.6 a (3.27)
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In 2D an attractive potential of any depth supports a bound state and with a2D > 0
the same relation EB ' ~2/2µa2

2D holds for both attractive and repulsive mean-field
interactions. Since the bound state is always present in 2D, we generally use its energy
EB to characterize the interaction strength of the system [Ran90].

3.2.9 Scattering in Quasi-2D

Up to this point we have discussed scattering and the occurrence of bound dimers in
both 3D and 2D. Our experiments are naturally always carried out in a 3D world. The
Van der Waals interaction range of r0 ≈ 3 nm is always much smaller than the length
scales of the atom confinement l & 500 nm and the two-body scattering processes are
always 3D. However, it is possible to use tailor made potentials that confine the atoms
so strongly along one dimension that their low energy dynamics becomes effectively
2D. We use an approximately harmonic confinement with trap frequency ωz along the
z-direction in our experiment (see chapter 4). The quasi-2D regime is reached when all
other energy scales of the many-body system, like the chemical potential µ, temperature
kBT or the Fermi energy EF are much smaller than the trap level spacing in z-direction
~ωz. In this case the particles always remain in the ground state in z-direction and we
describe the system with an effective 2D model by integrating out the wavefunction
along the third axis. The scattering length a2D of the effective 2D model is then given
by [Pet01; Lev15]:

a2D = lz

√
π

B
exp

(
−
√
π

2
lz
a

)
, (3.28)

where a is the 3D scattering length, B = 0.905 and lz =
√
~/mωz is the harmonic

oscillator length in the confined direction.
The additional length scale of lz entering the 2D scattering length a2D as opposed

to a true 2D setting makes the calculation of the bound state energy more involved.
When EB � ~ωz the dimer wavefunction is large and quasi-2D. We can calculate its
energy EB = ~2/2µa2

2D with the effective a2D from equation (3.28) as before. In the
opposite limit, when EB � ~ωz, the dimer becomes point like and its wavefunction
is not modified by the z confinement anymore. Its energy then is simply given by
EB = ~2/2µa in terms of the 3D scattering length a. While the dimers are clearly 3D
in this case, the interactions between molecules are still 2D. For the relevant degrees
of freedom of the gas, a description in terms of a quasi-2D theory remains valid. In
between the two extreme cases EB ≈ ~ωz, the following implicit expression is obtained
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Figure 3.5: Bound states in quasi-2D. (a) The red solid line shows the full solution
for the two-body binding energy EB of the bound state in a quasi-2D
setting with a harmonic confinement along the z-direction. The lines in
blue and black show the limiting cases of a 3D and 2D dimer respectively.
The quasi-2D and 2D solutions are offset by the ground state energy E0 =
0.5 ~ωz of the harmonic oscillator. In quasi-2D the confinement induces a
bound state also for negative scattering lengths where it is absent in 3D.
(b) The full energy spectrum of two particles that are confined radially
in addition to the quasi-2D confinement and with η = ωr/ωz = 1/7. The
spectrum is shown as a function of the 3D scattering length (red solid line).
The calculations for a true 2D system are shown in comparison (black
dashed line). The grey dashed lines indicate the unperturbed harmonic
oscillator levels without interactions.

for the quasi-2D dimer binding energy [Lev15]:

lz
a

=
∫ ∞

0

dx√
4πx3


1−

exp
(
− EB

~ωz
x
)

√
1−exp(−2x)

2x


 . (3.29)

In Figure 3.5 a, the solution of this equation for EB is shown as a function of lz/a. We
find that it interpolates between both limiting cases as expected.

3.2.10 Radial Confinement
An additional potential in radial direction, orthogonal to the z-axis, is required in
order to confine the atoms in the 2D plane. In our experiment, we use a harmonic
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trap with frequency ωr and aspect ratios between η = ωr/ωz ≈ 1/300 and η ≈ 1/7
(see chapter 4). The additional confinement influences the relative wavefunction of
molecules and modifies the binding energy EB further. For two particles interacting
via the effective delta potential gδ(r), a solution was first presented in Ref. [Bus98] for
isotropic harmonic potentials in 1D, 2D and 3D (ωi ≡ ω for i = 1 . . . d). The analytical
solutions were later extended to 3D harmonic confinements with axial symmetry [Idz06]
and by now even to arbitrary aspect ratios (ωx 6= ωy 6= ωz) [Che20]. The energy
spectrum relevant for our experiment, of two particles in harmonic 3D traps with
integer inverse aspect ratios 1/η = n can be obtained from the equation [Idz06]:

lz
a

=
√

2π
n

n−1∑

m=0

Γ
(
− E

2~ωz
+ m

n

)

Γ
(
− E

2~ωz
− 1

2 + m
n

) , (3.30)

where Γ is the Euler gamma function, and the solutions for E = E−E0 are the energy
levels in the trap relative to the ground state energy of E0 = ~ωz(1/2 + η).
In Figure 3.5 b, we show the solution of equation (3.30) for the lowest i levels Ei of the

energy spectrum (red solid line). Here, a realistic aspect ratio for our experiments with
mesoscopic systems of n = 1/η = 7 was used. In the non-interacting limits a→ 0± the
radial confinement leads to a discrete level spectrum, spaced by the harmonic oscillator
energy ~ωr as expected (grey dashed lines). When the scattering length increases, the
levels shift to higher (lower) energies for a > 0 (a < 0), consistent with an interaction
that is effectively repulsive (attractive). Odd-numbered energy levels of the harmonic
oscillator are not shifted by the interaction since they have a node in the relative
wavefunction at r = 0 and are therefore unaffected by the zero range δ(r) potential.
The lowest energy level lies always below the non-interacting ground state energy for
two particles. This is consistent with the observation that in quasi-2D, the confinement
induces a bound state also for negative scattering lengths.

In the same Figure 3.5 b, we also plot the energy spectrum of a true 2D system
confined radially with trap frequency ωr (black dashed line). The curves are obtained
from the solution in Ref. [Bus98] with the effective 2D scattering length from equation
(3.28) and are offset by the ground state energy ~ωz/2 in axial direction for better
comparison. The 3D and 2D solutions show a remarkable agreement, confirming again
the validity of a quasi-2D description even for rather small aspect ratios of n = 1/η = 7.
The only clear deviation of the full 3D solution occurs for the lowest bound state level.
Here, the binding energy of the dimer becomes of the order of the axial energy spacing
EB ≈ ~ωz and higher energy levels in the third dimension have to be taken into account.
This is the same behaviour that we have already discussed for the quasi-2D system
without radial confinement (see Figure 3.5 a).
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3.3 External Fields
Up to this point, we have discussed the complex internal structure of neutral atoms
offering different spin (hyperfine) states, bosonic or fermionic exchange statistics and
easily accessible transitions in the visible spectrum. We have seen that at low energies
the description of collisions becomes universal and independent of the details of the
interaction potential Vint. This final section of chapter 3 deals with the response of
ultracold atoms to external fields. The numerous possibilities we have to tune the
potential environment, internal properties and collisional behaviour with external fields
make ultracold atoms so attractive as platform for quantum simulations [Blo08; Blo12].

In the first part, we discuss the response to direct current (DC) magnetic fields. They
allow us to almost freely tune the interactions between particles with so-called Feshbach
resonances, one of the hallmarks of ultracold quantum gas experiments. In the second
section, we discuss how far off resonant AC electromagnetic fields can be used to tailor
trapping potentials of arbitrary geometries for the atom clouds. The experimental
methods to switch between different internal hyperfine states of the atoms by using
radio frequency (RF) and microwave (MW) pulses or Raman transitions are discussed
in chapter 4.

3.3.1 Magnetic Fields
Neutral atoms couple to a magnetic field B via the term HB = −µ ·B, where µ is the
magnetic dipole moment. In figure 3.1, we have already seen how this term leads to
the Zeeman effect at finite magnetic fields and an energy splitting of different hyperfine
levels. In the high field regime B > 300 G, where we typically work at, the energy shift
EB is proportional to the projection of the total angular momentum mJ = ±1/2 along
the magnetic field [Sta12]:

EB ≈ mJgJµBB + AHFmJmI , (3.31)

where gJ is the magnetic moment, µB is the Bohr magneton, mI = 0,±1 is the projec-
tion of the nuclear spin and AHF = 152 MHz is the hyperfine constant. The Zeeman
shift is not just important to split the hyperfine states labelled |1〉 ... |6〉 in energy and
to make them distinguishable. When the magnetic field strength has a spatial de-
pendence, it also leads to an effective potential given by V (r) = EB(r) ∝ B(r) (see
equation (3.31)). We distinguish between high-field seeking states |1〉 to |3〉 with a
potential minimum at the point of the largest magnetic field strengths and low-field
seeking states |4〉 to |6〉 with a potential minimum at the point of the smallest magnetic
field strengths. Since by Maxwell’s equations local maxima in the magnetic field can
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not exist in free space, only the low-field seeking states can be trapped purely mag-
netically [Sta12]. In our experiments, the magnetic confinements are often negligible
compared to the other potentials we apply. However, they are generally very useful for
the application of matter wave optics [Mur14]. Here, the potential acts as a (matter
wave) lens that allows us to severely magnify the atom cloud and to swap between real-
and momentum-space. The process is very sensitive to inhomogeneities and defects in
the potential. These are generally suppressed in a magnetic field as compared to the
optical potentials we discuss later.

For experiments with lithium, a field strength of particular importance is located at
B = 27 G. Here, the magnetic moment of state |2〉 is exactly zero (see Figure 3.1 b).
This allows us to create state depend potentials, where a gradient in magnetic field
strength only acts on other hyperfine states that are present. We are able to create
imbalanced or even completely spin polarized samples in this way (see chapter 4).

3.3.2 Feshbach Resonances
The differential energy shift of different hyperfine levels with an applied magnetic field
does not only affect the potential landscape of the atoms. It becomes even more
important when we consider the two-body scattering problem again. In the discussion
of collisions above, we have treated the atoms as two point-like particles and without
taking their internal structure into account. In a single interaction potential Vint a
shape resonance with a→ ±∞ occurs, whenever a (virtual) bound state is close to the
collisional energy E of the particles (see Figure 3.4). Unfortunately, the potential Vint
is set by the internal properties of the atoms and cannot directly be manipulated in
order to tune the bound state levels and scattering length a. This changes when we
consider the presence of other hyperfine states when modelling the scattering process.

A collision between two neutral atoms can in principle lead to a change of their
internal state. As a result, not only the interaction potential of the incoming states has
to be taken into account but also the ones from other internal states that the atoms
might scatter into. Each scattering potential (or channel) asymptotically (r → ∞)
connects to two free atoms of the ultracold gas. They can be distinguished into open
channels, that are energetically allowed by the collision energy of the incoming particles
E, and closed channels, that are energetically forbidden (see Figure 3.6 a). A very
special situation occurs when there is a bound state with energy EB ≈ E in a closed
channel of the scattering particles. Even a small coupling (for example through spin
spin interactions) between the closed and open channels will strongly affect the phase of
the scattered wave and lead to a singularity in the scattering length a. This behaviour
is generally called a Feshbach resonance. The crucial difference to the shape resonance
discussed before is that for the Feshbach resonance we have access to the exact value of
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Figure 3.6: Feshbach resonances. A Feshbach resonance occurs when a bound state
exists in a closed, energetically forbidden, channel (a). The energy EB of
this bound state relative to the open channel that the particles scatter
in can often be tuned via a differential Zeeman shift. When the bound
state comes into resonance with the scattering particles the phase shift δ0
jumps by π and the scattering length diverges (a → ±∞). This allows
us to freely tune the scattering length a of an ultracold gas by simply
applying an external offset field B (b). Everything from the strongly
repulsive a → ∞ to the strongly attractive a → −∞ as well as the non-
interacting a = 0 regime is accessible.

EB relative to the open channel. Since open and closed channel correspond to different
asymptotic hyperfine states, they might have a differential Zeeman shift (see equation
(3.31)). In such cases we can directly control their energy difference simply by applying
a magnetic offset field B. The behaviour of the 3D scattering length a as a function of
magnetic field B can be described by the phenomenological expression [Chi10]:

a(B) = abg

(
1− ∆

B −B0

)
, (3.32)

where abg is the background scattering length (generally abg ≈ r0) of the open channel
and B0 and ∆ describe the position and width of the resonance respectively (see Figure
3.6 b).

In the case of 6Li the scattering potentials are given by the molecular triplet (S = 1)
and singlet (S = 0) potentials VT and VS. Here the spin S refers to the total electron
spin S = S1 + S2 of the two colliding atoms. The entire two electron wavefunction
is antisymmetric under particle exchange. For the spin triplet this leads to a spatial
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Figure 3.7: Feshbach resonances of 6Li. (a) The last vibrational levels ν = 38 of
the triplet potential VT (inset) can be tuned into resonance for scattering
in the |1〉 |2〉mixture (dashed line indicated by 12). The bound states have
a total nuclear spin of I = 0 and 2 and disappear into the continuum at
832.2 and 543.5 G respectively. This leads to a broad Feshbach resonance
at 832.2 G that can be used to freely tune the scattering length of the
|1〉 |2〉 mixture. The second resonance at 543.5 G is very sharp and its
presence is negligible for our purpose. The same effect leads to broad
resonances also for the |1〉 |3〉 and |2〉 |3〉 mixture (b). For other hyperfine
mixtures no resonances are expected due to their respective Zeeman shifts
(dashed lines in a). Figure (a) is recreated from Ref. [Chi10]. Figure (b)
uses the data from the appendix in [Zür12a].

electron wavefunction that is antisymmetric under particle exchange, leading to a re-
duced probability of finding the electrons in the region between the nuclei. As a result,
the triplet potential VT is much more shallow than the singlet potential VT with a
symmetric spatial electron wavefunction (see Figure 3.7 a, inset).

The triplet potential does not support any bound states, but a virtual bound state
lies in the continuum just above E = 0. This leads to a shape resonance and explains
the anomalously large and negative scattering length of aT = −2113(2) a0 [Zür12a].
The deep singlet potential, on the other hand, supports a molecular bound state with
the last vibrational level ν = 38 close to the continuum EB ≈ 1.38 GHz [Chi10] and
scattering length of as = −45.154(10) a0 [Zür12a]. For the hyperfine mixtures |1〉 |2〉,
|2〉 |3〉 and |1〉 |3〉, the differential magnetic moment between the triplet and singlet
potentials allow us to tune the ν = 38 vibrational levels into resonance (see Figure 3.7
a). This leads to broad Feshbach resonances in each of these channels that are directly

56



3.3 External Fields

accessible in experiments. In this way we can set the scattering length a of a given
mixture to (almost) any desired value by applying the correct magnetic offset field (see
Figure 3.7 b). For other mixtures no further Feshbach resonances are expected since
their differential Zeeman shift is either zero or goes in the wrong direction.

3.3.3 Optical Dipole Potentials
Spatially inhomogeneous magnetic fields are one approach to create conservative po-
tentials for ultracold atoms. However, as already presented above, they lead to highly
state dependent potentials, limiting the possible hyperfine for trapping immensely. In
addition, Feshbach resonances as an essential tool to control the interactions also rely
on magnetic fields. The solution is to make use of the polarizability α of the neutral
atoms. It leads to an induced dipole moment of the atom proportional to an applied
electric field d ∝ αE.
The resulting Stark shift for the atoms is then proportional to the quadratic field

strength V (r) ∝ dE(r) ∝ E2(r). The polarizability of alkali atoms is generally too
small in order to create potentials of relevant depths with electric DC fields. However,
the energy shift can be dramatically enhanced (by factors on the order of 108) by
applying an AC field near an optical resonance of the internal states instead [Sta12]. A
detailed derivation of the potential Vdip that is created by these so-called optical dipole
traps (ODTs) can be found in Ref. [Gri00]. The main result can be summarized with
the following equations:

Vdip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r), (3.33)

Γsc(r) = 3πc2

2~ω3
0

(
ω

ω0

)3
(

Γ
ω0 − ω

+ Γ
ω0 + ω

)2

I(r). (3.34)

Here, we identify I(r) ∝ E2(r) and ω as intensity and frequency of the external optical
field respectively. The resonance frequency and linewidth (see section 3.1.2) of the
optical transition of the atom are given by ω0 and Γ respectively and c is the speed of
light. The unwanted single photon scattering rate of the atoms is given by Γsc.
From equation (3.33), we find that the potential depth Vdip scales at 1/∆, where

∆ = ω − ω0 is the detuning from resonance. At the same time, the single photon
scattering rate, that acts as a dispersive term and leads to atom loss from the trap,
scales as Γsc ∝ 1/∆2. For the creation of conservative potentials it is therefore best to
use optical fields with very high intensity I and far detuned from resonance ∆ � Γ.
For red detuned fields (∆ < 0) the confinement is attractive Vdip < 0 while blue detuned
(∆ > 0) light beams create repulsive potentials Vdip < 0. This can be understood by the
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oscillation of the induced dipole moment in dependence of the driving field frequency.
In analogy to a classical driven harmonic oscillator, this oscillation is in phase when
ω < ω0 and out of phase when ω > ω0.

For 6Li we make use of lasers at λ = 1064 nm with light powers up to 200 W. At
this wavelength the rate of single particle scattering Γsc is negligible. Due to the red
detuning compared to the D1 and D2 lines at λ0 ≈ 671 nm all the optical potentials
we currently create in our experiment are attractive.
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Experimental Techniques
In this chapter, the experimental techniques required for studying many-body physics
with ultracold atoms are summarized. Experimentally, the crucial challenges that
have to be addressed are an effective isolation of the atoms from the environment,
an efficient cooling scheme far into the quantum degenerate regime and the control of
internal states and potential landscapes. We focus on the points that are important
for our experiments with 6Li here, more general reviews can be found for example in
Refs. [Foo05; Blo08; Sta12]. More detailed descriptions of our experimental apparatus
can be found in the following theses [Wen13b; Rie15b; Nei17].

The chapter can be split into three sections. First, all the techniques that are re-
quired for the preparation of between 104 and 105 degenerate Fermions at ultracold
temperatures as well as mesoscopic samples of up to 20 atoms close to the energetic
ground state are presented. The preparation process includes different cooling stages as
well as multiple transfers of the atoms between different tailor-made optical potentials.
The second section deals with the manipulation of the internal states of the atoms. By
accessing the internal degrees of freedom we are able to switch between mixtures with
different interaction strengths or binding energies. Finally, in the last part, different
approaches to image the atoms and to extract information about the many-body state
are shown.

4.1 State Preparation
The experimental sequence that is used to prepare a desired many-body state can be
broken down into two general parts. In the first steps, different cooling stages are used
to create a large reservoir of around 105 atoms at the smallest achievable temperatures.
This cloud is then transferred to different optical dipole potentials and, together with
external magnetic fields, the desired many-body Hamiltonian is engineered. In our
experiment, this final state is always confined very strongly in the axial direction such
that a quasi-2D description becomes applicable.
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Figure 4.1: Sketch of the vacuum chamber. An atomic beam of hot 6Li atoms is
leaving the oven (A) through a small pinhole. The beam is cooled in the
Zeeman slower (B) and finally the atoms are trapped in the centre of the
main experiment chamber (C). The UHV is created and maintained by
titanium sublimation (D) and ion pumps (E). A gate valve (F) allows us
to separate the main and oven chamber in case maintenance is required.
Taken from [Wen13b].

An experimental control system is required to play-back the sequence with precise
analog and digital control signals. We use the ADwin-Pro II as a real-time processor
with 32 analog (16 in, 16 out) and 64 digital-IO channels. They run with time steps
of ∆tAIO = 2 µs and ∆tDIO = 0.5 µs respectively. A major advantage of the completely
digital approach is that we can setup PID feedback loops that are linearized and where
the gain parameters can be varied within one experimental run. A LabVIEW interface,
running on a standard desktop computer, is used to program the sequences into the
local memory of the ADwin and to communicate with all other devices in the laboratory
like function generators and cameras.

4.1.1 Vacuum System and Coils
In order to create and trap ultracold quantum gases and to achieve the long coherence
times these systems promise, they have to be isolated very well from the environment.
To this end, all our experiments are carried out in an ultra-high vacuum (UHV) chamber
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(see Figure 4.1). Here, we achieve pressures below 2.3× 10−11 mbar so that collisions
with the background gas become negligible for the timescales of all our experiments.
A beam of approximately Ṅhot = 1016 atoms/s is created by heating a block of lithium
in an oven to around T ≈ 360 °C (A). The beam is collimated with a pinhole aperture
and can be switched on and off by using a mechanical shutter inside the vacuum.
The atoms, having been cooled down with a Zeeman slower (B), are trapped in the
main experiment chamber (C). It offers sufficient optical access to the atoms through
six windows in the horizontal plane with a numerical aperture (NA) of 0.15 and two
re-entrant viewports at the top and bottom with a high NA of 0.88 [Rie10].

Two sets of coils (named MOT- and Feshbach-coils) close to a Helmholtz configura-
tion are placed around the main chamber with their symmetry axis in vertical (≡ z)
direction. They allow us to create magnetic offset fields of up to Bz = ±1500 G and
with hold times of several seconds or field gradients of several hundred G/cm. The
Feshbach coils are optimized for fast ramps so that the field strength can be increased
with a maximal speed of dB/ dt . 1 G/µs. Using an H-bridge circuit we can switch
the current direction in both Feshbach coils or to quench the field off with a maximal
speed of dB/ dt & −2.4 G/µs.

4.1.2 Laser Cooling
As mentioned above, the Li atoms leave the oven with a temperature of T ≈ 630 K,
around 9 orders of magnitude hotter than the temperatures of TF ≈ 500 nK that are
required in order to reach quantum degeneracy. In the first step, we slow down around
Ṅcold = 1010 atoms/s out of the hot beam from the oven with a mean thermal velocity
of vth =

√
8kBT/mπ ≈ 1500 m/s down to vth ≈ 50 m/s using a Zeeman slower. A

detailed description of the slower and all its parameters can be found in Ref. [Sim10].
It is operated by setting up a beam resonant to the D2 line and counter-propagating
to the atoms (see Figure 4.2 B). Whenever an atom absorbs a photon from the beam,
a momentum of ∆p = h/λ is transferred opposite to its direction of propagation.
Since the spontaneous re-emission events of the photons are isotropic, their average
momentum transfer is zero and the overall result is a net force that slows the beam
of atoms down. To compensate for the spatially dependent Doppler shift of the D2
transition frequency a magnetic field gradient is applied that keeps the slowed atoms
in resonance along the Zeeman cooler.

After the Zeeman cooler has decelerated the atoms, they are slow enough to be
captured in a magneto-optical trap (MOT) in the main experiment chamber. The
MOT is based on the same working principle as the Zeeman slower. Three pairs of two
counter propagating beams are arranged orthogonal to each other so that they intersect
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Figure 4.2: Main breadboard of the experiment. The atom beam is created in
the oven (A). It is first cooled by a counter-propagating laser beam (B)
in the Zeeman slower. The horizontal MOT beams (C) are retro reflected
by polarization dependent Moxtek mirrors. The high power lasers that
create the crossed beam optical dipole trap (CBODT) and the SWT are
coupled out at (D) and (E). Two counter propagating flashing beams are
used to illuminate the sample for imaging (F). An optical lattice in a
bow-tie configuration can be used to pin the atoms while we image them
or for lattice physics experiments (G). The Raman laser setup (H) is used
for quasi-instantaneous manipulations of the internal state of the atoms.
Two cameras allow us to take fluorescence and absorption images under
different angles (I,J).

in the centre of the vacuum chamber (see Figures 4.2 and 4.6 C). By red-detuning the
beams from resonance and by applying a current through the MOT coils, the Zeeman
shift and beam polarizations can carefully be adjusted such that whenever an atom is
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Figure 4.3: List of optical components in Figure 4.2.

displaced from the centre, only the opposing beam becomes resonant (see for example
[Dem06]). The result is an effective restoring force that slows down the atoms from the
Zeeman beam further and traps them in the centre of the chamber. In practise we have
to use two laser frequencies (cooler and repumper) in each beam for laser cooling since
the optical transitions of 6Li are not closed at low fields and the hyperfine splitting
between the F = 3/2 and F = 1/2 ground states is much larger than the linewidth
(see section 3.1).

With optimal parameters we can achieve loading rates of around Ṅ & 108 atoms/s
into our MOT and maximal atom numbers of Nmax ≈ 109 atoms [Sim10]. This demon-
strates that laser cooling is both efficient and fast. However, the phase space density we
can achieve in the MOT is limited to D . 10−5 for the reasons given in the following.
Due to the presence of near resonant laser beams, light assisted collisions between pairs
of atoms become possible as soon as the inter-particle distance is on the order of the
wavelength d ≈ λ = 671 nm. These collisions lead to losses and limit the maximal
achievable densities in the trap to around n . 1011 atoms/cm3. The lowest tempera-
tures that can be achieved are limited by the random walk the atoms perform due to
the spontaneous emission of photons. The random walk result in the so-called Doppler
limit for the temperature of TD = ~Γ/2kB = 141 µK. In principle sub-Doppler cooling
methods make it possible to realize much colder samples, close to the recoil temper-
ature of Trecoil = ~2k2/mkB = 6 µK. However, for lithium these techniques are quite
hard to implement and still not effective enough to obtain a degenerate cloud.

4.1.3 Evaporative Cooling
In section 3.3.3 we have already discussed how far-off-resonant laser beams can be used
to create conservative optical potentials. Resonant light scattering is then absent and
neither the photon recoil nor light assisted collisions limit the phase space densities we
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can achieve. Therefore, as the next step after the MOT, we transfer the cloud into a
crossed beam optical dipole trap (CBODT). This trap is created by intersecting two
laser beams with wavelengths of λ = 1064 nm, orthogonal polarizations and light powers
of P = 200 W each under a small angle (see Figure 4.2 D). For these parameters both the
potential depth VCBODT & 1.5 mK and volume are large enough to efficiently transfer
and trap around 106 atoms. During the transfer, we switch off the laser resonant to
the F = 1/2 ground state manifold first so that the atoms start to accumulate in this
hyperfine level. Once we increase the magnetic offset field starting from B = 0, this
leads to a mixture of states |1〉 and |2〉 (see Figure 3.1).

The collisions between the two component mixtures in the CBODT can be controlled
precisely using the broad s-wave Feshbach resonance (see section 3.3.2). This allows
us to implement a very efficient evaporative cooling scheme. To this end, we apply a
magnetic field of B = 795 G, slightly below the Feshbach resonance, so that we obtain
quick re-thermalization rates. Then, the optical potential depth is slowly lowered —
over a time between 1 to 4 seconds depending on the final state — so that the hottest
atoms of the cloud are continuously evaporated from the trap. After the evaporation
is finished, N = 105 atoms per spin state remain in the trap. While we lose a large
fraction of atoms in this process, these atoms remove most of the thermal energy of the
system such that the final temperature is on the order of T . 100 nK. After the single
evaporation ramp in the CBODT, the cloud is therefore already deep in the degenerate
regime with T/TF ≈ 0.1. It is the starting point for all the experiments presented in
this thesis and provides a reservoir from which we can load all the target potentials
that we perform our measurements in.

4.1.4 2D Standing Wave Trap
We are mainly interested in strongly interacting Fermi gases that are confined to 2D
(for a motivation see chapter 2). In chapter 3 we have already discussed how the
dynamical behaviour of the gas can become 2D when the trap level spacing in the third
direction ∆Ez (e.g. for a harmonic potential ∆Ez = ~ωz) is increased. As soon as ∆Ez
dominates over all other energy scales of the many-body system, like its Fermi energy
EF, chemical potential µ or Temperature kBT , all the particles remain in the ground
state in z-direction and a quasi-2D description becomes accurate. This allows us to
study the peculiarities of 2D quantum mechanics in an experiment in a 3D world.

In practise, we reach the 2D limit by transferring the atoms into a highly anisotropic
single layer of a standing wave optical dipole trap (SWT). The SWT is created by
splitting a single Gaussian beam with aspect ratio of 8 : 1 into two and interfering
both arms under an angle of 14° again (see Figure 4.4 a). This setup leads to an
interference pattern with a stack of quasi-2D potentials (pancakes) at the centre of
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a b
z

r

14°

4.4 µm

600 µm

Figure 4.4: Standing wave trap interferometer. The SWT is created by splitting
a single beam with λ = 1064 nm into two and interfering both arms under
14° again (a). The setup is optimized for stability such that the relative
phase between both arms in the atom plane drifts less than ∆φ < λ/8
over one week [Rie15b]. The interference pattern consists of many layers
that are separated along the z-direction by d = 4.4 µm (b). We load our
gas into one of these layers before we perform any of the experiments
discussed in this thesis. Adapted from [Wen13b].

the vacuum chamber (see Figure 4.4 b). The radial size of the pancakes corresponds
to the horizontal beam waist of w0 = 600 µm and they are spaced by approximately
d = 4.4 µm. At a typical light power of 4 W, each layer has a trap depth of around
VSWT ≈ 650 nK and the trap frequencies are given by ωz = 2π × 7 kHz and ωopt

r =
2π×18 Hz respectively. Together with a small harmonic confinement in radial direction
produced by the Feshbach coils of ωmagn

r = 2π × 10 . . . 15 Hz (depending of the exact
value of the offset field B), this leads to a total trap frequency in radial direction of
ωr ≈ 2π × 22 Hz. The total aspect ratio for atoms trapped in the SWT is therefore
given by ωz : ωr & 300 : 1.

4.1.5 Preparing a 2D Fermi Gas
In our experiment, we have developed two alternative preparation sequences for quasi-
2D Fermi gases (see Figure 4.5). The first one, described in this subsection, allows us
to create balanced two component mixtures (typically states |1〉 & |2〉 or |1〉 & |3〉)
of up to 105 atoms. To this end, we transfer the atom cloud from our reservoir in
the CBODT into a single layer of the SWT (see Figure 4.5 a). This procedure relies
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Figure 4.5: Experimental preparation sequence. The figure shows a sketch of
the complete preparation cycle in the experiment both for large samples
(a) and mesoscopic systems (b). Depending on the desired final state we
start from a lower or higher atom number in the MOT (loading times
of 2 s and 4 s respectively). To prepare mesoscopic samples, the evapo-
ration sequence in the CBODT is kept short (≈ 500 ms) and we quickly
transfer the atoms to the MT for much faster thermalization times. The
preparation of large samples of atoms in the SWT requires much longer
evaporation times in the CBODT (indicated by the two seperate blocks)
and is in general slower due to the smaller trap frequencies. The total
sequence time for the preparation of large samples is around 10 s. For
mesoscopic samples we only need less than 3.5 s.

on modifying the CBODT potential and tuning the interactions such that the cloud
becomes as compressed as possible in z-direction before we can load the SWT. The
transfer is described in more detail in Ref. [Rie15b] and results in more than 90 % of
the atoms being trapped in a single layer, while the remaining atoms sit in the adjacent
lattice sites. A final evaporative spilling step in the SWT sets the final particle number
N and ensures that we reach the quasi-2D limit. We achieve temperatures of T ≈ 50 nK
corresponding to T/TF = 0.05 with around N = 40 000 atoms per spin state. The size
of the ground state wavefunction in axial direction is given by the harmonic oscillator
length of lz =

√
~/mωz = 460 nm. This is much smaller than the layer spacing and

therefore tunnelling between different 2D sheets can be neglected completely.
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4.2 Bottom Up Approach
The large cloud of a two component 2D Fermi mixture already offers a very rich phase
diagram to explore experimentally (see chapter 2). Our recent measurements in this
system, some of which will be discussed in chapter 8, have already significantly improved
our understanding of strongly correlated Fermi gases [Rie15a; Boe16; Mur18b; Hol18].
Nevertheless, many open questions remain and a complete theoretical description is
still missing. This is also owed to the fact that with the current state of the art
techniques the experimental control over quantum systems with N � 1000 particles is
limited, especially when the atoms are not confined to a lattice. And while the atoms
are deeply degenerate at T/TF = 0.05 and, depending on the interaction strength, even
forming a condensate, the initial state that we prepare is certainly mixed and difficult to
characterize precisely. In addition, we are limited to observables like densities averaged
over an area much larger than the typical inter-particle spacing only. In this way, we
can only study the gas through indirect measurements like energy spectra or collective
mode excitations. It is not possible to directly access the fundamental ingredient of
collective behaviour of Fermions: their pair correlations.

In order to address all of the challenges listed above, we have decided to take a novel
bottom up approach. Our idea is to start from the smallest possible instance of the
2D gas and slowly work our way up to larger and larger particle numbers, keeping the
system precisely under control at every step along the way. To realize this vision, we
have significantly improved on the capabilities of our experimental apparatus during
the work for this thesis. The upgrade has been designed around three main components
that have already been implemented: a high-resolution objective to both manipulate
and probe the atoms with a resolution below 1 µm (see Figure 4.6), a spatial light
modulator (SLM) with red-detuned light to tailor any desired attractive and even
time dependent potential for the atoms (see Figure 4.8) and a highly sensitive electron
multiplying CCD camera (EM-CCD) with single photon counting capability (see Figure
4.19).

In the following, we discuss how the SLM setup allows us to project arbitrary poten-
tials through the microscope objective onto the 2D plane that is defined by the SWT.
In section 4.4.3, our imaging scheme using the EM-CCD and that enables us to detect
the cloud in free space and with single atom resolution is presented.

4.2.1 High-Resolution Objective
The optical setup around the microscope objective is shown in Figure 4.6. The objective
was custom-designed to meet the requirements of our apparatus [Ser11b]. Chromatic
shifts are compensated such that both our wavelengths of λ = 1064 nm and λ = 671 nm
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Figure 4.6: Optical setups above (a) and below (b) the experimental cham-
ber. The optical components are mounted on a vertical breadboard and
cage systems respectively. Dichroic mirrors and PBS cubes are used to
split the different beam baths for imaging, trapping and cooling light.
The objective (A) is placed close to the upper re-entrant viewport of the
vacuum chamber. A green λ = 532 nm guide beam setup (B) is used to
optimize the alignment and angle of the objective with respect to the vac-
uum chamber. The MOT (C) and an optional absorption imaging beam
(D) are shined in from below the chamber. A second optical potential
(E) allows us to magnify the atom cloud by up to a factor of 50 before
imaging.

have the same focal length of f = 20.3 mm. The large focal length f is required in our
setup due to the large distance of atoms from the vacuum window. The objective was
designed with a high target NA of 0.6. For λ = 671 nm light, we measured an actual
resolution of r = 0.86(1) µm, slightly below the expected value of rtheo = 0.68 µm
[Kle18]. The resolution for λ = 1064 nm is given by rtheo = 1.08 µm. There are
no recent measurements, however we expect that we are close to the optimal value
in the experiment since we are able to correct for all the optical aberrations at this
wavelength with the SLM (see next section). The nominal design values for the field
of view diameter of the objective are as large as d671 ≈ 480 µm and d1064 ≈ 700 µm
[Ser11b].
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Thanks to the chromatic compensation, we are able to utilize the objective both to
project optical potentials onto the atoms as well as to collect resonant fluorescence light
onto a camera for imaging. A dichroic mirror on top of the objective is used to split
the two wavelengths used for those purposes (see Figure 4.6 a). Since the objective fills
the complete re-entrant viewport on top of the vacuum chamber, we had to setup an
additional beam path through the objective that can be used for laser cooling with the
MOT. Imaging and cooling light are separated by a polarizing beam splitter (PBS)
cube. Figure 4.6 b shows the corresponding optical setup below the experimental
chamber. Here, a secondary charge-coupled device (CCD) camera is placed to take
absorption images through a f = 80 mm lens with lower resolution but a much larger
field of view. This is useful for alignment purposes as well as measurements of averaged
quantities in the large 2D cloud prepared in the SWT. Recently, we have added a second
optical trapping potential from the bottom that allows us to magnify the cloud by a
factor of up to 50 before imaging. The matter wave magnification technique will be
discussed in more detail in section 4.4.7.

