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Summary
This thesis presents experiments with few-fermion systems in quasi-2D. Starting with spin-
balanced systems, the emergence of a few-body precursor of a phase transition is presented.
The microscopic origins of the precursor, namely Pauli blocking and Cooper pair formation
at the Fermi surface, are observed using single particle microscopy of in situ momenta. Us-
ing matterwave techniques, a microscopy scheme to measure in situ positions of particles in
a regime where the system size is smaller than the effective imaging resolution is presented.
This matterwave microscope is characterized and its performance is demonstrated by mea-
suring correlations across the BEC-BCS crossover in a few-body spin-balanced system.
Spin-imbalanced few-fermion systems are then studied. The preparation of such systems in
the motional ground state using interaction mediated spin-motion coupling is demonstrated.
A simple model system consisting of a single impurity immersed in a few-body Fermi sea
is studied and correlations of in situ positions beyond second order are used to infer a few-
body precursor of the polaron-molecule transition. The effect of fermion number on the
molecular state and the stability of the metastable excited state are studied. The effect of
mismatched Fermi surfaces at finite impurity concentrations on the center-of-mass(COM)
momentum of pairs are then explored by accessing correlations.

Zusammenfassung
In dieser Arbeit werden Experimente mit Wenig-Fermionen Systemen in quasi-2D vorgestellt.
Ausgehend von spin-ausgeglichenen Systemen wird das Auftreten eines Wenig-Teilchen
Vorläufers eines Phasenübergangs vorgestellt. Die mikroskopischen Ursprünge des Vor-
läufers, nämlich Pauli-Blockierung und Cooper-Paar-Bildung an der Fermi-Oberfläche, wer-
den mit Hilfe der Einzelteilchenmikroskopie im Impulsraum beobachtet. Unter Verwendung
von Materiewellen-Techniken wird ein Mikroskopieschema zur Messung im Ortsraum von
Teilchen in einem Bereich vorgestellt, in dem die Systemgröße kleiner ist als die effek-
tive Bildauflösung. Dieses Materiewellenmikroskop wird charakterisiert und seine Leis-
tungsfähigkeit wird durch die Messung von Korrelationen über den BEC-BCS-Übergang
in einem spin-ausgeglichenen System mit wenigen Teilchen demonstriert. Anschließend
werden spin-unausgeglichene Systeme mit wenigen Fermionen untersucht. Die Präpara-
tion solcher Systeme im Bewegungsgrundzustand durch wechselwirkungsvermittelte Spin-
Bewegungs-Kopplung wird demonstriert. Ein einfaches Modellsystem, das aus einer einzel-
nen Störstelle besteht, die in ein Wenig-Teilchen-Fermi-Meer eingetaucht ist, wird un-
tersucht, und Korrelationen im Ortsraum jenseits der zweiten Ordnung werden verwen-
det, um einen Wenig-Teilchen-Vorläufer des Polaron-Molekül-Übergangs abzuleiten. Die
Auswirkungen der Fermionenzahl auf den molekularen Zustand und die Stabilität des
metastabilen angeregten Zustands werden untersucht. Die Auswirkung nicht angepasster
Fermi-Flächen bei endlichen Störstellenkonzentrationen auf den Massenmittelpunkt (COM)
von Paaren wird dann durch den Zugriff auf Korrelationen untersucht.
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1 Introduction

The description of interacting many-body systems is characterized by emergent degrees of
freedom[1]. Without recourse to details of the microscopic Hamiltonaian, the macroscopic
properties and phases can be explained using these emergent degrees of freedom. All micro-
scopic models which have the same symmetry lead to similar macroscopic behaviour near
phase transitions and are described by the same universality class. While for an interact-
ing system consisting of two particles an emergent description is futile, a system such as a
piece of metal consisting of 1024 particles is certainly amenable to such an approach. This
begs the question, how many particles are needed before qualitative behaviours similar to
many-body phases are observed?

Ultracold quantum gases have established themselves as versatile experimental platforms
due to the level of control afforded by them. Along with in situ control of interactions[2] and
single particle detection[3], they have been successfully used to emulate model Hamiltonians
encompassing fields from condensed matter to high energy physics[4]. The high level of
control present in the preparation of these systems and single particle detection capabilities
are especially suited to the study of few-body interacting systems. Such systems abound
in nature from atomic to nuclear length scales. What distinguishes such systems is that
while they certainly are far from the many-body limit, their properties can nonetheless
be explained using collective behaviour found in many-body systems[5], [6]. For example,
a mesoscopic system of as little as 60 4He atoms has been found to possess rotational
properties consistent with a superfluid[7].

A balanced system of two-component fermions features a rich phase diagram with a
BEC-BCS crossover in the many-body limit[8]. The advent of atomic Fermi gases and the
subsequent experiments[9]–[14] renewed an interest in this crossover which was predicted
long ago[15], [16]. Depending on the two-body interactions, the scattering length a can be
positive or negative. A positive scattering length is associated with repulsive interactions
and possesses a two-body bound state. At T = 0, these molecules can Bose condense and
form a superfluid. However for negative scattering lengths no two-body bound state is
present and the system is characterized by attractive interactions. A Fermi sea leads to a
frozen core and fermions of opposite spin interacting attractively can form a bound state at
the Fermi surface[17]. It was then demonstrated by Bardeen, Cooper and Schrieffer[18] that
such Cooper pairs could condense to form a superfluid at T = 0. Formation of these Cooper
pairs and superfluidity is a truly many-body effect. The spin-imbalanced counterparts
also possess a rich phase diagram in the many-body limit. At weak interactions in the
extreme case of imbalance featuring a single impurity immersed in a Fermi sea, the impurity
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1. Introduction

is dressed by the surrounding Fermi sea and a new quasi-particle, the Fermi polaron, is
formed. In the ground state, as attractive interactions are increased this polaron is expected
to undergo a transition into a molecular state. Finite impurity concentrations lead to a
situation with mismatched Fermi surfaces where a rich pairing phase diagram is expected. In
this thesis, these systems are explored from the few-body limit. In addition to spectroscopic
means, microscopy of in situ observables is used to extract correlation functions. The
correlation functions are used to connect the few-body system to its many-body counterpart.
A brief overview of the investigations followed by an outline is presented.

1.1 Spin-balanced few-fermion systems

A spin-balanced few-fermion system which consists of a minimal Fermi sea with a few
occupied levels is an interesting system which is smoothly connected to the many-body
limit. Do such systems posses collective modes and phase transitions reminiscent of many-
body systems? Few-fermion systems have been successfully prepared at low entropies in
1-dimension(1D)[19] and many-body characteristics in the energy spectrum have been ob-
served for very few particle numbers[20]. In higher dimensions, due to the presence of
symmetries degeneracies appear which lead to non-uniform density of states. In this the-
sis we explore such few-fermion systems in quasi 2-dimensional(2D) harmonic traps where
degeneracies lead to the formation of shells similar to that seen in atomic and nuclear
systems. Experiments in the spin-balanced case are first summarized before exploring spin-
imbalanced systems. Starting with the preparation of such systems, we demonstrate the
formation of shells due to degeneracies in the system. By modulating interactions the
few-body ground and excited states can be coupled causing a collective excitation of the
system. The excitation spectrum as a function of interaction strength reveals a gap clos-
ing between the ground and excited states reminiscent of many-body gap closing at the
normal-superfluid phase transition. Using the ability to tune particle number and adding
an additional shell reveals a further reduction in the gap consistent with the trend towards
larger particle numbers and the many-body limit. In such a mesoscopic system, the single
particle gap given by the energy levels sets an additional energy scale preventing coupling
to decay channels making the collective mode stable. The stability of the collective mode
is demonstrated by driving coherent oscillations between the ground and excited states.
This gap closing in the few-body system is a consequence of Pauli blocking and leads to
the formation of Cooper pairs. Using single particle imaging techniques the effect of Pauli
blocking is then explored. The anti-symmetrization of the many-body wavefunction leads
to correlations which can be visualized as a Pauli crystal[21]. Using the ability to image
multiple spin states, the correlations arising in interacting systems are summarized. Corre-
lations in momentum space provide evidence supporting the of formation of Cooper pairs
at the Fermi surface for finite interaction strengths. Comparison to the many-body system
is provided and qualitative similarities are pointed out.

2



1.2. Matterwave microscope

1.2 Matterwave microscope

The ability to access single particle observables in these mesoscopic systems provides access
to microscopic correlations. While Cooper pair correlations are presented in momentum
space, access to in situ positions of the particles is challenging due to technical limitations.
The size of the mesoscopic system is smaller than the effective imaging resolution and
prevents a direct measurement of in situ positions. There have been techniques developed
in other fields where such limits are overcome by expanding the system prior to imaging[22]
and such expansion schemes have also been explored for quantum gases[23]. Expansion of
a many-body system can be performed by a quench of interactions followed by matterwave
transformations in harmonic traps. Implementation of such a matterwave expansion scheme
is presented using a combination of nearly harmonic traps. The parameters of the trap
compared to typical scales of the system under study is presented. The resulting matterwave
microscope is characterized and used to study in situ position correlations of the spin-
balanced mesoscopic system. In the many-body limit, an interacting Fermi gas features a
BEC-BCS crossover with contrasting qualitative features on either side of the crossover. The
BCS state is characterized by formation of zero center-of-mass(COM) momentum Cooper
pairs which appear as correlations in momentum space. In the many-body limit the size
of these Cooper pairs in position space are large compared to the inter-particle spacing.
The BEC limit features molecules which also have zero COM momentum and appear as
correlations in momentum space. However, in contrast to Cooper pairs these molecular
pairs are smaller in size compared to the inter-particle spacing and feature correlations at
short distances. Extending in situ single particle measurements to position space using the
matterwave microscope, such complementary correlations in position space are explored.
At large coupling strengths in the BEC limit of the crossover region, the two-body binding
energy of the molecular pairs far exceeds the Fermi energy. In this regime correlations
in position space reveal an enhancement of correlations at short distances indicating the
formation of a molecular state. The number of close distance pairs is related to a universal
quantity, the Tan Contact[24] and is evaluated as a function of interaction strength.

1.3 Spin-imbalanced few-fermion systems

The advent of atomic Fermi gases was responsible for the renewed interest in the BEC-
BCS crossover. The situation was no different with spin-imbalanced systems and led to a
flurry of theoretical activity with implications across many areas[25]–[30]. Theoretical pre-
dictions of the phase diagram of spin-imbalanced systems had not seen much activity since
a long time[31]–[35]. Experiments on spin-imbalanced atomic Fermi gases were responsi-
ble for renewed interest in such systems[36]–[38]. These experiments studied the effect of
spin-polarization on the superfluidity in the system. Since the imbalanced Fermi gas was
confined in a trap, the inhomogenous densities led to observation of a central superfluid
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1. Introduction

region, an outer polarized fluid in both experiments and an additional intermediate region
with a partially polarized normal fluid in the MIT experiment[36]. Since the size of the
three regions could not be explained by BCS theory, Chevy proposed a variational wave-
function[39] to explain the experimental observations. The intermediate partially polarized
region was modelled an impurity interacting with a Fermi sea. The impurity is then dressed
by particle-hole excitations of the Fermi sea and forms a quasi-particle, the Fermi polaron.
An impurity interacting with a bosonic environment consisting of phonons was studied long
ago in the context of electron motion in a lattice[40], [41]. For an attractively interacting
impurity in the ground state, a transition to a molecular phase was predicted with increasing
interactions[42]. The spectroscopic signatures of the polaron and evidence for a transition
into a molecular state were subsequently observed in 3D[43]. Further evidence in favor
of the polaron was also found by measuring its quasi-particle mass[44] finding agreement
with theoretical predictions[42]. This model of extreme imbalance featuring a impurity in-
teracting with a Fermi sea and its realizations with cold atoms generated a lot of interest
since it has relevance for the understanding of high-Tc superconductivity[45]. Experiments
were subsequently performed in the many-body limit in 2D where spectroscopic signatures
of the polaron and evidence in favor of a transition were also found[46]. While the fate
of the polaron-molecule transition in 2D was subject to some initial debate[47], consensus
has developed from different approaches[48]–[51]. However, microscopic observations have
only been restricted to lattice systems[52] and complementary observations in continuous
systems are lacking.

Techniques to prepare low entropy spin-balanced few-fermion samples in quasi-2D are
extended to prepare spin-imbalanced systems. The preparation of such ground state sys-
tems poses technical challenges. In interacting systems, radio frequency(RF) transitions
can be used to introduce spin-motion coupling due to overlap between various many-body
motional states. Exploiting this spin-motion coupling, a model system consisting of a sin-
gle impurity in a minimal Fermi sea is prepared deterministically in the motional ground
state. Using complementary microscopy in position and momentum space, evidence for
particle-hole exciations and attractive binding is presented. Microscopic detection opens
up possibilities to measure correlations functions and this is used to measure correlations
of second and third order. Third order correlations among an impurity and two fermions
points to the formation of an asymmetric paired state where the impurity binds to one of
the fermions providing evidence for a transition to a molecular state. The parameter range
where this transition happens is in line with theoretical predictions for quasi-2D trapped
systems in the many-body limit[49]. The effect of this asymmetric pairing is explored as a
function of fermion number yielding outcomes consistent with mean field expectations. The
stability of excited metastable systems featuring a repulsively interacting impurity is also
explored. The spin-imbalanced Fermi gas is connected on the one hand to this extreme case
of imbalance featuring a single impurity interacting with a Fermi sea and on the other hand
to a spin-balanced Fermi gas. While in the spin-balanced case an attractively interacting
Fermi gas forms Cooper pairs which have zero COM momentum, the fate of these pairs are
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1.4. Outline

strongly debated in the spin-imbalanced case where the Fermi surfaces of the two-species are
mismatched[53], [54]. The ability to prepare finite impurity concentrations enables mea-
surements to be performed in this regime in the few-body limit. The COM momentum
distribution of the correlation function is obtained and compared with the spin-balanced
case. While pairing is weaker compared to the balanced case, in certain interaction regimes
the correlator peaks at finite COM momentum for the imbalanced case. Using the ability to
perform microscopy in such interacting few-body systems, connections to phenomena and
phases in the many-body limit are made.

1.4 Outline

Chapter 2 presents the basic technical details which are necessary for understanding the
results presented in this thesis. An overview of internal structure of 6Li is provided followed
by magnetic and electric dipole transitions. This is followed by a discussion of two-photon
Raman transitions which are used for fast interaction switch-off enabling the measurement of
in situ quantities. A discussion on resonant interactions follows which explains the choice of
internal states to switch-off interactions. These combinations of internal state manipulations
are then used to summarize a two-state imaging scheme used for the experiments presented
in this thesis.

Chapter 3 then summarizes experiments in the spin-balanced few-body regime which
sets the stage for subsequent experiments. A brief summary of single and two-particle
physics in quasi-2D systems is presented, the results of which are be used throughout the
thesis. Using spectroscopic measurements, evidence for the emergence of a phase transition
precursor is presented which is surprising given that these few-body systems are far from
the many-body limit. The collective modes which are spectroscopically measured occur
due to interactions and Pauli blocking. Microscopic measurements in momentum space are
used to demonstrate correlations occurring in spin-polarized systems due to Pauli blocking.
Microscopic measurements of interacting systems are then used to demonstrate correlations
in momentum space reminiscent of Cooper pairing.

The size of the few-body system being smaller than the effective imaging resolution
prevents direct imaging of in situ positions in such systems. In Chapter 4 experimental
matterwave techniques are presented to magnify the many-body wavefunction of the system
prior to imaging overcoming this limitation. Design considerations for the matterwave
microscope are summarized and a complete characterization along with limits and regime
of applicability is presented. The matterwave microscope is then used to perform in situ
microscopy of the spin-balanced few-fermion system in position space and comparisons to
in situ momentum measurements are presented. Correlation functions are extracted from
the experimental data and indicate the formation of a pairs with short-distance correlations
at large interaction strengths.