4.2.2 SLM Setup
In order to achieve our goal to precisely control mesoscopic quantum systems, we need
the ability to tailor arbitrary potentials, beyond what is possible by simply interfer-
ing two or more laser beams. Computer programmed light modulators have found
widespread application in the field of ultracold quantum gases for this purpose. They
allow us to project arbitrary intensity distributions onto the atom cloud through some
optical imaging setup. The resulting effective potential for the atoms is then directly
proportional to the light intensity (V (r) ∝ I(r)), as discussed in the previous chapter
[Gri00]. Most commonly used devices are spatial light modulators (SLMs) or digital
micromirror devices (DMDs), capable of modulating the amplitude or phase of some
incident beam of light on some array of pixels [Ber04; Zup16].
There are two main configurations that can be used for the purpose of optical beam

shaping (see Figure 4.7). The modulating device can be placed either in the Fourier- or
imaging-plane with respect to the atoms [Gau16; Zup16; Bar18]. When placed in the
imaging plane, the modulated amplitude Ã corresponds directly to the amplitude Aatom
of the electric field in the atom plane. This setup is therefore well suited for the creation
of continuous potentials with larger length scales. For smaller sized potentials however,
the light utilization efficiency becomes very small and corrections to the potential that
are on the order of the resolution limit are impossible (see Figure 4.7 b). Since we
are interested in creating precise potentials with high efficiency for the preparation of
mesoscopic Fermi systems, we place our SLM in the Fourier plane instead. Here, the
field distribution in the atom plane is given by the Fourier transformation F [Emod]
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Figure 4.7: Tailored Optical Potentials. Programmable light modulation devices
like SLMs or DMDs can be placed in either the Fourier- (a) or imaging-
plane (b) with respect to the atoms. With the imaging plane-setup it is
very simple to create large scale potentials without small scale structures
close to the resolution limit. For small tailored potential or optical tweezer
arrays, the placement in the Fourier plane is the better option.

of the modulated field (also called hologram), so that we are able to correct optical
aberrations and deformations of the potential on the scale of the resolution limit. In
addition we achieve very high light utilization efficiencies for a single optical tweezer or
tweezer arrays of above 50 %. As one of the next experimental upgrades, we will add
a DMD in the imaging plane in addition to the SLM. It is projecting blue detuned
repulsive potentials, for example steep walls, onto the atoms (see chapter 9) [Hei20].

In our experiment, we use a parallelly aligned liquid crystal SLM that can control
the phase of the incident light field on 600× 792 pixels in steps of approximately 0.01π
from 0 to 2π (X10468-03 from Hamamatsu). Compared to a DMD, the advantages of
the SLM are its higher dynamic range and the much higher theoretical light utilization
efficiencies of up to 80 %. In addition, due to the nature of the liquid crystals used for
the phase modulation, the SLM naturally interpolates between two consecutive images
when a time varying movie of holograms is displayed. The theoretical refresh rate
of the X10468-03 is 120 Hz. The true settling time for the pixels is on the order of
t & 80 ms, however. Therefore, only potentials with slow time variation with respect
to the typical trap frequencies ω � 1 kHz can be displayed. The biggest drawback
of the SLM, especially compared to a DMD, is that the pixels constantly have to be
driven with alternating current (AC) (here with 240 Hz). The oscillation leads to some
intensity noise of the created potentials at all integer multiples of the drive frequency.
We minimize this effect as far as possible by synchronizing the whole experiment to
the refresh cycle of the SLM and by implementing a feed-forward loop using the exact
waveform of the noise signal.

The complete setup for the SLM is shown in Figure 4.8. For the tailored potentials
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Figure 4.8: Sketch of the SLM setup. Up to P = 500 mW of light are coupled
out of the fibre at (A). The light is modulated by the AOD and SLM and
imaged onto the atoms through a 6f -setup. A razor blade (B) removes
the 0th-orders that appear due to the limited efficiency of both light mod-
ulating devices. Some of the light is reflected by a beam sampler (C)
before it enters the objective and is imaged on the atoms.

we currently use up to P = 500 mW of laser power with a damage threshold of the SLM
of around Pmax = 5 W. When this light is focused to a single optical tweezer by our
microscope objective, this leads to trap frequencies exceeding 1 MHz and trap depths
around 1 mK. An acousto-optical deflector (AOD) is imaged onto the SLM to be able
to manipulate the potential even further. The AOD is not as versatile, but allows for
much faster dynamics, with a bandwidth on the order of a few MHz. After the incident
light beam has been modulated by the SLM, it is imaged onto the atoms through a
6f -setup including the objective as last lens (compare Figure 4.6). We use a razor blade
to remove the unwanted 0th-order of the SLM. Around 30 % of the light is reflected
by a beam sampler before entering the objective. The reflected light is focused on two
photodiodes and a camera used for power stabilization and diagnostics respectively.

With the setup completely implemented in our experiment, the remaining challenge
is to find the correct phase modulation pattern to produce the desired intensity dis-
tribution in the plane of our 2D atom trap. There is no exact analytical solution for
this problem, also known as phase retrieval. However, there are many numerical ap-
proximation methods that generate holograms for any target potential [Pas08; Har14].
Here, one of the most important prerequisites for obtaining high-quality traps is that
the optical setup is free of aberrations. One of the crucial features of the SLM is that
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Figure 4.9: Deterministic preparation in 1D. We start from Fermi sea of atoms
trapped in an approximately 1D harmonic oscillator potential (a). Due
to the Fermi-Dirac distribution all low lying energy levels are completely
filled with almost unity probability. By tilting the potential and lowering
the trap depth, we can deterministically remove all the atoms above some
spill level (b). We end up with the desired number of atoms prepared in
the ground state of the potential with high fidelity (c).

it is able to both detect and correct all the aberrations in its optical path with a very
high precision [Bij13]. We make use of the aberration correction to be able to cre-
ate optical tweezers with sizes close to the diffraction resolution limit of our objective
[Bay20b]. This leads to larger ratios of harmonic trap frequencies ω over the trap depth
V0. Large trap frequencies are essential for the deterministic preparation of quantum
ground states in the tweezer potential described in the next section.

4.2.3 Deterministic Preparation
The SLM setup opens up a whole realm of new possible Hamiltonians to explore in our
experiment. Here, with our bottom up approach in mind, we will focus on the creation
of a single highly tunable optical tweezer, also called microtrap (MT). Further possible
applications of the SLM like tweezer arrays for future studies of Hubbard model physics
and itinerant magnetism or ring and box structures will be discussed in chapter 9. The
single MT allows us to refine a method that was initially developed in our group for
the preparation of ground states in a quasi one dimensional (1D) harmonic oscillator
trap with almost unity probability [Ser11a]. We have extended the technique two a 2D
harmonic oscillator, where we are now able to prepare pure quantum states of up to
N = 20 particles.

The preparation scheme is based on the idea that the small MT, when superimposed
with a large reservoir of atoms, can locally enhance the chemical potential µ by a large
amount, while the temperature T of the gas remains the same [Sta98]. This leads to
a small region of enhanced densities deep in the degenerate regime with T/TF ≈ 0.05
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Figure 4.10: Experimental preparation of ground states in a quasi-1D har-
monic oscillator potential. The mean atom number (white solid line)
is shown as a function of the MT depth during the deterministic spilling
process (a). The full counting statistics for each depth setting is shown
as density plot in addition. We find stable plateaus at all even atom
numbers. These correspond to the levels of the 1D harmonic oscilla-
tor, where the stability of the preparation increases significantly and the
variance in prepared atom numbers becomes small (b).

and a filling of many of the energy levels of the MT potential. Thanks to the Fermi-
Dirac statistics the lowest levels of the potential are completely filled with very high
probabilities of P > 99 % in this situation (see Figure 4.9 a) [Ser11b]. By tilting
the potential and lowering its depth in a precisely controlled way, we can reduce the
number of quasi-bound states in the well (b). The lifetime of these states is orders
of magnitudes larger than that of any of the higher levels that become unbound and
quickly leave the trapping region. We end up with a pure ground state where all the
levels up to the desired spilling threshold are completely filled (c). This method works
best for tightly confined mesoscopic samples where the energy level spacing becomes
large. Then, the requirements on the stability of the spilling barrier height in order to
remain exactly between two adjacent energy levels in the spilling process become less
strict.

To implement the spilling sequence in our experiment, we begin by loading around
1500 atoms from the CBODT into the MT with the smallest possible focus created by
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the SLM (see Figure 4.5 b). The transfer takes around 150 ms and is started already
after 500 ms of evaporation time in the CBODT, long before the final temperature
is reached. In the MT we reach trap frequencies of ωz � 2π × 100 kHz and the
corresponding collision and thermalization rates are large enough to complete the full
evaporative cooling stage deep into the quantum degenerate regime with T/TF ≈ 0.05
in only 10 ms. This significantly speeds up the preparation time to around 3 s. With
further improvements of the laser cooling stages, experimental cycle rates of more than
1 Hz are well within reach with our scheme.

We end up with around 300 atoms in the MT as a starting point for the deterministic
preparation scheme described above. The spilling step is initiated by applying a mag-
netic field gradient of dB/ dz = 24 G/cm and lowering the optical power of the tweezer
from Phold = 500 µW to Pspill = 5 . . . 50 µW depending on the target atom number
ground state. The spilling takes tspill = 40 ms before the potential depth is increased
to its hold value again. This results in the best compromise between higher, unbound
levels leaving the trap and unwanted tunnelling out of the quasi-bound states below
the spilling barrier. In Figure 4.10, we plot the mean atom number as a function of
final spill depth Vspill, averaged over 350 cycles of the experiment for each data point.
The procedure to count the exact number of atoms remaining in the trap after spilling
is described in detail in section 4.4.2.

We find stable plateaus at even atom numbers of 2, 4 and 6 atoms. They correspond
to the lowest levels of our quasi-1D harmonic oscillator potential that are filled with two
spin components each. For larger atom numbers, a deterministic preparation of atom
numbers becomes difficult since the aspect ratio of our quasi-1D MT is only ωr/ωz =
3.40(3). The additional excitations in radial direction for E > 3~ωz increase the density
of states and a precise adjustment of the spilling barrier between the energy becomes
more difficult. We achieve ground state preparation fidelities of 97(1) %, 93(2) % and
85(2) % for 2, 4 and 6 atoms respectively. To ensure that the atoms are really in the
ground state and no excitations are created, for example when ramping the trap power
back after the spilling process, we spill the MT to the same level twice in the same
experimental sequence. We find that the second spill does not lead to an additional,
unexpected atom loss for this control measurement (see Figure 4.11 a). For 2 atoms,
we estimate the probability to prepare excited states to be on the order of Pexec ∼ 10−4

[Bay20b].

4.2.4 Von Neumann Entropy
We prepare the final state with a fixed energy and well isolated from the environment.
Therefore, the system is better described in terms of its entropy than by a thermal
state of some temperature T . The von Neumann entropy for a mixed quantum state
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Figure 4.11: Characterizing the performance of the deterministic prepa-
ration technique. By spilling twice in a row, we can check if we
have really prepared the ground state after the first spilling process
(a). We find that the probability to obtain two atoms after the second
spilling process of P twice

N=2 = 93.6(9) % agrees well with the assumption
of the two spilling processes being independent. In this case we expect
P twice
N=2 = 1− (P once

N=1)2 = 94.3(10) %. For larger atom numbers the fidelity
of preparing a ground state with target particle number N reduces sig-
nificantly. This can be explained by the larger density of states of the
system at larger barrier heights. Nevertheless, the standard deviation of
the prepared atom number, indicated by the error band, becomes very
small below an atom number of around N = 100 (b). This indicates
that we are able to prepare very low entropy states in this regime. Panel
(a) adapted from [Kle18].

with density matrix ρ is defined as [Sch06]:

S = −kB tr (ρ ln ρ) = −kB
∑

i

pi ln pi, (4.1)

where pi is the probability to detect the system in its eigenstate i = 1 . . . n. When we
assume that the atoms are prepared almost entirely in their ground state, this allows
us to directly calculate the entropy S from the histogram of final atom numbers at
each setting for the spill depth (see Figure 4.10 a). We obtain an entropy per particle
of S/N = 0.10(2) kB for up to N = 6 particles. For larger prepared atom numbers
it becomes difficult to calculate the von Neumann entropy directly since excitations
in radial direction lead to additional degeneracies of the ground state. However, we
observe that the standard deviation of the prepared atom number remains as low as
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∆N ∼ 5 % for up to N = 100 atoms (see Figure 4.11 b). This indicates that the
entropy per particle does not significantly increase up to those particle numbers. An
entropy per atom of S/N = 0.1 kB is on par with or even better than what has been
achieved in the most recent lattice experiments in the superfluid regime [Bol16; Chi18].

4.2.5 Quasi-2D Microtrap
So far we have discussed the deterministic preparation of ground states in a quasi-1D
harmonic potential with η = ωr/ωz > 1. To perform experiments in quasi-2D we need
to invert this aspect ratio to η � 1. For a single focused beam trap in the harmonic
approximation, valid when the atomic sample is small compared to the beam waist,
the trap frequencies are given by [Gri00]:

ωr =
√

4V0

mw2
0

and ωz =
√

2V0λ2

mπ2w4
0
, (4.2)

where V0 is the potential depth and w0 the beam waist at the focus. The aspect ratio
of the optical tweezer can accordingly be calculated as:

η = ωr/ωz =
√

2πw0

λ
. (4.3)

It follows that the aspect ratio of the MT alone is always larger than one and η � 1
is only possible by superimposing additional potentials. From equation (4.3), we can
calculate the beam waist of the focused MT from the measured aspect ratio as w0 =
0.82(1) µm. This value is very close to the expected minimum of w0 = 0.72 µm given
by the resolution of the objective. The small achieved waist highlights the capabilities
of the SLM in removing optical aberrations once more.

To obtain mesoscopic samples in quasi-2D, independent of the limitations of the MT,
we make use of the standing wave optical dipole trap (SWT) again. As discussed in
section 4.1.4, it produces a harmonic confinement in axial direction of ωz = 2π×7 kHz.
Following equation (4.2), one might think that it is enough to simply reduce the optical
power PMT and trap V0 ∝ PMT of the MT far enough until ωr � 2π× 7 kHz. However,
a problem occurs when the potential becomes so shallow that no more bound trap
levels remain in the MT. This issue can be circumvented by increasing the waist of the
focus w0 instead. At a constant depth of the potential V0 this allows us to reduce the
radial trap frequency as ωr ∝ 1/w0. Consequentially, this leads to an increase in the
number of trapped levels in the potential approximately given by V0/ωr. In practise,
it is often more convenient to keep the total power in the trapping beam PMT constant
instead of the potential depth V0. Then, the central depth of the potential scales as
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Figure 4.12: Different potential configurations for experiments in quasi-2D.
To prepare many-body systems with several tens of thousands of atoms,
we load the atoms in a single layer of the SWT (a). Here, the trap
frequencies are given by ωr ≈ 2π × 20 Hz and ωz = 2π × 7 kHz with
η > 1/300. To create mesoscopic samples of up to hundred atoms, we
superimpose the SWT with the MT from the top. This leads to a much
stronger radial confinement with ωr ≈ 2π × 1 kHz and η = 1/7 (b).

V0 ∝ PMT/w
2
0, the radial trap frequency as ωr ∝

√
P/w2

0 and the number of trapped
levels remains approximately constant.

The SLM allows us to dynamically tune the waist w0 of the MT during the ex-
perimental cycle. To this end, we simply superimpose the hologram that we display
with a circular aperture mask of diameter d that cuts off the waist of the trapping
beam win before entering the objective. This reduces the effective numerical aperture
NAeff = NA ∗ d/dobjective and leads to a final MT waist of:

w0 = 0.85 λ

2NAeff
∝ 1
d
. (4.4)

A more detailed derivation of equation (4.4) can be found in Ref. [Bay20b].
In practise we typically increase the waist of the MT from 1 µm to around 5 µm.

This allows us to reach radial trap frequencies of the MT in the range of ωr = 2π ×
100 . . . 1000 Hz. The axial confinement of the MT scales as ωmt

z ∝
√
P/w3

0 and is
negligible compared to the confinement of the SWT. Likewise the radial confinement
of the SWT of ωswt

r = 2π × 18 Hz is negligible compared to the radial confinement of
the MT. As a result, in the combined potential the atoms are confined radially by
the MT and axially by the SWT and with a total aspect ratio of η < 1/7 (see Figure
4.12). Reducing the radial frequency ωr much further is impractical because it keeps
increasing the density of states. A large level spacing ~ωr is an essential prerequisite
for the deterministic spilling technique into ground states as discussed above. The
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combined potential, also referred to as two dimensional microtrap (2D-MT), contains
several bound states and can be used for the preparation of quasi-2D quantum states
for tens of atoms when EF < 2π × 7 kHz.

4.2.6 Transfer to 2D
To load the atoms in the superimposed 2D-MT potential, we start with 20 . . . 50 atoms
in the MT that are prepared using our deterministic spilling scheme. The first step is
to load this sample into a single layer of the SWT (see Figure 4.13 a). To this end, we
first lower the magnetic offset field from B = 800 G to 700 G to increase the interaction
strength and decrease the width of the atom cloud in z-direction σz. With the spacing
of the SWT layers of 4.4 µm, we are currently able to load up to Nmax = 50 atoms before
atoms are filled into the adjacent layers. This limit could be extended by increasing the
MT power PMT to compress the cloud further or by replacing the SWT by an accordion
lattice.

The SWT is ramped up from PSWT = 0 W to its full power of 4 W in 20 ms while the
MT power is kept constant. To ensure that the centre of the mesoscopic atom cloud
overlaps exactly with the centre of one SWT layer, we utilize the capabilities of our
SLM again. It allows us to shift the focal position of the MT in x,y and z direction with
a step size on the order of a few nanometres. To find the optimal position, we reduce
the depth of the 2D-MT far enough that only three bound levels, corresponding to 6
atoms, remain in a single layer. By tuning the focal shift ∆zMT and recording the final
atom number, we optimize the overlap to reliably load a single layer (see Figure 4.13
b). By placing the MT exactly in between two layers, we can deterministically prepare
two exact copies of the system in two adjacent layers. This capability might become
very interesting for future interference or tunnelling experiments between independently
prepared mesoscopic systems.

Once the atoms are loaded into a single layer of the SWT and a strong axial con-
finement is present, the final step is to increase the waist w0 of the MT from 1 µm to
5 µm. This leads to a combined quasi-2D potential with an aspect ratio of η = 1/7 as
discussed in the previous section. The waist is increased by adding an aperture phase
pattern to the SLM in a single frame update. The slow response time of 80 ms of the
liquid crystals naturally smoothens the ramp of the MT waist. During the dimensional
crossover several energy levels of the initial quasi-1D potential cross. This creates holes
in the final atom distribution whenever an unoccupied level crosses an occupied one.
Experimentally, we have found that strong interactions (a = −20 000 a0) lead to strong
coupling between different levels and avoided crossings with large gaps emerge. This
allows us to stay adiabatic and remain in the ground state during the transfer from
a 1D to a 2D geometry. When the transfer is carried out for a non-interacting gas
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Figure 4.13: Transfer into the SWT. A sketch of the transfer sequence adapted
from [Bay20b] is shown in (a). We start by preparing 20 to 50 atoms
close to the ground state in the MT. The cloud is transferred into the
superimposed quasi-2D potential by ramping up the SWT and increasing
the MT waist. A second spilling step in 2D is used to prepare pure
ground states with high fidelity. We make sure to reliably load a single
layer of the SWT by precisely adjusting the focal shift in z direction of the
MT ∆zMT using the SLM (b). When we spill to 3 levels corresponding
to 6 trapped atoms in the 2D-MT, the recorded atom number increases
whenever a second layer is loaded. The atom numbers are averaged over
500 experimental cycles for each data point (red line). As expected, the
SWT layers are periodic and separated by approximately 4 µm. In the
background, we show traces recorded for 20 minutes each for a duration
of 12 hours in sequential order from light grey to black. We find that
after a short warm-up time when we start the experiment, the relative
position of the MT with respect to SWT layers remains very stable.

instead, a lot of excitations are created as expected.

4.2.7 Deterministic Preparation in 2D
The preparation of ground states in the 2D-MT is conceptually the same as for the
quasi-1D trap (see Figure 4.13 a). A gradient of Bz = 70 G/cm is applied and the
potential depth, proportional to PMT, is lowered until only the desired number of bound
states remains in the trap. We hold the trap at the spill level Pspill for 80 ms before
ramping up the power again to ensure that all higher lying unbound atoms have left

79



4 Experimental Techniques
At

om
nu

m
be

r, 
N

0

2

6

12

20

0.1 0.15 0.2 0.25 0.550.50.450.40.350.3
2D Microtrap Depth, Vspill [a.u.]

2 4 6 80
Variance, ΔN

0

0.5

1

D
et

ec
tio

n 
Pr

ob
ab

ilit
y

a b

Figure 4.14: Experimental preparation of ground states in a quasi-2D har-
monic oscillator potential. The mean atom number (black solid line)
is shown as a function of the 2D-MT depth during the deterministic
spilling process (a). The full counting statistics for each depth setting
is shown as density plot in addition. We find stable plateaus at cer-
tain levels of 2, 6, 12 and 20 atoms. These numbers correspond to the
closed shell configurations of a 2D harmonic oscillator (compare Figure
4.15), where the stability of the preparation increases significantly and
the variance in prepared atom numbers becomes small (b).

the trapping region. A measurement of the final atom number as a function of the spill
level is shown in Figure 4.14. The result can directly be compared to the deterministic
spilling sequence in the quasi-1D MT (see Figure 4.10).

The measurements reveal stable plateaus at numbers of 2, 6, 12 and 20 atoms. These
correspond exactly to the closed shell ground state configurations of a 2D harmonic
oscillator potential (see section 2.1.2). Our deterministic spilling scheme allows us to
reach these ground states deterministically and with high fidelities (see Figure 4.15).
We are currently limited to n = 4 filled shells or N = n(n+ 1) = 20 atoms for a deter-
ministic preparation in the experiment. For larger atom numbers the anharmonicity
of the potential leads to smaller spacing between the levels, making the adjustment of
the spilling barrier more difficult. In addition the initial atom number of N = 50 in
the 2D-MT is too small to fill higher lying shells n > 4 reliably after the dimensional
crossover. Nevertheless, our method allows us to prepare very cold samples with en-
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Figure 4.15: Closed shell configurations of the 2D harmonic oscillator. Our
spilling scheme allows us to prepare the ground state configuration for
two spin components and with up to 20 atoms with very high fidelity (a-
d). While the preparation fidelity is significantly lower for larger atom
numbers, it only indicates the probability to obtain the pure ground
state. Even when some holes are present, for example for N = 20 atoms,
the system remains very cold. The entropy per particle is comparable
to the quasi-1D spilling scheme with S/N = 0.1 kB. The size of the total
Hilbert spaces for each particle number and including two shells above
the ground state are given as a comparison.

tropies per particle on the order of S/N = 0.1 kB and up to N = 50 atoms in quasi-2D,
even if they are not in the exact ground state.

For all our measurements, the experimental preparation stages after the MOT are
typically carried out in the high-field regime B = 650 . . . 1000 G and with strongly
attractive interactions a � −2000 a0. The only exception are measurements in com-
pletely non-interacting samples. These have to be prepared in the repulsive low-field
regime B < 650 G because a preparation at high-fields and consecutive ramp to low
fields would produce tightly bound molecules instead (see Figure 3.5). The low-field
preparation fidelities for 6 and 12 atoms are 57(1) % and 42(2) % respectively. They are
reduced compared to a preparation in the high-field regime since we only have access
to lower scattering rates here |a| < 900 a0. The smaller attraction strength leads to a
less efficient evaporation and reduced gaps of the avoided level crossings.
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Recently, we have developed an experimental technique that allows us to switch from
a |1〉 |2〉mixture at low-fields to a |1〉 |3〉mixture in the high-field regime while remaining
in the motional ground state. So we can not only prepare non-interacting samples with
higher fidelities than before but even the preparation of imbalanced ground states
with strong interactions becomes possible. A further discussion of imbalanced samples,
opening up a whole new field of physics to explore (FFLO, polarons), is found in chapter
9. General methods to manipulate the internal state of the atoms and switch between
different hyperfine mixtures are discussed in the next section.

4.3 Internal State Manipulation
There are three important applications that require access to the internal degree of
freedom of the atoms. First, by transferring only a fraction of the atoms from one
hyperfine state to another, we can access the mixing ratio of our components. This is
required in the first place to achieve a balanced mixture after the transfer of the atoms
from the MOT but can also be used to create imbalanced samples at a later stage in
the cycle. A small imbalance was one of the essential ingredients to the success of the
measurement described in chapter 8. Even mixtures of three or more components are
possible although their regime of collisional stability is strongly constrained [Ott08].

A full transfer of one of the hyperfine components modifies the collisional properties
of the gas. Due to the distinct positions of the Feshbach resonances of different low-
field seeking mixtures this allows us to quench the interactions between a strongly
and weakly interacting regime (see Figure 3.7). Spin flips to high-field seeking states
(see Figure 3.1), for example from |1〉 |3〉 to |1〉 |4〉 are even more valuable. They
instantaneously project the sample onto a non-interacting state (see section 3.3.2). We
typically prepare |1〉 |3〉 mixtures in the experiment since they require smaller magnetic
fields and provide access to larger scattering lengths in the low-field regime.

Finally, by resolving the energy that is required for flipping from one hyperfine mix-
ture to another it is possible to perform spectroscopic measurements on the initial or
final state. This gives access to many central quantities of the many-body state like
interaction energy shifts or pairing gaps and has become one of the central tools in cold
atoms experiments [Che09].

4.3.1 RF and MW Pulses
The most direct way to drive transitions between different hyperfine levels is to apply
AC-magnetic fields. The required frequencies are in the RF regime (75 . . . 85 MHz)
for transitions between the low-field seeking states |1〉 − |3〉 and in the MW regime
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(1 . . . 2 GHz) to access the high field seeking states |4〉 − |6〉 (compare Figure 3.1).
Since generating high power signals for both frequency ranges in a single circuit turned
out to be difficult, we have implemented two separate antennas in our experiment. One
is located in the vacuum chamber and connected to a high power MW amplifier with up
to 15 W (see Figure 4.2). And one is located at the lower re-entrant window, connected
to a 100 W RF amplifier (see Figure 4.6).
When applying an RF field with a constant power PRF = 15 W and at the resonance

frequency for atoms at B = 750 G, we observe Rabi oscillations with a frequency of:

Ω|1〉→|2〉 = 2π × 960(90) Hz and Ω|2〉→|3〉 = 2π × 2074(300) Hz. (4.5)

This allows us to drive transitions between states in the low-field seeking manifold
on timescales below 1 ms for π pulses. The MW transitions to the high field seeking
manifold are much faster. They correspond to a flip of the electronic instead of the
nuclear spin state and couple much stronger to the AC field. With the full amplifier
power of PMW = 15 W and at B = 750 G, we achieve:

Ω|3〉→|4〉 = 2π × 109(5) kHz. (4.6)

4.3.2 Landau-Zener Sweeps
While π-pulses are the fastest method to transfer one hyperfine state into a different one,
they are quite sensitive to noise and drifts in the power of the drive and the magnetic
offset field. Landau-Zener sweeps, on the other hand, are intrinsically robust against
such effects and enable us to achieve very high transfer probabilities of Ptrans & 99 %
(see Figure 4.16). For this reason we utilize them almost exclusively when switching
between spin components in the experiment. While keeping the rate on un-flipped
atoms negligible, we achieve transfer times of t|1〉→|2〉 = 4 ms and t|2〉→|3〉 = 2.5 ms
respectively.

The microwave allows us to use much faster seep rates and we achieve up to t|3〉→|4〉 =
25 µs. However, we are limited to a field of B = 750 G. Our steel vacuum chamber acts
as a cavity for the MW field and stops us from generating significant field amplitudes at
other frequencies (see Figure 4.16 b). Therefore, we have implemented an alternative
scheme to drive fast transitions between low- and high-field seeking states.

4.3.3 Raman Transitions
We have implemented two co-propagating laser beams in the experiment that are fo-
cused on the 2D-MT (see Figure 4.2 H) to drive Raman transitions between any of the
hyperfine spin states (see Figure 4.16 c). The advantage of optical fields is that they
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Figure 4.16: Internal state manipulation. Landau-Zener sweeps allow us to trans-
fer between two hyperfine spin components, here indicated by |g〉 and
|e〉 with a very high fidelity (a). To this end the AC field is sweeped
across the resonance ω0 from a detuning −∆LZ to +∆LZ and with the
speed ΓLZ. The transition probability Ptrans for a MW sweep from |3〉
to |4〉 at fixed speed ΓLZ depends strongly on the resonance frequency
ωLZ of the transition (b). Only at 1951 MHz, corresponding to 750 G,
the achievable transitions speeds meet our experimental requirements.
With a Raman transfer, driven by two co-propagating laser beams, we
can quasi-instantaneously switch between hyperfine levels at any mag-
netic field (c). Here, the detuning ∆ from the auxiliary state |a〉 is chosen
large enough that it can only be virtually populated.

are independent of any resonance of the vacuum chamber and work at any magnetic
offset field B. In addition, much larger field strengths and thereby transitions rates can
be achieved. By aligning the lasers such that they are co-propagating we ensure that
the momentum transfer onto the atoms during the Raman transfer is negligible.

We control the frequency difference δ between both Raman lasers using an optical
phase-locked loop (PLL). With an optical power of Praman = 0.5 mW per beam and
a detuning ∆ = 5 GHz below the D2-line (i.e. exactly between D1 and D2 lines), we
measure a Rabi rate at B = 750 G of:

Ω|3〉→|4〉 = 2π × 1.55(5) MHz. (4.7)

Thus we can project into a non-interacting |1〉 |4〉 mixture in tπ = 330 ns. Since the
projection is much faster than any other time scale of the system and with collision
rates ν ≤ 50 kHz it can be considered as instantaneous.
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4.4 Imaging Schemes
Powerful detection techniques are equally important as the preparation of the initial
state for successful quantum simulations. For ultracold quantum gases, there has been
a persistent effort to develop more and more precise imaging schemes from the very
beginning [Ott16; Gro21]. In this section, we present the most important methods
applied in our experiment. While non-destructive imaging is possible (see for example
[Pat14; Gaj16b; Kro20]), we generally only utilize methods that destroy the quantum
state during the readout process. After each measurement the sample is discarded and
the experimental cycle is repeated from the beginning [Sta12].

4.4.1 Absorption Imaging
Absorption imaging is performed by sending a resonant, collimated probe beam through
the atom cloud and imaging the beam directly onto a camera. From the shadow of
the cloud on the camera and by comparing it to a second reference image without any
atoms, it is possible to calculate the integrated column density of the cloud ñ(x′, y′)
[Rei07]. In our experiment, we drive the σ− transition of the D2 line. We work in the
high intensity regime I & Isat in order to reduce shot noise and atom diffusion during
imaging. This requires a precise calibration of the imaging parameters to obtain the
correct absolute values for the density ñ(x′, y′). For our experiment, this calibration is
explained in great detail in Ref. [Nei17].

We have implemented several beam paths to take absorption images in our experi-
ment. Most important is an absorption beam in vertical- or z-direction from the top
down (see Figure 4.6) for taking images in the plane of the quasi-2D confinement with
a large region of interest of approximately 3 mm. Here, the integrated column den-
sity corresponds to the full 2D density of the quasi-2D system and only the trivial
dependence along the z-axis is integrated out n2D(x, y) ≡ ñ(x, y). Further absorption
beam paths in vertical and horizontal direction are used for alignment and diagnostic
purposes only (see Figure 4.2 I, J and 4.6 D).

The Zeeman energy splitting in the high field regime of ∆E ≈ 80 MHz between states
|1〉 to |3〉 is much larger than the linewidth of the imaging transition Γ = 6 MHz. So
we can take spin selective images of the density n↓ or n↑ only. It is even possible to
take both images in a single experimental cycle in quick succession in order to extract
spin resolved density correlations [Nei17].

While absorption imaging is an adequate tool for studying large many-body samples
in the SWT, its applications are limited. Due to photon shot noise it is difficult to
achieve single atom detection with high fidelity [Mue13]. Detecting each particle with
a large probability becomes particularly important when we study mesoscopic systems
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of only N ≤ 20 particles. Here, each atom already represents a significant fraction of
the whole system and high fidelity pair correlation measurements are only possible if
no atoms are lost. To this end, we have developed two alternative detection schemes
for studying mesoscopic systems.

4.4.2 MOT Imaging
For spectroscopic measurements, some of which will be presented later in this thesis,
it is enough to simply count the number of atoms remaining in the trap. Likewise,
for the preparation of pure ground states, an accurate count of the particle number
is already enough to reveal many of the intrinsic properties of the system (compare
Figures 4.10 and 4.14). The centre of the MOT in our experiments overlaps with all
other potentials used for measurements. In addition, the trap relies only on passive
optical components without any moving parts (see Figure 4.2 and 4.6). As a result, we
can quickly switch the MOT back on at the end of the experimental cycle to recapture
all the leftover atoms. A lower bound for the recapture rate in our experiment is
99.1(1) %. We estimate that a complete recapture is even possible with optimized
settings after imaging the cloud with resonant light, for example to take an absorption
image.

The fluorescence signal the atoms produce in the MOT allows us to deduce their
precise number after a sufficient integration time. We collect the signal on a camera
(Grasshopper3 GS3-U3-15S5M) with a quantum efficiency of 60 % and a NA of 0.15 that
is placed off-axis with respect to all the MOT beams (see Figure 4.2 I). The parameters
of the MOT are chosen such that the cloud becomes as small as possible without
inducing losses from the trap. Currently, we use a gradient of dB/ dz = 250 G/cm
and a detuning of δ ≈ 1.5 Γ. We have identified an integration time of tmot = 1 s as
optimal value for our experiment. We obtain a single fluorescence signal count Ii for
each experimental cycle i by subtracting a background image and summing over all
camera pixels that contain a significant signal.

In Figure 4.17 a typical time series of the florescence count over 2000 experimental
cycles and with an initial state of varying atom number is shown. Clear steps in
the signal, corresponding to different atom numbers are visible. For each atom we
estimate that we collect around 10 000 photons on the camera, corresponding to a
total scattering rate of γ = 3.1× 106 photons/s. To translate the fluorescence signal
Ii into exact atom numbers Ni, we compensate for long-term drifts of the signal by
fitting the function Ii = ∆ ∗Ni +I0 to the data in a window of cycles [i− 100, i+ 100]
(see 4.17 a, dashed lines). Here, the offset I0 and fluorescence signal per atom ∆ are
fit parameters and measurements that lie outside of certain confidence intervals (grey
bands) are discarded (blue points). The intervals are chosen such that the ratio of
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Figure 4.17: Counting atoms in the MOT. By recapturing the cloud in the MOT
after the experimental sequence and integrating over the fluorescence
signal, we can precisely determine the atom number N . We observe
distinct steps, corresponding to the different atom numbers (a). Atoms
that are outside certain confidence intervals (grey bands) are discarded
(blue points). The different peaks corresponding to each atom number
N are well separated (b). By approximating the signals by Gaussian
functions, we estimate that our counting fidelity for N = 6 is around
P & 99.9 % and for N = 12 around P & 98 %, after discarding only
around 1 % of the data. The insets show the actual fluorescence signal
on the camera for different atom numbers.

discarded runs is negligible while retaining a very high counting fidelity (see Figure
4.17 b). The biggest limitations of the current setup are drifts in the frequency and
power of the cooling laser and background light on the camera. By improving these in
the future, single atom counting resolution with cloud sizes of up to several hundred
atoms is possible [Hum13].

While counting in the MOT is very precise, all the information about the spin state,
momentum and position of the atoms are lost. The MOT both traps and cycles between
all different hyperfine states |1〉 to |6〉 of the ground state manifold. It is possible to
extend the capabilities of the technique slightly by removing all the atoms in some spin
or motional state prior to recapturing them. However, in this way it is not possible
to obtain correlations between different atoms in a single experimental cycle. Fur-
thermore, the method is limited to a very small number of degrees of freedom simply
by the amount of required measurement time. For the studies of unknown quantum
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many-body systems much more efficient imaging techniques, that extract much more
information in a single experimental cycle, are required.