Chapter 5 lifts the equal spin-population constraint and extends experiments to the regime
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1. Introduction

of few-fermion systems with imbalanced spin populations. Since the ground states of these
systems are host to a number of interesting phases in the many-body limit, their few-body
analogs are studied. Preparation of such systems in the motional ground state is presented
exploiting interaction induced spin-motion coupling. The extreme case of imbalance fea-
turing a single impurity immersed in a minimal instance of a Fermi sea is explored where
the ground state features a polaron-molecule transition in the many-body limit. Evidence
for particle-hole excitations of the Fermi sea are followed by correlation measurements in-
dicating the formation of a molecular state at large interaction strengths. The effect of
fermion number is then studied followed by the stability of metastable excited states in
such systems. The chapter concludes by changing impurity concentration thereby reaching
the regime where the Fermi surfaces of the two species are mismatched. Comparisons to
correlations in the spin-balanced case are provided.

Chapter 6 summarizes the conclusions from the experiments presented in the thesis. An
outlook is presented with possible future directions.
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2 Experimental Details

2.1 Introduction

The experiments performed in this thesis are related to the ground state properties of
strongly interaction few-fermion systems. We use atomic quantum gases of fermionic 6Li
to emulate model Hamiltonians associated with these systems[4]. In this chapter atomic
properties and experimental details necessary to understand the experiments in this the-
sis are summarized. Internal state manipulations of 6Li are indispensable for interaction
control, fluorescence detection and spin-resolved single particle imaging. Hence the internal
structure of 6Li at finite magnetic fields is presented first. The internal states are elucidated
in the uncoupled basis and these can be used to quickly identify optical and magnetic dipole
transitions between these states. The magnetic and optical transitions are then presented
in detail and the strengths of various transitions as a function of magnetic field and polar-
ization are summarized. The optical dipole transitions are used for fluorescence imaging
of single atoms and the summary helps identify which transitions are closed and which
ones need repumping beam(s). Magnetic dipole transitions are used for internal state ma-
nipulations of the ground 22S1/2 state to enable two-state single particle imaging so that
correlations can be accessed. They are also used in Chapter 5 to prepare the system in
the ground state exploiting interaction induced spin-motion coupling. These transitions
are then summarized along with their strengths and polarization as a function of magnetic
field. While some magnetic transitions can be made fast, to access in situ observables inter-
nal state manipulations an order of magnitude faster and at nearly all magnetic fields are
needed necessitating the use of two-photon stimulated Raman transitions. These transi-
tions within the ground state manifold and the associated qualities are then quantified, and
all possible two-photon transitions summarized. The specific two-photon transition used in
this thesis is then quantified in detail for various parameter possibilities. Such a detailed
characterization of internal state manipulations has been summarized here since it has not
been performed before.

A large part of the uniqueness of cold atomic gases is attributed to tunable interactions
which enables the realization of model Hamiltonians in various regimes. These interactions
arise due to resonant scattering processes which can be represented by a few universal
quantities in the low-energy scattering limit. A summary of low-energy scattering in this
universal limit is presented using a model potential where exact expressions for the scattering
length can be obtained. The effect of changing the potential on the scattering length is
then presented which is desired for tunable interactions. The scattering process is then
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2. Experimental Details

decomposed in terms of a partial wave expansion of waves with finite angular momentum.
The total scattering amplitude and cross-section is then related to the amplitudes and cross
section of these individual waves. The scattering problem of two 6Li atoms is different
from this simplistic situation since the colliding particles have internal structure. In such a
situation the interaction potential depends on the internal configuration of the atoms. The
hyperfine interaction in such a situation causes coupling of various internal channels and this
can lead to a resonant enhancement similar to the situation with a model potential where the
potential was tuned. This leads to a Feshbach resonance in 6Li which can be magnetically
tuned. A brief discussion of channel coupling is followed by a qualitative analysis for
mixtures with large and weak interactions. The mixtures with strong interactions are used
for studying model systems of interest while the weakly interacting states are used for
switching-off interactions. Such an interaction switch-off gives access to the measurement
of in situ properties of the system.

A large part of this thesis is concerned with extraction of correlation functions from single
particle microscopy. An overview of single particle imaging and detection is presented. Since
we work with two-component interacting fermions, the measurement of correlation functions
require simultaneous imaging of both spin states. This requires a series of internal state
manipulations using magnetic dipole and two-photon transitions. Internal state manipu-
lations are followed by fluorescence detection using some of the optical dipole transitions
presented.

In addition to experimental details presented above, standard experimental procedures
like laser cooling, optical dipole trapping, tuning optical potentials are used for the experi-
ments performed in this thesis. These details have already been summarized elsewhere[55],
[56] and are not repeated.

2.2 Level structure

The atomic species used for the experiments presented in this thesis is 6Li which is a
fermionic isotope. It is an alkali atom with one valance electron in the 2s shell. The
electrons in the inner shell shield the nuclear charge and the central field approximation is
used to obtain the level structure. The first correction to energy comes from the coupling
of the intrinsic spin of the valance electron with the orbital motion. This can be obtained
considering the coupling of the magnetic field caused due to the motion of the nucleus in
the rest frame of the electron and the Thomas precession term which takes into account
relativistic corrections[57]. The resulting correction to the Hamiltonian can be written as[58]

H
′
SO =

e

2m2c2h̄2

(
1

r

∂ϕ

∂r

)
L⃗.S⃗ (2.1)

where L⃗ (S⃗) is the orbital(spin) angular momentum, J⃗ = L⃗+ S⃗ is the total angular momen-
tum and ϕ is the electrostatic potential at point r due to the nucleus. This fine-structure
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2.2. Level structure
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Figure 2.1: Fine and hyperfine structure at zero magnetic field (B = 0). In the
ground electronic state 2s, there is no fine structure correction since L=0. How-
ever, the excited 2p state splits into 22P1/2 and 22P3/2 states corresponding to
J=1/2 and J=3/2 respectively with a splitting of approximately 10GHz. The
hyperfine correction leads to a coupling of the nuclear spin I⃗ and total electron
spin J⃗ resulting in the Hamiltonian being diagonal in |F,mF ⟩ basis at B=0,
where F⃗ = J⃗+ I⃗. This leads to a splitting of the 22S1/2 and 22P1/2 states into
F=1/2 and F=3/2 manifolds. The 22P3/2 state is split into F=1/2, F=3/2 and
F=5/2 manifolds. The energy splitting of the hyperfine manifolds are deter-
mined by the magnetic dipole and electric quadrupole hyperfine constants for
each of the fine structure states. The splittings are only indicative and not to
scale.
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2. Experimental Details

correction does not affect the ground state since it has L=0. In spectroscopic notation the
ground state is represented as 22S1/2. The first excited state has L=1 and hence is split into
J=3/2 and J=1/2 with a fine-structure splitting energy of 10 GHz. The optical transition
from the 22S1/2 to 22P1/2 (22P3/2) is known as the D1(D2) transition.

In addition to this fine-structure correction, an additional correction to the energy occurs
due to the coupling of the nuclear spin I⃗ to J⃗. This leads to the hyperfine structure and
the Hamiltonian for the correction is

H
′
HF = −µ.B⃗(0) +

1

6
e
∑
αβ

Qαβ
∂2ϕ

∂xα∂yβ
(2.2)

where µ is the nuclear magnetic dipole moment, Q is the nuclear electric quadrupole mo-
ment, B⃗(0) is the magnetic field at the location of the nucleus. Using experimentally
obtained magnetic dipole hyperfine constant A and electric quadrupole hyperfine constant
B [59], the hyperfine energy corrections can be written as,

H
′
HF = A J⃗.⃗I +

3

2
B

J⃗.⃗I (J⃗.⃗I+ 1)

I(2I − 1)J(2J − 1)
(2.3)

This Hamiltonian is diagonal in |F,mF ⟩ basis where F⃗ = J⃗+ I⃗ is total angular momentum.
The hyperfine energy correction is much weaker than the fine-structure corrections by a
factor of α2 where α is the fine-structure constant. Due to the hyperfine coupling, the ground
state 22S1/2 manifold splits into F=3/2 and F=1/2 manifolds separated by approximately
228 MHz. The excited states 22P1/2 is split into F=3/2 and F=1/2 and 22P3/2 is split into
F=5/2, F=3/2, F=1/2 states. The splittings and the states at B=0 are shown in Figure 2.1.

All of the experiments in this thesis are performed at finite magnetic fields to make use
of tunable interactions due to Feshbach resonances[2]. Under this circumstance the Zeeman
corrections need to be added to the Hamiltonian consisting of fine and hyperfine corrections.

HZ = µBgJ J⃗.B⃗− µBgI I⃗.B⃗ (2.4)

where µB is the Bohr magneton, gJ (gI) are the Landé g-factors for the spin-orbit coupled
electron (nucleus). The energies and states of the resulting Hamiltonian H = H

′
SO+H

′
HF +

HZ can be obtained by solving the eigen value problem in the uncoupled basis. The energies
of the states are shown in Figure 2.2 for 22S1/2, Figure 2.3 for 22P1/2 and Figure 2.4 for
22P3/2 states. The admixtures in the uncoupled basis and their relative strengths for various
eigen states are enumerated below. These states will be especially necessary to list out all
possible magnetic, optical and two-photon transitions at finite magnetic fields. At large
magnetic fields, the electron and nuclear spin decouple and states split into a multiplet of
different mJ levels containing different mI projections −1, 0, 1.
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2.2. Level structure

2.2.1 Eigenstates of the 22S1/2 manifold

The eigen states of the 22S1/2 manifold are denoted by |1⟩ . . . |6⟩ in the order of increasing
energy. The states in the uncoupled basis are

|1⟩ = a1

∣∣∣∣0,−1

2
, 1

〉
− a2

∣∣∣∣0, 12 , 0
〉

|2⟩ = a3

∣∣∣∣0,−1

2
, 0

〉
− a4

∣∣∣∣0, 12 ,−1
〉

|3⟩ =
∣∣∣∣0,−1

2
,−1

〉
|4⟩ = a4

∣∣∣∣0,−1

2
, 0

〉
+ a3

∣∣∣∣0, 12 ,−1
〉

|5⟩ = a2

∣∣∣∣0,−1

2
, 1

〉
+ a1

∣∣∣∣0, 12 , 0
〉

|6⟩ =
∣∣∣∣0, 12 , 1

〉
(2.5)

The states are expanded in the |mL,mS ,mI⟩ basis. At large magnetic fields the co-efficients
in black(red) tend to 1(0) resulting in states |1⟩ , |2⟩ , |3⟩ (|4⟩ , |5⟩ , |6⟩) constituting the
mJ = −1/2(mJ = 1/2) manifold with mI projections 1,0,-1 (-1,0,1). It can also be seen
immediately that the states |1⟩ . . . |6⟩ are orthogonal to each other. Expressing the states in
the uncoupled |ml,mS ,mI⟩ basis also makes it easy to identify magnetic and electric dipole
transitions between states.

2.2.2 Eigenstates of the 22P1/2 manifold

The eigen states of the 22P1/2 manifold are denoted by |1′⟩ . . . |6′⟩ in the order of increas-
ing energy as shown in Figure 2.3. The states can be expanded in the uncoupled basis
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Figure 2.2: Energy of states in the 22S1/2 manifold as a function of magnetic field.
At zero magnetic field, the Hamiltonian includes the hyperfine coupling term
Ahf J⃗ .I⃗ and the Hamiltonian is diagonal in |F,mF ⟩ basis where F⃗ = J⃗ + I⃗.
This leads to a splitting of 22S1/2 state into F=1/2(below) and F=3/2(above)
manifolds with a spacing of 228.2 MHz. As the magnetic field is turned on, in
addition to the hyperfine correction, the Zeeman term is added to the Hamilto-
nian. Due to this, the Hamiltonian is no longer diagonal in the |F,mF ⟩ basis.
The F=1/2 and F=3/2 manifold splits into a total of six states labelled in order
of increasing energy from |1⟩ . . . |6⟩. The states |1⟩ . . . |6⟩ can be obtained as
a superposition of the uncoupled basis states by solving the eigen value prob-
lem. As B → ∞, high-field (low-field) seeking states |1⟩ , |2⟩ , |3⟩ (|4⟩ , |5⟩ , |6⟩)
asymptotically tend to state |J = 1/2,mJ = −1/2⟩ (|J = 1/2,mJ = 1/2⟩) with
nuclear spin projections mI = 1, 0,−1 (mI = −1, 0, 1). The splitting between
adjacent states in the low and high-field seeking manifold is roughly 80MHz and
is shown in the insets.
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Figure 2.3: Energy of states in the 22P1/2 manifold as a function of magnetic
field. At zero magnetic field, the Hamiltonian is diagonal in |F,mF ⟩ basis
where F⃗ = J⃗ + I⃗. This leads to a splitting of 22P1/2 state into F=1/2(below)
and F=3/2(above) manifolds with a spacing of 26.1 MHz. At non-zero magnetic
fields, the Hamiltonian is no longer diagonal in the |F,mF ⟩ basis. The F=1/2
and F=3/2 manifold splits into a total of six states labelled in order of increasing
energy from |1′⟩ . . . |6′⟩. The states |1′⟩ . . . |6′⟩ can be obtained as a superposition
of the uncoupled basis states by solving the eigen value problem. For large
magnetic fields, high-field (low-field) seeking states |1′⟩ , |2′⟩ , |3′⟩ (|4′⟩ , |5′⟩ , |6′⟩)
asymptotically tend to state |J = 1/2,mJ = −1/2⟩ (|J = 1/2,mJ = 1/2⟩) with
nuclear spin projections mI = 1, 0,−1 (mI = −1, 0, 1). The splitting between
adjacent states in the low and high-field seeking manifold is roughly 8MHz and
is shown in the insets.
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|mL,mS ,mI⟩ as follows

∣∣1′〉 = −b1 ∣∣∣∣−1, 12 , 1
〉
+ b2

∣∣∣∣0,−1

2
, 1

〉
+ b3

∣∣∣∣0, 12 , 0
〉
− b4

∣∣∣∣1,−1

2
, 0

〉
∣∣2′〉 = b5

∣∣∣∣−1, 12 , 0
〉
− b6

∣∣∣∣0,−1

2
, 0

〉
− b7

∣∣∣∣0, 12 ,−1
〉
+ b8

∣∣∣∣1,−1

2
,−1

〉
∣∣3′〉 = −b9 ∣∣∣∣−1, 12 ,−1

〉
+ b10

∣∣∣∣0,−1

2
,−1

〉
∣∣4′〉 = −b8 ∣∣∣∣−1, 12 , 0

〉
+ b7

∣∣∣∣0,−1

2
, 0

〉
− b6

∣∣∣∣0, 12 ,−1
〉
+ b5

∣∣∣∣1,−1

2
,−1

〉
∣∣5′〉 = b4

∣∣∣∣−1, 12 , 1
〉
− b3

∣∣∣∣0,−1

2
, 1

〉
+ b2

∣∣∣∣0, 12 , 0
〉
− b1

∣∣∣∣1,−1

2
, 0

〉
∣∣6′〉 = −b10 ∣∣∣∣0, 12 , 1

〉
+ b9

∣∣∣∣1,−1

2
, 1

〉
(2.6)

At large magnetic fields the sum of squares of co-efficients in black(red) tend to 1(0) leading
to states |1′⟩ . . . |3′⟩ (|4′⟩ . . . |6′⟩) constituting the mJ = −1/2 (mJ = 1/2) manifolds with
mI projections 1,0,-1 (-1,0,1).

2.2.3 Eigenstates of the 22P3/2 manifold

The eigenstates of the 22P3/2 manifold are denoted by |1”⟩ . . . |12”⟩ in the order of increasing
energy as shown in Figure 2.4. The states are expanded in the uncoupled basis |mL,mS ,mI⟩
basis as follows
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Figure 2.4: Energy of states in the 22P3/2 manifold as a function of magnetic
field. At zero magnetic field, the Hamiltonian is diagonal in |F,mF ⟩ basis
where F⃗ = J⃗ + I⃗. This leads to a splitting of 22P3/2 state into F=1/2, F=3/2
and F=5/2 manifolds with a spacing of 1.65 MHz and 2.75 MHz(See inset at
B=0). At non-zero magnetic fields, the Hamiltonian is no longer diagonal in
the |F,mF ⟩ basis. The F manifolds split into a total of twelve states labelled
in order of increasing energy from |1”⟩ . . . |12”⟩. The states |1”⟩ . . . |12”⟩ can
be obtained as a superposition of the uncoupled basis states by solving the
eigen value problem. For large magnetic fields, states |1”⟩ . . . |3”⟩, |4”⟩ . . . |6”⟩,
|7”⟩ . . . |9”⟩ and |10”⟩ . . . |12”⟩ asymptotically tend to states mJ = −3/2, mJ =
−1/2, mJ = 1/2 and mJ = 3/2 respectively with three nuclear spin projections
-1,0,+1. The splitting between each of these states at high field is shown in the
insets.
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2
, 0

〉
+□

∣∣∣∣1, 12 ,−1
〉

(2.7)

Unlike for 22S1/2 and 22P1/2 the co-efficients do not repeat and are denoted as □ (□) if
it tends to a finite value (zero) for large magnetic fields. States |1”⟩ . . . |3”⟩, |4”⟩ . . . |6”⟩,
|7”⟩ . . . |9”⟩ and |10”⟩ . . . |12”⟩ are asymptotically states with mJ = −3/2, mJ = −1/2,
mJ = 1/2 and mJ = 3/2 with different mI projections respectively.

2.3 Magnetic dipole transitions

Transitions between states of the 22S1/2 manifold |1⟩ . . . |6⟩ are very important for preparing
the system, controlling interactions and imaging sequences and in this section the possible
magnetic dipole transitions are elaborated. As seen in Figure 2.2, at large magnetic fields the
energy differences between these states are in the MHz regime and the states can be coupled
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2.3. Magnetic dipole transitions
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2. Experimental Details

by magnetic dipole transitions in the radio frequency(RF) and microwave(MW) regimes.
In addition to magnetic dipole transitions, two-photon optical dipole transitions are also
possible between these states and are presented in Section 2.5. The coupling between states
due to an oscillating magnetic field in the rotating wave approximation is[60]

Hij = ⟨Q| − µ.B⃗
∣∣Q′〉 (2.8)

where µ = µe + µn is the total magnetic moment and B⃗ is the amplitude of the magnetic
field. This coupling operator can be re-written in terms of raising,lowering and z-projection
operators as follows

Ĥ = µBge

(
1

2
(S+B− + S−B+) + SzBz

)
+ µBgI

(
1

2
(I+B− + I−B+) + IzBz

)
(2.9)

where S± = Sx ± iSy (I± = Ix ± iIy) are the raising/lowering operators for the electron
(nuclear) spin; B± = Bx± iBy is the magnetic field amplitude in terms of the components x
and y; Sz (Iz) is the electron (nuclear) spin projections along the z axis; Bz is the magnetic
field component along the quantization axis.

The S± (I±) term couples an initial and final state whose electron (nuclear) spin projec-
tions are different by ∓1 and Sz (Iz) term couples states with the same electron (nuclear)
spin projections. These transitions are denoted σ± and π respectively. It is important to
note that gI is four orders of magnitude smaller than ge and hence nuclear spin states couple
only very weakly. Thus the largest matrix elements are the ones where electronic spin states
are coupled namely states |1⟩ − |6⟩, |2⟩ − |5⟩ and |3⟩ − |4⟩ through a σ± transition. The
states |1⟩ . . . |6⟩ have already been diagonalized in the uncoupled basis in Section 2.2 and
matrix elements can be directly evaluated as a function of the magnetic field. The mag-
netic dipole matrix elements corresponding to σ± transition 1

2(⟨Q| geS± + gII± |Q′⟩) and π
transition ⟨Q| (geSz+ gIIz) |Q′⟩ as a function of the magnetic field are plotted in Figure 2.5
for different initial and final states as a function of magnetic field. In the experiments we
utilize mainly transitions between states |1⟩ − |2⟩, |2⟩ − |3⟩ for preparation, internal state
manipulations to enable imaging and |3⟩−|4⟩ for two-state single particle imaging sequence
elaborated later in Section 2.7.

2.4 Electric dipole transitions

The 22S1/2 - 22P1/2 and 22S1/2 - 22P3/2 states can be coupled by optical dipole transitions
and are denoted as the D1 and D2 lines. The optical dipole transition matrix element
for polarization q between uncoupled states having quantum numbers |L,mL;S,mS ; I,mI⟩
(final state) and |L′,m′

L;S
′,m′

S ; I
′,m′

I⟩ (initial state) is

Dq = ⟨L,mL;S,mS ; I,mI | erq
∣∣L′,m′

L;S
′,m′

S ; I
′,m′

I

〉
(2.10)
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2.4. Electric dipole transitions

10
-4

10
0

DQ’
Q

|1
’⟩

|1⟩

|2
’⟩ -

|3
’⟩

|4
’⟩ -

|5
’⟩

|6
’⟩ +

10
-4

10
0

DQ’
Q

|2⟩

+
-

+

10
-4

10
0

DQ’
Q

|3⟩
+

+

10
-4

10
0

DQ’
Q

|4⟩

+
-

+

10
-4

10
0

DQ’
Q

|5⟩

-
-

+

0
20

0
40

0
60

0
80

0
B 

Fi
el

d 
[G

]

10
-4

10
0

DQ’
Q

|6⟩

-

20
0

40
0

60
0

80
0

B 
Fi

el
d 

[G
]

20
0

40
0

60
0

80
0

B 
Fi

el
d 

[G
]

20
0

40
0

60
0

80
0

B 
Fi

el
d 

[G
]

20
0

40
0

60
0

80
0

B 
Fi

el
d 

[G
]

-
20

0
40

0
60

0
80

0
B 

Fi
el

d 
[G

]

- +

Fi
na

l S
ta

te

Initial State

F
ig

ur
e

2.
6:

E
le

ct
ri

c
D

ip
ol

e
tr

an
si

ti
on

s
on

th
e

D
1

li
n
e.

T
he

el
ec

tr
ic

di
po

le
tr

an
si

ti
on

m
at

ri
x

el
em

en
t
D
Q

′

Q
=

⟨Q
|p
|Q

′ ⟩
in

un
it

s
of

th
e

re
du

ce
d

m
at

ri
x

el
em

en
t
⟨L

=
1|
p
|L

′
=

0⟩
as

a
fu

nc
ti

on
of

m
ag

ne
ti

c
fie

ld
.

H
er

e
Q

′
(Q

)
ar

e
th

e
in

it
ia

l(
fin

al
)

st
at

es
an

d
p

th
e

el
ec

tr
ic

di
po

le
op

er
at

or
.

A
nn

ot
at

io
ns

σ
±

an
d
π

de
no

te
th

e
ki

nd
of

tr
an

si
ti

on
.

T
he

in
it

ia
l(

fin
al

)
st

at
es
|Q

′ ⟩
(|Q
⟩)

ar
e

de
pi

ct
ed

al
on

g
ro

w
s

(c
ol

um
ns

).
Fo

r
ex

pe
ri

m
en

ts
ca

rr
ie

d
ou

t
in

th
is

th
es

is
,i

m
ag

in
g

is
m

ai
nl

y
do

ne
on

th
e

D
2

lin
e,

ho
w

ev
er

th
es

e
m

at
ri

x
el

em
en

ts
ar

e
us

ed
in

th
e

ne
xt

se
ct

io
ns

to
ob

ta
in

tw
o-

ph
ot

on
tr

an
si

ti
on

m
at

ri
x

el
em

en
ts

.
T
w

o-
ph

ot
on

tr
an

si
ti

on
s

ar
e

la
te

r
us

ed
fo

r
fli

pp
in

g
st

at
es

an
d

tu
rn

in
g-

off
in

te
ra

ct
io

ns
fa

st
er

th
an

w
it

h
m

ag
ne

ti
c

di
po

le
tr

an
si

ti
on

s.

19



2. Experimental Details
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2.5. Two-photon Raman transitions

Representing the position operator rq as an irreducible tensor and using the Wigner-Eckart
theorem[61], the matrix element can be simplified as

Dq = δmSm
′
S
δmIm

′
I
WL′L
m′

LqmL
⟨L| |er|

∣∣L′〉 (2.11)

where ⟨L| |er||L′⟩ is the reduced matrix element independent of z-spin projectionsmL,mS ,mI .
The co-efficient WL′L

m′
LqmL

can be written in terms of the Wigner-3j symbol as follows

WL′L
m′

LqmL
= (−1)L′−1+mL

√
2L+ 1

(
L′ 1 L
m′
L q −mL

)
(2.12)

The Wigner-3j symbol ensures that polarization q couples only states with q = mL −m′
L.

In the previous sections, we have already represented the states in terms of the uncoupled
basis as follows,

|LQ⟩ =
∑

mLmSmI

CQmLmSmI
|L,mL;S,mS ; I,mI⟩ (2.13)

An additional label L is used to identify if the state belongs to the S or P state. Using
this expansion, the transition matrix between initial state |L′Q′⟩ and final state |LQ⟩ is
obtained from the sum[62]

DL′Q′

q,LQ =
∑

mLm
′
LmSmI

CQmLmSmI
CQ

′

m′
LmSmI

WL′L
m′

LqmL
⟨L| |er|

∣∣L′〉 (2.14)

Using these expressions, the optical dipole transition matrix elements are obtained for
transitions on the D1 and D2 lines and are shown in Figure 2.6 and 2.7 respectively. The
D1 line does not support closed transitions at any field while the D2 line supports 2 closed
transitions from the stretched initial states. For experiments presented in this thesis, optical
transitions on the D2 line are used for laser cooling at zero magnetic field and transitions
from state |3⟩ − |1”⟩ on the D2 line are used for single particle imaging as detailed in
the later sections. In addition two-photon Raman transitions are used for internal state
manipulations and the optical dipole transition matrix elements calculated here are used to
determine two-photon coupling in Section 2.5.

2.5 Two-photon Raman transitions

In the previous section, electric dipole transitions coupling two states were introduced.
These transitions are mainly used for cooling and imaging. In addition transitions to ma-
nipulate internal states such as states in the 22S1/2 manifold |1⟩ . . . |6⟩ are needed. This
was previously addressed using magnetic dipole transitions in Section 2.3. However for
certain internal state manipulations involving interaction switch-off, transitions faster than
motional time-scales are desired. Electric dipole transitions between these states are for-
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2. Experimental Details
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Figure 2.8: Two-photon stimulated Raman transitions. (a) Two ground states |g1⟩
and |g2⟩ are coupled to an excited state |e⟩ using two laser fields with a Rabi
coupling given by Ω1 and Ω2 respectively. The two laser fields are far detuned
from the ground-excited transition |gi⟩ − |e⟩ by ∆. The large detuning ensures
that single-photon scattering due to |gi⟩ − |e⟩ transition is kept low. The fre-
quency detuning between the laser beams is given by the difference in energy
between the ground states plus an additional detuning δ. (b) Numerical solu-
tion of the resulting 3 state system. Though there is no electric dipole transition
directly between states |gi⟩, the coupling with the excited state |e⟩ results in co-
herent population oscillations between states |gi⟩. Due to the large detuning the
excited state is hardly populated (inset) justifying the adiabatic elimination used
in the text. The numerical solution is plotted for an effective two-photon de-
tuning δ = 0 and symmetrical coupling of the ground states to the excited state
Ω1 = Ω2. The time is plotted in terms of the Rabi Coupling time TR = 2π/ΩR
where ΩR = Ω1Ω2/4∆ is the effective two-photon Rabi coupling between the
ground states.
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2.5. Two-photon Raman transitions

bidden due to wavefunction symmetry of the initial and final states. However two-photon
transitions involving an additional excited state are possible. The schematic describing the
situation is depicted in Figure 2.8. Two states in the ground manifold |g1⟩,|g2⟩ are coupled
to each other through an intermediate excited state |e⟩. State |g1⟩ (|g2⟩) is coupled to
|e⟩ with a Rabi coupling h̄Ω1 = ⟨e| p⃗.E⃗1 |g1⟩ (h̄Ω2 = ⟨e| p⃗.E⃗2 |g2⟩). Each of these optical
fields are detuned from the excited state by a detuning ∆ much lager than the excited
state linewidth γ. While a large ∆ reduces the effective two-photon coupling, it ensures
that detrimental single-photon scattering with excited state are avoided and the population
from state |g1⟩ to |g2⟩ can be coherently transferred. For the experiments performed in this
thesis, the two beams for the transition are phase-locked with respect to each other using
an optical phase-lock loop from Toptica Photonics based on [63]. Under such a situation
where the three states are coherently coupled, the state at any time can be represented as

|ψ(t)⟩ =
∑

n=g1,g2,e

cn(t)e
−iζnt |n⟩ (2.15)

Using appropriate choice of the phase factors e−iζnt and performing the rotating wave
approximation one can get expressions for the coefficients cn(t) which determine state pop-
ulations as follows[60]

ih̄

ċg1(t)ċe(t)
ċg2(t)

 =
h̄

2

 0 Ω1 0
Ω1 2∆ Ω2

0 Ω2 2δ

cg1(t)ce(t)
cg2(t)

 (2.16)

here δ is the two-photon detuning and is depicted in Figure 2.8.

When the ∆ is large, the excited state population hardly changes since the amplitude
of this oscillation is Ωi/

√
Ω2
i +∆2 is very small. In addition the population oscillates

very fast with a frequency
√
Ω2
i +∆2 which is orders of magnitude faster than ΩR. The

result of numerically solving Equation 2.16 is shown in Figure 2.8(b). The populations in
states |gi⟩ undergo sinusoidal Rabi oscillations, while the population in the excited state
hardly changes. Due to these reasons, it is reasonable to use adiabatic elimination to set
ċe(t) = 0[60]. This leads to the following equation

ih̄

[
ċg1(t)
ċg2(t)

]
= −1

4

[
Ω2

1
∆

Ω1Ω2
∆

Ω1Ω2
∆

Ω2
2

∆ − 4δ

][
cg1(t)
cg2(t)

]
(2.17)

Thus the states |g1⟩ and |g2⟩ are coupled with a two-photon coupling ΩR = Ω1Ω2/4∆.
We use this natural coupling time-scale TR = 2π/ΩR to plot oscillations of states in Fig-
ure 2.8(b).

In the simple model presented above, the excited state was depicted as a single state.
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2. Experimental Details

However from the analysis in the previous sections we know that at finite magnetic fields
the excited state consists of a number of states. To obtain the total two-photon Raman
coupling, the coupling of the ground states to all excited states has to be considered and is
obtained as

ΩR =
∑
µ

Ω1µΩ2µ

4∆µ
+
∑
ν

Ω1νΩ2ν

4∆ν
(2.18)

here µ (ν) is used to index all states in the 22P1/2(22P3/2) manifold. In addition to this
two photon coupling there is still a finite single photon scattering rate Γin from coupling of
the ground to the excited states. Expression for Γin can be written by also taking the sum
over all possible excited states in the D1 and D2 lines as follows

Γin = γ

(∑
µ

Ω2
1µ +Ω2

2µ

4∆2
µ

+
∑
ν

Ω2
1ν +Ω2

2ν

4∆2
ν

)
(2.19)

where γ is the excited state linewidth. Thus there are two competing processes namely,
two-photon coherent coupling and single photon inelastic scattering. A quality factor β is
introduced to quantitatively compare these rates.

β =
ΩR
Γin

(2.20)

A few qualitative features of β can already be gleaned from an approximate analysis of the
two rates. Using the fact that the ground state quadrupole matrix element is zero, and
inserting a complete set of excited states one can obtain

∑
µΩ1µΩ2µ +

∑
ν Ω1νΩ2ν = 0[62].