4.4.3 Fluorescence Imaging
Our fluorescence imaging technique enables us to detect single atoms in free space
and without any cooling or trapping scheme required [Büc09]. It relies on detecting
spontaneously emitted photons while exciting the atom cloud with resonant laser beams
during a short pulse [Ber18]. Both the position of each atom in the imaging plane and
their spin can be determined in this way. We achieve single atom detection fidelities
of around 99 %, comparable to those achieved in quantum gas microscope experiments
[Gro21]. At the same time, the required exposure time is as small as Timg = 15 µs
compared to the several seconds required for resolving single particles in an optical
lattice. More details on the method can be found in Refs. [And17; Kli17] where
the scheme has been first developed for a very similar experimental apparatus. Here,
we focus on the details and modifications that are important for the measurements
presented later in the thesis.

The imaging sequence is initiated by shining in two counter-propagating laser beams
resonant to the σ− transition of the D2-line and that are focused on the atom cloud (see
Figure 4.2 F). Both lasers are switched on for a total exposure time of Timg = 15 µs and
switched on and off alternatingly with a pulse duration of 200 ns each (see Figure 4.18
a). This ensures that no interference effects occur and that the atoms scatter equally
many photons from both beams independent of their precise light power. We work at
approximately I/Isat = 8 with scattering rates of 16 photons/s, close to the possible
maximum. Due to the very short exposure time, no potentials or cooling are required
for imaging and the amount of atom diffusion due to scattering of resonant light stays
small enough. The remaining challenge is to clearly identify and localize particles with
only around 240 fluorescence photons per atom.

4.4.4 Single Atom Detection
The first step to detect a single atom with very short exposure times is to collect
as many photons as possible on a camera. To this end we use the same microscope
objective that is also projecting the MT onto the atoms. The fluorescence beam path
is divided from the trapping and cooling lasers through a dichroic mirror and PBS-
cube respectively (see Figure 4.6). A mirror diverts it onto a second breadboard where
everything is focused on an electron multiplying CCD camera (EM-CCD) (see Figure
4.19). Taking the NA, the dipole radiation pattern of the atoms and the losses at each
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Figure 4.18: Single atom resolved fluorescence imaging. To image the atoms,
two counter-propagating pulsed lasers resonant to the σ− transition are
focused on the atoms (a). Approximately 8 % of the total number of scat-
tered photons are collected through a microscope objective and focused
onto an EM-CCD camera. The complete imaging time of Timg = 15 µs
is short enough to limit the atom diffusion and no trapping or cooling is
required. The raw camera images are analysed by first binarizing them
(a). The first two images show typical background images with an open
camera shutter. For the other images a single atom is located in the
centre. To identify atoms, we use a low-pass filter together with a peak
detection (c). In (d) a histogram of all the detected peak amplitudes in
2000 images with 320× 320 pixels and 6 atoms in each image is shown.
The histogram allows us to clearly identify two separate peaks, corre-
sponding to single atoms and background noise. The solid red and blue
lines represent a Gaussian and exponential fit to the data respectively.
Panel (a) recreated from [Ber18].

optical component into account, we collect an average of around 10 % or 24 photons
per atom on the camera chip.

The EM-CCD camera (Nüvü HNü 512) is especially designed for ultra low light
environments and has the capability to detect single photons with a very high proba-
bility. Its quantum efficiency at λ = 671 nm is specified at q = 95 %. To distinguish
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Figure 4.19: Camera Breadboard. The camera breadboard contains two different
beam paths for imaging. In the primary mode of operation, fluorescent
light collected by the objective is focused with a f = 150 mm doublet
onto the EM-CCD camera. This leads to an optical magnification of
m = 7.4 or m = 2.16 µm/pixel of the atom plane on the camera chip.
Alternatively, a flip mirror can be used to shine in a resonant beam from
the top down through the objective. This beam is used for absorption
imaging with a large field of view on the secondary camera below the
vacuum chamber (compare figure 4.6).

the single photoelectrons from the noise background of the readout electronics, an
electron multiplication register is used (for more details see Ref. [Jan16]). Here, a
high voltage is applied to generate a large amount of secondary electrons from each
photoelectron on the CCD chip. Our camera reaches a maximum ratio of gain to
readout noise of g/σread = 27. By choosing the detection threshold five standard de-
viations over the readout noise, this results in a single photoelectron detection fidelity
of P = exp(−5σread/g) ≈ 82 % per pixel. Combined with the quantum efficiency q
and optical setup we therefore expect to collect around 7.8 % of the total amount of
scattered photons as signal on the camera. This amounts to 1.25 photons/µs or a total
of 19 photons per atom and agrees perfectly with the rate we find in the experiment of
1.24(8) photons/µs.

The main source of noise of EM-CCD cameras, when operated in the high gain mode,
are so-called clock-induced charges (CICs). These form on the CCD chip during the
shifting and readout process and cannot be distinguished from real photoelectrons (see
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Figure 4.18 b). One essential ingredient for our high fidelity detection scheme is a
low number of CICs. In our case, the probability for exciting a CIC on a single pixel
during readout is 0.15 %. Unwanted background light leads to an additional amount
of approximately 0.1 % bright pixel on the chip. The total amount of noise is therefore
almost by a factor of ten lower than what can be achieved with EM-CCD cameras of
competing manufacturers. This is why we can detect single atoms in a region of interest
of 320× 320 pixels with fidelities of 97.8(9) % (see Figure 4.18 d). When compared to
the detection fidelity of 99.4(3) % reported in [Ber18] with an area of 21 × 21 pixels,
we find that the sensitivity of the imaging technique has improved by more than two
orders of magnitude.

The exponential amplification leads to a very non-linear electron signal that makes
it difficult to distinguish between different numbers of photoelectrons on a single pixel.
Therefore, the best detection efficiency is achieved when spreading the point spread
function (PSF) of a single atom over the chip such that no pixel is hit by multiple
photons on average. In the experiment, we have chosen a magnification of m = 7.4
such that each pixel of the EM-CCD camera corresponds to 2.16 µm in the atom plane.
The raw images are analysed by binarizing them first (see Figure 4.18 b). Events with
a count above the chosen threshold of 5σread are counted as photons and set to one,
all other pixels are set to zero. In the next step, a Gaussian low pass filter with an
optimized width of the kernel of σ = 5 pixels is applied to each image together with a
simple peak detection algorithm (see Figure 4.18 c).

In Figure 4.18 d, a histogram of all the peak amplitudes in 2000 images of 320× 320
pixels is shown. We find a clear bimodal distribution with an exponential noise peak at
low amplitudes and a Gaussian peak corresponding to single atoms. A fit allows us to
determine the optimal setting for the threshold of atom identification. The detection
fidelity indicates the probability to detect a single atom in the imaging plane. The rate
of false positives depends on the number of real atoms in each image. The probability
of falsely identifying background noise as an atom is around 5.0(5) % per image. In the
example shown, there are six real atoms present in each image. This leads to a total
rate of false to true detections of 0.83(10) %.

4.4.5 Spin and Spatial Resolution
While being imaged, the atoms perform a random walk caused by the recoil of scattered
photons. This leads to a broadened PSF compared to what could be achieved by the
optical setup alone (see Figure 4.20). Nevertheless, the size of a single atom imaged in
free space with σpsf = 3.96(5) µm is much smaller than the available region of interest of
our imaging setup. The effective resolution can be estimated using the full width at half
maximum of the PSF as 2

√
2ln 2σpsf = 9.3(1) µm. With our current setup, this enables
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Figure 4.20: Point spread function of a single atom. We plot the average over
600 binary images, where an atom was located in the centre of the image
(a). The data was taken for un-trapped atoms in free space. The inset
shows the PSF of a single atom confined to a deep optical tweezer during
imaging. The sum of the image along the x (y) axis is shown in b
(c). The average width of the PSF of a single atom is given by σpsf =
3.96(5) µm. We find a slight anisotropy, with a smaller distribution along
the direction of the flashing beams. This can be explained by a reduced
momentum transfer in this direction through stimulated emission events.

us to detect on the order of a few hundred particles in parallel on a single camera
image provided that they are far enough apart. It is possible to take advantage of the
complete optical resolution limit of the setup by pinning the atoms during the imaging
pulse with a tight confinement. With a tweezer of depth V0 = 40 MHz, for example,
the atom diffusion becomes negligible and much smaller than the optical resolution
limit σdiff � 1 µm (see Figure 4.20 inset). In our experiment, we have implemented a
pinning lattice in a bow-tie configuration to reduce the atom diffusion during imaging
(see Figure 4.2 G). With the power that is currently available for this lattice of around
Ppin ≈ 4 W we reach a depth of V0 ≈ 4 MHz = 138Erecoil. This is not enough to reduce
the width of the PSF by more than a few percent. In the future, we estimate that more
focused lattice beams with higher beam power of P ≈ 20 W could significantly reduce
the PSF of the atoms. For other species than 6Li with higher atomic masses or larger
linewidths, the PSF is expected to be even smaller than what we report here.

To resolve the hyperfine spin of our atoms we take the same approach as for ab-
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sorption imaging. Multiple images are taken in quick succession and for each image
the laser is resonant to a single hyperfine component |1〉-|3〉 only. The minimal dead
time between two images of a height of Ny pixels with the Nüvü camera is given by
∆t = (0.5 × Ny + 2) µs. This leads to a time of ∆t = 162 µs for our typical image
size, short enough that atoms on the second image have not moved significantly with
respect to those on the first image.

4.4.6 Momentum Space Imaging
As we have discussed in the previous section, we are able to prepare ground states of up
to N = 20 atoms in the 2D-MT with a waist of around w0 = 5 µm. Clearly, this state
is too small to resolve single atoms directly with our fluorescent imaging technique.
Instead we use a ballistic time of flight (TOF) expansion to spread the atoms before
imaging. In free space, this maps the in-situ momenta pi of the atoms onto their
position after the expansion pi → x′i and becomes exact and independent of the initial
positions xi only for tTOF → ∞. We make use of a slightly more advanced technique
also referred to as matter-wave focusing [Tun10; Mur14]. Here, the expansion takes
place in a harmonic confinement of frequency ωTOF instead. In this case, the mapping
to momentum space already becomes exact at an expansion time of a quarter trap
period tTOF = T/4. This is is equivalent to an optical lens projecting the far field onto
the focal plane at a finite distance.

We utilize different expansion schemes for mesoscopic systems in the 2D-MT and
large clouds in the SWT. The ballistic expansion of mesoscopic samples is initiated
by using the Raman lasers to instantaneously turn off all collisions (see section 4.3).
At the same time, the MT is switched off such that the atoms expand radially in
the remaining harmonic confinement of the SWT (see Figure 4.21 a,b). The axial
confinement provided by the SWT is left unchanged such that the expansion occurs in
the 2D plane and the atoms remain in the focus of the objective. After tTOF ≈ 11 ms
the momentum of the atoms has been mapped onto their position and the many-body
wavefunction has increased its size by a magnification factor of approximately fifty.
With typical inter-particle spacings of around d & 50 µm we can now take successive
images of all the atoms in each spin component (see Figure 4.21 c). Due to their
fermionic nature, events where two atoms of the same spin component come closer
than our combined imaging PSF are very rare (see chapter 5). This intrinsic spreading
of particles in space makes our method especially suited for fermionic samples, where
measurements with hundreds of atoms are well within reach in the near future.

Larger samples with several tens of thousands of atoms in the SWT can be imaged
with either absorption or fluorescence imaging directly to obtain the locally averaged in
situ density distribution. Nevertheless, it is useful to access the momentum distribution
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Figure 4.21: Momentum space imaging. By a TOF expansion the in situ mo-
mentum of the atoms can be projected onto their position and detected
sequentially. For mesoscopic samples in the 2D-MT, we switch off the
radial confinement and let the gas expand in the SWT layer (a,b). The
Raman lasers are used at the beginning of the expansion to switch off
all interactions. We extract the full spin and single particle resolved
momentum distribution by taking one fluorescence image for each spin
component in the gas (c). Large samples are mapped onto momentum
space through a similar technique by switching off the SWT and pro-
jecting the gas onto molecules. The momentum distribution of molecules
clearly reveals a condensate that is not visible in the in-situ density dis-
tribution (d). Panels (a,b) taken from [Hol21a].

as a second observable to gain better understanding of the many-body state under
study. In this case, we start the expansion by switching of the SWT and ramping
down the magnetic field in around 150 µs [Mur14]. This leads to a quick expansion
of the gas in axial direction, reducing its density significantly. At the same time, the
field ramp leads to a projection of the particles onto deeply bound molecules with
weak interactions. Both effects together ensure that collisions during the expansion
are negligible. After tTOF = 21 ms of flight time in the remaining radial confinement
provided by the magnetic field coils we can extract the momentum distribution of the
molecules (see Figure 4.21 d).

4.4.7 In Situ Imaging
With the bottom up approach it is essential to gain as much understanding as possible
about the mesoscopic gases before scaling up the system size. Even for only a few
particles access to in situ correlations in addition to momentum space can significantly
enhance the amount of information that can be extracted [Ber19]. Therefore, it is
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desirable to improve the effective resolution of our imaging scheme to study in-situ
correlations on length scales of ∼ 100 nm far below the inter-particle distance in the
2D-MT. A large magnification of the in situ wavefunction is possible with the technique
discussed in Ref. [Ast21]. The idea is to use a second T/4 expansion after the first TOF
to map the gas back from momentum space and to the in-situ density again. The final
in-situ wavefunction is then magnified by the ratio of the trap frequencies during both
expansions m = ωTOF,1/ωTOF,2.

In our experiment, we have implemented a second tweezer that is focused onto the
atoms from the bottom (see Figure 4.6 E). It has a waist of w0 ≈ 30 µm and can be
used for a first T/4 expansion with a trap frequency of ωTOF,1 ' 1000 Hz in the future.
After a second expansion in the SWT with ωr = 22 Hz this leads to a magnification of
a factor of approximately 50 of the in situ wavefunction. We estimate that this scheme
is going to allow us to extract single particle and spin resolved in situ correlations with
an effective resolution on the order of 100 nm.

4.5 Characterizing the 2D gas

Having discussed the available preparation and detection schemes in detail, in this
last section we summarize some of the important experimental sequences that are
used to determine different parameters of the gas. In this thesis we exclusively study
2D two component Fermi gases in harmonic confinements. These bulk systems are
characterized by a total of four energy scales that fully determine the behaviour of
the gas and that have to be determined to map out the phase diagram (see section
2.1.5). These are the harmonic oscillator energy EHO, the thermal energy ET, the
Fermi energy EF and the binding energy EB (for the special role of the binding energy
in 2D see section 3.2.8). Generally, all other parameters (like temperature T , density
n2D, scattering length a, ...) can be derived from or related to one of these scales.
Depending on the initial state, some of the four energy scales might be negligible

for the description of the gas. When we prepare pure quantum ground states with
high fidelity, thermal excitations can be neglected, for example. Additionally, due to
the small particle number, Fermi and harmonic oscillator energy are essentially on the
same scale EF ∼ EHO. For large samples prepared in the SWT, the harmonic level
spacing EHO is much smaller than the other three energy scales and can be neglected
when mapping out the phase diagram (see Figure 2.6).
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Figure 4.22: Trap frequency determination in the MT. In mesoscopic samples
we prepare the atoms in a non-interacting ground state (here: N = 2),
modulate the system at some frequency ωex and spill to the ground
state again. The trap frequencies can be identified through particle loss
resonances by counting the remaining atoms with the MOT imaging
scheme (a,b). The solid lines are Lorentzian fits. Each data point is
the average of around 50 repetitions of the experiment. Adapted from
[Bay20b]

4.5.1 Fermi Energy
For mesoscopic systems, we directly set the Fermi energy EF through the height of the
spilling barrier or remaining total particle number N . In terms of the trap level spacing
of the 2D harmonic oscillator it is given by EF = 1/2(

√
4N + 1− 1)~ωr.

In the large system, the Fermi energy can be obtained directly from the in situ atom
density n2D(r) through calibrated absorption imaging [Nei17]. When the curvature
imposed by the harmonic confinement is much smaller than the correlation length, it
is convenient to treat the trapped gas as locally homogeneous system. This is also
referred to as local density approximation (LDA). In this case, the local Fermi energy
is related to the density as EF = ~2k2

F/2m, with Fermi momentum kF (r) =
√

4πn2D(r).
The Fermi temperature is defined as TF = EF/kB.

4.5.2 Trap Frequencies
The harmonic oscillator level spacing EHO = ~ωr is determined through trap frequency
measurements in radial direction. These are performed by preparing a non-interacting
sample, for example at the zero crossing of the scattering length at B = 568 G of the
|1〉 |3〉 mixture. Mesoscopic samples, for example of two atoms in the ground state,
are excited by modulating the power of the optical traps at some frequency ωex. All
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Figure 4.23: Principal component analysis. The principal component analysis
(PCA) is applied to a time series of 200 images between t = 0 and
t = 400 ms after exciting a gas of N = 20000 particles in the SWT. The
first three principal components, returned by the algorithm, correspond
to two dipole modes along the principal trap axes (a,b) and the breathing
or monopole mode (c). The oscillation frequency of each collective mode
can be obtained by fitting a sine (solid line) to the score of the principal
component as a function of time. In (d) the score of the first breathing
mode (a) is shown as example.

excited atoms are removed by a second spilling step after the modulation is finished.
The remaining atoms are counted in the MOT. Whenever the modulation frequency ωex
corresponds to an even multiple of the trap frequency, a resonance feature is observed.
Only even numbered multiples of the frequency are observed since the symmetry of the
modulation scheme forbids transitions from even (n = 1, 3, 5, ...) to odd (n = 2, 4, 6, ...)
harmonic oscillator states and vice versa. In Figure 4.22 an example measurement of
the axial and radial trap frequencies of the MT at a power of PMT ≈ 120 µW is shown.

An alternative method to extract trap frequencies is to study collective monopole
(also referred to as breathing) or dipole modes of the cloud. Their frequencies in a
non-interacting system are related to the trap frequency as ωD = ωr and ωB = 2ωr
respectively. Both modes are excited by slowly lowering the intensity of the trapping
beams such that the cloud expands and than suddenly quenching back to the final depth
again. A time series of absorption images at different hold times t after the quench
reveals the collective motion of the cloud. A very convenient way of extracting the
different collective modes and their frequencies is to perform a PCA on the complete
time series of pictures [Dub14]. The first three principal components returned by the
PCA for a gas of around N = 20000 particles in the SWT and excited as discussed
above are shown in Figure 4.23. They correspond exactly to the single breathing and
two dipole modes along the two principal axes of the trap.
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Figure 4.24: Temperature and Interactions The temperature or excitation energy
can be obtained from the radial density distribution in momentum space
n(k) (a). For many-body samples we simply fit a Boltzmann distribution
to the thermal wing (solid line). Figure adapted from [Rie15a]. The
binding energy EB as a function of magnetic offset field B is calculated
using the exact solutions for the two-body problem discussed in chapter
3. We have confirmed that the analytical solution of the spectrum agrees
well with a measurement taken for N = 2 particles in the trap (b).
The remaining deviations can be explained with the anharmonicity and
anisotropy of our harmonic trap. Figure adapted from [Bay20a].

4.5.3 Temperature
Due to the almost perfect isolation from the environment, it is not always correct to
assume that a quantum gas of neutral atoms is in thermal equilibrium and can be well
described by a thermal state. This is especially true when we prepare close to pure
quantum states. Nevertheless, there is always some amount of excitation or thermal
energy that can be used to characterize the deviation from the true ground state. There
is a variety of methods that can be used for thermometry depending on the initial state
and available observables, either in situ or in momentum space.

For small systems the entropy of the prepared state can be calculated directly from
the full counting statistics as discussed in section 4.2.4. By post selecting on the
correct atom number, the values of S/N = 0.1 kB reported there can even be lowered
further. In this case, the excess energy Eexec above the ground state Eg, at least for
non-interacting states, can be read off directly from the single atom resolved images in
momentum space. It is given by Eexec = 2 ∗ 〈Ekin〉 −Eg, where we have used the virial
theorem for the harmonic oscillator initial state (〈Ekin〉 = 〈Epot〉) and 〈...〉 denotes the
average over many single images.

For many particle states we observe a bimodal distribution in the TOF images with
a large condensate peak at low temperatures (see Figure 4.24 a). Here, the absolute
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Temperature T of the cloud can be extracted by fitting a Boltzmann distribution to
the outer, thermal wing of the cloud in momentum space. Even more accurate is the
determination of the temperature directly from in-situ absorption images. We fit two
reference equations of state n(µ, T ) to the measured density profile of the cloud n(r)
[Boe16]. The procedure is described in detail in Ref. [Nei17] and allows us to determine
both absolute temperature T and chemical potential µ in each single shot and in the
whole BCS-BEC crossover. The lowest temperatures we achieve in our many-body
system are on the order of T = 50 nK.

4.5.4 Interaction Strength
The scattering length a2D entering the interaction parameter ln(kFa2D) or equivalently
(in 2D) the value of the binding energy EB can be set from outside directly by Feshbach
resonances. How these parameters depend on the magnetic offset field B for 6Li and
how to calculate them for different potential environments has been discussed in detail
in chapter 3. We have confirmed that the analytical solutions agree with a measurement
taken for N = 2 particles (see Figure 4.24 b).
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5

Observation of Pauli Crystals
Different phases of matter can be fully characterized and distinguished by their corre-
lations [Alt04; Sch17; Hod17]. In the classical limit, we expect correlations to appear
exclusively as the consequence of inter-particle interactions. In a non-interacting sys-
tem, for example an ideal gas at room temperature, the detection of a single atom at
a certain position has no influence on the expectation value for the positions of the
others. This is different for a quantum mechanical ensemble of indistinguishable par-
ticles, as was demonstrated in 1956 by the groundbreaking experiments of Hanbury
Brown and Twiss [Han56b]. They used two detectors, separated by a distance of a
few meters, to detect photons falling to earth from a star several trillion kilometres
far away [Han56a]. Due to their bosonic quantum statistics, photons tend to arrive
at both detectors simultaneously and the measured intensity fluctuations as a function
of time are correlated (bunching). When repeated with fermionic particles, the same
experiment would show anti-correlated intensity fluctuations instead (antibunching).

The Pauli exclusion principle, as a consequence of the antisymmetric wavefunction of
indistinguishable fermions, is one of the most fundamental laws underlying the struc-
ture of matter. No two identical fermions can occupy the same quantum state. This
determines the electronic structure of the periodic table of elements for example. In
the same way, it causes the shell structure we have observed directly when preparing
closed-shell ground state configurations in a 2D harmonic oscillator (see section 4.2.7).
While the same behaviour of non-interacting fermions avoiding each other is also ex-
pected in real space, a direct observation of the fermionic correlations is generally much
more difficult in this case. In many cases, like electron beam experiments, strong repul-
sion between the particles obscures the signal. Almost pure quantum states of neutral
particles are required together with high resolution imaging techniques.

Owing to the absence of strong Coulomb forces and with their precise control over
the prepared quantum state, ultracold atom systems are the ideal platform for the ob-
servation of fermionic correlations. Pauli blocking has been detected indirectly through
the suppression of contact interactions [DeM99; DeM01] and the emergence of an ef-

101



5 Observation of Pauli Crystals

fective Fermi pressure [Tru01] at low temperatures in a degenerate Fermi gas. A direct
observation of antibunching is possible in TOF measurements [Rom06; Jel07] or via a
suppression of in-situ density fluctuations [Mül10; San10]. The first single particle re-
solved observation of the Pauli exclusion principle, enabled by the advances in quantum
gas microscopy, has been achieved in the band insulating regime of a lattice potential
[Omr15].

In this chapter, we report on the direct observation of antibunching in a continuous
quantum system where the wavefunctions of all the particles overlap. The measurement
is enabled by the experimental techniques that were presented in detail in the previous
chapter. We prepare pure quantum ground states of up to N = 10 indistinguishable
fermions in the 2D harmonic oscillator potential. Our TOF imaging scheme allows us to
sample the wavefunction with high resolution and single atom detection efficiency. We
analyse the images by arranging them into so-called Pauli crystals. These unique struc-
tures are a result of higher-order density correlations and act as a striking visualization
of the Pauli exclusion principle in real space. The measurements lay the foundation for
all the studies using interacting samples that are presented in the following chapters.
The non-interacting Fermi gas represents an excellent playground to test and fine-tune
our different experimental capabilities. All the measurements presented in this chapter
have been published in Ref. [Hol21b].

5.1 Sampling the Many-Body Wavefunction

To search for fermionic correlations in a continuous 2D Fermi gas, we start by loading
mesoscopic samples in the 2D-MT (see Figure 5.1 a). Our spilling method, discussed
in detail in chapter 4, allows us to prepare pure closed shell ground state configurations
with high fidelities of 93(3) %, 76(2) % and 50(2) % for N = 3 + 3, 6 + 6 and 10 + 10
atoms respectively. Collisions between both hyperfine levels |1〉 and |3〉 of the two
component mixtures are required to improve the fidelity of the spilling sequence. To
obtain a non-interacting mixture, once the ground state has been prepared, we perform
an adiabatic magnetic field ramp to the zero crossing of the Feshbach resonance at
B = 568 G (see Figure 3.7). Here, interactions between the two components of the gas
are completely absent, as required for the undisturbed observation of correlations due
to the Pauli principle. The sample can be treated as two completely independent copies
of N = 3, 6 or 10 indistinguishable Fermions prepared in the closed-shell ground state
configurations of a 2D harmonic oscillator (see Figure 5.1 b). Without any interactions,
the theoretical description of the full many-body wavefunction becomes very simple.
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Setup

▪ Microtrap and 2D ODT
▪ ωr = 2p x 983(5) Hz
▪ ωz = 2p x 6560(5) Hz

Initial State

m=+2

m
=-2

m= 0

m=+1
m=-1

m=0

▪ Closed Shell Ground States
▪ N = 3, 6, 10 Atoms
▪ Non-Interacting

Measurement

▪ Time of Flight Expansion
▪ Fluorescence Imaging of
   Single Spin State

Observable

▪ In-Situ & Momentum Space
   Correlations
▪ Single Atom Resolved

lHO

a cb d

Figure 5.1: Experimental sequence for the observation of Pauli crystals. We
prepare the system by loading a two component mixture in the 2D-MT,
created by the superposition of an optical tweezer and a single 2D sheet
of a lattice in vertical direction (a). Non-interacting closed shell ground
state configurations for N = 3, 6 or 10 atoms of a single spin component
are initialized by our deterministic spilling scheme (b). Once the closed
shell ground state is prepared, we switch off the radial confinement of
the tweezer and let the wavefunction expand in the 2D plane (c). After
the TOF, the atom positions are recorded with our single atom resolved
fluorescence imaging scheme (d). This allows us to extract density cor-
relations of the many-body wavefunction to any order and in position or
momentum space.

5.1.1 Real Space Wavefunction
The single particle level spectrum of the 2D harmonic oscillator was already discussed
in chapter 2. Each state can be labelled by the principal and the angular momentum
quantum numbers n and m as |n,m〉. The energy of a particle in state |n,m〉 is En =
~ωr (n+ 1). The wavefunctions Ψn,m in real space and polar coordinates (x, y)→ (r, φ)
are given by:

Ψn,m (r, φ) = (−i)n
√√√√ l!
π
(
n+|m|

2

)
!
(−1)lr|m|e−r2/2L|m|l [r2]eimφ, (5.1)

where l = n−|m|
2 , Lml [r] are the generalized Laguerre polynomials and the radius r

is expressed in natural units of the harmonic oscillator r → r/lHO. The harmonic
oscillator length is defined as lHO =

√
~/mωr and the harmonic oscillator momentum

103



5 Observation of Pauli Crystals

is pHO = ~/lHO =
√
~mωr. With the radial trap frequency of ωr = 2π × 983(5) Hz in

our experiment this leads to lHO = 1.31(1) µm. The axial trap frequency is given by
ωz = 2π × 6560(5) Hz.
Following the discussion in section 2.1.3, the full many-body wavefunction of the

ground state ΨN (r1, . . . , rN) can be constructed via the Slater determinant as:

Ψasym.
N (r1, . . . , rN) = 1√

N !

∣∣∣∣∣∣∣∣∣∣

ΨE1(r1) ΨE2(r1) . . . ΨEN
(r1)

ΨE1(r2) ΨE2(r2) . . . ΨEN
(r2)

... ... . . . ...
ΨE1(rN) ΨE2(rN) . . . ΨEN

(rN)

∣∣∣∣∣∣∣∣∣∣

. (5.2)

Taking the N = 3 particle ground state, for example, the three levels |0, 0〉, |1, 1〉 and
|1,−1〉 are occupied. The full antisymmetric 3-body wavefunction Ψ3 in real space is
then given by

Ψasym.
3 (r1, φ1, r2, φ2, r3, φ3) = 1√

6

[
Ψ0,0 (r1, φ1) Ψ1,1 (r2, φ2) Ψ1,−1 (r3, φ3)

+Ψ1,1 (r1, φ1) Ψ1,−1 (r2, φ2) Ψ0,0 (r3, φ3)
+Ψ1,−1 (r1, φ1) Ψ0,0 (r2, φ2) Ψ1,1 (r3, φ3)
−Ψ0,0 (r1, φ1) Ψ1,−1 (r2, φ2) Ψ1,1 (r3, φ3)
−Ψ1,−1 (r1, φ1) Ψ1,1 (r2, φ2) Ψ0,0 (r3, φ3)

−Ψ1,1 (r1, φ1) Ψ0,0 (r2, φ2) Ψ1,−1 (r3, φ3)
]
.

(5.3)

Each term in the Slater determinant contains the same product over single particle
states Ψi (i = 1, ..., N). This ensures that the wavefunction is fully antisymmetric when
the positions of any two of the particles are exchanged ri ↔ rj (i 6= j), as required
for indistinguishable fermions. The total ground state energy EN can be obtained by
simply adding up the energy contributions of all occupied single particle levels. This
leads to EN = 1/6N(N + 1)(2N + 1)~ωr or EN = 5~ωr, 14~ωr and 30~ωr for 3, 6 and
10 atoms respectively.

The probability P of detecting the N particles in a given configuration in real space
(r1, . . . , rN) is given by P (r1, . . . , rN) = |Ψasym.

N (r1, . . . , rN)|2. The number of single
particle wavefunctions contributing to the probability distribution P in real space scales
with the particle number as N ·N !. For N = 3 this leads to the 18 wavefunctions listed
above, for 6 particles the distribution is made up of 4320 terms and for 10 the number
already grows to 36 288 000. Sampling the probability distribution P numerically be-
comes very challenging and time consuming as the particle number is increased. This
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5.1 Sampling the Many-Body Wavefunction

is an impressive demonstration of how fast exponential scaling complicates numerical
calculations, even for a non-interacting system. Our experiment, on the other hand,
allows us to sample from the many-body wavefunction directly by repeated projec-
tions of the state onto some configuration (r1, . . . , rN) through measurements in real
or momentum space.

5.1.2 Imaging Sequence
Once we have prepared the system of N single component fermions in the respective
many-body wavefunction Ψasym.

N experimentally, the detection sequence is initialized.
We make use of the TOF imaging scheme, discussed in detail in section 4.4.6 and
Ref. [And17]. The optical tweezer providing the large radial confinement is switched
off and the atoms expand in the 2D sheet created by the SWT (see Figure 5.1 c).
The remaining harmonic confinement in radial direction during the TOF is given by
ωTOF = 2π × 20.7(5) Hz. After a quarter trap period this leads to an expansion of the
many-body wavefunction by a factor of ωr/ωTOF = 47.5(10). In addition, as a result of
the expansion in the harmonic potential, the initial momenta pi of the atoms i = 1, ..., N
are mapped to their position after TOF pi → r′i. Our fluorescence imaging technique
allows us to record the final position of each atom r′i on our camera (see Figure 5.1 d).
Each image corresponds to a single projection of the many body wavefunction Ψasym.

N in
momentum space and we obtain a list of in-situ momenta pi for each atom i = 1, ..., N .
We generally express these momenta directly in natural units of the harmonic oscillator
pi → pi/pHO.
The harmonic oscillator wavefunctions Ψn,m play an important role for our exper-

iment. They are eigenfunctions of the continuous Fourier transform and therefore
equivalent in real and momentum space (Ψn,m(x, y) ≡ Ψn,m(px, py)). The many-body
wavefunction is a superposition of many terms that each contain the same product over
single particle wavefunctions (see equation (5.3)). As a result, the many-body wave-
function is an eigenfunction of the Fourier transform as well and the same statement
holds (Ψasym.

N (x,y) ≡ Ψasym.
N (px,py)). The measurements we take in momentum space

after TOF are completely equivalent to measurements in real space and can be trans-
formed into one another simply by replacing pi/pHO ↔ ri/lHO. Since both descriptions
are completely equivalent, we treat momentum and position variables as equal in the
following. The magnification of the many-body wavefunction by the TOF scheme by a
factor of ≈ 50 allows us to study the in situ many-body wavefunction with an effective
imaging resolution of approximately 250 nm. This is far below the typical inter-particle
spacing of the state given by lHO = 1.31(1) µm so we can reveal fermionic correlations
directly.
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5.1.3 Experimental Sampling of the Wavefunction
Each single image leads to a random projection onto a set of measured particle momenta
px,i and py,i (i = 1, ..., N) according to the probability distribution P , defined above. To
search for correlations between the momenta and sample the probability distribution
P accurately, we repeat the projective measurements many times. For the N = 3, 6
and 10 particle ground states we take 9994, 19291 and 25644 single images respectively.
We further analyse only those images where the correct total number of atoms N has
been detected. This leads to post selection fidelities of 25 %, 28 % and 36 % for each of
the atom numbers. The increased detection rate for larger particle numbers N can be
explained with experimental upgrades that have been implemented between each of the
respective measurements. The N = 10 atom data has been taken almost one year later
than the N = 3 and 6 atom pictures, after we had optimized the imaging and camera
setting significantly. A post selection rate of 36 % of the images for N = 10 particles
combined with a preparation fidelity of 50 % corresponds to a single atom detection
efficiency of around 97 %. This is in good agreement with the value of 97.8(9) % that
was determined in section 4.4.4.

In Figure 5.2, a set of 38 samples from the N = 6 particle ground state is shown. The
raw images have been analysed, as described in chapter 4, by applying a low-pass filter
and searching for peaks in the image. Any local maximum with an amplitude above
a certain threshold is identified as an atom by our algorithm and indicated by black
circles in the Figure. Other than for the correct total atom number, the images have
not been selected further and represent a typical sample of the probability distribution
defined by the many-body wavefunction.

By averaging the recorded atom positions over all images, we obtain the average
single atom density defined as:

n(p) = N
∫
...
∫

dp2... dpN |Ψasym.
N (p,p2 . . . ,pN)|2 . (5.4)

The density distribution n(p) expresses the probability of detecting a single atom at
momentum p (normalized by the number of atoms N). From equation (5.2) follows
that it is given by the sum of the absolute squares of all occupied single particle wave-
functions n(p) = |Ψ0,0(p)|2 + ...+ |Ψn,m(p)|2. The measured density distribution n(p)
is continuous and spherically symmetric as expected for a gas in the ground state of
the 2D harmonic oscillator potential (see Figure 5.2). No single orientation is preferred
in the trap.

A second quantity that we can extract immediately from the images is the centre of
mass momentum p, defined as

p = 1
N

N∑

i=1
pi. (5.5)
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38
+

Average
Density

lHO

Figure 5.2: Random selection of measured samples from the N = 6 particle
ground state. The images have been postselected only for the correct
number of measured atoms N . They represent typical samples from the
probability distribution defined by the absolute square of the many-body
wavefunction. Our imaging resolution is well below the average inter-
particle spacing, given by the natural length scale of the harmonic oscil-
lator lHO. A histogram of the atom positions in all images leads to the
average density n(p).