In addition, since the states µ and ν are separated by the fine-structure splitting Af at
B=0, ΩR ∼ Af/∆2 for large detunings with ∆ being the detuning from the D2 line at zero
field. The scattering rate on the contrary scales as Γin ∼ γ/∆2. This implies that β scales
as β ∼ Af/γ. Thus a larger splitting between the D1,D2 lines or a smaller excited state
linewidth leads to a better quality of the two-photon transition. Among the alkali atoms, Li
has the smallest fine-structure splitting of the excited state and hence the worst two-photon
transition quality[62].

The two-photon matrix element ΩR is calculated by summing over all excited states as in
Equation 2.18. ΩR for all combinations of initial and final states at different magnetic fields
is plotted in Figure 2.9. The two-photon transition matrix elements from the D1 and D2
lines have opposite signs which leads to a smaller ΩR if the transitions are simultaneously
red/blue detuned from both the lines. More on this is presented in Figure 2.13 for a single
two-photon transition between states |3⟩ and |4⟩ and will be elaborated later. Hence in
Figure 2.9, ΩR is calculated when frequency of the beams is between D1 and D2 lines
with a detuning of ∆ = Af/2 = 5GHz at B=0. In Figure 2.9 three classes of transitions
can be identified (i) strong transitions which occur due to coupling of majority-majority
and majority-majority admixtures (ii) weak transitions which occur due to coupling of
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2.5. Two-photon Raman transitions
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2. Experimental Details
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2.5. Two-photon Raman transitions
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2. Experimental Details

majority-majority and majority-minority admixtures and (iii) extremely weak transitions
which occur due to coupling of majority-minority and majority-minority admixtures of
ground and excited states. Similar to magnetic dipole transitions between these states, the
strongest transitions are between states |1⟩ − |6⟩, |2⟩ − |5⟩ and |3⟩ − |4⟩.

As mentioned previously to determine the quality of these two-photon transitions, the
single particle scattering rate Γin also has to be determined. This is obtained by summing
over contributions from all the excited states in the D1 and D2 line as in Equation 2.19.
These are calculated for all combinations of initial/final states and polarization combinations
as a function of magnetic field with ∆ = 5 GHz as for ΩR. The result is shown in Figure 2.10.
Unlike ΩR, the variation in Γin is not as much between the possible two-photon transitions.

Having evaluated both ΩR and Γin, β can be readily evaluated by taking their ratios. This
is presented in Figure 2.11. Since Γin does not vary as much as ΩR among the two-photon
transitions, it is the strength of ΩR which mostly determines the quality of the two-photon
transition. The largest β factors are obtained for the strongest transitions involving states
|1⟩−|6⟩, |2⟩−|5⟩ and |3⟩−|4⟩. At large magnetic fields of B ≈ 750G, the strongest transitions
are at least a factor of 20 better than the ones which are weaker. Previously 6Li was found
to be not such a good candidate for these kind of two-photon transitions[62]. However, these
studies had considered coupling of states |1⟩ − |2⟩ which we know from Figure 2.11 to be a
factor of 20 worse than the strong transitions between |1⟩ − |6⟩, |2⟩ − |5⟩ and |3⟩ − |4⟩. All
possible strong and weak two-photon transitions are further summarized in Figure 2.12. For
the experiments presented in this thesis, we utilize mainly strong transitions between states
|3⟩ − |4⟩ to perform spin-flips on a time-scale orders of magnitude faster than the motional
time-scales in the system. This enables us to effectively turn off interactions instantaneously
and measure in situ properties of the system.

Having characterized two-photon Raman transitions between different initial and final
states at fixed detuning, one of the strongly coupled transitions are characterized as a
function of detuning at a fixed large magnetic field of B=750 G. This is necessary to find the
optimal detuning that produces the largest coupling ΩR while at the same time minimizing
unwanted single photon scattering. The results for the transition between states |3⟩ − |4⟩
with polarization (σ+, π) are shown in Figure 2.13. The Raman coupling ΩR shows two
peaks where each of the optical beams becomes closely detuned to states in either the
22P1/2 or 22P3/2 manifold. However, at these same detunings the single photon scattering
rate from the excited states also increases resulting in low two-photon quality factor β. The
largest ΩR while at the same time minimizing Γin resulting in a large β is obtained when
the beams are red detuned from 22P3/2 states and blue detuned from 22P1/2 states. This
is because the two-photon transition matrix elements from the D1/D2 lines have opposite
signs and due to the opposite detunings add constructively. Large blue or red detunings
from both the lines can still yield a good β factor. However these transitions are then orders
of magnitude slower than when the frequency of the beams are in between the D1 and D2
lines. For the experiments performed in this thesis, we use optical fields with frequencies
between the D1 and D2 lines to ensure large ΩR and β. While we only make use of coupling
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2.5. Two-photon Raman transitions
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Figure 2.12: Summary of two-photon stimulated Raman transitions between
states |1⟩ . . . |6⟩. (a) Strongly coupled transitions are obtained between states
|1⟩ − |6⟩, |2⟩ − |5⟩ and |3⟩ − |4⟩. The polarization of the beams are indicated
in brackets. For example in a (σ+, π) transition coupling state |1⟩ to state
|6⟩, |1⟩ is coupled to excited states with σ+ transition and state |6⟩ with a π
transition. At large magnetic fields, these transitions are the strongest since
they couple the largest admixtures of states effectively flipping the electron
spin due to the spin-orbit coupling. (b) Weakly coupled transitions between
states |1⟩ . . . |6⟩. At large magnetic fields, these transitions occur either due to
(i) coupling of the large-large + large-small admixtures. The small admixtures
are due to the hyperfine interaction and set the energy scale for the effective
two-photon coupling. Since the energy scale of the hyperfine interaction is
orders of magnitude smaller than the spin-orbit interaction, these transitions
are weaker (ii) coupling large-small + large-small admixtures. The coupling
energy scale for these transitions are extremely small. While these are the
possible transitions, the quality factor of a two-photon transition is quantified
by β = ΩR/Γin. Comparison of these quantities is presented for all these tran-
sitions in the following sections.
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Figure 2.13: Optimal two-photon detuning for strong transitions. (a)Two-photon
transitions between states |3⟩ and |4⟩. State |3⟩ is coupled to the excited states
with a σ+ transition and state |4⟩ with a π transition. At large magnetic
fields, here B=750G, the states |3⟩ and |4⟩ are split by ∆34 which is around
1951 MHz. The two beams are detuned by ∆34 with respect to each other, but
by ∆ from the D2 line at zero field. Depending on the value of ∆, the beams
can be either red or blue detuned from the excited states in the 22P1/2 and
22P3/2 manifolds. (b) Two-photon Rabi rate ΩR. (c) Single photon scattering
rate Γin and (d) Quality factor β as a function of detuning ∆. Inset shows β
in linear scale. ΩR is largest when the frequency of the beams are closer to
excited states in either 22P1/2 or 22P3/2 manifolds, but this also increases Γin
and decreases β. The product of the single photon transition matrix elements
Ω1Ω2 has opposite signs for excited states in the 22P1/2 and 22P3/2 manifolds.
Hence ΩR is the largest when ∆ is red detuned from the 22P3/2 manifold and
blue detuned from 22P1/2. For large red and blue detunings from both 22P1/2
and 22P3/2 manifolds, good β factors can also be obtained, but at a reduced
ΩR. All values are calculated for typical beam powers resulting in electric field
amplitudes of 35 V/cm.
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2.6. Resonant scattering interactions

to the 22P1/2 and 22P3/2 states of 6Li, a further improvement in β by a factor of around 2
can be obtained by instead coupling to 32P1/2 and 32P3/2. This excited state has a linewidth
of 754 KHz which is approximately 7 times narrower than the 2P linewidth. This smaller
linewidth transition has previously been used to obtain lower MOT temperatures[64]. The
fine-structure splitting between 3P states is 3 GHz, which is lower than the 2P splitting of
10 GHz. Hence even though Γin can be reduced by a factor of 7, ΩR is smaller by a factor of
approximately 3 resulting in a gain in β by a factor of only 2. In addition such a moderate
increase of β would require UV lasers and optics as the transition is at 323 nm.

2.5.1 Experimental measurements

The fast two-photon transition between states |3⟩ and |4⟩ is characterized experimentally.
Starting with a few-body system consisting of 6 atoms in state |3⟩, a two-photon coupling
is created to state |4⟩. The two co-propagating beams for the Raman transition are phase
locked with respect to each other[63] and their powers are actively stabilized. The co-
propagating beams ensure that no momentum is transferred to the atoms. The detuning
from the excited state ∆ corresponds to 5GHz from the D2 line at zero magnetic field. The
resulting Rabi oscillations are shown in Figure 2.14. From the Rabi oscillations, a Raman
coupling ΩR of approximately 750KHz is obtained. From the total populations in state
|3⟩ and |4⟩, the single photon scattering rate can be obtained which gives a quality factor
β = 285.85 ± 79.20. The measurements are performed at a high magnetic field of 750G.
At these fields, the transition frequency between states |3⟩ and |4⟩ depends strongly on the
magnetic field and tunes as 2µB = 2.8MHz/G. The magnetic fields in the experiments are
stabilized to 40mG and this leads to a detuning noise of approximately 100KHz which is
comparable to ΩR. This could explain the dephasing of the Rabi oscillations. In contrast,
the magnetic dipole transitions between high(low) field seeking states are much more insen-
sitive to magnetic fields and are susceptible to detuning noise of less than 2% of the Rabi
rate. The large quality factor β is consistent with expectations presented previously. In
experiments since a fast transfer of atoms from state |3⟩ to |4⟩ is desired, we use a π pulse
to transfer atoms on a timescale of approximately 300ns.

2.6 Resonant scattering interactions

So far the possible optical and magnetic dipole transitions in 6Li were introduced. The
optical dipole transition elements were combined to obtain two-photon matrix elements
between the states in the ground state manifold where single-field electric dipole transitions
are forbidden. One of the main aims of performing these internal state manipulations either
through magnetic dipole or two-photon optical transitions is to instantaneously switch-off
resonant interactions so that in situ properties of the system can be measured. The concept
of resonant interactions has a long history in physics and was initially explored in the context
of nuclear reactions by Feshbach[65] and atomic scattering by Fano[66].
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Figure 2.14: Experimental measurements of two-photon Raman transitions be-
tween states |3⟩−|4⟩. Starting with a few-body system with 6 atoms in state
|3⟩, a two-photon Raman transition is performed to state |4⟩. The number of
atoms in state |3⟩(|4⟩), N3(N4) is shown in red(blue). The total number of
atoms(N3 + N4) is plotted in green and does not indicate large losses. The
circles with error bars denote experimental measurements and the solid lines
are fits. We obtain a two-photon Rabi rate ΩR = 2π × (734.25± 224.66) KHz
and a quality factor of β = 258.85 ± 79.20. The dephasing of Rabi oscilla-
tions occurs mainly due to the fact that at high magnetic fields the energy
difference between states |3⟩ and |4⟩ is sensitive to the magnetic field at a rate
of 2.8 MHz/G. Since magnetic fields are stabilized to approximately 40mG, a
detuning on the order of 100 KHz can result. This is unlike magnetic dipole
transitions between high(low) field seeking states since their energies scale sim-
ilarly with magnetic field and are much more insensitive to magnetic field noise.
The error bars indicate standard error of the mean.
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2.6. Resonant scattering interactions

This section provides a summary of scattering theory necessary to understand experiments
performed in this thesis and more details can be found elsewhere[2], [67]. The effect of a
potential between two atoms, can only lead to phase shift δ of the asymptotic wavefunction
since the probability current should be conserved. The asymptotic phase shift is related to
a new length scale the scattering length a(k) = −δ/k. In the low energy limit of ultracold
collisions, the range of the interaction potential r0 is orders of magnitude smaller than the
de Broglie wavelength λdB = 2π/k ensuring that kr0 << 1. In this regime the scattering
properties do not depend on the exact details of the potential and are determined only by a
so-called well parameter which encapsulates all details about the scattering potential. Thus,
the scattering properties can be obtained by equivalent pseudo-potentials which are simpler
to solve and result in the same scattering properties. This motivates an introduction of
the scattering problem through simple model potentials which can be easily solved. This is
followed by connecting the scattering length with scattering properties like collision cross-
sections. The relation of the scattering length to the energetics of a quantum gas is also
alluded to. This section concludes with the situation typically encountered in cold atoms
where there isn’t a single scattering potentials, but a multitude of different potentials in
various channels - some open and others closed. In addition to being coupled at short
distances, these channels usually posses a differential magnetic moment due to which a
bound state in the closed channel can be made resonant with an open channel in which
the atoms enter. This leads to a resonant enhancement in scattering similar to tuning the
potential depth in scattering with only a single channel.

2.6.1 Scattering from a finite well potential

To demonstrate the emergence of an asymptotic phase shift, a scattering scenario using a
radial potential well in 3D is presented. The radial potential well has a depth V0 and a
range r0 as shown in Figure 2.15. The atomic density in cold gases is low and only binary
collisions need to be considered. The Hamiltonian describing the situation where collision
occurs between particles of equal mass m is

H =
p21
2m

+
p22
2m

+ V (|r⃗1 − r⃗2|) (2.21)

where r⃗i (p⃗i) are the position (momentum) of the particles and a central interaction potential
V (|r⃗1 − r⃗2|) has been considered. The Hamiltonian can be simplified into a center-of-mass
(CM) part and a relative part (rel) as follows

H =HCM +Hrel

=

(
P 2

2M

)
+

(
p2

2µ
+ V (r)

)
(2.22)
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Figure 2.15: Two particles interacting with a model potential. Cold collisions occur
in the universal regime where the interaction range r0 is small compared to
de Broglie wavelength λdB = 2π/k such that kr0 << 1. In such a situation
the scattering properties depend only on the asymptotic phase shift of the
scattering wavefunction at large separations and the physics of the scattering
problem can be understood by studying the scattering from model potentials
where the kr0 << 1. The interaction potential is a finite well with range r0
and depth U0 = −κ20 in units of h̄2/2µ. (a) Scattering problem energies. The
Schrödinger equation can be solved in regions I and II separately and boundary
conditions matched. The scattering energy is k2 in region II and k2+ = κ20 + k2

in region I in units of h̄2/2µ. (b) Bound state problem energies. To find the
condition for the bound state, the bound state energy is defined as −κ2 in units
of h̄2/2µ. Similar to the scattering problem, matching the boundary conditions
of the wavefunction in the two regions gives the allowed bound state energies
for a given well parameter γ = κ0r0.
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2.6. Resonant scattering interactions

where R⃗ (r⃗) is the CM (rel) position and P⃗ (p⃗) is the CM (rel) momentum. M = 2m
(µ = m/2) denotes the total (reduced) mass. Since the CM motion is unaffected by the
potential, only the solution for the relative motion needs to be obtained. In 3D, the momen-
tum operator can be written in terms of the radial momentum pr and angular momentum
operator L and the eigen value problem can be setup as follows(

p2r
2µ

+
L2

2µr2
+ V (r)

)
ψ = Eψ (2.23)

To find scattering solution, the following Ansatz for the wavefunction is used to split the
wavefunction dependence into the radial and angular parts

ψ(r) =Rl(kr)Ylm(θ, ϕ) (2.24)

where Ylm(θ, ϕ) are the spherical harmonic functions which are eigen functions of the L2

operator and Rk(r) gives the radial dependence. Since L2 Ylm = h̄2 l(l+1)Ylm the following
equation can be obtained,

R′′
l +

2

r
R′
l +

(
k2 − U(r)− l(l + 1)

r2

)
Rl = 0 (2.25)

where U(r) = 2µ
h̄2
V (r) and E = h̄2

2µk
2. Solving the problem in this model potential amounts

to applying this equation in different regions I,II of the potentials and ensuring the continuity
of Rl(kr) and R′

l(kr) at the boundary r = r0.