In the harmonic oscillator, the centre of mass motion decouples from the relative move-
ment of the particles. The solution for dynamics of the centre of mass system are equiv-
alent to those of a single particle in the harmonic potential with total massM = N ·m.
The fluctuations of p are therefore described by the Gaussian ground state wavefunc-
tion |Ψ0,0|2 with a modified width σ = 1/(

√
2N)pHO (where pHO is defined in terms of

the single particle mass m as above).
The measured distributions of the centre of mass momentum px in x-direction for

both the N = 3 and N = 6 particle ground states are shown in Figure 5.3 a. We
find Gaussian distributions with a width of σN=3 = 0.44(1)pHO and σN=6 = 0.31(1)pHO
respectively. When the particle number is increased from N = 3 to 6, the mass of the
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Figure 5.3: Centre of mass and relative coordinates. In (a), the distributions
of the centre of mass momentum in x-direction over all images are shown
for 3 (blue) and 6 particles (red). We observe Gaussian fluctuations with
a width that agrees with the expectation from the harmonic oscillator
ground state. The insets show the full 2D centre of mass distributions.
The dashed lines are Gaussian fits to the data. Statistical errors are on the
order of the symbol size. In (b), we show the correlation function g(2)(d).
It corresponds to the normalized probability of finding two particles at
a distance d = |pi − pj| in the same image, divided by the independent
single particle detection probabilities at momenta pi and pj. The inset
shows the same distribution g̃(2)(d) without normalization. The solid line
is calculated from samples of the ground state wavefunction that were
obtained using a Monte Carlo algorithm. The distance correlations reveal
a large suppression of detections at small distances as a result of the Pauli
principle. The comparison to simulated data allows us to determine the
resolution limit (grey shaded area). Panel (a) adapted from Ref. [Hol21b].

centre of mass system is doubled M → 2M . This leads to reduction of the width of
the fluctuations by a factor of σN=3/σN=6 = 1.40(1) ≈

√
2 as expected. The absolute

magnitude of the fluctuations agrees well with the expected values for the ground
state wavefunction of σN=3 = 1/(

√
6)pHO = 0.41pHO and σN=6 = 0.29pHO. This

demonstrates that zero temperature quantum fluctuations dominate our measurements
and classical noise sources like possible drifts in the TOF potential or thermal noise are
negligible. We find the same behaviour for the centre of mass motion in y-direction py.

108



5.1 Sampling the Many-Body Wavefunction

5.1.4 Fermionic Antibunching
So far, we have extracted the average density and the centre of mass momentum dis-
tribution. Both these quantities are independent of the relative positions of the atoms
in a single image and therefore insensitive to fermionic correlations. To search for
antibunching, the direct approach is to study distance correlations in the single par-
ticle resolved momentum distribution. Due to the Pauli exclusion principle we expect
that particles avoid each other and detections at small distances d = |pi − pj| → 0
are strongly suppressed. In Figure 5.3 b, we show the normalized distance correlation
function g(2)(d) for the N = 6 particle ground state. It expresses the probability of
finding two different atoms at two momenta pi and pj with distance d in a single image,
divided by the product of the single particle detection probabilities at each momentum
pi and pj. As a comparison we also plot g̃(2)(d) the absolute probability of finding two
particles at distance d without normalization (inset).

For completely uncorrelated particles, we expect g(2)(d) = 1 by definition. Our mea-
surements show that simultaneous detection of atoms at small momentum distances
in a single image are strongly suppressed even though the particles are completely
non-interacting. This is a direct observation of antibunching and the Pauli exclusion
principle. The amplitude of the correlation signal is very large and we observe almost
complete blocking at small distances g(2)(d → 0) → 0. This is a feature of the single
particle resolution in our experiment. Without high resolution imaging, only a small
reduction in the amplitude of g(2)(d→ 0) can be observed. In Ref. [Jel07], the correla-
tions signal at small distances is reduced by only approximately 5 % for example. The
absolute distance scale at which Pauli blocking between the atoms becomes important
is given by the harmonic oscillator momentum pHO.

We compare our measurements to simulated data created with a Monte Carlo algo-
rithm. The numerical method is discussed in detail in the next subsection and enables
us to draw random samples according to the exact theoretical probability distribution
P introduced in the beginning of the chapter. The Monte Carlo simulation shows very
good agreement with our data. Only for very small distances d . 0.3 pHO, we find
significantly less particles than what is expected theoretically (grey dashed area). This
can be explained by the finite resolution of our imaging scheme, which no longer allows
us to distinguish between two particles if they are too close to each other. The absolute
number of particles that are missed by our detection scheme due to the limited imaging
resolution is very small, on the order of 0.1 %. This is because the probability of two
particles being closer together than d . 0.3, pHO is very small in the first place. In
addition to the suppression by Pauli blocking, small distances are less likely to occur
due to the area element (r dr) that enters the calculation of the distance distribution
g̃(2) in 2D (see Figure 5.3 b, inset).
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The measurement of the g(2) correlation function and its comparison to theoretical
data allows us to determine the smallest distance at which our detection scheme can
differentiate two atoms as dmin ≈ 0.2 pHO. In real space, after the TOF sequence,
this corresponds to an imaging resolution of 12 µm. This agrees very well with the
experimental limit of the resolution of 9.3(1) µm that we determined from the PSF of
single atoms in section 4.4.5. When the TOF sequence is viewed as a magnification of
the wavefunction (for the special case of harmonic oscillator states), this corresponds to
an effective imaging resolution for a measurement of the in-situ density of 250 µm. In
chapter 9 we will introduce a method to magnify arbitrary many-body wavefunctions,
also beyond eigenfunction of the harmonic oscillator. This makes it possible to sample
the in-situ density distribution of strongly interacting Fermi gases with a resolution
below the typical inter-particle spacing.

5.1.5 Monte Carlo Sampling
Direct sampling from the probability distribution P = |Ψasym.

N (p1, . . . ,pN)|2 is diffi-
cult. The distribution is both high-dimensional (d = 2N) and highly oscillatory as a
result of the fermionic exchange symmetry. To obtain a sequence of random samples
(p1, . . . ,pN), we therefore use the Metropolis–Hastings algorithm as a Markov chain
Monte Carlo (MCMC) method. It is straightforward to implement so we can sample
the distribution P approximately without a large effort. The algorithm becomes exact
in the limit of an infinite amount of samples drawn [Met53; Has70].
The method requires a second symmetric and more simple probability distribution

Q that can be sampled directly. We choose the uniform distribution on a 2D disc in
momentum space with radius p0 = 3pHO, defined as

Q(pi) =




1
N for |p| ≤ p0,

0 for |p| > p0,
(5.6)

where the normalization factor is given by the area of the disc N = πp2
0 and the

momentum of each atom i = 1, ..., N is sampled from Q independently. The Metropo-
lis–Hastings sequence is initialized by drawing a first random sample of momenta
s1 = (p1, . . . ,pN) from Q and calculating the probability density of s1 in the tar-
get distribution P1 = P (s1) = P (p1, . . . ,pN). The next sample si+1 of the sequence
is always determined in the following way: A candidate for the next set of momenta
sn = (p1, . . . ,pN) is drawn from the distribution Q and its probability density accord-
ing to P is calculated Pn = P (sn). If Pn ≥ Pi, the candidate sn is accepted (si+1 = sn,
Pi+1 = Pn) and the algorithm moves to the next iteration i → i + 1. If Pn < Pi,
the candidate is accepted with a probability Pn/Pi < 1 and rejected otherwise. The
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decision is made using a random number generator. In case the candidate is rejected,
the next element of the sequence is set identical to the current one instead (si+1 = si,
Pi+1 = Pi) and a new candidate is drawn i→ i+ 1.
Using the MCMC method, we can sample from probability distributions of almost

arbitrary complexity, given that enough computational resources are available. Follow-
ing Ref. [Rak17], this enables us to study thermal or mixed states in addition to the
pure ground state wavefunction. The probability distribution for finding N particles
with momenta (p1, . . . ,pN) of a non-interacting state of the 2D harmonic oscillator in
a canonical ensemble can be defined as:

P (p1, . . . ,pN) =
∑
i e
Ei/kBT |Ψi(p1, . . . ,pN)|2
∑
i |Ψi(p1, . . . ,pN)|2

, (5.7)

where the sum generally runs over all states i in the many-body spectrum of the 2D
harmonic oscillator with energy Ei and T is the temperature. To reduce the compu-
tation time, we generally consider only states i with a maximum excitation energy of
Eex. = Ei − E0 ≤ Ecut-off = 6~ωr over the ground state.
For the simulated data presented in this thesis, we draw 2× 106 samples si using the

method described above. This ensures that the Metropolis–Hastings sequence samples
the probability distribution P with high accuracy and the outcome is independent of
the initial point s1. The most time consuming part of the numerical calculation is
the evaluation of the many-body wavefunction required for the calculation of P (si) at
each iteration. The complete simulation takes about one week for 10 particles on a
single high-end computer. We estimate that the same algorithm for the next larger
N = 15 ground state would run longer by a factor of approximately 500 000. This
demonstrates again the challenges for numerical calculations imposed by exponential
scaling. On the other hand, experimental sampling in an ultracold quantum gas is not
limited by these problems. A quantum simulation is performed by directly preparing
the complete many-body wavefunction required for the given probability distribution.

5.2 Pauli Crystals
Our measurements demonstrate that we can observe antibunching in a continuous sys-
tem of non-interacting fermions. Compared to previous measurements, like in Ref.
[Jel07] for example, we can observe the reduction of the correlation function g(2)(d) by
almost the full amplitude as the distance between the particles approaches zero due to
the high resolution in our experiment. However, our data contain even more informa-
tion. We measure the complete configuration of all N particles in each realization of
the experiment. This allows us to extract correlation functions of any order that might
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Figure 5.4: Pauli crystal image analysis. In (a) a raw binary image from the
EM-CCD camera is shown. The bright pixels indicate where single pho-
tons have been detected. We can clearly identify the N = 6 atoms in the
ground state. In (b) the same image is shown after a low-pass filter has
been applied. In the first step, we calculate the centre of mass momentum
p and subtract it from the image (black arrow). To reveal the correla-
tions, we define a target symmetry axis (c, dashed lines) and rotate the
image by the angle that simultaneously minimizes the angular distance of
the outer atoms to the reference positions. Panel (a) taken from [Hol21a].

appear as a result of the Pauli principle, also beyond the simple suppression of particles
at small distances. A closer look at the samples from the N = 6 atom ground state
in Figure 5.2 reveals that an additional structure seems to be present. A configuration
with one atom in the centre surrounded by an equally spaced ring of the five remain-
ing atoms appears very frequently in the images (see numbers 1,2,5,6,10,11,...). The
centre and angular orientation of the configuration are different in each image where it
appears. In some cases, fluctuations of one or more atoms destroy the clear structure
(see images 7,9,13,18,...).

5.2.1 Image Analysis
To analyse our images, we take an alternative approach to the conventional way of
calculating density correlation functions of the form C(n) = 〈n̂(p1)...n̂(pn)〉 and follow
the procedure suggested in Ref. [Gaj16a]. Each image is analysed separately. Taking
the N = 6 ground state for example, we subtract the centre of mass momentum pi →
pi − p from each image in the first step (see Figure 5.4 b). Intuitively this aligns the
configurations we have observed in the single images to the same centre, but they are
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Figure 5.5: Summary of the Pauli crystal image analysis. A direct histogram of
the atom momenta in the raw images leads to the average single particle
momentum distribution n(p) (top row). When subtracting the centre
of mass fluctuations in each image first, the same histogram leads to
the single particle density in the centre of mass coordinate frame n(p)
(middle row). Fermionic correlations become visible only after aligning
each image separately to the same global symmetry axis before creating
the histogram (bottom row). The structures that are revealed in the
so-called Pauli crystals are a direct consequence of the Pauli exclusion
principle. The insets show the same three observables for the N = 3
particle ground state. The axis labels are indicating the momentum in
units of pHO.

still rotated with respect to each other. Therefore, we define a set of target angles ϕT,i =
2π(i − 1)/5 (i = 1...5) for the five momenta of the outer atoms of the configuration.
The outer atoms are identified by finding largest absolute momenta after subtracting
the centre of mass |pi − p|. In the second step, we rotate each image by an angle Φ that
minimizes the angular distance of the rotated to the target configuration (see Figure
5.4 b). We label the momenta in the rotated coordinate system as p̃i. The angle that
minimizes the distance of the rotated configuration is then given by

Φ = mean (ϕi − ϕT,i) = mean (φi) , (5.8)
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where ϕi (i = 1...5) are the angles of the five outer atoms before rotation in polar
coordinates, sorted in ascending order (see Figure 5.4 c). As a result of the five-fold
rotational symmetry of the N = 6 particle configuration we can limit the rotation angle
to Φ→ mod(Φ, 2π/5).

When we calculate the histogram of the momenta p̃i in all the separately rotated
images, strong correlations become apparent immediately (see Fig 5.5). The structures
that become visible in this so-called configuration density are referred to as Pauli crys-
tals [Gaj16a]. They are a direct consequence of the Pauli exclusion principle and a
striking visualization of antibunching in real and momentum space. The atoms in our
2D harmonic oscillator potential avoid each other in relative coordinates and their most
probable relative configuration is revealed by the configuration density. The average
single particle density is insensitive to this structure. As a result of the radial symme-
try of our system, the angular distribution of the atoms is completely homogeneous.
The symmetry is only broken by the measurement itself, when the wavefunction is
projected onto the final set of momenta pi and the particles align with respect to a
random axis that is different each time. Almost pure quantum states together with
single particle resolution and large detection efficiencies are a necessary requirement
for the observation of Pauli crystals [Rak17].

5.2.2 Different Particle Numbers
The measurement of Pauli crystals can be extended to any pure quantum state of
mesoscopic size. Since any of the open shell energy levels of the 2D harmonic oscillator
are degenerate, the preparation of pure states, for example with N = 4 particles, is
more challenging. While spilling to some of the open shell configurations is still possible
(see chapter 6), we limit ourselves to the closed-shell states here. In Figure 5.6, the
results for the three lowest non-degenerate ground state configurations with N = 3, 6
and 10 indistinguishable fermions are shown.

One of the essential steps in the analysis procedure leading to the N = 6 Pauli
crystal is the identification of the correct target configuration and target angles ϕT,i
for the rotation of the images. For a general ground state, the target configuration
can be identified by searching for the set of momenta (p1, . . . ,pN)max that maximizes
the probability distribution |Ψasym.

N (p1, . . . ,pN)|2 [Gaj16a]. This leads to a three-fold
rotational symmetry for 3 atoms and a five-fold symmetry for 6 atoms, as discussed in
detail in the previous section. The N = 10 particle Pauli crystal shows no rotational
symmetry. In the analysis, we first assign the particles to either the inner or outer
ring by sorting them by their absolute momentum |pi| first and by their angle in polar
coordinates ϕi second. The optimal rotation Φ for each image is then determined
analogously to the N = 6 particle case by minimizing the distance from each atom to
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Figure 5.6: Closed-Shell Pauli crystal configurations. To reveal the higher or-
der correlations between the relative momenta of the atoms, the configu-
rations in each measurement have to be aligned to a common symmetry
axis before creating a histogram over all images. The rotated momen-
tum coordinate system is labelled by p̃. The inset in (a) shows the PSF
of a single atom. The Pauli crystals visualize in which configuration the
N = 3 (a), 6 (b) or 10 (c) atoms arrange themselves most frequently in the
trap. The reduced contrast in the outer ring of seven atoms agrees with
the theoretical expectations for the 10 particle ground state (c) [Gaj16a].
Panels (a) and (b) are adapted from [Hol21a].

its target angle ϕT,i simultaneously (see equation (5.8)). This method can be extended
directly to Pauli crystals of arbitrary size. We are currently limited to N = 10 particles
in each hyperfine component by the fidelity of our ground state preparation scheme (see
section 4.2.7).

5.3 Systematic Effects

The target configuration and rotational symmetry of the Pauli crystals are imposed by
the algorithm that we apply to each image separately. Pattern matching algorithms
can generally cause problems like a bias towards the target distribution, especially if
non-linear distance measures are used [Fre20]. While our distance measure is linear
(see equation (5.8)), it is nevertheless essential to rule out any artifacts that might be
created by our analysis procedure.
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Figure 5.7: Comparison to shuffled data and Monte Carlo simulations. We
compare our measured Pauli crystals (a,d) to the configuration densities
we obtain by applying the same analysis algorithm to shuffled data (b,e).
The shuffling is performed by drawing each atom momentum pi in a single
sample (i = 1, ..., N) from N different images. We find no bias towards
the target distribution for larger atom numbers N > 3. The artifact
that is observed for the shuffled data of N = 3 particles is a boundary
effect that appears due to the small number of degrees of freedom of this
system. In (c,f) we show the Pauli crystals that we obtain from sampling
the zero temperature N -body wavefunction numerically. Figure adapted
from [Hol21a].

5.3.1 Shuffled Data

A very direct method of confirming that our data does not create any bias towards
the target distribution is to shuffle the data. To this end, we take a set of N atom
momenta pi (i = 1, ..., N) not from a single image but from N different samples of the
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wavefunction. We effectively shuffle the measured atom momenta pi between different
experimental runs. This leaves the single particle densities in absolute and relative co-
ordinates n(p) and n(p) unchanged but removes all the fermionic correlations between
the particles. Since two particles are now drawn from different images, we can label
them by the image number and they are not indistinguishable any more.

The configuration densities that we obtain for shuffled data after performing the
same pattern matching algorithm used for the Pauli crystals are shown in Figure 5.7.
For larger atom numbers N > 3 we observe no bias towards the target distribution.
We have confirmed this also for open shell states, for example with N = 4 particles, by
sampling the wavefunction numerically. Instead of a Pauli crystal, the analysis produces
a distribution that is radially symmetric and given by the single particle density ñ(p)
in relative and rotated coordinates. No antibunching can be observed. For the N = 3
particle case, we observe a residual structure even for shuffled data. This is a boundary
effect appearing only for this lowest particle number due to the small number of degrees
of freedom and not a general problem of the method.

As a comparison, we also show the Pauli crystals we obtain from sampling the N
particle ground state wavefunction numerically in Figure 5.7. The predictions agree
very well with our experimental data. We find that the measurements show a reduced
contrast compared to the zero temperature calculation. This can be explained by the
momentum resolution and by excitations above the ground state in our experiment.

5.3.2 Melting the Crystal
To study the effect of finite temperature and excitations above the ground state in more
detail, we increase the energy of our initial state in the experiment. To this end, we
modulate the confining potential in radial direction at twice the trap frequency 2ωr for
a duration of t = 50 ms. The excitation amplitude is varied between 0 and 20 % of the
radial trap depth to control the amount of energy Eex. that is added to the system. This
perturbation causes excitations of atoms in the closed shell configuration into higher
harmonic oscillator levels. We take 3000 images of the momentum distribution at each
modulation amplitude.

For the non-interacting system it is not expected that thermalization takes place.
Instead, the regular harmonic oscillator level spacing could give rise to coherent phe-
nomena, for example revival dynamics at the trap frequency. However, owing to the
rather small size and Gaussian shape of the optical trap in the experiment, deviations
from the harmonic level spacing are rather substantial, on the order of a few percent,
and the wavefunction evolves at many different, incommensurate frequencies. The mea-
surements are performed with a drive approximately fifty times longer than the inverse
trap frequency, at which point we expect deviations from the harmonic potential to
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Figure 5.8: Melting the N = 6 particle Pauli crystal. We increase the energy of
the initial state by modulating the radial confinement at twice the trap
frequency for some time. We find that the contrast in the configuration
densities significantly reduces as soon as the excitation energy of the many
body state above the ground state is on the order of the Fermi energy
Eex. & EF.

have dephased the many-body wavefunction substantially. Noise and small drifts in
the potential together with the large Hilbert space of the system lead to a mixed state
with correlations that are close to a thermal state. We do not observe any coherent
oscillations for our modulation scheme and the measured correlations are robust to
small changes in the drive amplitude and duration.

We extract the absolute mean energy of the initial state 〈E〉 after the modulation,
directly from the measured single particle resolved momentum space density. The total
kinetic energy of all atoms in each image is given by Ekin = ∑

p2
i /2m. By averaging

over all images and applying the equipartition theorem to the non-interacting harmonic
oscillator states, we obtain 〈E〉 = 〈Epot〉+ 〈Ekin〉 = 2 〈Ekin〉. Without modulation, i.e.
for the lowest temperature state that we can prepare in our system, and for N = 6
particles this leads to 〈E〉0 = 13.10(15) ~ωr. This energy is 5% below the theoretical
ground state energy of 14 ~ωr that we expect for this particle number. This deviation
of the absolute energy measurement can be explained by inaccuracies in the calibration
of the particle momenta pi in the TOF images. The relative errors on the radial trap
frequency measurement and the magnification of our optical setup are on the order of
2 %. Both quantities enter quadratically into the absolute energy measurement. These
uncertainties alone can account for the systematic shift towards lower energies that is
observed for all data points. Relative energy shifts between initial states modulated
with different amplitudes can still be detected with high accuracy.

When the excitation energy, defined as Eex. = 〈E〉 − 〈E〉0, is increased, we observe
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Figure 5.9: Pauli crystal contrast C as a function of mean energy 〈E〉. We
extract the contrast C by fitting a sine function (a, inset) to the config-
uration density at a fixed momentum p = 2 pHO (a, shaded region). It
reduces linearly with an increasing mean energy of the initial state 〈E〉
(b). The Monte Carlo simulation qualitatively shows the same result for
thermal states (c). The measured slope of the decay is faster in the ex-
periment. Figure adapted from [Hol21a].

how the Pauli crystals “melt” and the contrast in the configuration density vanishes
(see Figure 5.8). An energy increase by a small fraction of the ground state energy
(Eex./14~ωr ≈ 15 %) is enough to reduce the visibility almost to zero. This is expected
since a large number of degenerate levels already becomes available when we add only
a single quanta of energy ∆E = ~ωr to the 2D harmonic oscillator ground state. In
general, we expect that the Pauli crystals melt as soon as the excitation energy is on
the order of the Fermi energy of the system Eex. & EF = (nF + 1)~ωr.
To be able to describe the loss of the visibility of the Pauli crystals with increasing

energy also more quantitatively, we define the contrast C as follows: We fit a sine
function to the angular distribution of the configuration density at a fixed momentum
p = 2 pHO (see Figure 5.9 a). The contrast C at this absolute momentum is then
defined as C = 1 − min/max in terms of the minimum and maximum value of the
sine function. We find that the contrast C decreases linearly with energy and with a
slope of (dC/d 〈E〉)exp. = −0.075(13) /~ωr (b). Pauli crystals that were obtained from
sampling thermal states using the Monte Carlo simulation show the same linear decrease
of the contrast with energy (c). The slope of the decay is given by (dC/d 〈E〉)theo. =
−0.048(30) /~ωr in this case.

The small but significant quantitative difference between experiment and simulation
can be explained partially by the systematic uncertainty in our experimental measure-
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Figure 5.10: Angle correlations C(2)(0, φ) in the closed-shell ground state.
The correlator C(2)(0, φ) is defined by the probability of a second particle
at an angle φ2 = φ given that a first particle is located at φ1 = 0. We
observe the three and five-fold symmetries that are also revealed by the
respective Pauli crystals. The total angular atom distribution in our
trap N(φ) is shown as a comparison. Figure adapted from [Hol21a].

ments of absolute energies. In addition, the thermal states in equation (5.7) that are
used for the Monte Carlo simulation only describe the true initial state approximately.
To model the mixed state that is created by our modulation more accurately, a more
detailed knowledge of the exact geometry of all the trapping potentials would be re-
quired. The non-equilibrium and thermalization dynamics that appear in mesoscopic
systems with and without interactions represent an interesting topic for future studies
in our experiment.

In conclusion, we find the visibility of the Pauli crystals in the configuration density
is very sensitive on the amount of non-coherent excitations in the initial state. We find
that the observed contrast in our experiment is very close to the theoretical prediction
at zero-temperature, especially after accounting for the finite momentum resolution in
the measured images (see Figure 5.7). This demonstrates that our initial state is very
close to the true absolute N -body ground state of the 2D harmonic oscillator. The
ability to melt the crystals additionally shows that the observed correlations originate
from the indistinguishability of our fermionic particles and are not a result of the
pattern matching algorithm or other systematic effects. The energy of the initial state
does not effect the detection or preparation fidelity in any way. The scale at which the
visibility is lost almost completely is given by the Fermi energy Eex. & EF.
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5.4 Conclusion

5.3.3 Angular Correlations
Our single particle resolved data also allows us to calculate density correlations C(n) in
a more conventional manner. As a final validation of the presence of the Pauli crystal
correlations in the ground state wavefunction, we extract the angular density-density
correlation function C(2)(0, φ). It is defined by the probability of detecting a second
particle at an angle φ2 = φ given that a first particle is located at φ1 = 0. The results
for the N = 3 and 6 particle ground states, together with their respective simulations,
are shown in Figure 5.10. We find a good agreement between experiment and theory
and observe the expected three and fivefold symmetries. The shuffled data, where the
first and second particle in C(2)(0, φ) belong to different images, is radially symmetric
without any structure.

5.4 Conclusion
In this chapter, we have studied samples of non-interacting and indistinguishable
fermions, prepared in closed shell ground state configurations for a 2D harmonic oscil-
lator. We have observed how the Pauli exclusion principle leads to higher order density
correlations in the mesoscopic system. The correlations can be visualized with striking
geometric configurations that have been termed Pauli crystals. They do not appear in
the density distribution directly but only in relative position or momentum coordinates
and reveal the most probable configuration of the particles in the trap.

Self-ordering and crystalline structures, akin to the observations here, are found in
many interacting mesoscopic systems. Wigner crystals, formed by electrons due to
their repulsive interactions [Wig34; Li21], or Coulomb crystals in ion traps [Win87;
Die87] show a remarkable resemblance to Pauli crystals. Further examples are found
in Dipolar gases [Kad16] or ensembles of Rydberg atoms [Sch15]. While this motivates
the term Pauli crystal, it is important to emphasise that no translational symmetry
breaking takes place in our case. The ground state is a coherent superposition of
all possible configurations and no true long range order is present. The rotational
symmetry is broken only by the measurement itself. The Pauli crystal configurations
for larger atom numbers are truly unique, the N = 10 electron Wigner crystal in 2D is
made up of two particles in the centre, surrounded by the remaining eight, for example
[Pee09].

Higher order density correlations and Pauli crystals are a general feature of meso-
scopic fermion systems. Using our simulations, we find similar structures in a wide
range of potentials, for example box geometries. Most interesting are samples with
an approximately homogenous mean density and additional symmetries, like rotational
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invariance, that are broken by the measurement. A large visibility of the correlations
requires that the system size is not much larger than the typical inter-particle spacing.
As the number of particles is increased and when entering further into the macroscopic
world, we expect the contrast to reduce until the structures vanish for the homogeneous,
infinite Fermi gas. This can already be observed for the N = 10 particle measurement
(see Figure 5.6).

The measurements in a non-interacting mesoscopic Fermi gas act as an important
benchmark for our experiment. The system can be solved exactly and accurate numer-
ical simulations are available. The Pauli crystal configurations match the theoretical
predictions closely. With their high sensitivity on excitations above the ground state,
this confirms that we can prepare up to N = 10+10 particles in the closed-shell config-
uration and very close to zero temperature. Our measurements also demonstrate that
it is now possible to access correlations in continuous systems at the single particle
level. Taken together, these unique capabilities open up entirely new opportunities for
the study of emergent phenomena in mesoscopic Fermi gases. As a first step in this
direction, we will reintroduce interactions between both hyperfine particles in the next
chapter. The study of single particle resolved density correlations in strongly interact-
ing systems, enabled by extending our imaging scheme to the second spin component,
is presented in chapter 7.
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6

Emergence of a Quantum Phase
Transition
Emergent behaviour is characterized by phase transitions and universal low energy ex-
citation spectra that are independent of the microscopic details of the system [And72;
Alt06; Sac11]. We have demonstrated that we are able to prepare pure non-interacting
ground states in mesoscopic samples of up to N = 10 particles of a single spin compo-
nent (see chapter 4). In this case, the many-body solution for arbitrary atom numbers
is constructed directly via a simple superposition of single particle wavefunctions of the
2D harmonic oscillator potential. The macroscopic state is, after accounting for the
Pauli exclusion principle (see chapter 5), no more than the sum of its parts. The most
fundamental ingredient required for the emergence of collective behaviour is missing:
significant inter-particle interactions.

In this chapter, we introduce strong interactions between both hyperfine compo-
nents that are present in our mesoscopic samples. To this end, we make use of the
broad Feshbach resonance of 6Li (see section 3.3.2) that allows us to explore the full
range between weak (EB � EHO) and completely dominating (EB � EHO) attraction
strengths. Previous studies of mesoscopic fermion systems in ultracold quantum gases
with precisely prepared ground states and strong interactions have been limited to 1D
geometries [Wen13a; Zür12b; Zür13; Mur15a]. The extension of these measurements to
a 2D environment modifies the collective behaviour expected in the macroscopic limit
significantly.

The degeneracies of the energy levels of the 2D harmonic oscillator lead to a shell
structure and a gapped single particle spectrum for closed shell configurations. The in-
terplay between Pauli blocking in closed shell configurations with the interactions lead
to a quantum phase transition between a normal and a superfluid in the macroscopic
limit (see chapter 2). Here, we study what remnants of this quantum phase transition
can be found in mesoscopic samples of up to N = 10 + 10 atoms. In similar sys-
tems like nuclei, superconducting grains or small helium droplets superfluid behaviour
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6 Emergence of a Quantum Phase Transition

has already been observed for particle numbers similar to what we can access in our
experiment [Gre98; Del01; Lau17].

We analyse the many-body state using two different approaches. In a first set of
studies, we vary the interaction strength between both hyperfine components during
the preparation process to extract qualitative information about degeneracies in the
many-body energy level spectrum and the nature of the ground state. More quanti-
tative statements become possible with our second set of measurements where we use
modulation spectroscopy to extract the low energy excitation spectrum. We find partic-
ular pair excitation modes with a non-trivial dependence on the interaction strength.
A detailed comparison to theory [Bje16] allows us to identify them as precursors of
the Higgs mode that is expected as universal low energy excitation for macroscopic
superfluids. The pair excitations are a manifestation of emergent collective behaviour
and appear for as few as N = 3 + 3 particles. By taking measurements with different
particle numbers we can study how the macroscopic limit is approached.

In the many-body limit, an approximate particle-hole symmetry is required for the
observation of a stable Higgs mode as low energy excitation of a superfluid [Pek15]. In
macroscopic samples the amplitude mode has been observed in different systems like
superconductors [Soo80; Mat13; Kat18], ferromagnets [Rüe08] or ultracold quantum
gases [Bis11; End12; Léo17; Beh18]. In the mesoscopic limit, the excitation is stabilized
by the discrete and gapped single particle spectrum and long-lived even without the
presence of an exact particle-hole symmetry (see chapter 2) [Bru14]. We pioneer the
study of the emergence of quantum phase transitions and its associated Higgs modes
starting from the mesoscopic limit and on the single particle level. A large part of the
results presented in this chapter have been published in Ref. [Bay20a].

6.1 Ground State Preparation
Before studying the many-body excitation spectrum of closed shell configurations in
the next section, it is instructive to revisit the spilling scheme that allows us to prepare
ground states in the first place (see section 4.2.7). The starting point is a cloud of
approximately N = 15 + 15 atoms at almost zero temperature that is transferred
into the 2D-MT (see Figure 6.1 a). The trap frequencies in the 2D-MT are given by
ωr = 2π × 1001(5) Hz and ωz = 2π × 6803(5) Hz respectively. The small difference in
trap frequencies compared to the values reported in the other chapters can be explained
by drifts and adjustments of the optical setup between different measurements.

From the initial sample in the 2D-MT, we prepare the desired ground state by first
applying a strong magnetic field gradient in axial direction that does not affect the
radial symmetry or shell structure in the 2D plane. By reducing the optical power and
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Setup

▪ Microtrap and 2D ODT
▪ ωr = 2p x 1001(5) Hz
▪ ωz = 2p x 6803(5) Hz

Initial State

m=+2

m
=-2

m= 0

m=+1
m=-1

m=0

▪ Closed Shell Ground States
▪ N = 3+3, 6+6 Atoms
▪ EB = 0 ... 2 ħωr

Measurement

▪ Modulation Spectroscopy
▪ Transfer all Atoms to MOT
▪ Count Remaining Particles

Observable

▪ Particle Loss Resonances
▪ Many-Body Excitation
   Spectrum

a cb d

Figure 6.1: Experimental sequence for observing the emergence of a phase
transition. The state is initialized by loading a two component mixture
in the 2D-MT (a). We first spill to the closed-shell ground state config-
uration with the desired atom number N (b). The interaction strength
EB between both hyperfine components is set by an adiabatic ramp of
the magnetic offset field B that is started once the ground state has been
prepared. To study the nature of the ground state as a function of the
interaction strength, we perform modulation spectroscopy on the system.
We modulate the sample at some frequency ωex, remove any atoms that
were excited to higher energy levels and determine the remaining particle
number in the trap using our accurate MOT counting scheme (c, see sec-
tion 4.4.2). From the loss resonances that we observe in this way, we are
able to reconstruct the complete low energy excitation spectrum of the
mesoscopic Fermi gas (d).

thereby the potential depth to some value Vspill for a time of tspill = 80 ms, we remove
all atoms initially trapped in higher energy levels. The final atom number as a function
of the spill depth Vspill is obtained by transferring all the atoms back to the MOT once
the spilling sequence is completed (see Figure 6.1 c). The integral of the total MOT
fluorescence signal on a camera for a time of tint = 1 s leads to a particle count with
almost perfect accuracy (see section 4.4.2). For non-interacting samples we observe
plateaus that correspond to the shell structure of the 2D harmonic oscillator potential
(see Figure 6.2 a). This allows us to set the desired atom number N of the final closed
shell ground state, for example to 3 + 3 atoms (see Figure 6.1 b), by adjusting the spill
depth Vspill appropriately.
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Figure 6.2: Spilling at different attraction strengths. The y-axis shows the
probability of detecting N atoms remaining in the trap as a function of
the final spill depth on the x-axis. The experiment is repeated 140 times
for each setting of the final depth. In a weakly or non-interacting sample,
we find stable plateaus for atom numbers that correspond to the closed-
shell configurations of the harmonic oscillator, indicated by dashed white
lines (a,b). When the attraction strength is increased until the binding
energy dominates over the single particle gap EB > EH0, we find stable
plateaus that are equally spaced at any even particle number. This is a
strong indication for the emergence of pairing in the ground state as the
interactions are increased.

6.1.1 Spilling with Interactions
Our preparation scheme allows us to gain some first qualitative insights into the nature
of interacting ground states. To this end, we adiabatically ramp the magnetic field
B to the desired final interaction strength setting EB = 0, . . . , 5~ωr even before the
spilling process to the final atom number N is initiated. From the atom numbers for
which we observe plateaus as a function of Vspill we can then infer the degeneracy of
the energy levels of the interacting many-body state. In the non- or weakly-interacting
regime (EB < ~ωr) pairing is suppressed by Pauli blocking and the degeneracy of energy
levels in the many-body state is identical to that of the single particle 2D harmonic
oscillator spectrum. Plateaus appear at numbers of N = 1 + 1, 3 + 3, 6 + 6 or 10 + 10
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Figure 6.3: Mean field interaction shift. The average atom number 〈N〉 as a func-
tion of the spill depth Vspill shows a strong dependence on the interaction
strength (a). The number of atoms that remain trapped for the same op-
tical potential depth increases significantly as the attraction is increased
(black to dark red). For repulsive interactions we find the opposite shift,
as expected (blue). A histogram of the detected atom numbers, inte-
grated over all spill depths Vspill, clearly reveals the transition from the
2D harmonic oscillator shell structure (b, top) to a fully paired ground
state (bottom).

atoms (see Figure 6.2 a). For weak attractive interactions, these plateaus remain stable
and evidence for the presence of interactions can be observed only at the transitions
between different plateaus when the spill level Vspill approaches the next bound energy
level. Here, we find a strong correlation between particles tunnelling out of the trap,
similar to what has been measured in 1D [Zür12b]. The probability of pair tunnelling
is enhanced and odd particle numbers are strongly suppressed compared to the non-
interacting state (see Figure 6.2 b).

When we increase the interacting strength that is present during the spilling process
even further (EB & ~ωr), the degeneracy of the energy levels of the ground state changes
drastically (see Figure 6.2 c,d). The regions in which we observe the 2D harmonic
oscillator shell atom numbers become smaller and smaller until they are replaced by
a regularly spaced ladder of even atom numbers instead. This measurement indicates
that pair formation is present in the system and that the ground state evolves to a gas
of strongly bound molecules as the interactions are increased until they dominate over
the single particle gap EB � ~ωr.
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6 Emergence of a Quantum Phase Transition

The influence of strong attractive interactions is also revealed by comparing the
absolute depths of the potential Vspill that are required for preparing the same atom
number at different settings for EB (see Figure 6.3 a). At the depth Vspill ≈ 0.2 where
only a single harmonic oscillator level remains bound for a non interacting state and
only two atoms stay in the trap after spilling (grey), we can prepare systems of almost
ten atoms for our strongest interaction setting (dark red), for example. In a mean field
picture, the attractive cloud acts as a second potential well for the atoms in addition
to the optical confinement.

We have also taken measurements in the metastable repulsive branch (see Ref.
[Zür12b]) that show an interaction shift in the opposite direction (see Figure 6.3 a,
blue line). The measurement has been performed at an inverse scattering length of
around lz/a3D ≈ 4, where the effective repulsive coupling strength g ≈ 0.3 is rather
small (see Figure 3.5). For larger repulsive interactions, we expect ferromagnetic corre-
lations as a consequence of Hund’s rule. In our system they would manifest themselves
as additional plateaus that emerge for half filled shell configurations, for example with
N = 4 or N = 9 atoms [Ron09]. When we keep increasing the repulsion in our exper-
iment further, however, the system becomes unstable towards the decay into its lower
ground state on the timescales that are required for our spilling process.

6.1.2 Interactions as a Feature
We use interactions during the spilling process not only to study the sample itself but
also as a tool for improving the preparation cycle. Small attractive interactions preserve
the shell structure and increase the preparation fidelity significantly (see Figure 6.2 b).
Only by performing the spilling sequence at EB/~ωr = 0.6, we are able to achieve the
fidelities of 93(3) %, 76(2) % and 50(2) % for the N = 3+3, 6+6 and 10+10 closed shell
configurations that have been reported previously. Stronger interactions, on the other
hand, allow us to prepare any even atom number independently of the shell structure
with fidelities between 80 % to 50 % for up to N = 7 + 7 atoms (see Figure 6.2 d). This
gives us access to open shell configurations in the experiment. Once the desired atom
number N has been prepared and the optical depth is restored to its hold depth Vhold,
we use an adiabatic magnetic field ramp to set EB independent of the field Bspill and
interactions during spilling.

In conclusion, we have found that interactions have a large influence on the many-
body level spectrum in the trap. Qualitatively, we find strong indications for pair
formation in the ground state as the interactions are increased far above the single
particle gap EHO. To gain a more quantitative understanding, especially about the na-
ture of the ground state in the strongly correlated regime of intermediate interactions
EHO ∼ EB (see Figure 6.2 c), additional measurements are required. Following the
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Figure 6.4: Modulation spectroscopy. We obtain the many-body energy level
spectrum of the interacting mesoscopic Fermi gas in three steps: After
the preparation of the ground state and an adiabatic ramp to the desired
interaction strength EB, the system is excited periodically at some fre-
quency ωex for a fixed time tex. (a). After the modulation, all the atoms
that have been excited to higher harmonic oscillator shells are removed
by a second spilling stage (b) and the remaining particles are counted (c).
At each frequency setting, the experiment is repeated several times (c,
top right). Three qualitatively different histograms of the set of particle
numbers detected at various excitation frequencies are shown for exam-
ple. Far away from excited energy levels in the spectrum, we primarily
count N = 6 remaining particles, indicating that the system remained in
the ground state (top row). Excited state resonances appear as strong
particle loss signals (lower row).

discussion in chapter 2, universal collective behaviour is generally expected in the low
energy excitation spectrum of superfluids. As the next step to investigate the interact-
ing closed-shell configurations, we therefore apply a modulation spectroscopy scheme
to the Fermi gas.

6.2 Excitation Spectrum
We limit our spectroscopic measurements to closed-shell configurations. The interplay
between gapped single particle spectrum and attractive interactions promises to give
rise to particularly complex and interesting collective excitations in this case. We start
by preparing the ground state of two filled shells and N = 3 + 3 particles at small
interaction strength of EB = 0.6 ~ωr. This is followed by an adiabatic ramp of the
magnetic offset field to the interaction strength EB = 0, . . . , 2~ωr we want to probe.
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6 Emergence of a Quantum Phase Transition

6.2.1 Experimental Sequence
To extract the many-body excitation spectrum, we introduce a small periodic pertur-
bation at some fixed frequency ωex or energy Eex = ~ωex to the sample. When the
modulation is resonant to some higher energy state E ′ in the spectrum Eex ≈ E ′−E0,
this leads to a finite transition probability into the excited state (see Figure 6.4 a). To
detect the resonances, we apply our ground state preparation technique for a second
time (see Figure 6.4 b). Atoms that have been excited to higher shells are removed and
the remaining atoms are counted in the MOT (see Figure 6.4 c).

Different modulation schemes are available for our mesoscopic quantum gas. The
choice of the type of periodic perturbation, described by a Hamiltonian H′(t), is im-
portant since it affects the coupling strength to excited levels |e〉 via the transition
matrix elements between ground and excited state 〈e|H′(t) |g〉. Since we are inter-
ested in collective behaviour and interaction effects, we have chosen to modulate the
interaction strength EB of the system. The perturbation with a sinusoidal waveform
has an amplitude of approximately δEB/EB = 2 % and is kept on for a duration of
tex. = 400 ms. The modulation parameters have been determined by optimizing the
signal of the particle loss resonances that we observe (see Figure 6.4 c). Since the
perturbation is spatially isotropic, only monopole excitations between states with the
same total angular momentum are driven. A comparison to other modulation schemes
is found below in section 6.4.1.

Following the discussion in 3.2.8, the naive approach for the implementation of a
periodic interaction strength perturbation is to make use of the Feshbach resonance
and modulate the magnetic offset field B. However, we expect that the excitations in
the many-body spectrum are at energies that are on the order of the single particle
gap or larger ωex/2π & EHO/h ≈ 1000 Hz. Magnetic field modulations with significant
amplitudes are difficult to realize at these frequencies due to the large inductance of the
coils in our experiment. In addition, due to the non-linear behaviour of the Feshbach
resonance (see Figure 3.7), very different modulation amplitudes of the magnetic field
δB/B would be required to keep the interaction modulation depth δEB/EB at each
setting for EB constant.
A preferable method is to modulate the axial confinement strength ωz instead. The

axial confinement determines the size of the wavefunction in z-direction and therefore
directly affects the binding energy EB in the quasi-2D description we apply to our
system (see equation (3.30)). Modulation frequencies of ωex � ωz ensure that the
wavefunction in z-direction follows adiabatically, no axial excitations are created and
the quasi-2D description remains valid. A modulation of the depth of the SWT by 5 %
via the optical power is enough to achieve the desired perturbation of δEB/EB ≈ 2 %.
We have confirmed experimentally that the modulation of the magnetic field and the
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Figure 6.5: Excitation spectrum of the interacting N = 3 + 3 closed shell
ground state. We observe two clear resonances, above (a) and below
(b) the lowest frequency monopole resonance in a non-interacting sample
at ωex = 2ωr (white dashed line). The first one corresponds to single
particle excitations two shells up (a). It is shifted to larger energies by an
attractive mean-field shift. The lower resonance corresponds to coherent
pair excitations, indicated by the strong enhancement of the probability
to detect four atoms P4 (b). Figure adapted from [Bay20a].

axial confinement lead to the same results.

6.2.2 Weakly Interacting Regime
The different atom number detection probabilities PN as a function of the modulation
frequency ωex for a binding energy of EB = 0.33~ωr are shown in the spectrum in Figure
6.5. The probabilities are determined from a set of 45 repeated measurements at each
frequency (see Figure 6.4 c, top right). Two clear atom loss resonances are visible in
the spectrum. The white dashed line indicates the value of 2ωr/2π = 2002 Hz. This is
the smallest frequency at which we expect monopole excitations starting from a non-
interacting closed shell ground state. They correspond to the excitation of a single
atom two shells up (see Figure 6.5 a). Excitations of a single atom by only one shell
up, requiring an energy of only ∆E = 1~ωr, always change the angular momentum of
the system and therefore do not couple to our modulation scheme (see Figure 2.2).

The higher resonance (a) is at ωex = 2π × 2060 Hz, above the expected lowest non-
interacting resonance position. This can be explained by the attractive mean-field
shift we have also observed when spilling in the presence of attractive interactions (see
Figure 6.3). The atom cloud acts as additional potential well, effectively increasing the
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6 Emergence of a Quantum Phase Transition

strength of the confinement for each atom. This leads to some additional interaction
energy cost when exciting a single atom two shells up from the ground state into the
more dilute excited state (see Figure 6.5 a). The probability of detecting four atoms
corresponds to the square of the probability of detecting five atoms P4 = 0.13 % ≈ P 2

5
with P5 = 0.33 % (see Figure 6.4 c). This confirms that resonance (a) corresponds to
the independent excitations of single atoms.

The lower resonance (b) is located at a frequency of ωex = 2π×1890 Hz, significantly
below the lowest non-interaction monopole transition at ωex = 2ωr. Even more striking
is the atom number distribution we observe. At this frequency it is not possible to excite
single atoms and P5 is not enhanced over the background. Instead, the modulation only
produces single pairs of excited atoms, indicated by the strong increase of P4. The lower
resonance (b) corresponds to the coherent excitation of a pair of atoms one shell up
(see Figure 6.5 b).

The simple mean-field model fails to explain the position of the lower resonance at
ωex < 2ωr. Even though the interactions are attractive, they reduce the cost of exciting
a single pair compared to the non-interacting ground state. The effect can be explained
by the interplay of shell structure and binding energy. In the weakly interacting regime
EB = 0.33~ωr < EHO, pairing is suppressed for closed shell configurations. No free
states at the same energy are available for the atoms to increase their wavefunction
overlap and form a pair. This is different for the excited state when a single pair is
lifted from the second to the third shell (see Figure 6.5 b). The excited particles in
the otherwise completely empty shell have several degenerate levels available to them
that they can occupy without additional energy cost. Likewise, the remaining pairs
in the second shell can increase their wavefunction overlap and gain binding energy
by occupying the states that are now free. The pair excitation resonance is a genuine
many-body effect that can only be understood by taking into account all the particles
in the mesoscopic sample.

6.2.3 Interaction Dependence
The intuitive explanation for the frequency shift of the pair resonance holds only in the
weakly interacting regime as long as the shell structure is important EB < EHO. To
understand the evolution of the ground state as a function of the interactions in more
detail, we make use of the Feshbach resonance to vary EB. For each setting we obtain
a spectrum like the one shown in Figure 6.5. We plot the atom loss coefficient, defined
by the ratio between the probabilities of detecting four and six atoms P4/P6, in Figure
6.6. This quantity leads to a strong signal at the pair resonance frequency we want
to track as a function of the interaction strength. At each setting for EB, the data is
normalized to the peak height of the pair correlation peak. The full dataset with the
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Figure 6.6: Low energy spectrum of the N = 3 + 3 closed shell ground state
as a function of interaction strength. The sample is excited by
modulating the interaction strength for a fixed time, except for the data
point at EB = 0 where the radial confinement is perturbed instead. We
plot the normalized atom loss coefficient P4/P6 to track the evolution of
the different excitation branches. Since the data was taken outside the
linear response regime, no direct conclusion about the coupling strength
to the different excitation modes can be drawn. The higher single particle
excitation branch increases monotonously with interactions as expected.
The pair excitations ωex < 2ωr behave non-monotonously and show a
minimum when the binding energy approaches the single particle gap
EB ∼ EHO. Figure adapted from [Bay20a].

distribution of all atom numbers is shown in Figure 6.7 for completeness. The Feshbach
resonance of 6Li does not allow us to access a small region between EB ≈ 0.1~ωr and
0.3~ωr that is greyed out for this reason.

In Figure 6.6 we can follow the different excitation branches, starting from the weakly
interacting limit. The single particle resonance at higher frequencies ωex > 2ωr in-
creases monotonously with the interaction strength. This behaviour agrees with the
expectation of a larger mean-field shift for stronger attraction from our intuitive picture
above. Surprisingly, the lower branches with ωex < 2ωr show a completely different,
non-monotonous behaviour instead. They correspond to coherent excitations of pairs
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Figure 6.7: Atom number detection probabilities PN in the two lowest shells
after modulating the N = 3 + 3 atom ground state. All the
different excitation branches manifest themselves by a reduced probability
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The lower branches mainly consist of pair excitations that are visible
as an enhancement of P4. The higher single pair excitation lead to an
independent loss of particles with most of the signal in P5 and P4 ≈ P 2

5 .
Figure adapted from [Bay20a].

with total angular momentum zero and ±2~ respectively. In Figure 6.5, we have only
observed the lower of the two non-monotonous branches with zero angular momentum.
The presence of the degenerate upper pair excitation branches with non-zero angular
momentum will be discussed in more detail in section 6.3.

The remarkable behaviour of the pair excitation branches can be understood by
starting from the weakly interacting limit. The particles gain binding energy by in-
creasing their overlap using the degenerate empty states available in the excited state,
as explained above. The energy gain increases with attraction strength, explaining the
initial decrease of the pair excitation branch with increasing EB. This picture breaks
down when the binding energy approaches the single particle gap in the spectrum
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6.3 Many-Body Picture

EB ∼ 1 ~ωr. Here, the pair excitation branches have a minimum and they start to in-
crease with increasing attraction strength again. At large binding strengths it becomes
energetically favourable even for the closed shell ground state to have an admixture
of higher lying non-interacting oscillator levels to form pairs. Consequentially, the
strength of pair correlation in the ground state increases significantly once the binding
energy is on the order of or larger than the single particle spacing EB > 1 ~ωr. The shell
structure becomes less relevant and the ground state energy starts to decrease faster
than that of the excited state when the attraction is increased. The non-monotonous
behaviour of the pair excitation branch directly reveals how the nature of the ground
state changes from a predominantly unpaired to a paired state in the different regimes
EB < EHO and EB > EHO. We identify the position of the minimum with the critical
binding energy EC

B ≈ 1.3~ωr.

6.3 Many-Body Picture

To further support the qualitative explanations of our findings above, we have to con-
nect the low energy excitation spectrum that we observe in our mesoscopic system
to the many-body limit. In chapter 2, we have already discussed the infinite particle
number limit of the closed shell configurations of the harmonic oscillator. Pairing is
suppressed at weak binding energies and a quantum phase transition from a normal
to a superfluid occurs at a finite critical binding strength EC

B [Bru14]. In the normal
phase the lowest energy modes in the spectrum correspond to coherent pair excitations.
Their energy cost decreases until the excitation gap closes completely at the transition
point EC

B and the system spontaneously forms Cooper pairs. The superfluid phase has
a universal excitation spectrum and the lowest mode corresponds to amplitude fluctua-
tions of the order parameter with excitation energy ~ωex = 2∆. This mode is generally
also refereed to as the Higgs mode (see Figure 2.7).

The Richardson solution, when applied to the N = 3 + 3 particle system, provides
some means to link our observations in the mesoscopic system to the macroscopic world.
It predicts a spectrum that qualitatively matches what we observe in our experiment
perfectly (see Figure 2.9) and converges towards the BCS solution when the particle
number is increased. A more quantitative connection between experiment and theory
requires a more exact calculation that relies on less rigorous approximations than the
reduced BCS model.

135



6 Emergence of a Quantum Phase Transition

0.0

0.5

1.0

1.5

2.0

Ex
ci

ta
tio

n 
En

er
gy

 E
ex

, [
ħω

r] 

0 1
Binding Energy, EB / EB

C

Normal State Superfluid State

Higgs
Mode

many-body limit

6+6

3+3

3+3

a

Ex
ci

ta
tio

n 
En

er
gy

 E
ex

, [
ħω

r] 

0.0

0.5

1.0

1.5

2.0

2.5b

Binding Energy, EB [ħωr] 
0 0.3 0.6 0.9

4+4

4+4

Figure 6.8: Numerical solution for the excitation spectrum of the meso-
scopic Fermi gas. The lowest monopole excitations for closed shell
configurations of N = 3 + 3 (squares) and 6 + 6 (circles) particles are
shown in (a). The black solid and dotted lines show numerical and an-
alytical solutions of the many-body limit respectively [Bru14]. The blue
and grey lines show additional single particle excitations at higher ener-
gies. The excitation modes in the mesoscopic system are the few-body
precursors of the many-body spectrum and, in the superfluid regime, the
Higgs mode. In (b) the gapless spectrum for the open shell configuration
with N = 4 + 4 atoms is shown as a comparison. Figure adapted from
Ref. [Bje16] with permission.

6.3.1 Exact Diagonalization

In Ref. [Bje16] an exact numerical diagonalization of the microscopic Hamiltonian that
describes our experiment (see equation (2.2)) is performed. This work also represents
the first theoretical proposal of the measurements that we report in this chapter. The
many-body excitation spectrum is calculated as a function of EB and for N = 3 + 3
and N = 6 + 6 particles. Due to the exponential scaling of the Hilbert space, only a
limited amount of harmonic oscillator shells is included and the many-body basis of
non-interacting states is limited to some energy cut-off in addition. Already the next
larger N = 10 + 10 system is too large to achieve a complete numerical convergence as
a function of the energy cut-off [Bje16].

The results of the numerical solutions for closed shell configurations are shown in
Figure 6.8 together with the predictions for the many-body limit (black lines). The
interaction strengths are normalized by the critical binding energies of EC

B = 0.86 ~ωr
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Figure 6.9: Low energy spectrum of the N = 6 + 6 closed shell configu-
ration. The sample is excited by modulating the interaction strength,
except for the data point at EB = 0 where the radial confinement is per-
turbed instead. We plot the normalized atom loss coefficient, defined by
the ratio of the probabilities of detecting ten and twelve atoms P10/P12,
to track the evolution of the different excitation branches. The same
qualitative behaviour as for 3 + 3 particles is observed with higher ly-
ing single particle- and non-monotonous pair excitation modes. Figure
adapted from [Bay20a].

and EC
B = 0.78 ~ωr for 3 + 3 and 6 + 6 particles respectively. The numerical predictions

explain the behaviour of the non-monotonous branches in the spectrum: The observed
pair excitations are the few-body precursors of the coherent low energy modes of the
normal to superfluid phase transition. Compared to the mean-field solution in the
many-body limit, the transition in the mesoscopic system is broadened and the gap in
the spectrum does not close completely at EC

B . As the particle number is increased, the
numerical solution predicts a decrease of the minimal gap and a convergence towards
the many-body solution. In addition, the critical binding energy moves towards smaller
attraction strengths EC

B → 0.
All the qualitative features of the spectrum connected to the phase transition like the

pair character and the non-monotonous interaction dependence of the lowest monopole
mode can be observed in the mesoscopic system, starting already with only two filled
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Figure 6.10: Atom number detection probabilities PN for the N = 6 + 6
atom ground state. All the different excitation branches manifest
themselves by a reduced probability of remaining in the ground state,
corresponding to a reduction of P12. The lower branches mainly consist
of pair excitations that are visible as an enhancement of P10. The higher
single pair excitations lead to independent loss of single atoms that is
visible in P11 to P7. Their average number depends on the modulation
strength. Figure adapted from [Bay20a].

shell or N = 3 + 3 particles. The predictions agree very well with our experiment for
the same particle number (see Figure 6.6). In the strongly paired regime (EB > EC

B)
the lowest excitation we observe in our Fermi gas corresponds to the precursor of
the amplitude or Higgs mode of the superfluid. In accordance with the theoretical
predictions [Bru14], it is long lived and has a measured width of less than 10 Hz,
consistent with Fourier broadening for our modulation time of tex = 400 ms.

6.3.2 Filling the Next Shell
To confirm the picture that the lowest monopole modes act as the precursors of the
many-body phase transition, we also perform measurements in the next larger closed
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Figure 6.11: Quantitative comparison of closed shell configurations with dif-
ferent particle numbers and to the theory. We extract the centre
position of the lowest single particle and pair excitations from Gaussian
fits to the spectra (a). The minimal gap of the lowest pair excitation
mode for the N = 6 + 6 (red circles) system is significantly smaller than
for 3 + 3 atoms (red squares) and the minumum is shifted to a smaller
Ec

B. The excitation modes of pairs with angular momentum (light red)
and of single particles (blue) are shown as a comparison. In (b) the
experimental data for N = 3 + 3 is compared to a numerical solution
of the complete many-body spectrum that includes both anharmonicity
and anisotropy of the trap. The presence of two non-monotonous excita-
tion branches with zero and ±2~ angular momentum pairs respectively
is correctly predicted by the numerical solution. Figure adapted from
[Bay20a].

shell configuration, filled with N = 6+6 particles. Apart from the atom number in the
initial state, the experimental sequence is exactly the same. The resulting spectrum is
shown in Figure 6.9 together with the full dataset including all relevant atom detection
probabilities PN in Figure 6.10.
Qualitatively, we find the same features as in the spectrum of the N = 3 + 3 particle

state. At higher frequencies ωex > 2ωr, there is a dense cluster of single particle
excitations. Their number is much larger than in the system with 2 filled shells as a
result of the increased degeneracy of higher 2D harmonic oscillator levels. The lowest
modes are non-monotonous and generated by pair excitations again (see P10 in Figure
6.10). For a quantitative comparison of the N = 6 + 6 and N = 3 + 3 spectra, we
fit Gaussian peaks to each of the features in the spectrum. The centre frequencies
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6 Emergence of a Quantum Phase Transition

corresponding to the different excitation modes are extracted from the fit and shown
in Figure 6.11 (a). We clearly observe the convergence towards the many-body limit,
already for the first step from two to three filled shells. The minimal gap of the pair
excitation modes decreases significantly and the location shifts to the left.

6.3.3 Numerical Modelling
The numerical solution in Figure 6.8 (a) from Ref. [Bje16] is based on the assumption
of a perfectly harmonic and isotropic confinement. As a result of the exact radial sym-
metry, modes like the pair excitations with ±2~ that change the angular momentum
are absent in the theoretical monopole spectrum. A more accurate model of our ex-
periment can be obtained by taking the non-zero anharmonicity and anisotropy of the
Gaussian optical potentials into account. From measurements of excitation spectra in
the non-interacting system we estimate the anisotropy, defined as (ωx−ωy)/(ωx +ωy),
of our 2D-MT to be around 2 %. The anharmonicity, defined by the energy difference
between the transition between first to second and second to third shell respectively
(E0→1 − E1→2)/E0→1, is on the order of 10 % [Bay20a].
The full many-body level spectrum of the numerical solution for this more realistic

potential for the N = 3 + 3 system together with the experimental measurements are
shown in Figure 6.11 (b). The presence of both the non-monotonous pair excitation
branches is predicted correctly by the more advanced numerical solution. The model
reveals that the upper branch is two-fold degenerate and confirms that the excitations
correspond to pairs with an angular momentum of ±2~. Several monotonous modes
starting at Eex = 1 ~ωr and crossing the spectrum from below are found in addition.
They correspond to excitations of a single atom one shell up and change the angular
momentum of the state by ±~.
Following the discussion in section 6.2.1, the many-body level spectrum alone is

not enough to predict which modes appear in the experimental spectrum. We have
to take into account the coupling of each of the excited states to the perturbation
scheme. In Figure 6.12 we show the numerical spectrum weighted with the normalized
transition matrix elements |〈e|H′(t) |g〉|2 for the periodic modulation of the interaction
strength EB. Both a completely isotropic (a) and an anisotropic (b) model potential are
investigated. Their direct comparison fully explains the observations in our experiment.
The broken radial symmetry leads to a coupling of the modulation scheme not only
to monopole (∆Lz = 0) but also to quadrupole excitations with ∆Lz = ±2~. The
anisotropy is the reason we observe more than one non-monotonous pair branch in the
experiment. The levels in the manifold starting at Eex = 1 with ∆Lz = ±1~ are not
excited on the other hand (to this end a modulation of the trap centre position x+δx(t)
would be required).
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Figure 6.12: Numerical calculation of the transition matrix elements for a
modulation of the binding energy. When we assume a completely
isotropic model potential, the modulation leads to monopole excitations
(∆Lz = 0) alone and only the lowest of the pair excitation modes is ob-
served (a). By introducing a small anisotropy of 2 % the radial symmetry
is broken. In this case the same modulation also couples to quadrupole
excitations with ∆Lz = ±2~ (b). This explains the observation of sev-
eral non-monotonous modes in our experiment. Figure adapted from
[Bay20a].

6.3.4 Limitations of the Model

The numerical model completely explains all of our measurements on a qualitative
level. The quantitative agreement, however, is still not exact even after including
the deviations from a harmonic potential to first order (see Figure 6.11 b). Several
effects can explain the remaining discrepancies. First, compared to the initial solution
in Ref. [Bje16], the slightly broken symmetry complicates the exact diagonalization
procedure significantly [Bay20a]. Even after including up to ten million basis states for
the N = 3+3 system, full numerical convergence as a function of the shell number and
cut-off energy can still not be observed (see Figure 6.13). The 6 + 6 particle system
with broken radial symmetry is completely out of reach. The numerical model can
be used to understand the essential features of the spectrum without providing exact
quantitative predictions.

Regarding the experiment, there are several important approximations that have to
be considered as well. The model potential used in the numerical calculation only
considers the deviation from a harmonic potential to first order by matching the low
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Figure 6.13: Convergence of the numerical model as a function of shell num-
ber and energy cut-off. The implementation of a small anharmonicity
and anisotropy in the exact diagonalization lead to the coupling of many
additional levels (a). This increases the computational complexity sig-
nificantly. No full convergence of the quantitative values of the levels
in the spectrum is observed as a function of the number of harmonic
oscillator shells that are taken into account (b). As a result of the ex-
ponential scaling of the Hilbert space, it is not possible to increase the
cut-off further by a significant amount. The data for the Figure has been
provided by the authors from [Bje16].

energy non-interacting excitation spectrum to experimental data. Especially for higher
oscillator levels (n ≥ 4), we expect that the differences between experimental and
numerical potential are still significant. A much more detailed characterization of the
trap in our experiment would be required to achieve a more precise agreement. Finally,
the numerical model does not consider the presence of the third dimension in our
experiment at all. With a moderate aspect ratio of ωz : ωr ≈ 7 : 1 residual excitations
in axial direction become important as soon as the binding energy approaches the
single particle gap in axial direction EB → ~ωz. Consistent with these considerations,
we observe the largest difference between theory and experiment for largest attraction
strengths.

In conclusion, we find that a quantitative numerical modelling of our experiment is
very challenging. However, this does not affect the interpretation of our findings in
any way. All the qualitative features that we find are robust to small variations in the
microscopic parameters.

142



6.3 Many-Body Picture

Binding Energy, EB [ħωr] 

Ex
ci

ta
tio

n 
En

er
gy

 E
ex

, [
ħω

r] 

At
om

 L
os

s 
Pr

ob
ab

ilit
y 

1  -  P
N

=2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

2.0

1.6

1.7

1.8

1.9

2.1

2.2

2.3

2.4

2.5
N = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.14: Low energy spectrum of the N = 1 + 1 closed shell configu-
ration. The sample is excited by modulating the interaction strength,
except for the data point at EB = 0 where the radial confinement is
perturbed instead. We plot the probability to excite the system above
the ground state, given by 1−P2. Two monotonous excitation branches,
corresponding to the relative (upper mode) and centre of mass (lower
mode) motion, can be observed. The black line indicates the exact an-
alytical solution for two particles in a perfectly harmonic confinement
(see equation (3.30)). Figure adapted from [Bay20a].

6.3.5 Two-Body Limit
We have studied the convergence towards the many-body limit by increasing the num-
ber of filled closed-shells in the ground state from two to three. It is instructive to also
study the opposite direction and investigate the smallest possible system, consisting of
a single filled shell or N = 1 + 1 particles in the ground state. The measured spec-
trum for two atoms and modulation of the binding energy is shown in Figure 6.14. We
observe two excitation modes, both rising monotonously with increasing binding en-
ergy. This demonstrates that the pair excitation we find for larger systems is a genuine
many-body effect and that the presence of a (mesoscopic) Fermi surface is required for
its emergence.

The two particle system can be divided into two single particle problems that describe
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Figure 6.15: Comparison between radial trap frequency ωr and Binding en-
ergy EB modulation. Both spectra were taken in the weakly interact-
ing regime (EB = 0.1 ~ωr) with a radial trap frequency of ωr = 1660 Hz.
The modulation of the radial trap frequency (a) leads to a much stronger
coupling to single particle excitations relative to the depth of the Higgs
mode in the spectrum. This explains our choice of a binding energy
modulation (b) for the study of emergent behaviour. Figure adapted
from [Bay20a].

the relative and centre of mass motion respectively and that can be solved exactly (see
section 3.2). The branch at higher excitation frequencies corresponds to an excitation of
the relative motion. We compare it to the exact analytical solution for a harmonically
confined system that depends on the measured radial and axial trap frequencies and
the magnetic offset field (see equation (3.30)). We find good quantitative agreement
between measurement and theory. The remaining discrepancies can be explained by
the anharmonicity of our potential. Note that the excitation energy Eex of the relative
motion for the two-body ground state does not increase linearly with EB since the
excited state energy shifts with increasing attraction as well (see Figure 3.5 b). In
contrast, EB is defined with respect to the non-interacting energy level.
The second, lower lying branch corresponds to an excitation of the centre of mass mo-

tion. Its presence and interaction dependence can be explained with the anharmonicity
of our potential. When the interaction strength is increased, the wavefunction becomes
smaller. The atoms probe less of the deconfining r4-term and the trap frequency ωr
effectively increases. The same effect has been observed by performing a precise trap
frequency calibration for a many-body system of N ≈ 20 000 atoms trapped in the
SWT (see chapter 8) [Hol18].

144



6.4 Different Modulation Schemes

6.4 Different Modulation Schemes
All the spectroscopic measurements we have presented above make use of the exact same
modulation scheme. The perturbation strength is far outside the linear response regime
and does not allow us to draw conclusions about the coherence or coupling strength of
different modes. In this last section we explore modulations of the modulation scheme
in more detail.

6.4.1 Radial Trap Depth Modulation
The modulation of the axial confinement corresponds to a modulation of the binding
energy EB, one of the intrinsic energy scales of the mesoscopic Fermi gas. An alternative
idea that occurs naturally as well is to instead perturb the second scale energy EH0 =
~ωr that determines the nature of the ground state. In Figure 6.15, we compare the
measurements for both modulations schemes, taken in the weakly interacting regime
(EB = 0.1 ~ωr) for the N = 3 + 3 atom ground state.
The spectra clearly show that a modulation of EB leads to a much stronger coupling

to the pair excitation branches in relation to the higher single particle excitations. This
agrees with the predictions obtained from the numerical model (see Figure 5 in Ref.
[Bje16]) and can also be understood intuitively. A modulation of the radial confinement
ωr corresponds to a perturbation with a single particle operator H′(t) ∝ r2(t) that
couples less to the coherent pair excitation involving many particles. This motivates
our choice of modulating the attraction strength for all the spectroscopic measurements
shown above.

6.4.2 Coherent Control
Up to this point, we have performed the modulation far outside the linear response
regime with δEB/EB ≈ 2 % and tex. = 400 ms. A variation of the modulation strength
allows us to gain further insight into the coherence and lifetime properties of the excited
state. To this end, we drive the lowest pair excitation mode we observe at an attraction
strength of EB = 0.57~ωr at its resonance frequency of ωex = 1480 Hz with different
modulation times (tex). We observe a coherent oscillation between six and four atoms
that dephases for long times (see Figure 6.16 a).

The measurement demonstrates that we are able to coherently create or remove pairs
in the next higher shell. For future studies, this enables us to prepare the mesoscopic
system not only in its ground- but also in highly correlated excited states. By fitting a
damped sine function to the data (solid line), we obtain a Rabi rate of Ω = 2π×8.0(1) Hz
and a damping rate of γ = 4.5(5) Hz. The slow decay sets the lower limit for the
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Figure 6.16: Coherent excitation of the Higgs mode precursor. We study the
atom number detection probabilities PN as a function of modulation
time tex when exciting the N = 3 + 3 system and the lowest pair mode
frequency (a). For each time tex, the measurement is repeated 180 times.
Consistent with a coherent pair oscillation, we observe a response to
the perturbation only in P4 and P6. The Rabi oscillations demonstrate
that, to first order, the mesoscopic system can be treated as a two level
system. The sketch in (b) summarizes the expected evolution of the
low energy spectrum of the mesoscopic system towards the macroscopic
limit. Figure adapted from [Bay20a].

lifetime of the Higgs mode precursor to τ = 1/γ = 222(25) ms, more than a factor 300
longer than its transition period T = 2π/ωex ≈ 0.6 ms. The long lifetime is a result
of the isolated location of the pair excitation in energy and the discrete spectrum in
general and does not require a particle hole symmetry (see chapter 2)[Bru14]. The
remaining dephasing rate γ is consistent with small drifts of the trap frequency ωr we
observe in our experiment. Finally, the results confirm that all our other measurements
with tex = 400 ms are far outside the linear response regime where the oscillations have
completely dephased. This is consistent with the measured pair excitation probabilities
of approximately PN−2 = PN = 50 % for the various spectra (see Figure 6.7).

6.5 Conclusion
In conclusion, we have demonstrated that only a few interacting particles in a meso-
scopic system are enough to observe emergent collective behaviour and the precursor
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of a quantum phase transition from a normal to a superfluid state. When increasing
the particle number, the sample evolves smoothly towards the many-body limit (see
Figure 6.16 b) and no additional qualitative changes, for example for N = 10 + 10
particles, are expected. In the strongly paired regime (EB > EC

B), the pair excitation
can be associated with a Higgs mode that is present as a universal feature of the low
energy spectrum of macroscopic superfluids. Distinct Goldstone modes on the other
hand can not be observed in our small Fermi gas. They are generated by phase fluctu-
ations of the order parameter (see Figure 2.4) and become relevant only once the pair
size or coherence length is smaller than the system size. This is equivalent to the limit
where the many-body gap is much larger than the single particle gap in the spectrum
∆� EHO [Bru01].

The measurements in this chapter demonstrate the richness of emergent collective
behaviour present in mesoscopic systems and starting already at the smallest sizes.
They are obtained, however, by accurate atom number counts alone and their interpre-
tation relies on a precise comparison to exact numerical solutions. To study fermionic
superfluidity and Cooper pairing at a much more fundamental level, independent of
theoretical calculations, we apply our fluorescence imaging scheme to interacting sam-
ples in the next step. As has been demonstrated in chapter 5, it allows us to access the
full momentum distribution with a resolution far below the typical inter-particle spac-
ing. This unique capability enables us to access the pairing correlations that emerge in
the ground state as a function of the attraction strength directly, as we will see in the
next chapter.
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7

Observation of Cooper Pairs
Correlation measurements are a fundamental tool to analyse quantum many-body sys-
tems [Alt04; Sch17]. In chapter 5, we have observed how the Pauli principle manifests
itself through higher order density correlations in a gas of non-interacting fermions
[Hol21b]. Phase transitions, for example between an insulating and a superfluid phase
of neutral atoms in an optical lattice, can be identified directly through density-density
correlation measurements in real or momentum space [Alt06]. However, the amount
of the available information scales exponentially with the system size [Fla12]. It is
therefore essential to identify and detect the correlations that most efficiently describe
the state of matter to be studied [Zac20].