Rl(kr) =

{
Ajl(k+r) r ≤ r0
cl [cos ηl jl(kr) + sin ηl nl(kr)] r > r0

(2.26)

where U(r) = −κ20 for r ≤ r0; k2+ = κ20 + k2; jl(kr) are the spherical Bessel functions
and nl(kr) are the spherical Neumann functions. Asymptotically as r → ∞, jl(kr) ∼
sin(kr − lπ/2)/(kr) and nl(kr) ∼ cos(kr − lπ/2)/(kr). HenceRl(kr)→ sin(kr − lπ/2 + ηl),
and ηl represents the asymptotic phase shift of the scattered wave due to the interac-
tion potential. The solution in region I contains only the spherical Bessel function, since
|nl(0)|→ ∞. Matching the wavefunctions and derivatives at the boundary gives,

j′l(k+r0)

jl(k+r0)
= k

cos ηl j
′
l(kr) + sin ηl n

′
l(kr)

cos ηl jl(kr) + sin ηl nl(kr)
(2.27)

In the ultracold regime a number of simplifications are in order. Firstly, the low tempera-
tures mean that k → 0. Secondly, the high centrifugal barrier prevents scattering in l ̸= 0.
For example, in 6Li the p-wave centrifugal barrier (l = 1) is on the order of mK and at
ultracold temperatures the wavepacket is unable to overcome this barrier and probe the
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Figure 2.16: Tuning the scattering length in a finite well potential for low collision
energies k → 0. (a) The scattering length for scattering from a finite well
depends only on the well parameter γ. As the well parameter is tuned addi-
tional bound states appear where the scattering length diverges. In this figure
the range of γ values correspond to 0-4 bound states. (b,c) For an interaction
potential with range r0 = 0.5, the wavefunction is plotted for γ = 5π/2 ± ϵ.
The blue (red) solid (dotted) lines indicate wavefunctions for the scattering
(free particle) scenario. (b) When γ is slightly larger than the value required
to support a bound state, the scattering length (phase shift) is positive (neg-
ative). In this situation the wavefunction is pushed away from the scattering
center and corresponds to a repulsive energy in the mean field limit. (c) When
γ is slightly smaller than the value required to support an additional bound
state, the scattering length (phase shift) is negative (positive). The wavefunc-
tion is pulled towards the scattering center and corresponds to an attractive
energy correction in the mean field limit. The insets in (b,c) show the scat-
tering wavefunction in the region of the interaction potential. The scattering
wavefunctions have three nodes since γ supports three bound states.
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2.6. Resonant scattering interactions

interaction region. Hence it is reasonable to consider only scattering in the s-wave(l = 0)
channel. In addition it makes sense to remove the k-dependence of the phase shift and de-
fine the scattering length as follows ηl = −ka(k). Using these simplifications, the boundary
condition yields

κ0r0 cot κ0r0 ≈
r0

r0 − a
(2.28)

Thus the scattering length a is a function of the well depth and range is,

a

r0
=

(
1− tan γ

γ

)
(2.29)

where γ = κ0r0 is the well parameter. A plot of the scattering length as a function of γ is
shown in Figure 2.16. A few observations regarding the scattering scenario can be made.
Firstly, by tuning the well parameter the scattering length can be changed over a large
value spanning both positive and negative values. Secondly, there are divergences of the
scattering length at certain values of γ and as will be shown below they are associated with
the appearance of bound states.

Next we look at the bound state problem in this potential as depicted in Figure 2.15 for
l = 0. Using the energy of the bound state as ϵb = −κ2, the wavefunctions in region I and
II are

Rl(kr) =

{
A sin k−r

r r ≤ 0
B e−κr

r r > 0
(2.30)

where k2− = κ20 − κ2. Matching the R′
l(r = r0) and Rl(r = r0) for l = 0 gives,

k− cot k−r0 = −κ (2.31)

For a bound state at the threshold, κ→ 0 and the well parameter takes on values,

γn = n
π

2
(2.32)

When an expression for the scattering length was plotted as a function of the well parameter
as in Figure 2.16 there were divergences in a observed for γn = nπ/2. These occur when
an additional bound state appears when the well is made deeper. The analysis above also
leads to one important result which is related to the universality in s-wave scattering. A
bound state appearing at the threshold and a scattering state with k → 0 are limiting cases
of the same situation and Equations 2.28 and 2.31 are equivalent. In the case a → +∞, a
relation between the bound state energy and a is obtained as follows,

κ =
1

a
(2.33)

The wavefunction of this loosely bound state exists mostly outside the range of the potential
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and is called a Halo state. The binding energy of the Halo state is given by the universal
relation which depends only on the scattering length as follows,

EB = − h̄2

2µa2
(2.34)

In situations when the scattering momentum is comparable to 1/r0, the s-wave phase shift
is no longer −ka and the phase shift is obtained by an effective-range expansion[68]. The
asymptotic phase shift η0 depends on the scattering length(a) and a parameter called the
effective range(re) which is determined by the wavefunction over the range of the potential.
The expression for the phase shift then becomes,

k cot η0 = −
1

a
+

1

2
k2re + . . . (2.35)

For the finite well potential considered here, this expression can be obtained from matching
the boundary conditions and re depends on the range r0[67]. This expression becomes
important in situations where the effective range is large compared to 1/k as is the case for
collisions between 6Li-40K mixtures[69]. In the case of 6Li, the effective range is very small
≈ 30a0[2] and can be ignored unless large Fermi energies kF are involved.

For low-energy scattering considered so far, the collisional properties of the system depend
only on the asymptotic phase shift far away from the scattering center. Effectively, the same
scattering properties can be obtained by replacing the actual potential by a pseudo-potential
which produces the same asymptotic phase shift[70]. This is especially very useful for the
case of universal scattering where kr0 << 1. In such cases the scattering properties can be
recovered by a zero-range potential such as a δ(r⃗) which is regularized as follows,

V (r⃗) =
4πh̄2a

m
δ(r⃗)

∂(r□)

∂r
(2.36)

The scattering length enters into the expression for V (r⃗) and is the only quantity which
determines the asymptotic phase shift and scattering properties. This pseudo-potential
is used in Chapter 3 to obtain the energies of two particles in a harmonic trap in two-
dimensions(2D).

2.6.2 Scattering amplitude and partial wave expansion

Previously a binary scattering event involving a model potential was introduced. The
scattering phase shift in the low energy limit k → 0 was related to the well parameter
and the universal relation between scattering length and bound state energy was presented.
Finally an expression for the s-wave scattering phase shift at finite k was presented through
the effective range expansion. Here the relation of the scattering phase shift to the scattering
amplitude and cross-section are summarized. Having obtained scattering eigen functions,
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2.6. Resonant scattering interactions

we setup a scattering problem to include an incoming and outgoing wave and expand these
waves in terms of the eigen functions. This decomposition is termed the partial wave
expansion and projects the incoming and outgoing waves onto different angular momentum
channels. The total scattered amplitude is obtained as a sum of amplitudes of due to each
of the partial waves. The scattering wavefunction is setup as,

ψ(r⃗) = eikz︸︷︷︸
ψin

+ f(θ)
eikr

r︸ ︷︷ ︸
ψsc

(2.37)

The wavefunction describes an incoming relative wave along the z-axis with a scattering
center located at r⃗ = 0. The scattering produces an outward travelling wave eikr/r where
the 1/r term encapsulates the fact that the probability amplitude reduces radially away
from the scattering center. The scattering is axially symmetric and does not depend on the
azimuthal angle ϕ. The total wavefunction can be expanded in terms of the eigen states as
follows,

ψ(r⃗) =
∑
l,m

cl,mRl(kr)Yl,m(θ, ϕ) (2.38)

The azimuthal symmetry of ψ(r⃗) should also be reflected in the basis states used for the
expansion and hence only states with m = 0 enter into the sum. By rewriting Yl,0 in terms
of Legendre polynomials Pl(cos θ) the expansion becomes,

ψ(r⃗) =
∑
l

(2l + 1) il clRl(kr)Pl(cos θ) (2.39)

The incoming wave can be expanded in the free-particle basis given by the spherical Bessel
function as follows,

eikz =
∑
l

(2l + 1) il jl(kr)Pl(cos θ) (2.40)

Using Equations 2.39 and 2.40, the expression for ψsc can be obtained as,

ψsc︸︷︷︸
ψ−ψin

=
∑
l

(2l + 1) il Ql(kr)︸ ︷︷ ︸
clRl(kr)−jl(kr)

Pl(cos θ) (2.41)

Using the asymptotic expressions for Rl(kr) and the fact that ψsc only contains the outward
expanding wave eikr, cl is obtained to be eiηl resulting in the partial wave expansion as
follows,

ψsc =
∑
l

(2l + 1)
eikr

2ikr

(
ei2ηl − 1

)
Pl(cos θ) (2.42)
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Comparing this expression to the scattered wave in Equation 2.39, the scattering amplitude
f(θ) can be obtained as

f(θ) =
∑
l

(2l + 1)
ei2ηl−1

2ik︸ ︷︷ ︸
fl

Pl(cos θ) (2.43)

The expression for the scattering amplitude fl of partial wave l depends only on the phase
shift ηl and the scattering momentum k. The expression can be rewritten to make the
dependence of the ηl on the magnitude of fl clear

fl =
eiηl

k
sin ηl (2.44)

Thus the total scattering amplitude is due to the sum of scattering amplitudes of all partial
waves. The scattering amplitude for each partial wave fl depends only on the phase shift
for that partial wave. For situations like ultracold scattering there are contributions from
only s-wave scattering amplitude.

f0 =
1

k cot η0 − ik
(2.45)

Using the effective range expansion in Equation 2.35, the f0 can be written in terms of the
scattering length

f0 ≈
1

− 1
a +

1
2k

2re − ik
(2.46)

In addition for k → 0, f0 simplifies as,

f0 ≈ −
a

1 + ika
(2.47)

This brings us back to the importance of the scattering length and how it determines most
of the collisional properties for low-energy scattering.

2.6.3 Scattering cross-section

Having determined the scattering amplitude, we relate this to the scattering cross-section in
this subsection. Since the scattering cross-section determines the strength of elastic scatter-
ing, it is important for processes such as evaporative cooling. The scattering cross-section is
closely related to the probability currents associated with the incoming and outgoing waves
in the scattering problem. A wavefunction ψ and its density ρ = |ψ|2 is associated with a
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2.6. Resonant scattering interactions

probability current j given by,

j⃗ =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗) (2.48)

This probability current satisfies the continuity equation,

∇ · j⃗ + ∂ρ

∂t
= 0 (2.49)

The probability current for the incoming wave jin and outgoing scattered wave jsc are then

jin =
h̄k

m
(2.50)

jsc =
h̄k

m
|f(θ)|2 (2.51)

The differential scattering cross-section then relates the magnitude of the scattered wave
probability current to the incoming wave probability current and is given by jsc/jin as
follows, (

dσ

dΩ

)
= |f(θ)|2 (2.52)

The total cross-section σ can be obtained by integrating the differential cross-section around
the solid angle Ω. Using the expression for f(θ) in Equation 2.43 and orthogonal properties
of Legendre Polynomials, the total cross section can be obtained as

σ = 4π
∑
l

(2l + 1)|fl|2 (2.53)

Thus the total cross section is given by contributions from the cross-sections of the different
partial waves |fl|2 and the factor (2l+1) accounts for the degeneracy of a certain l scattering
channel. In the ultracold limit where only s-waves contribute, the scattering cross-section
in terms of the s-wave scattering length using Equation 2.47 can be written as,

σ0 =
4πa2

1 + k2a2
(2.54)

The s-wave scattering cross-section σ0 depends only on the magnitude of the scattering
length and not its sign. Even when the scattering length diverges at the unitary limit, the
scattering cross-section is finite and reaches a maximum value given by

σmax0 =
4π

k2
(2.55)
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2.6.4 Scattering of identical atoms

In the previous subsection, a partial wave expansion of the scattering wavefunction was per-
formed and expressions for the cross-section were obtained. The expression for the scattering
wavefunction in Equation 2.37 considered the two scattering constituents as non-identical
particles. The wavefunction needs to be symmetrized(ψ+) or anti-symmetrized(ψ−) when
considering scattering of identical particles depending on whether they are bosons or fermions
as follows,

ψ± = eikz ± e−ikz︸ ︷︷ ︸
ψin

+
f(θ)± f(π − θ)

r
eikr︸ ︷︷ ︸

ψsc

(2.56)

The partial wave expansion of this wavefunction can be performed similar to Equation 2.40.
The incoming wave ψin and the scattered wave ψsc can now be expanded using the properties
of Pl(cos θ) under transformation θ → π − θ as follows

Pl(cos(π − θ)) = (−1)lPl(cos θ)

ψin =
∑
l

(2l + 1) il jl(kr)
[
1 + (−1)l

]
Pl(cos θ) (2.57)

ψsc =
∑
l

(2l + 1) eiηl
[
1 + (−1)l

]
sin ηl Pl(cos θ) (2.58)

The scattering amplitude f±(θ) and the total cross-section obtained by integration over the
solid angle can be obtained as follows,

f±(θ) =
2

k

∑
l = Even/Odd

(2l + 1) eiηl sin ηl Pl(cos θ) (2.59)

σ± = 8π
∑

l = Even/Odd

(2l + 1) |fl|2 (2.60)

For bosons (fermions) only the even l = 0, 2, 4, . . . (odd l = 1, 3, 5, . . .) partial waves enter
into the expansion. The even/oddness of the partial waves is a direct manifestation of
the symmetry of the wavefunction under exchange. In the case of bosons, experiments
have verified the presence of only even l waves by measuring the angular dependence of
the scattering-amplitudes[71]. When the two colliding atoms are fermionic 6Li atoms in
the same internal state, only odd-partial waves are allowed. At low temperatures since
the centrifugal barrier is quite high (∼ mK) and collisions are suppressed, evaporative
cooling of spin-polarized fermions is not possible. The situation where the colliding atoms
belong to two different hyperfine states of the same atom is different. Here even though
the wavefunction of the scattering atoms has to be (anti-)symmetrized, effectively same
expressions as for the case of non-identical particles are obtained and collisions in all l
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2.6. Resonant scattering interactions

channels are possible. Thus two 6Li atoms in two different hyperfine states can undergo
s-wave collision at low temperature thus enabling evaporative cooling of the mixture.

2.6.5 Scattering in two-dimensions

All the expressions for the scattering length, amplitude and cross-section were for scattering
situations in 3D. Experiments in this thesis are mainly performed in the quasi-2D limit where
the trap with azimuthal symmetry has a finite aspect ratio η = ωr/ωz. ωr (ωz) is the trap
frequency along the radial (axial) direction. Only the results for the scattering length and
amplitude for such a situation are summarized here and more details can be found in [72].
In such a situation, when the axial motion of the system is frozen out and only radial levels
are populated a 2D scattering length a2D can be defined as follows,

a2D = lz

√
π

A
exp

(
−
√
π

2

lz
a

)
(2.61)

where lz is the harmonic oscillator length along the axial direction and A = 0.905 is a
constant. The s-wave scattering amplitude is different from the 3D case and is,

f0(k) =
−4

cot δ0(k)− i
(2.62)

The s-wave scattering phase shift δ0 is,

cot δ0(k) =
2

π
ln(ka2D) (2.63)

In the many-body limit, the term ln(kFa2D) is then used to quantify interactions in a Fermi
gas.

2.6.6 Feshbach Resonances

In the scattering scenarios presented previously the internal structure of the scattering
constituents was not considered. However in experiments consisting of multi-component
quantum gases, the scattering potential depends on the internal structure of the atoms. For
example consider two atoms with a single valance electron like 6Li. The atoms can approach
the scattering region with their electron spins aligned (triplet channel) or anti-aligned (sin-
glet channel). Since the spin-singlet is anti-symmetric, the motional wavefunction of these
electrons should be symmetric. The motional wavefunction in this case is built from molec-
ular orbitals and for symmetric combinations the electrons can be found in a region between
the nuclei. This effectively screens the nuclei thereby reducing the repulsion. For the triplet
potential since the motional wavefunction is anti-symmetric, the electrons are not found
in the inter-nuclear region and hence cannot effectively screen the nuclear charge. Thus
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Figure 2.17: Singlet and triplet scattering potentials for 6Li2 dimer with the two
atoms in the ground electronic state 22S1/2. The singlet (Vs(R)) and
triplet(Vt(R)) potentials are plotted as a function of internuclear distance R.
The singlet 1Σ+

g potential (red) is quite deep since with an anti-symmetric
spin wavefunction, the spatial wavefunction is symmetric and the two valance
electrons find themselves between the two nuclei. This facilitates screening of
the nuclear charge effectively reducing the repulsion between the nuclei. The
potential supports 38 vibrational levels and the last bound state belongs to
|ν = 38, J⟩ rovibrational state and has an energy ≈ 1.38 GHz below the thresh-
old. This leads to a relatively small singlet scattering length of as = 45.17a0
(a0 is the Bohr radius). On the contrary, the triplet 3Σ+

u potential (blue) is
rather shallow since due to the symmetric spin-state the motional wavefunc-
tion of the electrons is anti-symmetric and prevents the electrons from being
present in the inter-nuclear region. Thus the nuclei are not as well screened
by the electrons leading to higher repulsion. Unlike the singlet potential, the
triplet potential supports only 9 bound states and the last bound state belongs
to the rovibrational state |ν = 9, J⟩ which is ≈ 24 GHz below the threshold.
This leads to a large triplet scattering length of at = −2140a0[2].
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2.6. Resonant scattering interactions

the singlet potential is much deeper than the triplet. The singlet (1Σ+
g ) and triplet (3Σ+

u )
potentials for two 6Li atoms in the ground state 22S1/2 are shown in Figure 2.17. For the
deep singlet channel, there are 38 vibrational states and the s-wave scattering length for
the singlet channel is 45.17a0, where a0 is the Bohr radius. The shallower triplet state on
the contrary has 9 vibrational levels and the potential depth is on the verge of supporting
an additional bound state which leads to a large triplet scattering length of −2140a0.

2.6.7 Coupling of scattering channels

With internal degrees of freedom present, the total Hamiltonian for the scattering problem
can be written as,

Hrel =
p2r
2µ

+
h̄2

2µ

l(l + 1)

r2
+

V (r)︷ ︸︸ ︷
VD(r) + J(r)s⃗1.s⃗2︸ ︷︷ ︸

Hm

+ geµBS⃗.B⃗ − gnµB I⃗ .B⃗︸ ︷︷ ︸
HZ

+Ahf

(
s⃗1 .⃗i1 + s⃗2 .⃗i2

)
︸ ︷︷ ︸

Hhf

(2.64)

The Hamiltonian for relative motion (Hrel) now includes a motional term (Hm) as before
and two additional terms due to internal degrees of freedom - Zeeman term (HZ) and
Hyperfine term (Hhf ). Here s⃗1,2 (⃗i1,2) denotes the electron (nuclear) spin of the two atoms,
S⃗ = s⃗1 + s⃗2 (I⃗ = i⃗1 + i⃗2) is the total electron (nuclear) spin of the atoms. VD(r) is the
direct contribution and J(r) is the exchange contribution and defined as follows,

VD(r) =
1

4
Vs(r) +

3

4
Vt(r)

J(s) = Vt(r)− Vs(r)

This definition of V (r) makes it clear that the interaction potential is diagonal in the coupled
electron spin basis and that the potential reduces to Vs(r) (Vt(r)) for a singlet (triplet). The
energy scales of each of these terms are known. The Zeeman and hyperfine energy scales
were presented in Section 2.2 and is of the order of MHz/GHz. The potential energy curves
for the singlet and triplet at short distances were shown in Figure 2.17 and are orders of
magnitude larger at THz. At large internuclear separations the interaction potential goes
to zero and the resulting electronic Hamiltonaian is diagonal in states (|1⟩ . . . |6⟩) found
in Section 2.2. However at short internuclear distances the Hamiltonian is diagonal in
|SMS⟩ basis. As particles in two different hyperfine states enter the scattering region, the
total wavefunction needs to be anti-symmetric and hence the atoms find themselves in an
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2. Experimental Details

anti-symmetric spin state composed of the hyperfine states |1⟩ . . . |6⟩ as follows,

χ− =
1√
2
(|ij⟩ − |ji⟩) (2.65)

where |i⟩ , |j⟩ are the hyperfine states. However, at short distances these states need to
be projected onto the coupled electron spin basis states |SMS⟩. Depending on the mag-
netic field and the hyperfine states involved in the collision, the interaction potential is a
combination of singlet and triplet potential with different weights. The Zeeman term HZ

is diagonal in the total electron and nuclear spins and doesn’t cause coupling of collision
channels. All the coupling arises from the hyperfine interaction as will be elaborated below.
The hyperfine term can be rewritten as

Hhf =
Ahf

2
(s⃗1 + s⃗2).(i⃗1 + i⃗2)︸ ︷︷ ︸

H+
hf

+
Ahf

2
(s⃗1 − s⃗2).(i⃗1 − i⃗2)︸ ︷︷ ︸

H−
hf

(2.66)

The H+
hf term couples only states within the singlet or triplet manifold. On the contrary

the H−
hf term couples the singlet and triplet manifolds and is responsible for the interesting

Feshbach resonance arising in atomic collisions[67]. The channel that the incoming hyperfine
states couple to has to then be projected back to the hyperfine states at large separations
and effectively a collision in the |i⟩ , |j⟩ hyperfine channel can couple to a channel consisting
of |i′⟩ , |j′⟩. The hyperfine interaction term conserves MF = mi

f + mj
f and hence only

states with mi
f +mj

f = mi′
f +mj′

f are coupled by it. However, the channel |i′⟩ , |j′⟩ can be
asymptotically larger or smaller in energy. If the coupled channel |i′⟩ , |j′⟩ is asymptotically
higher in energy than the incoming channel |i⟩ , |j⟩, it is denoted as a closed channel since
atoms cannot leave the collision region in this channel. However, if a bound state in the
closed channel is resonant with the incoming energy, the scattering length diverges as in
the case where the potential depth was tuned in Figure 2.16 to have a bound state at the
threshold. The scattering length in a situations with channel coupling can be obtained from
a coupled channel calculation[73].

The hyperfine term H−
hf which couples channels couples the following singlet and triplet

channels |0, 0⟩ ←→ |1,±1⟩ and |1, 0⟩ ←→ |0, 0⟩[67]. States |0, 0⟩ and |1, 0⟩ do not tune
with magnetic fields since their mS projection is zero. On the contrary states |1,±1⟩
tune with magnetic field since they have a non-zero mS projection. This coupling among
states |1,±1⟩ ←→ |0, 0⟩ combined with a differential magnetic moment between them is
responsible for tunable magnetic Feshbach resonances. For example for a scattering scenario
involving asymptotic states in the |1⟩ − |2⟩ channel, at large magnetic fields the incoming
channel is mostly triplet dominated since both the states have electron spin projections
ms = −1/2. Using the conservation of MF = m1

f +m2
f , the only states that the |1⟩ − |2⟩

mixture couples to is |4⟩− |5⟩, |3⟩− |6⟩, |1⟩− |4⟩ and |2⟩− |5⟩[2]. Since the last bound state
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2.6. Resonant scattering interactions

  B
Closed Channel

Open Channel

Figure 2.18: Magnetically tuned Feshbach resonance. A Feshbach resonance occurs
when the scattering particles have internal structure and the interaction po-
tential depends on this internal configuration. The atoms enter the scattering
region in an open channel (blue) and can couple to an closed channel (red)
which is higher in energy at large separations. The coupling occurs due to
hyperfine interaction in the case of a magnetic Feshbach resonance. The atoms
cannot leave in the closed channel since it is energetically higher in energy.
The internal states associated with these potential channels have a differential
magnetic moment and hence they can be tuned relative to each other. When
the incoming energy in the open channel matches the energy of a bound state
in the closed channel, the scattering length a diverges.
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Figure 2.19: Scattering lengths among the high-field seeking states |1⟩ , |2⟩ , |3⟩ of
6Li. The positions of the resonances are indicated for each of the combinations.
The resonances are broad, except for an additional very narrow resonance for
the |1⟩− |2⟩ mixture around 543G not shown. The resonance positions overlap
for the three spin combinations and this is later used in Chapter 5 to prepare
spin-imbalanced systems in the motional ground state.
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2.6. Resonant scattering interactions

of the singlet potential is ≈ 1.35GHz below the singlet asymptote, by tuning the magnetic
field the energy of the triplet channel can be pushed to lower values. Thus the triplet
incoming channel of the former mixture can couple with singlet channels in the latter state
combinations and a resonant enhancement as a function of magnetic field can be observed.
The combinations of the three lowest hyperfine states |1⟩ , |2⟩ , |3⟩ are used for experiments in
this thesis and a plot of the scattering lengths in this scenario as a function of the magnetic
field is shown in Figure 2.19. The resonance in this case is broad and can be modelled by
a dispersive relation between the scattering length and the magnetic field as follows

a = abg

(
1− ∆

B −B0

)
(2.67)

where abg is the background scattering length; ∆ is the width of the resonance and; B0 is
the position of the resonance. B0, ∆ and abg for the spin mixtures of |1⟩ , |2⟩ , |3⟩ are known
precisely[74].

In Section 2.5, two-photon transitions between the hyperfine states |1⟩ . . . |6⟩ were sum-
marized. The reason for using these transitions was to perform very fast flips between
these states, on a time-scale orders of magnitude faster than the motional time-scales in
the system. If the final state has (close to) no interactions, this enables measurement of in
situ quantities presented in Chapters 3,4 and 5. Since we are interested in the behaviour
of interacting systems, we start with states consisting of |1⟩ − |3⟩ or |2⟩ − |3⟩ mixtures. At
large magnetic fields of interest (> 500G), the entrance collision channel for these mixtures
is triplet (|1,−1⟩) dominated. For example as mentioned previously the |1⟩ − |2⟩ mixture
couples to |4⟩ − |5⟩, |3⟩ − |6⟩, |1⟩ − |4⟩ and |2⟩ − |5⟩. All of these coupled channels are
asymptotically larger in energy. The H−

hf term couples this triplet incoming channel |1,−1⟩
to a singlet |0, 0⟩ in these coupled channels. Since the singlet potential has a bound state
≈ 1.38 GHz below the asymptote, and the triplet potential tunes with 2µB ≈ 2.8 MHz/G
the bound state can be made resonant with accessible magnetic fields. To turn off interac-
tions we flip state |3⟩ to |4⟩ using the aforementioned two-photon transition resulting in a
|1⟩− |4⟩ mixture. At these magnetic fields, the incoming channel for the |1⟩− |4⟩ mixture is
a combination of singlet (|0, 0⟩) and triplet (|1, 0⟩) potentials and couples to triplet (|1,±1⟩)
and singlet (|0, 0⟩) potentials respectively in |1⟩ − |2⟩, |3⟩ − |6⟩, |4⟩ − |5⟩ and |2⟩ − |5⟩ colli-
sion channels. The singlet states in the closed channels do not have to be considered since
they do not have a differential magnetic moment with the incoming triplet (|1, 0⟩) channel.
|1⟩ − |2⟩ mixture does not have to be considered since it is lower in energy and being a
triplet |1,−1⟩ coupling to a bound state is ruled out. The only closed channel combinations
which matter are triplet states |1,±1⟩ in channels |4⟩ − |5⟩, |3⟩ − |6⟩ and |2⟩ − |5⟩. The
lowest bound state of the triplet potential is ≈ 24 GHz below the triplet asymptote and
hence in the magnetic field regions considered no bound state in these channels can be made
resonant with the incoming energy since the triplet tunes with approximately ±2.8 MHz/G
and only a range of ≈ 2.8 GHz can be achieved. Thus the scattering in the |1⟩−|4⟩ mixture
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2. Experimental Details

is determined by the open channel which is a combination of singlet and triplet potentials
without any resonant enhancement due to closed channel coupling. Since the singlet po-
tential is much deeper than the triplet, the effect of the triplet potential is a perturbative
correction leading to the scattering length being mostly small as in the singlet case. We
have measured the scattering length in this mixture by measuring two-particles energies in
a harmonic trap using interaction modulation spectroscopy introduced in Chapter 3. We
obtain an upper bound of |a|< 500a0 and hence the |1⟩ − |4⟩ mixture can be considered
to be nearly non-interacting compared to the initial scattering length before turning off
interactions.

2.7 Single particle imaging

In this section the relevant details associated with single particle imaging with spin resolu-
tion is summarized. Unlike quantum gas microscopes[3], imaging is performed in free space
in absence of any confining potentials. Since only a small number of photons are scattered
(∼ 200/atom) and collected (∼ 20/atom) elaborate Raman sideband cooling schemes dur-
ing imaging are circumvented. The very small number of photos collected however requires
an EMCCD camera which can operate in photon counting mode[76]. The EMCCD sensor
in such cameras is cooled to low temperatures and have low background noise levels. In
addition Clock Induced Charges(CICs), which are created when clock pulses are applied
for pixel readout, are minimized. These low noise levels make it possible to detect single
photons and with very few photons per atom, an atom can be reliably detected. A detailed
description of the image analysis needed to obtain atom positions is presented in [77]. How-
ever, simultaneous imaging of two spin states is needed to extract correlation functions in
interacting systems and an overview of how this is done is summarized here.

Two aspects determine the internal state manipulations which are needed. Firstly, the
possible optical transitions determine which internal states are preferred for imaging. All
possible optical dipole transitions along with their polarization and magnetic field depen-
dence were presented in Section 2.4. We utilize only transitions on the D2 line and the
possible transitions can be seen in Figure 2.7. Additionally, the imaging path has a po-
larization constraint since it is used for both MOT beams along top/down directions and
fluorescence imaging. The polarization constraint requires that only σ− light can be col-
lected. State |3⟩ has a completely closed σ− transition to the excited state |1”⟩ at high
field and is preferred. States |1⟩ , |2⟩ on the contrary do not have a closed transition and
require at least one repumping laser to efficiently collect photons and ensure that the atom
does not end up in a dark state during imaging. Further, the repumping laser is σ+ po-
larized and so would be the spontaneous emission light from this transition. Due to the
polarization constraint this cannot be collected on the camera. Hence to image the two
spin components, we always image state |3⟩ and perform internal state manipulations to
transform the state prior to imaging. Secondly, interaction among the spin states determine
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Figure 2.20: Imaging sequence for two-state imaging. (a) To perform two-state imag-
ing, a number of internal state manipulations are required. (1) The manipula-
tions start with a two-photon Raman transition to transfer atoms in state |3⟩ to
|4⟩ using a coherent π-pulse. Simultaneously matterwave transformations (For
example an expansion in a harmonic trap for a quarter time period T/4) are
started. For all initial interaction strengths, the matterwave transformation
is performed at 750G. (2) During the matterwave transformations, rf Landau-
Zener pulses are used to transfer atoms in state |1⟩ → |2⟩ → |3⟩. These are
completed before the matterwave transformations conclude. (3)Image of atoms
in state |3⟩ is taken. (4) A microwave (MW) Landau-Zener passage transfers
atoms in state |4⟩ back to state |3⟩. (5) Atoms in state |3⟩ are imaged. Thus
both spin components can be imaged and in situ quantities can be obtained.
(b) Typical time-scales for each of the above mentioned transitions are shown.
The kind of internal state manipulation is indicated below each transition. The
size of the boxes corresponding to each transformation is not to scale. Figure
adapted from [75]
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Figure 2.21: Snapshots from two-state microscopy. A few snapshots from the resulting
imaging sequence is shown. The blue and red false color channels denote images
for the two spin states. The blobs with circles around them are identified
as atoms after processing the images[77]. The blobs without circles around
them arise from CICs and background photons and are rejected based on a
thresholding scheme. These snapshots were taken for a system of 6+6 atoms
after a single matterwave transformation to obtain the in situ momentum.
Figure adapted from[75]

further internal state manipulations. In order to measure in situ properties of the system,
matterwave transformations involving the system is necessary. This would only work if
during these matterwave transformations the system is (nearly) non-interacting. Starting
with an interacting |1⟩ − |3⟩ mixture, flipping state |3⟩ to state |4⟩ would render the re-
sulting |1⟩ − |4⟩ mixture nearly non-interacting. A transition from the interacting to the
non-interacting mixture also needs to be performed orders of magnitude faster than the mo-
tional time-scales. Two-photon Raman transitions which make this possible were presented
in Section 2.5. Transition between states |3⟩ − |4⟩ was found to have a large two-photon
Rabi rate ΩR along with a large quality factor β. Further, the optimal detuning for this
two-photon transition was also determined in Figure 2.13.