In the case of conventional superconductors, it took almost fifty years after their
discovery [Van10] before the BCS theory was formulated as the first microscopic model
explaining the effect [Bar57]. The key to the solution, found just one year before,
is a mechanism by which bound states can form for two Fermions (a Cooper pair)
on top of a Fermi sea starting already with infinitesimally small attraction strengths
[Coo56]. It was soon understood that pairing correlations are, more generally, the
fundamental ingredient to fermionic superfluidity and superconductivity [Yan62]. Ex-
perimental discoveries in conventional superconductors like the isotope effect [Max50;
Rey51] indicated that the electron-phonon coupling is the origin for attractive inter-
actions between the negatively charged electrons. For many other strongly correlated
fermionic materials like high-TC superconductors, however, it is an ongoing challenge
to find a microscopic explanation. It is believed that genuine fermionic correlations
between itinerant electrons play an important role but the exact pairing mechanism
remains unknown [Lee06; Zho21].
In the previous chapter, we have presented the detection of a precursor of a quantum

phase transition from a normal to a superfluid in our mesoscopic Fermi gas [Bay20a].
The measurement demonstrates that the emergence of complex collective behaviour
can be observed in interacting systems starting at the smallest scales. The observations
were enabled by our deterministic preparation technique and an accurate counting of
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Setup

▪ Microtrap and 2D ODT
▪ ωr = 2p x 1101(2) Hz
▪ ωz = 2p x 7432(3) Hz

Measurement

▪ Time of Flight Expansion
▪ Two State Fluorescence
   Imaging in Free Space

Observable

▪ Momentum Correlations
▪ Single Atom & Spin-
   Resolved

pHO
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▪ N = 3+3, 6+6, 10+10 Atoms
▪ EB = 0 ... 16 ħωr
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Figure 7.1: Experimental sequence for the observation of Cooper pairs. The
state is initialized by preparing closed shell ground state configurations
with up to N = 10+10 atoms in the 2D-MT (a). The interaction strength
EB between both hyperfine components is set by an adiabatic ramp of
the magnetic offset field B that is started once the ground state has been
prepared (b). To study the nature of the ground state as a function of the
interaction strength, we apply our TOF imaging scheme to the system (c).
We instantaneously switch off both interactions and radial confinement
and let the wavefunction expand in the 2D plane formed by the SWT.
After the TOF, we detect the momentum of each atom on our camera by
applying the single atom resolved fluorescence scheme to each spin state
separately and in quick succession (d).

the atom number after exciting the sample and spilling to the ground state. The
interpretation of the detected many-body spectra relied on a precise comparison to
exact numerical calculations and in this way only indirectly gave us insight into the
nature of the ground state. In this chapter, our goal is to go beyond counting the
number of atoms and gain direct access to the fundamental pairing correlations that
characterize the mesoscopic superfluid precursor. This allows us to extract information
about our system much more efficiently and enables us to study the ground state
independently of numerical predictions.

Dilute samples of ultracold neutral atoms are an ideal platform for studying higher
order density correlations [Blo08; Blo12]. Even without single particle resolved imaging
methods, spin resolved density correlations can be accessed in the atomic noise of an
expanding gas [Alt04]. This method has been applied in a large variety of quantum
gas experiments, revealing bosonic and fermionic correlations [Rom06; Jel07] as well
as pairing [Gre05; Ten21] or phase transitions [Föl05; Spi07] through the correlation
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7.1 Spin Resolved Imaging

measurements. With the development of quantum gas microscopy, access to single
atom resolved in-situ density correlations has become a routine approach to study
lattice systems and the Hubbard model [Bak09; She10; Par16; Koe20].
In this chapter, we present measurements that pioneer the study of single particle

resolved density correlations in spatially continuous quantum gases. From a technical
viewpoint the results represent the culmination of all the experimental capabilities we
have developed through the measurements described in the previous chapters. We start
with samples of up to N = 10+10 Fermions prepared in the closed shell configurations
of the 2D harmonic oscillator potential. Our fluorescence imaging technique allows us
to extract the full single atom and spin resolved momentum distribution of the ground
state at any desired interaction strength. In the weakly interacting regime, we directly
observe Cooper pairs in our mesoscopic 2D Fermi gas. They are identified by positive
correlations that emerge between particles with opposite momenta and spin at the
Fermi surface. When the attractions are further increased, we observe how the pair
character changes gradually and we find correlations also inside the Fermi sea. This
indicates that there is a transition from Cooper pairs to more tightly bound molecules
that form independently of the Fermi sea.

Our measurements demonstrate that pair correlations, as the fundamental ingre-
dient to superfluidity, can be accessed directly in interacting systems of mesoscopic
size. We extend the scope of quantum gas microscopy from lattices to continuous sys-
tems and momentum space. Together with the highly programmable environment, our
work establishes a new pathway to study strongly interacting Fermi systems in gen-
eral. We can now address many questions that have been raised in nuclear, atomic or
condensed matter physics (see chapter 9). This chapter is based on the publication in
Ref. [Hol21a].

7.1 Spin Resolved Imaging
For the initialization of the sample, we proceed analogously to the experiments dis-
cussed in detail in the previous chapters (see section 4.2.7). We start by spilling to
the closed-shell ground state configurations with N = 3 + 3, 6 + 6 or 10 + 10 atoms
of hyperfine components |1〉 and |3〉 in the 2D-MT. Once the correct atom number
is prepared, we ramp the magnetic offset field adiabatically to a final value B0 that
sets the desired interaction strength EB = 0, . . . , 16~ωr (see Figure 7.1 a,b). Since we
are interested in the correlations of the ground state itself, no further modulation is
required and we can immediately start the imaging sequence once the sample has been
prepared. The detection procedure can be separated into two parts. First, a free TOF
expansion is used to increase the cloud size by a factor of approximately 50 and to map
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the in-situ momentum of each particle on its final position (see section 4.4.6). Second,
our fluorescence imaging scheme is used to record the position of each single atom with
high detection fidelity and spin resolution on the EM-CCD camera (see section 4.4.3).

7.1.1 TOF Imaging Sequence
The TOF imaging scheme, described in detail in section 4.4.6, enables us to access the
single particle and spin resolved momentum distribution of the ground state (see Figure
7.1 c,d). While the general concept remains the same as for the study of Pauli crys-
tals (see section 5.1.2), important modifications are required in the case of interacting
samples. We begin by switching off the MT that confines the gas radially. This leads
to a quick radial expansion of the wavefunction in the remaining potential given by
the superposition of the optical SWT with ωopt = 2π × 19.1(10) Hz and the magnetic
confinement with ωmag = 2π×12.6(10) Hz. A ballistic TOF expansion maps the in-situ
momentum of each atom onto its final position after an expansion pi → r′i of a quarter
trap period in the harmonic confinement tTOF = T/4. The true in-situ momentum
distribution is obtained only when no scattering events occur during the expansion.
However, for the interacting states studied here, the collision rates in the initial state
are on the order of ν & 10 kHz and much too large for the required TOF of tTOF ≈ 9 ms.
We therefore have to suppress the scattering events by reducing the interaction strength
between both hyperfine components once the TOF expansion starts.

7.1.2 Interaction Switch-Off
The projection of the many-body wavefunction into a non-interacting state has to be
instantaneous to enable us to measure the genuine momentum distribution of the in-
situ state. For scattering rates of up to ν ≈ 50 kHz in the initial sample, a switch-off
time on the order of Tπ . 1/ν = 20 µs is required. The magnetic offset field coils fail
to meet these requirements and therefore it is not feasible to make use of the Feshbach
resonance for this purpose. Instead, we drive a spin flip to change from the initial state
of atoms in hyperfine components |1〉 |3〉 to a |1〉 |4〉 mixture. A pair of Raman lasers
allows us to drive this transition quasi-instantaneously in Tπ = 330 ns for all atoms
initially in state |3〉 simultaneously (see section 4.3). The spin flip is therefore almost
two orders of magnitude faster than required.

There is no Feshbach resonance between the states |1〉 and |4〉 (see section 3.3.2) and
all our observations are consistent with the scattering length a14 being close to zero.
We have, for example, measured the spectrum of a N = 1 + 1 system consisting of
this hyperfine mixture in the 2D harmonic oscillator trap (see Figure 3.5). The first
excited state shows no significant energy shift away from ωex = 2ωr. As a result, we
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Figure 7.2: Sketch of the imaging scheme for interacting samples. The TOF
sequence is initiated by removing the radial confinement provided by the
optical MT. At the same time, a Raman transition into the |1〉 |4〉 mixture
is driven to quasi-instantaneously switch off all collisions (a, 1). A set of
RF Landau-Zener sweeps is used in the following to prepare the system
for imaging (a, 2-3). We make use of the closed imaging transition of hy-
perfine state |3〉 for both initial states. The duration of the initial Raman
transfer Tπ = 330 ns is chosen as fast as technically possible to prevent
the atoms from scattering during the expansion (b). The Landau-Zener
sweeps are optimized for the best possible fidelity in the total available
expansion time TTOF = 9 ms. The duration of the MW flip between both
images is set by the frame rate of the camera. In each experimental cycle
we obtain two raw binary images, one for each of the two spin components
(c). They are analysed by applying a low pass filter followed by a simple
peak detection algorithm. Figure taken from [Hol21a].

can set an upper limit for the scattering length from the precision of our measurement
as |a14| < 500a0, where a0 is the Bohr radius. The small absolute value for a14 together
with the quasi-instantaneous spin flip ensures that collisions during the TOF expansion
are negligible. We estimate that a maximum of one scattering event occurs in 50
experimental cycles for the N = 6 + 6 closed-shell configuration.
The full sequence of spin flips used during the TOF expansion is shown in Figure

7.2. After the Raman transfer to the non-interacting state, we ramp the magnetic offset
field from the value B0, used to set the interaction strength EB in the initial state, to
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7 Observation of Cooper Pairs

B = 750 G in tB = 0.8 ms (see Figure 7.2 a,b). The magnetic field ramp ensures that
the remaining part of the imaging sequence is completely independent of the initial field
B0 and improves the following spin transfer fidelities significantly. Since the atoms are
already in states |1〉 and |4〉 at this point, the magnetic field ramp has no effect on the
collision rate and the system remains non-interacting.

As the next step, we prepare the sample for our fluorescence imaging scheme (see
section 4.4.3). Two counter-propagating illumination beams excite the 6Li atoms in
one of the spin states and we collect the fluorescence light on our EM-CCD camera.
The two spin components are resolved by taking two images in quick succession (see
Figure 7.2 b,c). Without the implementation of a more complex repumping scheme,
the highest atom detection fidelities are obtained for the closed imaging transition of
state |3〉 [Ber18]. Therefore, we use a set of RF and MW Landau-Zener sweeps to
transfer each of the two hyperfine components to state |3〉 prior to its detection. The
first image allows us to determine the position r′i,↑ of all atoms initially in state |1〉 after
the TOF. Likewise, the second image shows the atoms initially in hyperfine level |3〉.
The atoms of the second spin component rest in state |4〉 while the first image is taken.
Therefore, they are detuned by many-orders of magnitude (∼ 2 GHz) compared to the
natural linewidth of the imaging transition (∼ 6 MHz) and do not scatter any photons
from the illumination lasers that are switched on and resonant to level |3〉 during that
time.

7.1.3 Data Analysis
In each experimental run, we obtain two binary images, corresponding to the two
hyperfine components |1〉 and |3〉 in the initial state. We analyse the images by applying
a low pass filter and a peak detection algorithm (see Figure 7.2 c). Peaks with an
amplitude above a given threshold are identified as atoms and their location is recorded
(see section 4.4.3). This leads to a set of final atom locations r′i,↑ and r′i,↓ (i = 1, . . . , N)
for each experimental repetition.

In the first set of measurements, we only continue to analyse images where the correct
total number of atoms N = N↑ + N↓ has been detected. This leads to postselection
rates of only ≈ 5 % for the N = 6 + 6 atom ground state, significantly lower than
what would be expected, for example from the Pauli crystal measurements (see section
5.1.3). The reason is the low fidelity of the simultaneous Raman transfer of six atoms
in state |3〉 to state |4〉 of only ≈ 10 % at the beginning of the detection sequence. The
spin flip fidelity is currently limited by technical issues that have to be studied in more
detail in the future. Since preparation and imaging scheme are completely independent
in our experiment, the low postselection rate does not affect the interpretation of our
data. The small fidelity simply increases the runtime required to obtain the same target
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7.1 Spin Resolved Imaging

number of images where all atoms have been detected.
After the TOF expansion, the final positions of the atoms on the camera r′i,σ cor-

respond to a projection of the many-body wavefunction in momentum space. For in-
teracting initial states we cannot get additional access to the real space in-situ density
distribution with our expansion scheme (in contrast to the Pauli crystal measurements
where both bases are equivalent, see section 5.1.2). To study fermionic superfluidity
momentum space imaging is advantageous, however, since it allows us to access the rel-
evant correlations, like Cooper pairs, directly. In chapter 9 we introduce an enhanced
expansion scheme to extract in-situ density correlations with single atom resolution in
addition.

The mapping between final position r′i and in-situ momentum pi is slightly more
complex in the interacting case compared to the Pauli crystal measurements. The atoms
transferred to state |4〉 at the beginning of the detection sequence expand in a low-field
seeking state. The other component remains in the high-field seeking lower manifold.
The combined trapping potentials during the expansion are therefore given by the sum
and difference of the optical and magnetic confinements respectively ω2

TOF ≈ ω2
opt±ω2

mag.
In addition, due to the small delay between both images, the expansion times for each
spin component are slightly different with ttof,↑ = 9 ms and ttof,↓ = 9.2 ms. To obtain
the correct map r′i,σ → pi,σ in both cases, we numerically solve the full equations of
motion for the ballistic expansion. The solution also takes into account the Gaussian
shape of the optical trap. It allows us to accurately convert the measured positions to
the same in-situ momentum coordinate basis r′i,↑, r′i,↓ → pi,σ and to express them in
natural units of the 2D harmonic oscillator potential pHO.

7.1.4 Characteristic Scales
The harmonic confinement in radial direction ωr = 2π × 1101(2) Hz defines a natural
momentum scale pHO =

√
~mωr for the system, where m is the mass of the 6Li atoms.

The Fermi energy of the ground state is EF = (nF + 1) ~ωr, where nF =
√

2N + 1/4−
3/2 denotes the principal quantum number of the highest filled harmonic oscillator level
and N = 1, 3, 6, ... is the single-spin atom number. We define the Fermi momentum
according to its continuum equation as pF =

√
2mEF =

√
2(nF + 1)pHO. For our

mesoscopic system the momentum distribution of the harmonic oscillator states at
the Fermi surface (i.e. with energy Ei = EF) is rather broad, with a width on the
order of pHO. Therefore, our definition of pF is not unique and, in contrast to EF, an
unambiguous definition is not possible. Nevertheless, the microscopic sample can be
characterized by two distinct momentum scales pHO and pF and the introduction of pF
is useful even for small particle numbers. Our choice ensures that the correct value is
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7 Observation of Cooper Pairs

approached in the infinite particle limit N →∞ and when a LDA becomes applicable.
In conclusion, our imaging scheme allows us to obtain a projection of the full spin and

single particle resolved momentum distribution of the interacting many-body wavefunc-
tion in each experimental cycle. The measurements correspond to a set of N = N↑+N↓
momentum values pi,σ and therefore contain much more information than the atom
counts collected in the previous chapter. Density correlations in momentum space of
any order can be calculated from the images directly. The resolution of the setup for
atoms in the same spin component was already studied in detail in section 5.1.4 and
is, with dmin ≈ 0.2 pHO, far below the typical inter-particle spacing. Atoms in different
spin components are detected on separate images and can be resolved independently
of their distance. The accuracy with which the momentum of a single atom can be
determined is on the order of the PSF given by 0.1 pHO (see section 4.4.5).

7.2 Momentum Correlations
To study the nature of the ground state of our mesoscopic Fermi gas as a function of
the interaction strength, we take 1000 samples of the momentum wavefunction at each
setting for EB (see Figure 7.3). The images are postselected only for the correct total
number of atoms in each state.

7.2.1 Second Order Correlations
To search for pairing correlations, a natural choice is to start with the second order
density correlation function C(2) for opposite spins, defined as:

C(2)(p↑,p↓) = 〈n(p↑)n(p↓)〉 − 〈n(p↑)〉〈n(p↓)〉. (7.1)

Here, n is the density operator and 〈...〉 denotes the average over all images. The
correlation function C(2) expresses the conditional probability of detecting a spin up
particle with momentum p↑ given that a reference spin down atom was detected at p↓.
We subtract the trivial contribution from single particle densities 〈n(p↑)〉〈n(p↓)〉 to the
distribution in our definition. In 2D, second order density correlations depend on four
coordinates. To visualize the data, they have to be processed further.

7.2.2 Relative and Centre of Mass Coordinates
A first possibility that appears naturally is to transform the data to relative and centre
of mass coordinates C(2)(p↑,p↓) → C(2)(pR,pC), where pR = p↑ − p↓ and pC = (p↑ +
p↓)/2. A 2D correlation function can be obtained, for example, by integrating over

156



7.2 Momentum Correlations

pHO
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26

Figure 7.3: Samples of the N = 6 + 6 wavefunction at EB = 1.97~ωr in mo-
mentum space. The images have been postselected for the correct num-
ber of atoms in each state. The dashed circle indicates the Fermi momen-
tum pF =

√
6 pHO. There are many images where particles with opposite

spin and momenta are detected close to the Fermi surface (5,6,10,16,...).
Figure taken from [Hol21a].

either of the variables. We define the pair correlation functions in relative and centre
of mass momentum coordinates as

C(2)
R (pR) =

∫
dpC C(2)(pR,pC),

C(2)
C (pC) =

∫
dpR C(2)(pR,pC).

(7.2)

They illustrate at which relative (pR) and centre of mass (pC) momenta pairs consisting
of one spin up and one spin down atom are more frequently detected.

In Figure 7.4, the measured pair correlation functions for the N = 6 + 6 closed-shell
ground state configuration are shown as a function of the interaction strength EB. In
the non-interacting limit EB = 0, no significant signal above the background from
single particle densities is detected. Both spin components are completely uncorrelated
as expected (a, f). This is different, when the attraction is increased. Significant
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Figure 7.4: Second order momentum correlations in relative and centre of
mass coordinates for the N = 6 + 6 particle ground state. The
2D pair correlation functions CR(pR) and CC(pC) as a function of the
interaction strength EB are shown in (a-e) and (f-h) respectively. The
dashed circles indicate the value of twice the Fermi momentum 2pF. In
panels (k-o), we show the radial average of the relative pair correlation
function (a-e) in addition. Figure taken from [Hol21a].

positive correlations are measured for pairs with a relative momentum around twice
the Fermi surface pR & 2pF (b-e) and with zero centre of mass momentum pC ≈ 0 (g-j).
The weight of the peak increases monotonously with increasing interaction strength
EB. For small relative momenta pR < 2pF and large centre of mass momenta pC � 0
we find small negative correlations, indicating a reduction of detected pairs with these
properties compared to what would be expected from the cloud density alone.

The measurements demonstrate how pairing and collective behaviour emerge in the
mesoscopic Fermi gas as the attraction strength is increased. In the previous chapter,
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7.2 Momentum Correlations

we have observed the precursor of a normal to superfluid phase transition indirectly
by accessing the low energy excitation spectrum of the same system. The momentum
space imaging allows us to directly access the pair correlations in the ground state as
the fundamental ingredient of superfluidity and it reveals the emergent behaviour by a
sharp peak at zero centre of mass momentum (see Figure 7.4 f-j).

The measured pair correlations are completely radially symmetric as expected for the
geometry of our 2D trap. The width of the centre of mass momentum distribution of
the pairs can be explained by the finite size of our system and is given by ≈ 1/2 pHO, in
agreement with bosons of twice the atomic mass Mpair = 2m in the harmonic oscillator
ground state (see section 5.1.3). In relative coordinates, the positive correlations start
to appear at twice the Fermi momentum pR ≈ 2pF (see Figure 7.4 k-m). This, together
with the small centre of mass momentum, indicates that pairing is localized at the
Fermi surface. For larger binding energies, positive correlations are present also at
much larger relative momenta pR � 2pF (see Figure 7.4 m-o). This indicates that a
transition to more tightly bound molecules occurs.

The fixed particle number, in contrast to a grand canonical ensemble, explains the
negative signal at smaller relative momenta: positive correlations at one location always
go hand in hand with negative correlations at a different location in momentum space.
The total particle number has to be conserved. From the visualization of C(2) in Figure
7.4 alone, it is difficult to decide if particles inside the Fermi surface are paired as well.
The relative angle between the spin up and down atoms is not taken into account.
In addition, the positive correlations in relative coordinates C(2)

R are spread out over
a large area in momentum space, reducing the signal to noise ratio. To reveal the
character of pair correlations directly, a different representation of the four dimensional
(4D) correlation function C(2) is required.

7.2.3 Cooper Pairs and Molecules
An alternative visualization of the correlation function C(2) can be obtained by fixing
the position of the spin down particle to some reference momentum p↓ → p↓. For
each choice of the reference momentum p↓ we obtain a different 2D slice of the 4D
correlation function C(2)(p↑,p↓) → C(2)

p↓
(p↑). In Figure 7.5, the data are shown as a

function of the interaction strength EB and for the N = 6 + 6 closed shell ground state
configuration. Here, we have taken advantage of the radial symmetry of our system to
improve the signal to noise ratio as explained in the following.

It is useful to transform the data to polar coordinates, denoted as p → (p, φ), such
that C(2)(p↑,p↓)→ C(2)(p↑, φ↑, p↓, φ↓). As a result of the radial symmetry of our meso-
scopic system, the correlation function depends only on the relative angle between both
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7 Observation of Cooper Pairs

particles ∆φ = φ↑−φ↓ but not on the absolute values of φ↑ and φ↓. All the points with
the same p↑, p↓ and ∆φ, are equivalent and the second order density correlations can
be expressed as C(2)(p↑, φ↑, p↓, φ↓) ≡ C(2)(p↑, p↓,∆φ). Finally, we fix the position of the
reference particle to some range in momentum space p↓ → p↓ ∈ [p1, p2], as explained
above, and obtain:

C(2)
p↓

(p↑,∆φ) =
∫ p2

p1

∫ 2π

0

∫ 2π

0
C(2)(p↑, φ′↑, p′↓, φ′↓) δ(∆φ− (φ′↑ − φ′↓)) p′↓ dp′↓ dφ′↓ dφ′↑. (7.3)

The 2D density plots of C(2)
p↓

in Figure 7.5 express at which momentum p↑ and relative
angle ∆φ a detection of a spin up particle is enhanced, given that a spin down atom
is located in a momentum range p↓ and at angle φ = 0. The black cross in each image
indicates the average momentum of the spin down particle, averaged over all images
that contribute to the given momentum range (i.e. where an atom has been detected
in the range [p1, p2] indicated by the black horizontal bars). We display two different
momentum bins for the reference particle inside the Fermi sea p↓ ∈ [0.5 pHO, 1.5 pHO]
(a-e) and at the Fermi surface p↓ ∈ [2 pHO, 3 pHO] (f-j). The dashed circles indicate the
location of the Fermi surface for the N = 6 + 6 particle ground state pF =

√
6 pHO.

The measurements reveal how the character of pairing in the ground state is affected
as a function of the interacting strength. For small binding energies EB . EF correla-
tions are strongly suppressed inside the Fermi sea (see Figure 7.5 a-d). At the Fermi
surface however, significant positive correlations appear as soon as the binding energy
reaches the order of the single particle gap EB ∼ EHO (f-i). A significant surplus of
particles with opposite momentum to each other p↑ = −p↓ or ∆φ = π and located at
the Fermi surface p↑,↓ ≈ pF is detected. These features allow us to identify Cooper pairs
that we can observe directly in the ground state of our strongly correlated mesoscopic
Fermi gas.

When increasing the attraction strength even further (EB � EF), the weight in
the correlation peaks increases significantly (see Figure 7.5 i-j). We observe how pair
correlations emerge also inside the Fermi sea p↑,↓ < pF (d,e). This indicates that a
transition from Cooper pairing at the Fermi surface to more tightly bound molecules
takes place. We observe the mesoscopic precursor of the 2D BCS-BEC crossover in
the ground state (see section 2.2.4). To ensure that the pairs remain 2D and the
condition EB < ~ωz remains fulfilled, we have reduced the radial confinement to ωr =
2π × 343(5) Hz for all measurements in the molecular regime.

7.2.4 Mesoscopic Cooper pairs
The density-density correlation function C(2) allows us to identify Cooper- and molecu-
lar pairing in the ground state of our mesoscopic Fermi gas through positive correlations
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Figure 7.5: Second order momentum correlations for the N = 6 + 6 particle
ground state. The density plots (a-j) show C(2)

p↓
, the normalized proba-

bilities of detecting a spin up particle with momentum p↑ given that a spin
down particle is located at p↓ (black cross) in the same run. The dashed
black circle marks the Fermi momentum pF ≈ 2.45 pHO. In the weakly
interacting regime (EB < EF) pairing is suppressed inside the Fermi sea
(a-d) and significant correlations appear only at the Fermi surface (f-i).
For much stronger interactions, the Fermi surface is broken up and pair
correlations are found at any momentum (e-j). This indicates a transition
from Cooper pairing to molecules. Figure taken from [Hol21a].

for particles at opposite momenta. An even more intuitive and direct picture of Cooper
pairing can be obtained by studying the single atom resolved samples of the momentum
distribution. In Figure 7.6 we have highlighted all pairs of particles with opposite spin
that are detected close to the Fermi surface with p↑,↓ > 2/3pF and opposite to each
other with 150° < ∆φ < 210°. Two sets of images are shown for a setting with larger
attraction strengths EB = 1.97 ~ωr (a) and in the non-interacting regime EB = 0 (b)
respectively.

In the strongly interacting regime, it is significantly more likely to detect pairs at
the Fermi surface than for the non-interacting sample. These additional pairs directly
contribute to the positive correlation peak we have observed at the Fermi surface in
Figures 7.4 and 7.5. Our detection scheme allows us to directly image Cooper pairs, the
fundamental constituents of conventional superconductors. The pairs are not always
located exactly at the Fermi surface or opposite to each other. This can be explained
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EB= 1.97 ħωr 

a

b

EB= 0 ħωr 

Figure 7.6: Projections of the momentum space wavefunction for two differ-
ent interaction strengths. All detected pairs of atoms with opposite
spins, opposite momenta and close to the Fermi surface are highlighted.
The set of images has not been postselected other than for the correct
total number of atoms. In the sample of the interacting ground state (a)
we find significantly more pairs than in a non-interacting case (b). These
pairs correspond to the peak at opposite momenta in the second order
density correlation function. Figure adapted from [Hol21a].

by the finite size of our system. The Fermi surface pF is not sharply defined in our
mesoscopic sample but has a width on the order of the harmonic oscillator momentum.
As a result, the centre of mass momentum of the pairs pC = (p↑ + p↓)/2 fluctuates
around zero with a distribution of a width ∆pC ≈ 0.5 pHO close to the expectation from
the ground state wavefunction of a pair with Mpair = 2m (see Figure 7.4 f-j).

7.3 Emergence of Pairing
At second order, we find significant correlations only between particles with opposite
momenta p↑ = −p↓ (see Figures 7.4 and 7.5). This motivates a further reduction of
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Figure 7.7: Opposite Momentum Pair Density C(2)(p) for the N = 6 + 6
atom ground state. The correlation function visualizes at which mo-
menta p pairs of atoms with opposite momenta p↑ = p↓ are detected
more frequently. The vertical dashed line marks the Fermi momentum
pF. In the weakly interacting regime EB . ~ωr, pairing starts to emerge
at the Fermi surface (a-c). When the interactions are further increased,
the weight in the correlation peak increases significantly and its maxi-
mum moves towards smaller momenta, below the Fermi surface (d-e). We
compare the measurements to the predictions from the BCS theory (blue
line) and a model system consisting of non-interaction molecules (solid
black line). Figure taken from [Hol21a].

the four dimensional correlation function C(2) that enables us to study the emergence
of pairing in our mesoscopic Fermi gas also from a more quantitative point of view. We
define the opposite momentum pair density as C(2)(p↑ → p,p↓ → −p) (see equation
(7.1)). Due to the radial symmetry of our system, C(2)(p,−p) ≡ C(2)(p) must depend
only on the magnitude of p and can be expressed as 1D correlation function. The
opposite momentum pair density C(2)(p) as a function of the binding energy is shown in
Figure 7.7. We divide the following discussion into three different regimes of pairing we
identify in our system. The weakly paired regime EB . ~ωr, the regime of intermediate
interaction strength EB ∼ EF & ~ωr and the limit of strongly bound molecules EB �
EF.
In the weakly interacting regime, pairing correlations start to emerge at the Fermi

surface of the system (see Figure 7.7 a-c). Consistent with our previous observations,
they become much stronger with increasing interaction strength and their maximum
starts to move towards lower momenta (d-e). We compare measurements to the BCS
theory and a sample of non-interacting molecules as simple mean field models for our
Fermi gas. We do not expect these models, valid only in the large particle number
N →∞ and weak and strongly interacting limits EB → 0,∞ respectively, to produce
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accurate quantitative predictions for mesoscopic systems sizes or in the regime of in-
termediate interactions. Nevertheless, for our sample of only N = 6 + 6 particles most
of the qualitative features can already be found.

7.3.1 BCS Theory
The opposite momentum pair density C(2)(p) can be calculated directly in the BCS
theory. Using our definition in equation (7.1), we obtain

C(2)(p,−p) = 〈c†p↑cp↑c†−p↓c−p↓〉 − 〈c†p↑cp↑〉 〈c†−p↓c−p↓〉 , (7.4)

where c†pσ and cpσ are the fermionic particle creation and annihilation operators respec-
tively. Both expectation values can be evaluated for the BCS ground state by applying
the Bogoliubov transformation (see section 2.2.3). The particle creation and annihila-
tion operators are replaced by fermionic quasi-particle operators (γkσ, γ

†
kσ) and we make

use of the fact that the BCS ground state is the quasi-particle vacuum γkσ |BCS〉 = 0
to arrive at:

C(2)(p) = N 2 ∆2

4(ξ2
p + ∆2) . (7.5)

Here, ∆ is the superfluid gap, and ξp = p2/2m−EF is the free particle dispersion with
respect to the Fermi energy. The normalization factor N is determined by fixing the
total particle number in the non-interacting limit (∆ = 0):

N↑ =
∫
〈c†p↑cp↑〉 dp = 2πN

∫ ∞

0
v2
pp dp. (7.6)

In 2D, we can replace the superfluid gap by its mean-field value ∆ =
√

2EBEF in terms
of the two-body bound state [Ran89] (see section 2.2.3).

7.3.2 2D Molecules
An even more simple model for our mesoscopic system, valid in the strong binding
regime EB → ∞, is to assume that the particles form bosonic dimers that are non-
interacting and all occupy the n = 0 harmonic oscillator ground state. The binding
energy of each dimer is directly given by EB and for the relative wavefunction of the
two-body state we take the ansatz [Zwi06]:

Ψrel(r) =





a1 × e−r/rB for r > rB,

− log r
rB

+ a2 for r0 ≤ r ≤ rB,

a3 × e−r2/r2
b + a4 for r < r0.

(7.7)
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Here, the coefficients ai are chosen such that the wavefunction is continuously differ-
entiable and normalized to the correct total particle number. The molecular binding
length is given by rB = ~/

√
2mEB and r = |r↑ − r↓| is the distance between both parti-

cles. We have introduced a short distance cut-off r0 = 0.1 rB to remove the logarithmic
divergence for r → 0. We have confirmed that this renormalization does not effect the
calculated density correlations at the relevant momenta.

The total wavefunction of the ground state is then given by N independent copies of
the total wavefunction Ψtot(r↑, r↓) = Ψcom(r↑, r↓)Ψrel(r↑, r↓), where the centre of mass
motion is described by the harmonic oscillator ground state Ψcom(r↑, r↓) → Ψ0,0(R)
(see equation (5.1)). We calculate the second order opposite momentum pair density
C(2)(p) numerically by applying a 2D Fourier transform into momentum space and
evaluating the expectation values directly. In the limit EB → ∞ and ∆ → ∞ , the
BCS ground state converges to the limit of non-interacting bosonic dimers. In this
sense the two mean-field models describe the limits of weakest EB → 0 and strongest
interactions EB → ∞ between the fermionic particles and in the macroscopic limit
N →∞.

7.3.3 Emergence of Pairing
The BCS theory can qualitatively explain our measurements in the weakly interacting
regime. A pair correlation peak with a maximum at pF, we also find as the main feature
in our measurements, is predicted (see Figure 7.7, blue line). The weight in the peak
increases with increasing binding energy, while its maximum position stays the same.
For 2D non-interacting molecules, on the other hand, we expect pair correlations with
a maximum at zero momentum p = 0 (black line). For stronger binding energies, we
observe how the system evolves towards this limit (see Figure 7.7 e). Note that at the
strongest binding energies of EB ≈ 16 ~ωR we can currently access in our experiment
the interaction between molecules is still very large. The interaction parameter of our
mesoscopic system is then ln(kFa2D) ≈ −0.5, corresponding to an effective molecular in-
teraction parameter of g̃ ≈ 15 [Rie15a] (see section 2.2.4). To reach the strongly bound
limit of non-interacting bosons, we would have to increase the interaction strength even
further.

From the opposite momentum pair density C(2)(p) we can extract the total number
of pairs in the ground state. To this end we perform the 2D integral

Npair =
∫
C(2)(p,−p) dp = 2π

∫
C(2)(p) dp. (7.8)

The result, as a function of the interaction strength, is shown in Figure 7.8 together
with the prediction from the BCS limit. For the model of non-interacting molecules,

165



7 Observation of Cooper Pairs

0.0

0.5

1.5

2.0

2.5

3.0

3.5

-0.5

4.0

4.5

1.0

0 6 842
EB / ħωr

10 12 14 16

N
um

be
r o

f O
pp

os
ite

 M
om

. P
ai

rs
, N

Pa
ir

EB
 C

Experiment
BCS Limit
Shifted BCS

EB
 C

2.50.0 0.5 1.51.0 2.0

0.0

0.4

0.8

1.2

0.2

0.6

1.0

Weakly
Interacting

Intermediate
Interaction Strength

Strong
Binding

Figure 7.8: Number of pairs in the N = 6 + 6 closed-shell configuration
as a function of interaction strength. We obtain the pair number
by integrating over the opposite momentum pair density in momentum
space. The measurement reveals directly how the ground state evolves
from an unpaired to a paired system. A precursor of a phase transition
from a normal to a superfluid is expected at a critical binding energy
of EC

B = 0.78 ~ωr in our mesoscopic system (see chapter 6). We shift
the BCS theory prediction (solid line) by the critical value EC

B as first
order approximation of the finite size effect (dotted line). Compared to a
macroscopic sample, the small and fixed particle number leads to a much
smoother transition. The inset shows the weakly paired region in more
detail. Statistical errors are on the order of the symbol size. Figure taken
from [Hol21a].

we always obtain the maximum possible pair number for the N = 6+6 particle ground
state Npair = 6 by definition. In the weakly interacting regime, only a small fraction of
the system is paired. The number of pairs grows monotonously as EB is increased to
around 1 ~ωr and then levels off for even larger values.

The behaviour of our mesoscopic Fermi gas can be understood by its connection to
the macroscopic limit we have discussed in detail already in the previous chapter in
section 6.3. The BCS theory predicts a superfluid ground state for our system at any
value for the interaction strength. When the system size is decreased, however, until
the coherence length is on the order of the system size quantum confinement effects
become important. For the closed shell ground state configurations, the gap of 1 ~ωr in
the single particle spectrum leads to a breakdown of superfluidity at some critical value
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EC
B as the attraction strength is reduced [Bru14]. A precursor of this phase transition

between normal and superfluid can already be observed for mesoscopic particle numbers
[Bje16; Bay20a]. For N = 6 + 6 atoms, a value of EC

B = 0.78 ~ωr is predicted by a
numerical calculation based on the exact diagonalization of the Hamiltonian [Bje16]
(see section 6.3.1).

We model the finite size effect to first order by offsetting the mean-field BCS pre-
diction by the critical value EC

B for the N = 6 + 6 particle closed-shell configuration.
In the weakly interacting regime (EB . ~ωr), the shifted model explains the measured
transition into the paired ground state as a function of the interaction strength very
well (see Figure 7.8 dotted line). As a result of the small and fixed particle number, the
transition is much smoother than the sharp onset of pairing that would be expected in
the macroscopic limit.

The large single particle gap ~ωr ≈ h × 1 kHz ≈ kB × 50 nK can be seen as an
important feature of our experiment. It allows us to access the weakly paired regime
at much larger absolute energy and temperature scales than what would be required
for larger systems. For measurements in macroscopic Fermi gases, the spacing in the
single particle spectrum is typically much smaller, for example on the order of ~ωr ≈
h × 20 Hz ≈ kB × 1 nK (see chapter 8). Here, the absolute critical temperature for
the onset of pairing in the weakly paired regime (∆ . ~ωr) is far below what can
currently be reached in ultracold quantum gas experiments TC ≈ ∆/kB . 1 nK. This
can be observed in the study where we have measured the phase diagram of BCS-BEC
crossover for example [Rie15a] (see Figure 2.6). In contrast to the mesoscopic system,
the superfluid at small temperatures T < TC in the BCS limit cannot be reached
experimentally in the macroscopic limit.

When further increasing the interaction strength, we enter the strongly correlated
regime on intermediate interactions EB ∼ EF. Here, the measured number of pairs
Npair is significantly larger than the mean-field prediction (see Figure 7.8). In this
regime, fluctuations of the many-body gap around its mean-field value ∆ have to be
considered in order to obtain a more accurate quantitative prediction [Ran89]. A
promising analytical approach that includes such effects and can be solved exactly
for mesoscopic systems is provided by the reduced BCS Hamiltonian [Del00]. It was
originally introduced in the context of nuclear physics and has already been discussed
in detail in section 2.3.2.

7.3.4 Richardson Model
The Richardson solution provides an exact analytical solution to the reduced BCS
model, independent of mean-field approximations and for systems with a small and fixed
particle number (see section 2.3.3). However, the reduced BCS Hamiltonian describes
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7 Observation of Cooper Pairs

the contact interactions in our mesoscopic Fermi gas only approximately. The same
coupling strength g between all harmonic oscillator levels is assumed, independent of
their wavefunction overlap (see section 2.3.2). It is not clear if this approximation of
the interaction term in the Hamiltonian is justified in the mesoscopic limit as N → 0.
From the analytical Richardson solution (see equation (2.41)), we obtain the ground

state wavefunction in the basis of 2D non-interacting harmonic oscillator levels. This
allows us to calculate the opposite momentum pair density C(2)(p) numerically. The
results for the N = 3 + 3 particle ground state configuration and a dimensionless
coupling parameter of g = 0.06 are shown in Figure 7.9 (red line). An interaction
strength of EB = 0.2 ~ωr in terms of the binding energy is determined by solving the
N = 1+1 system for the same coupling strength g = 0.06. In addition, we also show the
angular pair density, defined as C(2)(φ) = C(2)(p↑ = 1.2 pHO, p↓ = 1.2 pHO,∆φ = φ). The
angular correlation function C(2)(φ) expresses at which relative angle φ the probability
to detect a pair of particles is enhanced when both atoms have the same absolute
momentum p↑ = p↓ = 1.2 pHO.
The Richardson model predicts the presence of significant pair correlations already at

very small attraction strength EB = 0.2 ~ωr in the N = 3+3 particle ground state. The
correlations appear between particles of opposite momenta φ = π and their maximum is
significantly below the Fermi surface p ≈ 1.2 pHO < pF. Even in the weakly interacting
regime, the model predicts strong pairing with molecular character. This indicates that
the approximations of the contact interactions in the reduced BCS Hamiltonian are not
justified in the mesoscopic limit and a more accurate description of our system has to
be applied.

We compare the solution from the Richardson model to a trial many-body wave-
function for N = 3 + 3 particles (see Figure 7.9 blue line). The trial wavefunction is
obtained by assuming that the interacting ground state is a superposition of all possi-
ble combinations of time-reversed pair excitation above the ground state, weighted by
their excitation energy N ∝ 0.02Eex./~ωr (see section 2.3.2). The trial wavefunction has
the same occupation probability pGS = 88 % of the non-interacting ground state as the
Richardson solution for g = 0.06. The overlap between both many-body wavefunctions
is |〈Trial| |Rich.〉|2 = 97 %.
While the trial wavefunction overlaps almost perfectly with the Richardson solution,

the predicted pair correlations are significantly different (see Figure 7.9). Even though
the occupation probability of the non-interacting ground state for both wavefunctions is
the same, the weight in the correlation peak for the trail wavefunction is much smaller.
In addition, the maximum is shifted towards higher momenta p.
The trial wavefunction represents a simple guess of the many-body state and does

not allow us to make further predictions. However, its comparison to the Richardson
solution demonstrates the high sensitivity of our observables. Single particle resolved
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Figure 7.9: Second order density correlations in the Richardson model for
the N = 3 + 3 ground state. The opposite momentum pair density
C(2)(p) shows large positive correlations already for small binding energies
EB = 0.2 ~ωr (a, red line). Most of the pairs appear between particles of
exactly opposite momenta φ = π as demonstrated by the angular corre-
lation function C(2)(φ) (b). The maximum of the momentum pair density
is around p = 1.2 pHO, significantly lower than the Fermi momentum of
pF = 2 pHO for this system size. The blue line shows the same correlation
functions for a trial wavefunction that is created by the excitation of time
reversed pairs.

correlation measurements can reveal even the smallest changes in the many-body wave-
function. Our measurements can act as a benchmark to test different theoretical ap-
proaches with high accuracy. While the Richardson model, in its basic form, does not
result in a quantitative agreement with our measurements, it nevertheless shows most
of the qualitative features. A promising approach is to implement the contact interac-
tions of our Fermi gas more accurately, for example using a variational method [Cla17],
in the future.

7.3.5 Many-body limit
In Figure 7.10, a first dataset for different particle numbers is shown. We have measured
the pair number Npair in the ground state as a function of the number of filled shells at
a fixed interaction strength of EB = 1.2 ~ωr. We find a linear increase in the absolute
pair number with the particle number that indicates a constant pair fraction Npair/N
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Figure 7.10: Measurement with different particle numbers. Our measurements
of single particle and spin resolved momentum distributions can directly
be extended to states with other particle numbers (a-c). The dashed
lines indicate the Fermi momentum pF =

√
2(nF + 1)pHO for each con-

figuration. The measured total number of pairs Npair in the ground state
at a fixed interaction strength EB increases linearly with N (d). Figure
adapted from [Hol21a].

in the ground state. Since the Fermi energy scales only with the square root of the
particle number EF ∝

√
N , no large quantitative changes are expected as we change

the number of filled shells by one from N = 6+6 to 10+10 or 3+3 atoms respectively.
Pairing in the closed-shell ground state configurations is influenced in several ways as

the particle number N and Fermi energy EF ∝
√
N are increased. As the system size

grows, the Fermi surface and Fermi momentum pF become sharper and well-defined
in a local density approximation (LDA). In the weakly interacting regime, the peak
in the second order correlations will become narrower and more localized at the Fermi
surface (see Figure 7.7). The fluctuations of the centre of mass momentum of the pairs
decrease continuously until they vanish in the zero temperature and infinite size limit
(see Figure 7.4 f-j). A condensate of pairs with zero momentum remains.

The critical interaction strength at which the precursor of a normal to superfluid
phase transition occurs in the ground state scales as EC

B ∝ 1/
√
EF [Bru14]. Conse-

quentially, the transition between the weakly paired and strongly correlated regime
occurs at smaller absolute interaction strength EB ∼ EC

B as more shells are filled. The
transition also becomes sharper and quantitatively resembles a macroscopic quantum
phase transition more closely (see Figure 7.8). At a fixed interaction strength EB, the
superfluid gap becomes larger ∆ ∝ √EF and the system is shifting towards the BEC
regime of strong binding.

No qualitative changes are expected as the system evolves from the mesoscopic to
the macroscopic world. All the essential features of Cooper pairing in 2D can already
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be observed in a system of only N = 6 + 6 particles. The pair wavefunction changes
in a continuous fashion as the system size is increased. In the large particle number
limit N → ∞, we expect that the weakly interacting regime EB → 0 is described
accurately by the mean-field BCS theory. Likewise, the sample in the regime of infinite
interactions EB → ∞ converges towards a non-interacting molecular BEC. In the
regime of intermediate interactions EB ∼ EF, however, effects beyond a mean-field
description have to be considered even in the macroscopic sample.

7.4 Systematic Effects
Both the preparation of interacting closed-shell ground state configuration and single
atom resolved fluorescence imaging have already been studied in detail in chapters 5 and
6. The techniques are well established in our experiment and any possible systematic
problems have been excluded. The only addition to the experimental sequence that
is required for the measurements presented in this chapter is the quasi-instantaneous
projection into a non-interacting system at the beginning of the TOF expansion.

7.4.1 Scattering during the TOF
Our pair of Raman lasers allows us to drive the transition from the initial |1〉 |3〉 to the
final |1〉 |4〉 mixture in Tπ = 330 ns, many orders of magnitude faster than what would
be required even for the highest scattering rates ν ≈ 50 kHz we study in our experiment.
Nevertheless, it is important to check that the projection to the non-interacting state is
fast enough and does not alter the measured momentum correlations. To this end, we
study the measured number of pairs Npair and total kinetic energy Ekin as a function
of the spin flip time Tπ (see Figure 7.11 a). To vary Tπ, we fix the magnetic offset
field to B = 750 G or EB = 0.6 ~ωr, where we can use a MW pulse for the spin flip
in place of the Raman lasers (see section 4.3). This improves the postselection fidelity
significantly.

When the duration of the spin flip is increased, the strength of the measured mo-
mentum correlations reduces significantly until, at Tπ ≈ 2 ms, no signal above the
background is left and Npair ≈ 0 (red circles). This effect can be explained by elas-
tic collisions that happen between pairs of atoms while the gas is already expanding.
Each elastic collision leads to a random redistribution of the momenta of both partaking
atoms and the information about the momentum distribution in the initial ground state
is lost. If one atom p↑ that corresponds to a Cooper pair scatters from a third particle
just once during the expansion, for example, it receives a momentum kick p↑ → p′ and
does not appear at its original position p↑ = −p↓ anymore.
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Figure 7.11: Momentum correlations as a function of the projection time Tπ
and in heated samples. We scan the number of detected pairs Npair
(red) and the measured kinetic energy Ekin (blue) as a function of the
projection time Tπ into a non-interacting wavefunction (a). The spin
flip is started synchronously with the removal of the radial confinement
of the atoms (inset). For durations Tπ > 100 µs the number of detected
pairs Npair reduces significantly. The effect can be explained very well
by a model that assumes that elastic scattering events during the TOF
expansion destroy the correlations of all participating atoms (black line).
We heat the sample by modulating the radial confinement after prepar-
ing the initial ground state (b, inset). This leads to a quick reduction of
the pair correlations. Figure adapted from [Hol21a].

We model the effect by calculating the scattering rate ν during the expansion in
the initial state |1〉 |3〉 using the measured in-situ density and the magnetic offset field
B = 750 G as only input parameters (see Figure 7.11 black line). Here, we assume
that each scattering event completely destroys all possible correlations for both the
participating atoms. The predictions agree very well with our measurements. We
extrapolate the same model also to the largest setting for the interaction strength used
in the experiment at B = 674 G with EB ≈ 15 ~ωr (dashed line). No significant loss
of the correlation amplitude for our Raman spin flip time of Tπ = 330 ns is predicted.
We conclude that our rough estimation based on the timescales alone at the beginning
of the chapter was justified and that scattering events during the expansion can be
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neglected completely.
The measured kinetic energy (blue squares) shows a very similar behaviour as the

pair number Npair. In section 5.3.2, we have already explained in detail how we can
extract the kinetic energy from the single particle resolved density distribution in mo-
mentum space. The genuine value for the kinetic energy of the Fermi gas in its trapped
state is only measured in the limit where Tπ → 0. When the particles still interact
during the TOF, the expansion is slowed down significantly as a result of the attractive
mean-field shift for EB > 0. This leads to a reduction of the measured kinetic en-
ergy Ekin proportional to the number of scattering events during the expansion. This
demonstrates again how important it is to switch off all the interactions during the
TOF in order to extract the correct observables.

7.4.2 Heated Samples
We create excitations above the preparedN = 6+6 particle ground state by modulating
the radial confinement with a variable amplitude A for tex = 50 ms. A sinc pulse with a
centre of ωex = 2ωr and a broad width in frequency space of ∆ω = 2π×700 Hz is used to
excite the system incoherently. After the modulation, we let the sample equilibrate for
t = 50 ms, much longer than the inverse scattering rate 1/ν ≈ 0.1 ms, before starting
the detection sequence (see Figure 7.11 b, inset). The amplitude of the measured
density correlations and the number of pairs Npair in the ground state reduces quickly
as the modulation amplitude is increased. Qualitatively the correlations disappear at
much smaller modulation strengths as in the case of the Pauli crystals (see section
5.3.2). This is expected since this measurement is performed at EB = 0.6~ωr � EF.
Pauli crystals melt at temperatures on the order of T ≈ TF while the superfluid is
broken already at T = TC � TF. For future studies of heated samples we have to
develop an efficient thermometry procedure that works for interacting gases.

7.4.3 Momentum Space Densities
In Figure 7.12 the measured density distribution for the N = 6+6 particle ground state
is shown for a non-interacting sample (a) and EB = 1.97~ωr (b). In the non-interacting
case, we find the distribution that is expected from the three filled harmonic oscillator
shells. At a finite interaction strength, the distribution becomes significantly wider,
indicating that the average kinetic energy of the fermionic particles in the ground
state increases. By forming pairs and increasing their overlap, the particles lower their
overall energy at the cost of occupying higher non-interacting harmonic oscillator levels.
The measured kinetic energy increases linearly with binding energy (c). For the non-
interacting state we measure a value of EB = 7.65(5) ~ωr, very close to the expected
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Figure 7.12: Density distributions in momentum space. The momentum space
distributions |n(p↑)〉 for a single spin component and averaged over 1000
images are shown for a non-interacting sample (a) and EB = 1.97~ωr (b).
The dashed circle indicates the Fermi momentum. With increasing in-
teraction strength the particles form pairs to gain binding energy and
larger non-interacting harmonic oscillator levels become occupied. This
leads to an increase of the average kinetic energy (b,c). In panel (d) we
show the non-normalized second order correlator C ′(2). It is equivalent to
the definitions in equations (7.1) and (7.3) but without subtracting the
term 〈n〉 〈n〉. It demonstrates that at large binding energies EB � 1 ~ωr
the paired fraction in the ground state becomes large enough so that
positive correlations become visible even without subtracting the contri-
bution from single particle densities. Figure adapted from [Hol21a].

value for the N = 6 + 6 ground state of E0 = 7 ~ωr.

7.5 Conclusion
We have demonstrated that the fundamental fermionic correlations can be accessed in
continuous systems, even in the presence of strong interactions. Our single particle
and spin resolved measurements in momentum space allow us to observe how Cooper
pairs emerge at the Fermi surface of our sample. We are able to characterize the
ground directly, independent of theoretical predictions, and we can identify different
pairing mechanisms. In comparison to the spectroscopic measurements in chapter 6,
our imaging technique enables us to extract much more information about the Fermi
gas in each cycle of the experiment. Our measurements raise further questions like the
presence of higher order pair-pair correlations and the onset of condensation we want
to study in more detail in the future.
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7.5 Conclusion

Our 2D Fermi gas is closely related to other mesoscopic materials like superconduct-
ing grains, quantum dots and systems from nuclear and atomic physics [Del01; Alh00;
Lau17; Cas09]. Models like the BCS theory or the Richardson solution describe the
main features we observe in our experiment qualitatively. Deviations from the theoret-
ical descriptions can be explained with both finite size and beyond mean-field effects.
The large quantitative discrepancies, in the strongly correlated regime for example,
demonstrate that our experiment is very sensitive to beyond mean-field effects and
that more elaborate theories are required.

We hope that our measurements trigger the development of new models for the
description of strongly interacting Fermi gases. Numerical approaches are computa-
tionally very challenging, even for mesoscopic systems consisting of only N = 10 + 10
particles for example. When truncating the basis to 6 harmonic oscillator shells in this
case, the dimension of the Hilbert space is already dim(H) ≈ 1011. While an exact di-
agonalization for this system size might become possible in the future, anything larger
is certainly out of reach. Correlation measurements, also beyond second order, can be
used as a benchmark to test novel numerical and analytical approaches to the problem.
Our experiment forms an important bridge between particle numbers N < 20 for which
exact numerical solutions are still within reach and everything above.

An upgrade of our apparatus allows us to access in-situ density correlations with sin-
gle particle resolution in addition (see chapter 9). In this way, an even more thorough
characterisation of the many-body wavefunction becomes possible. With the complete
programmability of particle number, spin imbalance, interactions and external poten-
tials (see chapter 4) our system opens up new pathways to study outstanding questions
in mesoscopic systems and their connection to the macroscopic world. Very promis-
ing examples are imbalanced systems in 1D or 2D [Pec20; Che10], rotating samples
[Pal20], or balanced mixtures with larger atom numbers (see Chapter 9). By increasing
the number of particles further we gain access to a rich collection of intriguing phe-
nomena in the macroscopic phase diagram of the BCS-BEC crossover that are not yet
fully understood. The formation of many-body pairs in the normal phase of the gas
[Mur18b] and a quantum anomaly that appears in 2D [Hol18] are two examples that
we want to study in the near future. First studies of these effects are presented as an
outlook of what to expect in the macroscopic world in the next chapter.
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8

The Macroscopic World
Our experiment enables us to take a completely new approach, from the bottom up, to
strongly correlated systems in the macroscopic world. The balanced 2D Fermi gas with
contact interactions, we have studied extensively at a mesoscopic size, is described in
the framework of the BCS-BEC crossover in the many particle limit (see section 2.2.4).
And while this model of fermionic superfluidity has been studied in detail both on the
theoretical and experimental level [Zwe12; Par14], many questions remain unanswered
[Str18]. This is especially true for the crossover region of intermediate interactions
we have already identified in the previous chapter. Here, mean-field descriptions like
the BCS theory fail and higher order corrections have to be taken into account. More
generally, the BCS-BEC crossover provides a well controlled playground to develop new
theories to address longstanding questions in the field of strongly interacting fermionic
matter [Lau83; Lee06; Zho21].
In this chapter, we review two studies that have allowed us to shed some light on the

nature of the Fermi gas in the crossover region between the BCS and the BEC limits.
The measurements were taken with the previous version of our apparatus, without us
having the degree of control over the quantum state and the single particle resolved
observables that we have now (see chapter 4). The studies serve as an outlook into the
fascinating manifestations of collective behaviour and pairing effects we expect once we
increase the particle number again. Instead of an extensive discussion, we focus on the
essential results at this point. Further details and systematic effects can be found in
the original publications [Mur18b; Hol18; Mur19] or in Refs. [Nei17; Hol17; Mur18a;
Kle21].

8.1 Pairing in the Normal Phase
All the measurements presented so far in this thesis were performed for samples pre-
pared very close to the absolute ground state. In the macroscopic limit, when the single
particle gaps in the spectrum become irrelevant (EB � ~ωr), the zero temperature state
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Figure 8.1: Schematic phase diagram of the BCS-BEC crossover. In the in-
finite particle number limit with EB � ~ωr, the ground state of the 2D
Fermi gas is always paired. A smooth crossover between tightly bound
molecules (left) and Cooper pairs in momentum space (right) takes place
as a function of the binding energy. The nature of the normal phase is
less well understood. In the BCS limit the onsets of Cooper pairing and
superfluidity occur at the same temperature T = TC. In the BEC limit,
when EB � ET, the normal phase can be described as Bose liquid of
strongly bound dimers. Many questions about the exact nature of pairing
remain for the strongly correlated crossover region between both limits,
where mean-field models can not be applied.

of the 2D Fermi gas is a superfluid independent of the strength of the attractive inter-
actions. The atoms are always bound and the pair character transitions smoothly from
tightly bound molecules in the BEC regime to Cooper pairs in the BCS ground state
(see Figure 8.1). This immediately raises important questions about the normal phase
above the superfluid. Are pairing correlations present at temperatures T > TC and if
so, what is their nature?

In the limits of weak and infinite binding EB → 0,∞ simple mean-field models can
be applied. Far in the BEC regime, the binding energy of the tightly bound dimers is
much larger than the thermal energy ET � EB, even above the normal to superfluid
transition T > TC. Consequently, the particles remain bound and the gas can be
described as a Bose liquid. The BCS theory, on the other hand, predicts that the onset
of Cooper pairing and of superfluidity occur at the same transition temperature TC.
The Fermi liquid above has a gapless many-body spectrum [Frö12].

Most interesting is the strongly correlated region between both limiting cases. Similar
to the phase diagram of cuprate high-TC superconductors, a so-called pseudogap regime
exists in the normal phase [Mur18b] (see Figure 2.1). The density of states at the
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Fermi surface is suppressed already above the critical temperature T > TC and pair
correlations are present in the gas. It is believed that obtaining a more complete
understanding of this region in the phase diagram is an essential milestone towards
unravelling the physics of high-TC superconductors [Che09; Lee14; Kas16; Mue17].
In cold atom experiments, the normal phase of strongly interacting Fermi gases has

been studied to a great extend both in 3D [Sch07; Gae10; Nas11; Per11; Sag15] as well
as in 2D [Fel11; Som12]. Nevertheless, open questions remain concerning, for example,
the connection of the pseudogap phase to the superfluid below, the nature of pairing and
the presence of higher order correlations [Bar14; Nga13; Mar15; Lev15; Tör16; Mue17].
In the future, single particle resolved correlation measurements in real and momentum
space can help to increase the understanding of the normal phase significantly.

The measurements presented here rely on spatially resolved RF spectroscopy as a
tool to identify different regimes of paring in the gas. The spatial resolution is required
since the RF response reveals a strong dependence on the local density of the atom
cloud. We detect pair formation in the normal phase of the crossover region up to a
very large temperature T � TC and with an energy that is significantly larger than the
two-body binding energy ∆E � EB. This indicates that genuine collective behaviour
and many-body effects are required to describe the strongly interacting normal phase
of the Fermi gas.

8.1.1 Experimental Sequence
To study the macroscopic limit of the interacting 2D Fermi gas, we load a sample of
two hyperfine components with N ≈ 30 000 atoms per spin state into a single layer
of the SWT (see section 4.1). Compared to the measurement previously presented in
this thesis, the MT that has been used to provide an additional radial confinement is
not present here (see Figure 8.2 a). This leads to a final harmonic confinement with
a very large aspect ratio of ωz : ωr & 300 : 1 and allows us to reach the kinematic 2D
regime of the gas. Both the chemical potential (µ) and the temperature (T ) are small
compared to the energy scale of the axial confinement (~ωz) and no axial excitations are
present for the relevant degrees of freedom of the gas [Rie15a]. We tune the interaction
strength EB between both hyperfine components using the Feshbach resonance (see
section 3.3.2) once the sample has been prepared. For macroscopic samples the general
convention is to express the attraction strength in terms of the 2D interaction parameter
ln(kFa2D) = ln(2EF/EB)/2 instead of the binding energy EB.

As a result of the harmonic confinement, the atomic cloud in the initial state is
inhomogeneous with the highest density in the centre and a more dilute gas towards
its wings (see Figure 8.2 b). This density dependence n(r) is one of the most essential
features of our measurements as we discuss in the following. For our macroscopic 2D
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Figure 8.2: Experimental sequence for the study of pairing in the normal
phase. The state is initialized by loading a large sample of atoms into a
single layer of the SWT (a). This leads to a quasi-2D Fermi gas with an
inhomogeneous density distribution n(r). To search for pairing correla-
tions in the normal phase, we apply spatially resolved RF spectroscopy.
The response of the gas to the RF pulse is recorded using spin selective
absorption imaging (c). The density dependent spectra we obtain in this
way allow us to measure the pairing energy ∆E as a function of interac-
tion strength ln(kFa2D) and temperature T/TF.

Fermi gas, the radial confinement varies only on length scales lHO that are much larger
than the inter-particle spacing 1/kF or, more importantly, the coherence length ξ.
Locally, the radial confinement does not effect the properties of the system and, in a
local density approximation (LDA), it can be treated as many independent instances
of homogenous clouds with different densities. At each density n(r) or cloud radius r
we probe a different point in the phase diagram of the BCS-BEC crossover. The local
properties of the gas are given by ln(kF(r)a2D) and T/TF(r), indicating that as the
radius increases and the density decreases n(r → ∞) → 0 the effective temperature
increases T/TF →∞ and we move towards the BEC regime ln(kFa2D)→ −∞.
To determine the in-situ density of either one of the spin components of the cloud

nσ(r) (σ = |1〉 , |2〉 , |3〉), we make use of absorption imaging (see section 4.4). We
illuminate the atoms using a laser beam from the top that is resonant to the desired
hyperfine state and record the shadow of the cloud on a camera below the experiment
(see Figure 8.2 c). From the density profiles n(r) of the atoms obtained in this way
we can directly extract the absolute temperature T ≈ 100 nK of the gas (see section
4.5). This leads to local properties of the equilibrium state that range from a superfluid
T/TF ≈ 0.1 < TC in the centre, to the normal phase T/TF ≈ 0.1 � TC at the edge of
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the atom cloud. In this way, we can extract information about a large region of the
phase diagram for a single setting of the absolute interaction strength EB (or a2D) and
of the absolute temperature T . At the same time, due to the inhomogeneous density
distribution, it is essential to spatially resolve the response of the gas to the RF pulse,
used to probe the system [Shi07]. Otherwise we average over signals from different
regions of the BCS-BEC crossover.

8.1.2 Spatially Resolved RF Spectroscopy
Once the initial equilibrium state of the 2D Fermi gas is reached, we start an RF
spectroscopy sequence to search for pairing in the system [Che09]. To this end, we
apply a global RF pulse at a fixed frequency ωRF and for a time of tRF = 4 ms to the
sample. When starting with a |1〉 |2〉 mixture, for example, the pulse is used to transfer
atoms from state |2〉 to |3〉. Interaction effects, like the formation of pairs, shift the
frequency of the transition ω|2〉→|3〉 with respect to the expected value for free atoms ω0
(see Figure 8.3 a). When the thermal state consists of a mixture of both pairs and free
atoms, we expect that two energetically separate branches appear in the spectrum.

To extract the RF response as a function of the density n(r) and frequency ωRF,
we take two separate absorption images of the cloud for the spin component |2〉. One
image is taken in an experimental cycle with the RF pulse being applied (n′(r, ωRF))
and the other one in a cycle without (n0(r)) (see Figure 8.3 b). The spatially resolved
spectral response function is then defined as the normalized difference between both
density distributions

I(r, ωRF) = n0(r)− n′(r, ωRF)
n0(r) . (8.1)

The response function indicates at which frequency ωRF atoms in state |2〉 are trans-
ferred to state |3〉 as a function of the radius of the cloud r, or correspondingly, as
a function of the interaction strength ln(kFa2D) and temperature T/TF. We always
display the RF frequencies ωRF relative to the bare transition frequency ω0 from |2〉 to
|3〉 for a single free atom.

In Figure 8.3 c, we show the measured spectral response function I(r, ωRF) for an
initial cloud with a very low absolute temperature T ≈ 100 nK and in the centre of the
BCS-BEC crossover ln(kFa2D) ≈ 1.5. A single branch with a clear density dependence
is observed. The density-dependence can be understood from the attractive mean-field
shift of the atom cloud we have detected already in section 6.1. As the radius is reduced
r → 0 and the density becomes larger, the atom cloud acts as an attractive potential
well with increasing depth for the atoms. This increases the required energy for the
hyperfine state transition into the less interacting mixture ω|2〉→|3〉 > ω0.
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Figure 8.3: Spatially resolved RF spectroscopy in a strongly interacting 2D
Fermi gas. If two particles in hyperfine states |1〉 and |2〉 form a pair,
the transition frequency ω|2〉→|3〉 from |2〉 to |3〉 is shifted by the binding
energy ∆E with respect to the required frequency ω0 for a free atom
in |2〉 (a). To extract the spatially resolved RF response, we take two
absorption images of the density in component |2〉 with and without RF
pulse applied (b). Their difference δn(r, ωRF) clearly reveals the density
dependence of the resonance frequency. By repeating the measurement
for many different RF frequencies ωRF, we obtain the full spectral response
function I(r, ωRF) (c). At low temperatures all the particles are bound
and only a single, paired branch is visible. Adapted from Ref. [Mur18b].

At low temperatures, all the atoms in the balanced mixtures are paired and only
one branch is observed. This makes it difficult to distinguish single particle interaction
effects, like the mean-field shift that is present also for unpaired atoms, from shifts due
to pairing and the binding energy. The key idea for the solution of this problem is to
introduce a small imbalance of P = (N↑ −N↓)/(N↑ +N↓) . 0.15 to the sample. Some
atoms of the majority component N↑ must always remain unpaired since they cannot
find a partner. As a result, the free particle branch becomes visible in the spectrum in
addition to the response of the paired atoms.

8.1.3 From Two-Body to Many-Body Pairing
In Figure 8.4 the measured spectral response functions I(r, ωRF) for two different inter-
action strength settings, towards the BEC regime (ln(kFa2D) ≈ −0.5) and in the centre
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Figure 8.4: Spectral response functions I(r,ωRF) for a 2D Fermi gas with
small spin imbalance. Two different interaction settings, in the BEC
regime (a) and in the centre of the crossover (b), are shown. At each
setting for the RF frequency, we average over 30 samples of the density
distributions n′(r) and n0(r, ωRF). We fit a bimodal distribution to the
measured spectra at each radius (c,d) allowing us to determine the centre
of the free particle branch as well as the threshold of the pair energy (black
solid lines). Their difference corresponds to the pairing energy ∆E. The
dashed line indicates at which frequency EB/~ we would expect the onset
of the paired branch according to the exact two-body solution. Adapted
from Ref. [Mur18b].

of the crossover (ln(kFa2D) ≈ 1), are shown for a sample with small imbalance. We
clearly observe two excitation branches as a function of the RF frequency ωRF. The
lower branch, starting around ωRF ≈ 0 in the low density limit r → ∞, corresponds
to free particle excitations (we report the RF frequencies relative to ω0). The upper
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branch, on the other hand, is the response from paired atoms we have observed already
for the balanced gas (see Figure 8.3 c).

We extract the centre of the free particle response and the threshold for the onset
of pairing respectively by a combined fit to both peaks at each radius [Mur18b]. Two
examples for the local spectra corresponding to T/TF ≈ 0.7 and T/TF ≈ 1.0 respectively
are shown in Figure 8.4 (c,d). The radii at which the cuts are taken are indicated by
the grey shaded lines in (a) and (b). From the difference of both frequencies, we can
directly extract the pairing energy ∆E = ~ δωRF at each density. We compare the
measurements to the expected value for the two-body binding energy EB (dashed line)
that is calculated using an exact analytical solution as discussed in detail in section
3.2.8.

The measurements reveal the qualitative nature of pairing in the normal phase 2D
Fermi gas. Towards the BEC regime, we find a strongly occupied paired branch even
at temperatures far above the superfluid transition T � (see Figure 8.4 a). The pair
energy is well explained by the two-body solution ∆E ≈ EB and roughly constant as a
function of density or radius. This indicates that the pairs are of molecular nature and
no collective behaviour (beyond the two-body solution) is required for their description.
In the crossover region this picture is modified drastically (see Figure 8.4 b). The
amplitude of the paired branch is still very large and its threshold now shows a large
density dependence. The pair binding energy exceeds the two-body model significantly
∆E � EB. This indicates that in the strongly correlated region (ln(kFa2D) ∼ 1) a
collective many-body gap already opens in the normal phase far above TC/TF ≈ 0.1,
in direct contradiction to the prediction from the BCS theory.

8.1.4 Normal Phase in the Crossover Regime
To characterize the normal phase of the BCS-BEC crossover in more detail, we take
data points with further settings for the absolute interactions strength EB. In addition,
we assign the measured local densities n(r) to their respective points (ln(kFa2D), T/TF)
in the phase diagram. To exclude systematic effects, for example given by final state
interactions in the |2〉 |3〉mixture, we also take data points for a |1〉 |3〉 hyperfine mixture
in the initial state. Here, the RF transfer is driven from |3〉 to |2〉 instead of the other
way around. We find that the measured values for the binding energy ∆E are robust to
the swap of the hyperfine mixture and thereby to a change of the final state interactions.

The measured pairing energies relative to the two-body bound state ∆E/EB as a
function of temperature (a) and interaction strength (b) are shown in Figure 8.5. All
the data lie at very large relative temperatures T/TF & 0.5 in the normal phase, far
above the highest measured point for the transition into the superfluid at TC/TF =
0.17 (see Figure 2.6). In the BEC limit, for ln(kFa2D) < 0.5, we find that pairing
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Figure 8.5: Pairing in the normal phase of the BCS-BEC crossover. The
pairing energy ∆E is determined from a bimodal fit to the RF response
function at each density. We compare it to the binding energy EB from
the exact two-body solution. The pairing energy in the BEC limit is
independent of density or temperature (a). As the crossover region is
approached ln(kFa2D) & 0.5, a transition into a many-body paired regime
occurs as indicated by the density dependence (a) and ∆E/EB � 1 (b).
All the data points are taken in the normal phase of the gas T/TF &
0.5� TC/TF. Adapted from Ref. [Mur18b].

is consistent with the two-body solution ∆/EB ≈ 1 and no density or temperature
dependence is observed. In contrast, the large density dependence of the pairing energy
for ln(kFa2D) & 0.5, together with ∆/EB � 1, allows us to identify a region where
many-body pairing occurs in the normal phase. The maximum in the relative pairing
energy ∆/EB is found at ln(kFa2D) ≈ 1. Here, the value of the two-intrinsic energy
or length scales of the system, given by the inter-particle spacing and the size of the
bound state (see section 2.1.5), is precisely the same.

For even larger interactions ln(kFa2D) > 1, we find a downwards trend of ∆/EB.
This is consistent with the expectation that pairing is absent in the normal phase
in the BCS limit [Frö12]. However, towards the BCS limit, the many-body gap ∆
becomes exponentially small as a function of the interaction strength (see Figure 8.1).
As a result, resolving two different branches in the measured RF response function
becomes infeasible in our experiment. A single branch with ωRF ≈ 0 is observed. For
a definite confirmation that the normal phase in the BCS limit consists of a gapless
Fermi liquid, further measurements are required.
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8.1.5 Conclusion
Our measurements demonstrate that the emergence of collective behaviour is not lim-
ited to the ground state but also appears in the normal phase of the gas. We identify a
region around ln(kFa2D) ≈ 1 where many-body pairing occurs up to very high temper-
atures, far above the superfluid in the BCS-BEC crossover. This regime coincides with
the strongly correlated region (EB ∼ EF) we have already identified when measuring
pair correlations in the ground state of a mesoscopic system (see chapter 7). Here,
mean-field descriptions fail and new numerical and analytical approaches including
higher order terms have to be developed.

Our measurements reveal the presence of a many-body pairing in the 2D Fermi gas
at high temperatures. A subsequent experiment, performed in a completely different
apparatus and with solid-state superconductors, has confirmed our results [Nak21]. A
pseudogap region, characterized by a reduction of the density of states at the Fermi
surface, is observed at temperatures above the superfluid. Additional studies will be
required to answer the question of how this pseudogap is related to the superfluid
below and the increased critical temperature TC in the same region [Tör16; Mue17].
The single particle resolved correlation measurements, as presented in the previous
chapters, open up a completely new pathway to address these issues. When applied
to the 2D Fermi gas in the normal phase, they allow us to extract the pair character
directly and to compare their correlations to other bound states like Cooper pairs, for
example. In addition, we can further extend the measurements presented here to the
BCS regime and confirm that the normal phase is then gapless.

8.2 Observation of a Quantum Anomaly
Symmetries and their violations are a fundamental part of our understanding of emer-
gent collective behaviour in many-body systems [And72]. In chapter 2, we have already
introduced the concept of spontaneous symmetry breaking. It explains phase transi-
tions, for example from a normal to a superfluid, and critical behaviour with dramatic
effects for the physical properties of the given material. Two additional mechanisms
by which some quantum state might violate the symmetries of its Hamiltonian exist:
explicit and anomalous symmetry breaking [Hol14].

Quantum anomalies describe the violation of an exact symmetry of a classical action
in the quantized version of the same theory [Wei96]. They are often found in quantum
field and gauge theories and are an important ingredient to the standard model of
particle physics [Geo72; Gro72] or string theories [Gre84; Alv84] for example. While
the concepts of spontaneous and explicit symmetry breaking are frequently applied in
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many different fields [Col15], quantum anomalies are generally associated with high-
energy physics alone. A first exception was found in molecular physics for a 1/r2

potential term [Cam01; Gir08]. This potential leads, exactly as the contact interaction
term Vint ∝ δ2 in our system, to a very special situation as we will discuss in the
following.