The complete imaging sequence is shown in Figure 2.20. The experiment begins by
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2.7. Single particle imaging

preparing an interacting system in a |1⟩ − |3⟩ or |2⟩ − |3⟩ mixture and the sequence is
presented here for the |1⟩ − |3⟩ mixture. The sequence for the |2⟩ − |3⟩ mixture is similar.
The sequence starts by first switching-off interactions using a two-photon Raman transition.
This Raman transition converts all atoms in state |3⟩ to |4⟩ using a coherent π-pulse 3 orders
of magnitude faster than the motional time-scales in the system. The system now finds itself
in a |1⟩ − |4⟩ mixture and one or more matterwave transformations ensue. During these
matterwave transformations lasting ≈ 9ms, the internal states of atoms in state |1⟩ are
transformed first to |2⟩ then to |3⟩ using radio frequency (rf) magnetic dipole transitions.
A Landau-Zener frequency sweep is performed to transfer all atoms in the intial state to
the final state with high fidelities. The transition matrix elements for these transitions
were summarized in Figure 2.5. Magnetic dipole |1⟩ − |2⟩ and |2⟩ − |3⟩ are weak and in
total require ≈ 8ms to perform. At the end of the matterwave transformation(s), the
system is illuminated for approximately 15µs and atoms in state |3⟩ (originally state |1⟩
atoms of the interacting mixture) are detected. This is followed by a microwave (MW)
Landau-Zener passage to transfer all the atoms in state |4⟩ back to state |3⟩ for imaging.
The magnetic dipole transition between states |3⟩ − |4⟩ (Figure 2.5) is approximately 50
times stronger than |1⟩ − |2⟩ and |2⟩ − |3⟩ transitions and takes approximately 160µs. For
this a two-photon Raman transition is not optimal since the sample has already expanded
and the transition fidelities are much better with MW. The transition also does not have
to be extremely fast and the additional expansion time though small can nonetheless be
compensated for by taking this into account for the matterwave transformation and initial
position/momentum lookup. A resulting image obtained at the end of these transformations
is shown in Figure 2.21.
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3 Spin-balanced few-fermion systems

In this chapter experiments with mesoscopic spin-balanced few-fermion systems in quasi-2D
harmonic oscillator potentials are presented. The presence of symmetries in 2D results in
degenerate motional orbitals grouped into shells. The prerequisites related to the single
particle spectrum and the eigenstates are first presented. The properties of two-particles
confined in such a harmonic trap interacting via contact interactions is then summarized.
The energies of the ground and first excited states are particularly important since they are
used to quantify the interaction strength for all experiments presented in this thesis.

The mesoscopic systems we experimentally study consist of a two-component mixture of
resonantly interacting fermions with 2 to 3 occupied shells resulting in closed shell configu-
rations of 1+ 1, 3+ 3 and 6+ 6 atoms. Such systems are far removed from the many-body
limit and might at first seem incapable of explaining truly many-body properties like phase
transitions and collective modes. In the many-body limit at T = 0 a two-component mix-
ture of fermions which are attractively interacting undergo transition to a superfluid state
at arbitrarily weak attractions. At this point the excitation spectrum features a gap closing
and as interactions are further increased, the amount of paring in the system quantified by
the order parameter ∆ increases. In this superfluid regime, there exists a collective am-
plitude mode associated with a modulation of |∆| called the Higgs mode[78]. Motivation
for the experiments of few-fermion systems in 2D came from a numerical study where the
authors predicted that already for such small systems a precursor of a phase transition
could be observed[79]. Evidence for an asymptotic gap closing behaviour as a function of
interaction was provided for a system as small as 3 + 3 atoms. A brief summary of key
experimental observables from the proposal is provided.

An experiment observing such a phase transition precursor is then presented[80]. Starting
with the preparation of spin-balanced few-fermion systems in closed shell configurations,
the experimental protocol to extract the excitation spectrum is summarized and the mea-
surements are presented. The nature of excitations of the resulting modulation scheme is
pointed out and the effect of particle number is studied. Due to the finite size of the system,
decay channels are strongly suppressed which make this precursor of the many-body Higgs
mode long lived. The coherent properties of the precursor are then demonstrated by driving
coherent oscillations between the few-body ground and excited states.

Since the precursor of the Higgs mode is associated with pair excitations only at the Fermi
surface, Pauli blocking with a frozen fermion core plays an important role in the emergence
of these collective modes. Using the ability to perform microscopy of the few-body system
and extract correlation functions, experiments on microscopic observation of Pauli blocking
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are presented[81]. Pauli blocking is a consequence of the anti-symmetrization of the total
wavefunction under particle exchange and this results in fermionic anti-bunching. In a
harmonic trap this leads to correlations which are termed Pauli Crystals[21]. The effect of
temperature on the visibility of these correlated structures are then presented and show a
continuous "melting" of the crystal with temperature.

Experiments on microscopy of an interacting system in momentum space[75] are then
presented and correlation functions are evaluated. The second-order density-density cor-
relator in momentum space indicates the formation of Cooper pairs at the Fermi surface
for finite interaction strengths. As the interaction strength is increased, correlations ap-
pear even within the Fermi surface indicative of a molecular like state. Comparison to the
many-body limit is discussed and the number of opposite momentum pairs having a zero
center-of-mass(COM) momentum are evaluated. A brief discussion of the onset of pair-
ing only at finite interaction strength in contrast to infinitesimally weak attractions in the
many-body limit is provided.

3.1 Energy levels of a 2D harmonic oscillator

In this section we summarize the eigenstates of the 2D harmonic oscillator along with the
associated eigen energies. The Hamiltonian Ĥ for the 2D Harmonic oscillator is

Ĥ =
1

2
p̂2 +

1

2
ρ̂2 (3.1)

where p̂ is the momentum operator in units of the harmonic oscillator momentum p0 =
√
h̄mω, ρ̂ is the position operator in units of the harmonic oscillator length scale l0 =

√
h̄
mω

and Ĥ is in units of the harmonic oscillator energy h̄ω. To get the spatial representation
of the eigenstates, the position representation for the operators p̂ → −i∇ and ρ̂ → ρ are
introduced. This leads to the following differential equation to get the eigenvalues and
eigenstates

− 1

2ρ

∂

∂ρ

(
ρ
∂Φ

|m|
n (ρ, ϕ)

∂ρ

)
− 1

2ρ2
∂Φ

|m|
n (ρ, ϕ)

∂ϕ
+

1

2
ρ2Φ|m|

n (ρ, ϕ) = E|m|
n Φ|m|

n (ρ, ϕ) (3.2)

Using the Ansatz that the radial and angular part can be separated as follows,

Φ|m|
n = R|m|

n (ρ) Tm(ϕ) (3.3)
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Figure 3.1: Eigenstates of the 2D harmonic oscillator. A shell structure appears due
to the degeneracy of states in a 2D harmonic oscillator potential. There are N
states of energy Nh̄ω and the associated radial part of the wavefunctions R|m|

n

are shown for each of the orbitals. The angular part of the wavefunction only
introduces a complex phase modulation of angular periodicity 2πm and is not
shown here.
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and solving this differential equation gives the following eigenvalues and eigenstates,

E|m|
n = 2n+ |m|+1 (3.4)

Φ|m|
n (ρ, ϕ) =

√
2n!

(n+ |m|)!
ρ|m| L|m|

n (ρ2) e−ρ
2/2 e

imϕ

√
2π

(3.5)

where n(m) denotes the radial translational (angular rotational) quantum number and L|m|
n

is the generalized Laguerre polynomial. The first few eigenstates, their energies and the
associated degeneracies for a particle in a 2D harmonic oscillator potential are depicted in
Figure 3.1. Unlike in the 1D case, additional symmetries in 2D result in the appearance of
a shell structure. The N th shell has an energy Nh̄ω and possesses N degenerate motional
orbitals.

3.2 Two particles in a harmonic trap

The previous section introduced the single particle eigenstates for a 2D-harmonic oscillator
potential. Here we summarize how the energies of two interacting particles in a harmonic
trap change due to a contact interaction between them. An analytical solution for two
atoms of equal mass in an isotropic 3D trap have been solved[82] and recent analytical
methods have extended this to the case of anisotropic traps[83]. We are more interested in
the case of a quasi-2D trap which accurately describes the experimental system we have.
Analytical solutions are also available for this situation[84]. The Hamiltonian for such a
system can be described as

(3.6)Ĥ =
p̂2
1

2m
+

p̂2
2

2m
+

1

2
mω2

r ρ̂1
2 +

1

2
mω2

r ρ̂2
2 +

1

2
mω2

z ẑ1
2 +

1

2
mω2

z ẑ2
2 + V̂int(⃗r1 − r⃗2)

Using the center of mass(COM) R⃗ = (r⃗1 + r⃗2)/2 and relative(rel) co-ordinates r⃗ = r⃗1− r⃗2,
the Hamiltonian can be decomposed into the COM and rel parts as follows

Ĥ =
P̂2

2M
+

1

2
mω2

rR̂
2
+

1

2
mω2

zẐ
2︸ ︷︷ ︸

ĤCOM

+
p̂2

2µ
+

1

2
µω2

r ρ̂
2 +

1

2
µω2

z ẑ
2 + V̂int(⃗r)︸ ︷︷ ︸

Ĥrel

(3.7)

where M = 2m is the total mass, µ = m/2 is the reduced mass. ĤCOM is not affected by
interactions since the interactions only depend on the relative separation of the atoms. Ĥrel

can be rewritten in position representation with lengths in units of
√
h̄/(µωz), momentum

in units of
√
h̄µωz, energies in units of h̄ωz and η = ωr/ωz as follows

Hrel = −
∇2

2
+

1

2
(η2ρ2 + z2) + 2πa δ(3)

∂

∂r
r (3.8)
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Figure 3.2: Energy of two particles in a quasi-2D trap with η = ωr/ωz = 1/7 inter-
acting via contact interactions. For a harmonic potential the Hamiltonian
separates into the COM and rel parts and only the rel motion is affected by
interactions. (a) Energies of relative motion for zero COM excitations. The
energies relative to the zero-point energy (E0) versus interaction (1/a). The
energy E − E0 is in units of h̄ωr and a is in units of the harmonic oscillator
length l0 =

√
h̄/(mωr). (b)For two 6Li atoms in states |1⟩ , |3⟩ the scattering

length is tuned by changing the magnetic field B. The energy levels are now
shown as a function of B. The vertical dashed line indicates the position of the
Feshbach resonance and the horizontal dashed lines indicate the unperturbed
energy levels. For the other mixture of states namely |1⟩ , |2⟩ and |2⟩ , |3⟩ the
states are horizontally shifted to their resonance position. The attractive branch
is denoted in blue and the repulsive branches in red. The energy of the ground
(excited) state relative to the zero-point energy E0 is the two-body binding (re-
pulsion) energy EB (ER) and is depicted in both (a) and (b) at different values
of the scattering length.
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3. Spin-balanced few-fermion systems

Here the contact interaction term has been replaced by the Fermi pseudo-potential for
s-wave scattering and a is the scattering length in the aforementioned length units. An
Ansatz is introduced to build the eigenstates from the non-interacting basis states of the
2D-harmonic oscillator.

ψ(r) =
∑
n,k

Φn,0(ρ, ϕ)Θk(z) (3.9)

Here only the basis states with m = 0 are used for building the interacting eigenstates as the
interaction potential being a δ(3) function couples only those basis states which have a non-
vanishing value at r = 0 (See Figure 3.1 for wavefunctions). Φn,m(ρ, ϕ) is the eigenstate
along the radial+angular direction and was introduced in Section 3.1. Θk(z) is the 1D
harmonic oscillator wavefunction along the z direction and is

Θk(z) =
1
4
√
π

1√
2kk!

e−z
2/2Hk(z) (3.10)

where Hk(z) is the Hermite polynomial of order k. Using the Ansatz Equation 3.9 in 3.8
and projecting on the non-interacting eigenstates with quantum numbers (n, 0, k) gives the
following expression for the coefficients cn,k

cn,k = C
Φ∗
n,0(0, ϕ)Θ

∗
k(0)

En,k − E
(3.11)

where En,k = 2nη + k + η + 1/2 is the energy of the non-interacting state with quantum
numbers (n, 0, k), E is the energy of the interacting eigenstate and C is a constant which
evaluates to

C = −2πa ∂

∂r

∑
n′ ,k′

cn′ ,k′

(
rΦn′ ,0(ρ, ϕ)Θk′ (z)

)
r=0

Since cn,k is defined in terms of all the other coefficients cn′ ,k′ , this is used to express the
energy of the state in terms of the 3D scattering length a as follows

−1
2πa

=
∂

∂r
(rψε(r))r=0 (3.12)

where ψε(r) evaluates to

ψε(r) =
∑
n,k

Φ∗
n,0(0, ϕ)Θ

∗
k(0)Φn,0(ρ, ϕ)Θk(z)

2ηn+ k − ε

where ε = E − η − 1/2 is the energy of the interacting eigenstate with respect to the zero-
point energy. Using the generating functions for the Laguerre and the Hermite polynomials
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3.3. Theoretical predictions for many-body behavior in a few-body system

one can simplify Equation 3.12 as

−
√
π

a
= F (−ε/2) (3.13)

where F (x) is defined as follows

F (x) =

∫ ∞

0
dt

[
ηe−xt√

1− e−t (1− e−ηt)
− 1

t3/2

]
(3.14)

For a quasi-2D trap of aspect ratio η = 1/n, where n is an integer, F (x) can be further
simplified yielding the following equation relating the scattering length a to the energy

n

2a
=

n−1∑
l=0

Γ(− ε
2 + l

n)

Γ(− ε
2 −

1
2 + l

n)
(3.15)

The lowest energy level is usually denoted in literature as the attractive branch while the
first(and higher) energy level(s) are denoted as the repulsive branch(es). The attractive
branch always features a bound state whose energy becomes larger as the 3D resonance po-
sition is reached from negative scattering lengths and then increases further beyond the 3D
resonance position. The variation of eigen state energies as a function of inverse scattering
length 1/a for an aspect ratio of η = 1/7, typically used in experiments, is shown in Figure
3.2(a). With Feshbach resonances, we can modify the scattering length a by changing the
magnetic field. A plot of the energy levels as a function of the magnetic field for a mixture
of 6Li atoms in states |1⟩ , |3⟩ is shown in Figure 3.2(b). Even for such moderate aspect
ratios, the energies are close to the 2D values and more details on this comparison to the
exact 2D case can be found in [55]. When studying few-body systems in the ground state,
the two-body binding energy(EB) can be used as a parameter to quantify the interaction
strength in the system[79], [85] and is used throught the thesis. For a system prepared in
the first repulsive branch, the repulsive two-body energy(ER) can also be used to quantify
interactions and this is used in Chapter 5.