8.2.1 Conformal Anomaly
The classical Hamiltonian we use to describe a free gas of ultracold atoms (see equation
(2.2)) is scale invariant. This special symmetry, where the total Hamiltonian transforms
as H → H/λ2 when the system is rescaled as r → λr appears only as a result of the
contact interactions in 2D (δ2 → δ2/λ2). A direct quantization of the classical action is
impossible, however. It gives rise to inconsistent results like the appearance of bound
states with divergent energies. A well-defined quantum theory can only be obtained
through a regularization and subsequent renormalization procedure [Mea91; Lev15]. A
new length- (a2D) or energy scale (EB) has to be introduced to describe the interactions
in 2D (see section 3.2). This additional length scale explicitly breaks the scale invariance
of the classical Hamiltonian in its corresponding quantized version of the theory.

So-called conformal anomalies, where the scale invariance of the classical action is
broken on the quantum mechanical level, are commonly found in field theories like
quantum electrodynamics (QED) or quantum chromodynamics (QCD). Here, the
renormalized coupling constants, like the electron charge e for example, depend on
the energy scale. In ordinary quantum mechanics, on the other hand, the δ2 and 1/r2

potential represent two rare cases where a quantum anomaly appears [Hol93; Coo02].
Here, our goal is to find evidence for the presence of the conformal anomaly and to
study what effect it has on the superfluid properties on the ground state of the 2D
Fermi gas.

8.2.2 Trapped System
In our experiment, the atom cloud is confined to a harmonic potential in radial direction
in addition (Vext ∝ r2). This leads to a slightly modified picture. The scale invariance is
replaced by a SO(2,1) symmetry of the classical action [Pit97; Wer06]. As a consequence
of the SO(2,1) symmetry, the collective breathing mode of the atom cloud is predicted to
be undamped and it has a constant frequency ωB = 2ωr independent of the interaction
strength. As was first pointed out by Olshanii et al. [Ols10], this connection can be used
as a tool to detect the quantum anomaly directly. When the renormalization of the δ2

potential leads to a broken SO(2,1) symmetry on the quantum mechanical level, the
breathing mode frequency ωB is shifted. The anomaly can be accessed directly through
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accurate frequency measurements in quantum gas experiments with either fermionic or
bosonic particles in 2D.

The anomalous breaking of the SO(2,1) symmetry has been studied extensively on a
theoretical level both at zero [Tay12; Hof12; Gao12; Cha13; Hu19] and finite temper-
ature [Mul18; Daz18]. In the ground state, frequency shifts above the scale invariant
value of ωB = 2ωr of up to 10 % have been predicted [Hof12; Gao12]. At finite temper-
atures, perturbative solutions indicate that the frequency shift is much smaller, on the
order of 1 %, or even negative such that ωB < 2ωr. In experiments, the effect has been
elusive for both bosonic [Jac02; Che02; Hun11] as well as fermionic [Vog12; Bau13]
studies in 2D. No significant frequency shift away from ωB = ωr has been observed in
any of the measurements preceding our work. In the case of bosonic samples this has
been attributed to insufficiently strong interaction strength, while the fermionic studies
have been limited by statistical errors and high temperatures [Hof12]. Here, we perform
a precision experiment with a macroscopic 2D Fermi gas and at very low temperatures
T/TF = 0.14(4). This enables us to directly observe a significant frequency shift of
the collective breathing mode oscillation δωB as evidence for the presence of anomalous
symmetry breaking.

8.2.3 Experimental Sequence
For the preparation of a 2D Fermi gas, we proceed exactly as in section 8.1.1. A two
component mixture with N ≈ 10 000 atoms per spin state is transferred to a single 2D
layer of the SWT (see Figure 8.6 a,b). In contrast to the measurement described in the
previous section, we work at the lowest accessible temperatures in our experiment and
in the superfluid regime. The temperatures vary from T/TF = 0.1 in the BEC limit to
0.18 in the BCS regime. The interaction strength ln(kFa2D) is set using the magnetic
offset field B once the initial state has been prepared.
To excite breathing mode oscillations, we start by adiabatically lowering the radial

confinement ωr such that the gas expands in the trap. A sudden quench back to the
initial value ωr = 22.5(1) Hz leads to both dipole and breathing oscillations with a
small amplitude of ≈ 8 % of the total cloud width. We do not find that higher order
collective modes are excited using this procedure. To study the collective motion of the
macroscopic cloud, we take a time series of 200 absorptions images in steps of ∆t = 2 ms
and starting at the potential quench (see Figure 8.6 c,d). The absorption images along
the axial direction (see section 4.4) clearly reveal the breathing oscillation (see Figure
8.7 a-c). Using the other potentials in our apparatus, like the CBODT, we can also
excite other collective oscillations, for example the quadrupole mode (see Figure 8.7
d-f). More details on the quadrupole mode, that can be used to access quantities like
the shear viscosity η of the gas, can be found in Ref. [Hol17].
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Setup

▪ Standing Wave Trap (SWT)
▪ ωr = 2p x 22.5 (1) Hz
▪ ωz = 2p x 7140 (5) Hz

Measurement

▪ Mono-, Di- or Qadrupole
   Mode Excitation
▪ In-Situ Absorbtion Imaging

Absorbtion
Image

Observable

▪ In-Situ Density Time Series
▪ Collective Mode Damping-
   Rates and Frequencies

Initial State

▪ Quasi-2D Fermi Gas
▪ N = 2 x 10 000 Atoms
▪ T / TF ~ 0.14 (Superfluid)

a cb d

Figure 8.6: Experimental sequence for the study of a quantum anomaly. The
state is initialized by loading a large sample of atoms into a single layer
of the SWT (a). This leads to a quasi-2D Fermi gas within the superfluid
regime of the BCS-BEC crossover (b). To reveal the quantum anomaly,
we excite a breathing mode oscillation by quenching the strength of the
radial confinement from a smaller to a larger value. The collective motion
of the cloud is revealed by taking a time series of absorption images along
the axial direction (c). Breathing (ωB) and dipole mode (ωD) frequencies
are extracted by fitting a sine function to the cloud width and centre as
a function of time respectively (d).

The 2D harmonic potential in radial direction has a slight anisotropy of (ωx −
ωy)/(ωx + ωy) ≈ 2 % in our experiment. We obtain the angle of the principal axis
x and y in our trap using a principal component analysis (PCA) (see section 4.5.2).
We extract the frequencies of the breathing (ωB) and dipole (ωD) modes along both
principal trap axes independently. To this end, we fit a sine function to the width and
centre position of the cloud as a function of time respectively. The result for a dataset
in the x-direction is shown in Figure 8.7 g. In total we obtain four frequency measure-
ments (ωB,x, ωB,y, ωD,x, ωD,y) for each setting of the interaction strength ln(kFa2D) in
this way.

For all interaction strengths we access in our experiment, we are in the hydrodynamic
regime of the 2D Fermi gas [Hol17]. This leads to a locking of the breathing mode
frequencies along both principal directions and ωB ≡ ωB,x = ωB,y. We average over the
measurements in both directions. To reveal the presence of the quantum anomaly and
to compare the measured breathing frequency to the scale invariant result ωB = 2ωr, a
precise determination of the radial trap frequency is required.
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Figure 8.7: Collective modes of a 2D Fermi gas in a harmonic confinement.
Three absorption images of the in-situ density distribution, taken at dif-
ferent times after a quench of the radial confinement strength at t = 0,
clearly reveal the breathing mode oscillation. The dashed black and white
circles indicate the 1 and 2σ widths of a fit of a 2D Gaussian function to
the data. The images were taken at a larger amplitude than the dataset
used for the detection of the quantum anomaly to make the oscillation
more apparent. Other optical potentials in our experiment allow us to
excite higher order collective modes, like a quadrupole oscillation, in ad-
dition (d-f). The oscillation of the cloud width along one of the principal
axes of the trap σx allows us to obtain the breathing mode frequency (g,
red). The blue line shows the dipole mode oscillation of the cloud in the
same direction as a comparison. The inset shows the full dataset from
t = 0 ms to 400 ms. Adapted from Ref. [Hol18].

8.2.4 Trap Frequency Characterization

The centre-of-mass oscillations of the cloud, or dipole modes, decouple as a result of
the anisotropy (ωD,x 6= ωD,y). Their oscillation frequency in each of the principal trap
directions is given by the effective trap frequency ωD,x/y = ωR,x/y (see Figure 8.7 g, blue
line). We take the average of both values as the reference trap frequency to compare
the breathing mode to ωr = (ωD,x + ωD,y)/2. This is justified in the hydrodynamic
limit, where the breathing mode is insensitive to small anisotropies in the potential
and, in a scale-invariant picture, oscillates at twice the average trap frequency up to
very small corrections on the order of ≈ 0.1 % [Hof12; Mer13; Hol17].

The effective radial trap frequency ωr depends on several systematic parameters in
our system (see Figure 8.8). The confinement is given by the superposition of an
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Figure 8.8: Characterizing the radial trap frequency ωr. The trap frequency
can be determined by measuring the dipole mode oscillation frequency
in an interacting sample (a). We compare the results to a model (solid
line), where the effective trap frequency ωr(B, σ) depends on the magnetic
offset field B and the width of the atomic cloud σ. The model depends on
three parameters that are determined by fitting to the measured dipole
mode frequencies in a non-interacting, single component gas (b,c). We
find that the model explains our measurements with very high accuracy.
Adapted from Ref. [Hol18].

optical and a magnetic potential (see section 4.1.4). The magnetic confinement ωmag
r ,

depends on the offset field B as ωmag
r =

√
a ·B, where a is some parameter that

depends on the magnetic dipole moments of the atoms and the exact coil geometry.
The effective optical confinement ωopt

r depends on the width of the cloud σ. This can
be explained by the small anharmonicity of ≈ 10 % of the Gaussian beam optical trap.
In a Taylor expansion, larger systems are effected more by the deconfining r4-term and
their effective trap frequency ωopt

r is reduced.
To model all the systematic effects on the radial trap frequency, we use the following

equation

ωr(B, σ) =
√

(ωopt
r )2 + (ωmag

r )2 =
√
ω2

0(1− δσ2)2 + a ·B, (8.2)

where the parameters ω0, δ and a are determined from fits to several independent
measurements performed in non-interacting, single component gases (see Figure 8.8
b,c). We find that the model explains all our dipole mode frequency measurements
with very high accuracy, both for interacting as well as for non-interacting samples.
This confirms that our experiment allows us to perform precise frequency measurements
and that possible shifts, as the result of anomalous symmetry breaking, on the order
of a few percent can be detected.
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Figure 8.9: Anomalous shift of the breathing mode frequency ωB. At low
temperatures, we find a significant frequency shift towards higher fre-
quencies (a). Our data agree well with the mean-field approximation at
T/TF = 0.2 from Ref. [Mul18] (solid black line). The inset compares our
measurements to a calculation at zero temperature [Hof12]. To exclude
systematic effects, we have taken measurements with two different spin
mixtures (red and blue). Here, the same interaction parameter ln(kFa2D)
is obtained for very different magnetic offset fields B and absolute radial
trap frequencies ωr. As we increase the particle number, the frequency
shift is reduced until it becomes negative towards the 3D regime of our
gas (b). Adapted from Ref. [Hol18].

8.2.5 Anomalous Symmetry Breaking
The measured breathing mode frequencies in units of the radial trap frequency and as a
function of the interaction strength are shown in Figure 8.9 a. We find a small but very
significant shift of the breathing frequency with a maximum of 1.3 % in the strongly
interacting region ln(kFa2D) ≈ 1. In the BEC and the BCS limits, no shift is observed
and the scale invariant result ωB = 2ωr is restored. The grey data point has been
excluded from our analysis due to the large three body losses and small lifetimes we
have observed for our sample this far in the BEC regime. The positive frequency shift
is a direct manifestation of the quantum anomaly that is present in a 2D Fermi gas.
All other effects that explicitly break the symmetry of the Hamiltonian are expected
to cause a reduced breathing frequency instead [Hol18].

Compared to a calculation at zero temperature (inset), the shifts we observe in our
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Figure 8.10: Breathing mode frequency ωB at higher temperatures. We heat
the sample by modulating the radial confinement of the gas. As the tem-
perature increases, the breathing mode frequency reduces significantly
(a). This effect is strongest in the strongly interacting regime, while in
both the BEC and BCS limits no large shifts away from the scale invari-
ant frequency ωB = 2ωr are observed (b). Adapted from Ref. [Hol18].

experiment are much smaller in magnitude. This explains why anomalous symmetry
breaking has not been observed in any of the previous experiments. There are several
effects that can lead to a reduction of the frequency shift [Hu19; Tay12; Mul18; Yin20].
First is the presence of the third dimension in our experiment, leading to a quasi-2D
description with only approximate validity. We study this effect by increasing the
particle number N of our atom cloud (see Figure 8.9 b). In a non-interacting sample
only a maximum of N2D = 48 000 oscillator levels are available before higher states in
axial direction become populated and the quasi-2D description breaks down.

As we approach the 3D limit, ωB reduces quickly (see Figure 8.9 b). The negative
shift agrees with calculations of the breathing mode frequencies in the BEC and unitary
limits of a 3D Fermi gas confined to a pancake shaped trap. In these two limits,
respective values of ωB =

√
10/3ωr and ωB =

√
3ωr are expected [Ros15]. The explicit

breaking of scale invariance by the presence of the third dimension has been studied in
more detail for Bose gases in Refs. [Mer13; Ton18].

A second important effect we have to consider is the non-zero temperature of our
gas. We have taken additional measurements of the breathing mode oscillation for
heated samples (see Figure 8.10). We find that for larger temperatures, the frequency
ωB reduces significantly, especially in the strongly correlated region. The negative shift
is predicted by theoretical calculation at finite temperatures [Hof12; Mul18]. In the
BEC and BCS limits, the scale invariant result is restored again, even at much higher
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temperatures T/TF = 1.0(1). Taken together, both the effects of temperature and third
dimension can explain an anomalous shift that is significantly reduced compared to a
measurement at zero temperature and in the strict 2D limit. The small shift of the
breathing frequency has been confirmed by an independent study that was performed
simultaneously to our measurements [Pep18].

8.2.6 Microscopic Viewpoint
Starting from the microscopic Hamiltonian with the δ2 contact interaction term, the
presence of a quantum anomaly seems quite surprising. Even though the scaling sym-
metry is implemented exactly in the classical action, it is broken in any corresponding
finite quantum theory of the same model we can write down. From a microscopic
viewpoint, the quantum anomaly can be understood more intuitively. The δ2 term de-
scribes the Van der Walls interactions between neutral atoms only approximately. For
scattering processes at large energies or small radii r → 0, a more accurate description
has to be taken into account (see section 3.2). The full Hamiltonian, including the
correct interaction potential VVdW, breaks the scaling symmetry explicitly and explains
the frequency shift of the breathing mode in this way.

Quantum anomalies can generally be understood in this way. They appear in situa-
tions where the classical action fails to accurately describe the behaviour of the physical
system at small lengths or high energy scales. In contrast to a gas of ultracold atoms,
more accurate physical descriptions of the high energy behaviour are unknown in most
other cases like the standard model for example. Quantum anomalies highlight both
the value as well as the limits of renormalization theory in many-body physics. Uni-
versal descriptions of systems can be obtained in the low energy limit without taking
into account, or sometimes even knowing, the correct model at small length scales.

8.2.7 Momentum Space
We have detected anomalous symmetry breaking by performing a precision study of
the breathing frequency of the monopole mode of our cloud [Hol18]. This immediately
raises the question whether the effect has any significance for the physical properties of
the gas, for example in connection to its superfluid ground state. To find an answer, we
have performed an additional study, where we extract the properties of the superfluid by
taking absorption images in momentum space [Mur19]. The measurements of the pair
momentum distribution n(k) (see section 4.4) allow us to extract important properties
of the superfluid like the first-order coherence function g1(r) [Mur14; Mur15b].
The presence of scale invariance simplifies the description of collective behaviour in

our system significantly. The sample becomes fully integrable and the dynamics of the
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Figure 8.11: Density scaling relations in real and momentum space. The
in-situ and momentum space density distributions are measured at two
different times (circles and squares) for each of the two turning points
(red=inner and blue=outer) of the breathing oscillation. The different
in-situ density distribution can always be rescaled into one another with
a single scaling factor λ and by applying equation (8.3) (dashed line).
Scale invariance breaks down in momentum space, where we observe a
significant deviation from the scaling relations in the strongly correlated
crossover region (g-i). Adapted from Ref. [Mur19].

full time-dependent many-body wavefunction ΨN (ri, t) can be expressed directly in
terms of the initial state ΨN (ri, t = 0) [Mur19]. In equilibrium, the in-situ ρ(r) and
momentum n(k) distributions after a rescaling transformation r → λr can be obtained
from the original distributions ρ0 and n0 directly as

ρ(r) = 1/λ2ρ0(r/λ),
n(k) = λ2n0(λk).

(8.3)

This implies that the superfluid properties, encoded in the pair momentum distribution
n(k), show universal behaviour and can simply be rescaled into one another indepen-
dently of the absolute density ρ.
To check if the quantum anomaly effects the collective behaviour of our system, we

excite the breathing mode oscillation again. At this point, we are not interested in its
frequency, however. We rather use the collective motion as a tool to perform a scale
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transformation r → λr directly in our experiment. The breathing oscillation has two
turning points at times t = to and t = ti where the gas is momentarily at rest and, since
the breathing frequency is much smaller than the scattering rate ωB ≈ 40 Hz� 10 kHz,
in its equilibrium state. In the outer turning point the cloud is the largest and it
has the lowest density while at the inner turning point a maximal density is reached
before the expansion starts again (see Figure 8.7 a,c). This corresponds to a pure scale
transformation r → λr between the clouds at these time points t = to, ti, while all
other physical properties like the interaction strength EB, temperature T and particle
number N remain the same.

In Figure 8.11, we show the measured density distributions in position ρ(r, t) and
momentum space n(k, t) for the inner (t = ti) and outer turning point (t = ti) of the
breathing oscillation. We try to rescale the density at the outer turning point to the
distribution at the inner turning point by applying equations (8.3) and by fitting the
scaling parameter λ to the in-situ distributions. The scaling relations hold both in the
BEC (a, f) as well as in the BCS (e, j) limits. In the strongly correlated crossover
region ln(kFa2D) ≈ 1, however, the simple picture breaks down (g-i). The momentum
distribution n(k, ti) at the inner more dense turning point can not be obtained by simply
rescaling the distribution at the outer turning point n(k, to). Instead, the measured
momentum distribution n(k, ti) shows a significant surplus of pairs with small momenta
compared to the scaled solution. This is another manifestation of the quantum anomaly
that reveals itself in momentum space distributions measured at different absolute cloud
densities.

To understand the effect of the anomaly on the coherence properties of the gas, we
extract the first-order correlations function g1(r) in addition. It can be obtained from
n(k) directly by performing a Fourier transform and expresses over which distance
r particles are correlated in the superfluid [Mur15b]. In 2D the correlations decay
algebraically n(k) ∝ r−η with some exponent η. In Figure 8.12 a, we show the measured
coherence properties of the superfluid at the inner and outer turning points of the
breathing oscillation respectively. In the BEC regime, the coherence properties of
the two systems with different densities are the same and the decay coefficients agree
ηi = ηo (top). In the crossover regime, on the other hand, the simply scaling relations
are violated and the correlations at the inner turning point decay more slowly ηi < ηo.
In Figure 8.12 b, we show the measured ratio ηi/ηo for different interactions across
the BCS-BEC crossover. We find that the effect of the scale anomaly is strongest in
the same region ln(kFa2D) ≈ 1 we have already identified when studying the breathing
mode frequency. Here, the pair size is of the order of the inter particle distance and
the interplay between all intrinsic length scales of the system becomes important for
its description.
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Figure 8.12: Effect of the quantum anomaly on spatial coherence. The first-
order coherence function g1(r) is obtained by Fourier transforming the
measured momentum distributions n(k) at the inner and outer turning
points. The correlations in the 2D superfluid decay algebraically with
distance n(k) ∝ r−η. In the BEC regime the decay of the correlations
at both turning points, after applying the scaling transformation, is de-
scribed by the same coefficient ηi = ηo (a, top). This is different in the
crossover region, where the scaling symmetry is broken anomalously (a,
bottom). The inner, more dense, turning points show a slower decay of
correlations than expected ηi < ηo. In (b), we plot the measured ra-
tio of both decay coefficients as a function of the interaction parameter
ln(kFa2D). Adapted from Ref. [Mur19].

8.3 Conclusion
The violation of scale invariance can be understood by making the connection to the
measurement of pairing in the normal phase we presented in the first section of this
chapter. Here, in the same strongly interacting region, we find collective many-body
pairs in the normal phase of the gas and with a strong dependence of their binding
energy on the density. It is justified to assume that similar pairing correlations are
also present in the superfluid region below. In both the BCS and BEC limits, pairing
can be described with simple mean-field models EB → 0,∞ and in terms of two-
body correlations alone. In the crossover regime, higher order correlations have to be
considered and their strong density dependence, since two-body bound state size and
inter particle distance are of the same order, leads to a violation of scale invariance.
The smaller decay coefficient η at the denser inner turning point indicates that the
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superfluid stiffness grows quicker with density than expected in this case and could
also explain the increased transition temperature in the same region [Mur19].

The measurements in this chapter have demonstrated that even in the macroscopic
system many exciting problems remain to be studied both in the ground state as well
as for samples with higher temperatures. Here, we find another form of emergent
collective behaviour not as a function of the particle number N → ∞, as in chapter
6 for example, but as a function of the binding energy EB. Complex behaviour with
correlations between all the constituents of the system appears as soon as the different
energy scales of the system become of the same order and compete against each other,
for example when EF ∼ EB.
Our new apparatus allows us to address many of the remaining questions that where

raised in this chapter. For example, we can directly extract the single particle resolved
pair correlations in momentum space in the normal phase of the gas. The preparation
of quantum states at extremely low temperatures, close to the absolute ground state,
and with very small particle numbers will enable us to finally resolve the question
about the origin of the reduced anomalous shift of the breathing mode frequency.
New measurements hopefully initiate the development of a more complete theoretical
description beyond the mean-field level of the BCS-BEC crossover.
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Summary and Outlook
Emergent collective behaviour is at the heart of many of the biggest unresolved prob-
lems of the 21st century in physics. Even after many decades of extensive research,
many-body systems are still full of surprises and a general understanding remains out
of reach. In many fields, for example concerning highly non-linear phenomena like
turbulence and chaos, mesoscopic systems like nuclei and large molecules or strongly
correlated fermionic materials like high-TC superconductors or strange metals, new
approaches are required to make further progress [Gin01].

In this thesis, we have presented a completely new approach — from the bottom-up
— to emergent phenomena in strongly correlated Fermi systems. We have developed
several techniques that give us an unrepresented degree of control over small ultracold
samples of neutral 6Li atoms. We are able to prepare Fermi gases with deterministic
particle numbers at extremely low temperatures and, for up to 20 particles, in the
absolute ground state of our 2D harmonic confinement (see chapter 4). A fluorescence
imaging technique allows us to obtain single particle and spin resolved samples of the
full many-body wavefunction in momentum space, even for strongly interacting initial
states. The method extends the scope of quantum gas microscopy from lattices to
continuous systems.

When applied to small, non-interacting Fermi gases in the ground state, our imaging
technique allows us to directly detect the influence of the Pauli principle (see chapter
5). We find strong higher-order correlations in the relative momentum coordinates
of the particles that can be visualized as Pauli crystals. The measurements show
that self organization can occur in many-body systems even in the complete absence of
interactions and highlights the importance of the antisymmetrization for the description
of the fermionic quantum state. A comparison of the obtained correlations to numerical
calculations allows us to benchmark the performance of our imaging technique in detail.

When increasing the attractive interaction strength of the atoms in the mesoscopic
2D Fermi gas, we observe a precursor of a quantum phase transition from a normal
to a superfluid (see chapter6). The transition is revealed by a non-monotonous pair
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excitation mode in the low energy spectrum of the system. The mode can be associated
with a Higgs mode in the macroscopic limit that corresponds to amplitude vibrations
of the order parameter. All the qualitative features of the phase transition can already
be observed for very small particles numbers for example with as few as six atoms. The
measurements demonstrate how universal collective behaviour emerges, starting at the
mesoscopic scale. The observed effects originate from higher organising principles like
spontaneous symmetry breaking and are very robust to changes in the microscopic
model. Imperfections in the potential like an anharmonicity or anisotropy do not influ-
ence the transition significantly and even considerable approximations of the contact
interaction term lead to the same qualitative result.

In chapter 7, we have directly accessed the fundamental correlations in the ground
state. The measured second order density correlations reveal the transition from an
unpaired ground state to a few-body precursor of a superfluid. In the weakly inter-
acting regime, we directly observe Cooper pairs in the momentum space samples of
our wavefunction. They manifest themselves as strong positive correlations between
particles of opposite spin and momentum located at the Fermi surface. As the binding
energy is gradually increased, the pairs transform to more tightly bound molecules and
correlations appear also deep within the Fermi sea.

The results presented in this thesis demonstrate significant breakthroughs in the
manipulation and detection of strongly interacting 2D Fermi gases. The access to
single particle resolved samples of the many-body wavefunction enables measurements,
like the direct observation of Cooper pairs, that have been out of reach for other systems
like nuclei or solid state materials [Boh98; Del01]. Our highly programmable platform
offers completely new possibilities to address many outstanding questions concerning
mesoscopic Fermi systems and their connection to the macroscopic world (see chapter
8). In the following, we present a small excerpt of the most immediate applications.

9.1 Real Space Correlations
So far, our measurements of single particle and spin resolved density distributions have
been limited to momentum space alone. An even more complete characterization of
the many-body wavefunction and the density matrix requires additional measurements
in other bases, for example in real space [Ber19]. In some occasions measurements of
the in-situ density distribution also give a more straightforward access to the relevant
correlations of the system under study. In the BEC regime of the BCS-BEC crossover,
for example, molecules are expected to appear as a strong positive correlation peak at
short distances r → 0 in real space. The pairing signal is spread out much further in
momentum space (see chapter 7).
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Figure 9.1: Magnification of the in-situ many-body wavefunction. A magni-
fication technique is used to sample the in-situ wavefunction with single
particle resolution, analogously to the images we obtain in momentum
space. In the first step, the interactions of the in-situ sample (a) are
switched off instantaneously and a ballistic expansion in a harmonic po-
tential in radial direction is started (b). After a quarter trap period
tTOF = T/4, the in-situ density distribution has been mapped to the mo-
mentum distribution and vice versa. Subsequentially, a second expansion
is performed in the SWT (c). After a quarter trap period in this potential
the wavefunction has expanded significantly. Momentum space is mapped
back to real space again and by taking fluorescence images, we can excess
the in-situ density distribution — magnified by a factor of almost 50 and
with single particle resolution. For large interaction strength EB = 8 ~ωr,
we directly observe molecular short distance correlations in real space (d).

The finite resolution of our fluorescence imaging technique prevents us from directly
taking single particle resolved snapshots of the in-situ density distribution of our 2D
Fermi gas. The only notable exception are non-interacting harmonic oscillator ground
states, where real and momentum space are completely equivalent and the TOF expan-
sion can be seen as a pure magnification of the many-body wavefunction (see chapter
5). Through an extension of our TOF expansion scheme we are able to magnify the
in-situ many-body wavefunction even for strongly interacting initial states (see Figure
9.1). The key idea is to perform a second ballistic expansion for a quarter trap period
in some additional harmonic potential to map real to momentum space and vice versa
before the final imaging TOF sequence begins [Ast21].

Our implementation allows us to magnify the in-situ wavefunction by a factor of
ωTOF,1/ωTOF,2 = 969 Hz/20 Hz ≈ 50. First measurements in the strongly interacting
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Figure 9.2: Spin imbalanced ground state configurations. Our deterministic
spilling scheme in 2D can be extended for the preparation of spin imbal-
anced ground states in the 2D harmonic oscillator potential. Both open-
(1-7) and closed-shell (8-28) configurations are possible. The images show
single particle resolved images of the momentum distribution of the spin
imbalanced ground state for different prepared initial state configurations
in each row.

regime (EB = 8 ~ωr) reveal the presence of molecules in the gas (see Figure 9.1 d).
The access to both in-situ and momentum correlations with full spin and single atom
resolution opens up completely new pathways to address the complex physics of the
strongly correlated central region of 2D BCS-BEC crossover in the future.

9.2 Spin Imbalanced Systems
BCS theory explains superconductivity through Cooper pairs that form between par-
ticles of opposite spin at the Fermi surface. The BCS ground state is therefore very
sensitive to a mismatch in the number of both spin species [Che10]. Exotic states like
the Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase have been predicted to occur for
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Figure 9.3: Unconventional Cooper pairing. We plot the second order density
correlations in momentum space C(2) as defined by equation (7.3) as a
function of p↑ and p↓ and with ∆φ = π. The correlation function ex-
presses the probability of finding a spin up particle with momentum p↑,
given that a spin down particle was detected moving in opposite direction
and with momentum p↓. We subtract the contribution from single particle
densities. For a spin balanced gas (a), we find that on average the pair
correlations appear for exactly opposite momenta, as expected. When a
spin imbalance is introduced (b,c), we find off-diagonal pair correlations
with a finite centre of mass momentum (p↑ 6= p↓). The average momen-
tum differences agree very well with the calculated mismatch between the
Fermi surfaces of both spin states pF,↑ − pF,↓ (black dashed line). Here,
the Fermi momentum pF,σ is defined as in section 7.1.4 and calculated
using the respective number of atoms in each spin component N↑ and N↓.

spin imbalanced Fermi gases [Ful64; Lar64]. Here, unconventional Cooper pairs with
a finite centre of mass momentum appear. Furthermore, imbalanced systems offer the
possibility to study quasi particles like the Fermi polaron [Sch12; Nga12]. Ultracold
quantum gases allow us to address many of the unresolved questions concerning imbal-
anced systems [Che10]. Important examples include the stability of the FFLO phase
[Pec20; Att21] or the existence of a possible transition from a molecule to a polaron as
a function of the interaction strength [Che10].

We use the deterministic spilling scheme, described in detail in chapter 4, to prepare
the spin balanced closed shell ground state configurations of the 2D harmonic oscillator
with N = 1 + 1, 3 + 3, 6 + 6 or 10 + 10 particles. With only a few modifications the
same method also enables us to prepare any desired ground state configuration with
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Figure 9.4: In-situ correlations of a spin imbalanced 2D Fermi gas. We show
the measured in-situ correlations for the N = 1+3 ground state as a func-
tion of the interaction strength. The data has been obtained by making
use of the wavefunction magnification method described in the previous
section. In each image we calculate the three distances (r↓,1, r↓,2, r↓,3)
from the majority atoms to the single spin up atom. The density plots
show a histogram of the distribution of the two closest particles to the
impurity (r↓,1, r↓,2 < r↓,3). As the interaction strength is increased, we
find clear indications of pairing in the system. When one of the parti-
cles is detected close to the minority in real space, all other particles are
much further away. Whether the bound state is of molecular or polaronic
nature and if there is a transition between both states as a function of
interaction strength has to be studied in more detail in the future.

spin imbalance (see Figure 9.2). To this end, we apply the spilling technique in 2D
starting from a |1〉 |2〉 mixture and at a magnetic offset field of B ≈ 30 G, where the
magnetic momentum of state |2〉 is exactly zero (see section 3.3). To obtain a strongly
interacting state EB > ~ωr in the high-field regime (see section 4.2.7), we perform a
Landau-Zener sweep to the attractive branch of the |1〉 |3〉 mixture once the imbalanced
ground state has been prepared.

We have performed first measurements with imbalanced ground states both in mo-
mentum and in real space. When the spin imbalance is increased, we find that the centre
of mass momentum of the Cooper pairs in the ground states increases 〈ppair〉 > 0 (see
Figure 9.3). The increase in the average pair momentum agrees very well with the mo-
mentum mismatch of the Fermi surfaces of both spin components 〈ppair〉 = pF,↑ − pF,↓.
By forming pairs with finite centre of mass momentum, two atoms can increase their
binding energy at the cost of additional kinetic energy. To understand finite size ef-
fects in our system in detail and to search for an FFLO state in the many-body phase
diagram additional studies, also with larger samples sizes, are required.

In real space, we find strong indications for the presence of non-trivial bound states
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and quasi-particles in the system. In Figure 9.4, we show the measured 2D histograms
of the distances of the two atoms that are closest to the impurity for the N = 1 + 3
atom ground state and as a function of the interaction strength. In a non-interacting
gas the atoms are uncorrelated, apart from the Pauli blocked region for small distances
r → 0. In the strongly interacting region, however, the different spin down atoms are
strongly correlated also for larger distances. One of both particles sits very close to
the impurity (r↓,i ≈ 0) while the other atom is much further away (r↓,j > r↓,i, i 6= j).
Note that for simplicity we have fixed the single spin up atom at r↑ = 0, here. Further
studies will allow us to determine the exact nature of the bound state and search for a
possible transition between a molecule and a polaron. The first measurements shown
here demonstrate that we can prepare imbalanced mesoscopic Fermi gases close to zero
temperature and that we have access to the fundamental correlations of the system.

9.3 Increasing the Complexity

Our methods can directly be extended to a wide range of systems, also of even higher
complexity. One simple step, that has already been discussed in the previous chapter,
is to increase the particle number to study imbalance or the quantum anomaly in
the macroscopic limit of the BCS-BEC crossover [Hol18; Mur19]. By increasing the
temperature, we can conclusively answer the question about the nature of pairing in
the normal phase and in the strongly correlated region [Mur18b]. By setting the gas
in rotation, we can study the formation of vortices and quantum hall physics [Pal20].
Systems far from equilibrium, quantum turbulence and the thermalization dynamics in
mesoscopic systems are further exciting topic to study [Eis15; Tsa16; Now16].

The Hamiltonian of the ultracold 2D Fermi gas in our experiment is highly pro-
grammable. It is possible to prepare mixtures of three hyperfine components |1〉, |2〉
and |3〉 and to study three-component mixtures [Ott08]. A p-wave Feshbach resonance
allows us to study more complex interaction terms beyond s-wave scattering [Ger19].
Optical dipole potentials, in combination with our SLM, allow us to freely shape the
potential landscape of the atoms, for example to create two separate copies of the gas or
a mesoscopic Josephson junction [Lui20]. The list of strongly correlated Fermi systems
with different Hamiltonians we plan to explore with our apparatus could be extended
further almost indefinitely. Here, we have restrained ourselves to some of the most
obvious ideas.
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Figure 9.5: Beyond second order density correlations. Our images allow us to
extract correlation functions of arbitrary order. Here, a first analysis of
forth order, or pair-pair, correlations for images of the N = 6 + 6 particle
ground state is shown. The correlation function C(4) is defined analogously
to C(2) (see chapter 7) by replacing density operators by pair operators
nσ(p)→ n↑(p↑)n↓(p↓). We find significant correlations between different
pairs. A more detailed analysis is required to check to what extend these
fourth order correlations can be expressed as a function of lower order
correlations (i.e. the disconnected part) and to study what effects come
from the finite size of our system.

9.4 Heidelberg Quantum Architecture

The correlations presented in this thesis have been limited to second order. With the
help of our single atom resolved images we are in principle able to extract density corre-
lation functions of any desired order. This allows us to observe effects beyond standard
Cooper pairing, for example when studying pair-pair correlations in the sample. In
Figure 9.5, some preliminary analysis of fourth order correlations for the N = 6 + 6
particle ground state is shown. The amount of statistics required for the analysis of
higher order correlations scales exponentially with the number of operators in the corre-
lation function. In 2D the pair-pair correlations are already eight dimensional functions
in terms of the momentum or position coordinates of single atoms, for example.

For future studies of higher order correlation functions, one essential step is to reduce
the experimental cycle time significantly. To this end, our group is working on the
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next generation of quantum gas experiment — the Heidelberg Quantum Architecture
(HQA). The ideas for the apparatus are based on the preparation schemes we have
presented in chapter 4. We have demonstrated that it is possible to prepare deeply
degenerate systems of up to 100 atoms with very low entropies of 0.1 kB per atom
in very short times tspill ≈ 20 ms. By extending these methods and optimizing the
different laser cooling stages, we estimate that with the HQA we will achieve cycle
rates significantly exceeding 1 Hz. Together with the imaging techniques presented in
this thesis, the new apparatus hold the potential to open up a new chapter in the
simulation of many-body physics with ultracold quantum gases.
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