3.3 Theoretical predictions for many-body behavior in a
few-body system

Emergent degrees of freedom at different length scales[1] have been used to understand
the behavior of many-body systems encompassing disparate areas of scientific endeavor[86].
This approach has been used to understand emergent macroscopic phenomena such as phase
transitions which cannot be explained from a simple extrapolation of two-body physics[87].
However this approach sidesteps the question of how many is many? Nature is abound
with systems where there are countably finite number of constituents such as atoms, nuclei
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3. Spin-balanced few-fermion systems

Figure 3.3: Excitation spectrum of a finite few-body system consisting of 3 + 3
and 6 + 6 fermions in a 2D harmonic oscillator potential. Excitation
energy(in units of h̄ωr) versus two-body binding energy per particle ϵb. At zero
two-body binding energy, modulating the system can cause excitation of a single
particle two shells up or a pair one shell up. Both of these excitations cost the
same amount of energy 2h̄ω given by the trap energy scale. At finite interac-
tion strengths, there is a mode which increases with interactions and can be
reconciled from the increased mean field energy. However, a lower energy mode
appears which has a non-monotonic dependence on the interaction energy. As
one more shell of atoms are filled (6 + 6) the gap in the excitation spectrum
closes further. In the many-body limit the gap completely closes and is associ-
ated with the Higgs mode. Reprinted with permission from [79]
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3.3. Theoretical predictions for many-body behavior in a few-body system

and other mesoscopic systems. Notwithstanding the fact that such systems are far from the
thermodynamic limit, they exhibit collective effects reminiscent of systems in the many-body
limit[5]–[7]. With the advent of cold atoms with tunable interactions[4], one can emulate
such systems since they are not easily amenable to numerical or analytical approaches.

Such a finite few-body trapped system was recently studied numerically[79]. A system
consisting of few-fermions with attractive interactions trapped in a 2D harmonic oscillator
potential was considered. Due to symmetries in 2D, the single particle orbitals arrange in
shells of equal energies as was shown in Figure 3.1. Adding more fermions in the trap leads
to the formation of a Fermi sea and the authors considered two component fermions with
3 + 3 and 6 + 6 atoms. Such a system consists of fully filled 2 or 3 shells respectively. The
Hamiltonian for such a system is

Ĥ =
N∑
i=1

(
p̂2
i

2m
+

1

2
mω2x̂2

i

)
+ g

∑
k,l

δ(r̂k − r̂l) (3.16)

i is used to index the particles in the system and the contact interaction between particles
is modelled by a regularized δ function potential with strength g. They then performed
an exact diagonalization of the Hamiltonian using a large number of non-interacting basis
states and found the energy spectrum of such a system. A many-body system is usually
characterized in terms of its response to perturbation and such an excitation spectrum can
shed light on the phase or phase transitions in a system. This system in the many-body limit
undergoes a quantum phase transition at T = 0 for infinitesimally small attractive interac-
tions from a normal to a superfluid phase. The complex scalar order parameter ∆,which
describes the extent to which symmetry is broken in the system, is zero in the normal phase
while it takes up a finite value in the superfluid phase. Moreover in the superfluid phase
the order parameter spontaneously breaks symmetry and picks up a phase. In the super-
fluid phase, perturbing the system can lead to either changing the amplitude or phase of
the order parameter. Amplitude modulation costs energy and is called the Anderson-Higgs
mode while the phase modulation costs no energy and is called the Goldstone mode[78].
Also importantly, the excitation energy for amplitude modulation at the phase transition
goes to zero. While certainly a system of 3 + 3 or 6 + 6 fermions is definitely far from the
thermodynamic limit, the excitation spectrum of this finite system was explored.

The excitation spectrum from the study is shown in Figure 3.3. The interaction strength
in the system is quantified in terms of the two-body binding energy per particle εb.1. Only
monopole excitations were considered which can be excited by either modulating the inter-
action strength, which couples strongly, or by modulating the trap, which couples weakly.
At zero interactions, periodic driving of the system can cause excitation of a single particle
two shells up or a pair of particles one shell up. Both these excitations cost 2h̄ω which is set
by the trap energy scale. However, the situation changes dramatically as interactions are

1In experiments we quantify the interaction strength in terms of the two-body binding energy EB = 2εb
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3. Spin-balanced few-fermion systems

introduced. Single particle excitations cost energy larger than 2h̄ω simply due to the mean
field shift while excitation of pairs costs energy lesser than 2h̄ω since the pairs can occupy
multiple excited orbitals which are empty thereby increasing their overlap and reducing the
energy due to attractive interactions. Starting with a non-interacting system and tuning in-
teractions results in this monopole mode having a non-monotonic behaviour. Increasing the
particle number by an additional shell makes the mode deeper and the energy gap between
the ground/excited state asymptotically goes to zero. The Figure 3.3 shows the binding
energy per particle εb in terms of the critical binding energy εcb to enable comparison of
different particle numbers. However, in absolute terms the critical binding energy εcb also
decreases since with each shell the density of states increases leading to more possibilities
and more empty orbitals to excite pairs. And finally due to the discrete energy levels in
the system decay channels are largely suppressed and the mode can be long-lived unlike
in the many-body limit[88]. The study predicted that this mode is then associated with
excitations of pairs and is the few-body analog of the Higgs mode featuring a modulation
of |∆|. The asymptotic gap closing with increasing particle number is then interpreted as a
few-body precursor of a phase transition in the many-body limit. In the following sections
we detail how we measure the excitation spectrum in such a deterministically prepared
model system.

3.4 Precursor of a phase transition

3.4.1 Preparing closed shell configurations

The first step to experimentally measure collective excitations in a few-body system involves
the preparation of closed shells of atoms in a 2D harmonic oscillator potential. Technical
details of experiment can be found in [55], [56] and only an overview is provided here. Using
standard methods from laser cooling we cool a sample of 6Li atoms using a Zeeman slower
and a MOT and then load the atoms in an ODT. Using a sequence of RF pulses the atoms
are prepared in a mixture of states |1⟩ , |3⟩. A tightly focused tweezer is then superimposed
on the ODT and the sample is evaporatively cooled in this combined trapping potential
for approximately 20ms resulting in around 300 cold atoms. The ODT is switched-off at
the end of this evaporation ramp. The tweezer is tightly focused in the radial direction
and weakly along the axial. A spilling procedure is performed[19] to create a low entropy
sample of around 30 atoms in this trap. Subsequently the size of the tweezer in the radial
direction is made larger (thereby reducing the radial trap frequency) with a spatial light
modulator(SLM) and simultaneously an single layer of an optical lattice trap with tight
axial and weak radial confinement is turned on. The combination of the tweezer trap and
the single layer optical lattice trap results in a 2D microtrap with trapping frequencies
ωz ≈ 2π × 7340 Hz and ωr ≈ 2π × 1000 Hz. This results in a quasi-2D geometry with an
an aspect ratio of η = ωr/ωz ≈ 1/7. We perform spilling of the atoms transferred to this
2D microtrap by lowering the power in the tweezer beam and applying a magnetic field
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Figure 3.4: Preparation of closed shells of atoms in a quasi-2D harmonic trap.
(a) Plot of mean atom number versus spill depth. As the final spill depth is
varied, the system shows discrete steps corresponding to 1 + 1, 3 + 3 and 6 + 6
atoms. These correspond to closed shell configurations of the 2D-harmonic
oscillator potential. The mean atom numbers corresponding to closed shell
configurations are also indicated by dashed lines. The spilling is performed at
a weak interactions of EB = 0.6h̄ωr. (b) Plot of standard deviation of atom
number vs spill depth. The fluctuations of atom numbers shows that for closed
shell configurations the fluctuations are significantly reduced. Figure adapted
from [80]
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3. Spin-balanced few-fermion systems

gradient of approximately 70 G/cm. The spilling procedure works better when performed
with moderate interactions and is done at either at 300G or 750G depending on the final
interactions desired.

A plot of the number of atoms remaining in the trap as a function of the final spill
depth is shown in Figure 3.4. As the final trap depth for spilling is tuned, stable plateaus
consisting of 1 + 1, 3 + 3 and 6 + 6 atoms emerge signalling the preparation of closed shell
configuration of atoms in a quasi-2D harmonic oscillator potential. Since the atoms are
close to the motional ground state and the trap has an aspect ratio of η ≈ 1/7, the axial
motion is frozen out. Fluctuations of the prepared atom number also confirm that the closed
shell configurations correspond to states which have suppressed fluctuations. We achieve
preparation fidelities of 97±2, 93±3 and 76±2 for 1+1, 3+3 and 6+6 atoms respectively.
For 6 + 6 atoms we achieve an entropy of 0.1kB per particle.

3.4.2 Effect of interactions on shell structure

The plots of mean atom number versus depth of the optical trap were used to infer the
preparation of closed shell configurations in Figure 3.4. It is also interesting to explore the
effect of interactions on the shell structure. To this end we perform the spilling procedure at
various interaction strengths. The results are shown in Figure 3.5. The strength of interac-
tions is quantified by the two-body binding energy (repulsion energy) EB (ER) for attractive
(repulsive) interactions. At zero interactions EB = 0h̄ωr, the shell structure is visible with
stable plateaus at 2,6 and 12 atoms. As the attractive interactions are increased, for weak
attractions the shell structure persists albeit shifting to smaller values of spill depths to get
the same atom numbers. This can be understood due to the attractive mean field inter-
actions providing additional trapping thereby reducing the required confinement from the
optical trapping potential. In contrast, the repulsive case needs a larger confinement to
achieve the same number of atoms since the repulsion between the atoms has to be over-
come. A histogram of the atom numbers for weak and strong attractive interactions further
attest to the fact that the shell structure vanishes with increasing attractions. At weak
interactions, EB = 0.6h̄ωr, the shell structure is still present as seen from the histogram
peaks corresponding to 2,6,12 atoms. In contrast for strong interactions, EB = 4.3h̄ωr,
the system predominantly favours an even atom number as this increases the total binding
energy per particle. This can be compared to the stability of nuclei with even protons and
(or) neutrons[89].

3.4.3 Exciting the few-body system

The scheme to determine the excitation spectrum in shown in Figure 3.6. The system is
first prepared in a closed shell configuration at weak attractive interactions where the shell
structure is still present. The magnetic field is then adiabatically ramped to get a system
with the desired two-body binding energy EB. Excitation of the system can be performed
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Figure 3.5: Effect of interparticle interactions on the shell structure. (a) Plot of
mean atom number versus optical trap depth at different interaction strengths.
The shell structure present for a non-interacting system, EB = 0h̄ωr, persists
for weak interactions. The effect of attractive interactions is to shift the required
trap depth for a given atom number to lower trap depth values. This can be
understood from a mean field attraction which provides an additional confine-
ment potential. On the contrary the effect of repulsive interactions is to shift
the trap depth for a given atom number to higher values since the confinement
potential has to now overcome repulsive interparticle forces. At large attractive
interactions EB = 4.3h̄ωr, the shell structure completely vanishes. The horizon-
tal dashed lines indicate closed shell configurations. (b) A histogram of atom
numbers at weak EB = 0.6h̄ωr and strong EB = 4.3h̄ωr attractive interactions
accumulated for all trap depths. At large binding energies EB, the shell struc-
ture vanishes and even atom numbers are stable since this can lower the overall
biding energy of the system. EB and ER are in units of h̄ωr.
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Figure 3.6: Experimental scheme to extract the collective excitation spectrum. (a)
The system is prepared deterministically at weak attractive interactions. The
magnetic field is then adiabatically tuned to initialize the system with a desired
interaction strength. (b) Excitation of the system is performed by modulating
the interaction strength since this couples strongly to pair excitations. Since
no angular momentum is added to the system, only two possible excitations
are possible. (i) Excitation of a single particle two shells up or (ii) Excitation
of a pair of particles a single shell up such that ∆m = 0. (c) The system is
adiabatically returned to weak attractive interactions where the spill levels are
known. Subsequent spilling to the same level as the prepared system results
in (i) N-1 particles for a single particle excitation, (ii) N-2 particles for a pair
excitation. The probabilities are then used to determine the excitation spectra
and identify the resulting modes.
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3.4. Precursor of a phase transition

either by modulating the trap or interactions. Interaction modulation couples to the mode
associated mainly with pair excitations much stronger than modulating the trap[79]. This
mode with pair excitation is the precursor of the Higgs mode in the many-body limit. The
Higgs mode is due to the modulation of the amplitude of the superfluid order parameter |∆|
and is a modulation of the amount of paring in the system. Interaction modulation has also
been proposed to excite the Higgs mode[90]. In a system with perfect radial symmetry such
an modulation can either excite a single particle two shells up or a pair single shell up with
no change in the angular momentum ∆m = 0. For the non-interacting case, both these
possibilities cost 2h̄ω in energy. Once the system has been excited for a finite duration, the
system is returned adiabatically to the interaction strength at which it was prepared where
the spill levels are known. Subsequent spilling to the ground state results in a loss of (at
least) one particle for single particle excitations and two for pair excitations. Thus these
probabilities are then used to determine the excitation spectrum.

3.4.4 Excitation spectrum

The 2D scattering length a2D determines the interactions and depends on both the 3D
scattering length a and the harmonic oscillator length lz along the z-direction as in Equa-
tion 2.61. The interactions are modulated by modulating the power of the single layer
optical lattice trap which changes ωz and hence lz. This modulates the trap frequency
along the radial direction ωr only weakly since the radial confinement is mostly created by
the tweezer. To excite the system interactions are modulated for ≈ 400 ms. The resulting
excitation spectrum for a system with N=6 particles and a binding energy EB = 0.33h̄ωr
is shown in Figure 3.7(a). It shows the probability of finding various atom numbers as a
function of modulation frequency. The spectrum has two frequencies at which particle exci-
tations happen. One of these is above 2fr and shows an enhanced probability to find N=5
particles indicating single particle excitations. This is consistent with the mean field shift in
energy which is larger for the denser ground state than the more dilute excited states. How-
ever, the mode below 2fr shows an enhanced probability to find N=4 particles indicative
of pair excitations. As will be shown later from correlation measurements in Section 3.6, in
this case EB < h̄ωr and the ground state is hardly paired. In this regime where the binding
energy is less than the single particle gap, paring is mostly between time reversed pairs in
the same shell[85], [91]. Contrary to open shell configurations where the system is paired for
weak attraction due to the presence of empty orbitals[79], for closed shells the combination
of Pauli blocking and weak attraction prevents the system from being paired. The excited
state on the contrary is paired due to empty orbitals enabling the pairs to occupy all these
states and increase the paring energy. Hence the transition occurs at an energy lower than
2fr.

The complete spectrum for different interaction strengths is shown in Figure 3.7(b,c) for
N=6 and N=12 particles respectively. Here only the pair excitations are tracked by plotting
a normalized probability given by the ratio of pair excitations to no excitations PN−2/PN .
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Figure 3.7: Excitation spectrum of a few-body system. (a)Plot of probabilities of
finding various atom numbers as a function of modulation frequency for an
interaction strength of EB = 0.33h̄ωr and N=6. There are two excitations (i)
Pair excitations occur at a frequency less than 2fr while (ii) Single particle
excitations occur at a frequency greater than 2fr. (b) Normalized probability of
a pair excitation compared to probability of having no excitations PN−2/PN for
N=6 atoms at different interaction strengths. The mode with non-monotonic
features now splits into two, one with ∆m = 0 and the other with ∆m =
±2. This splitting is due to the fact that the trap has an anisotropy of 2%
which couples ground and excited states with different angular momentum. The
mode which induces a transition of ∆m = ±2 has a higher energy since the
rotational energy has to be provided by the drive. (c) Similar plots of normalized
probability for N=12. Figure adapted from [80]
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Figure 3.8: Comparison of the lowest monopole mode for N=6 and N=12. At
each interaction strength the excitation frequency for the various modes are
obtained by fitting a Gaussian function to ascertain the peak position. The
resulting plot of excitation frequency versus interaction strength is shown for
both particle numbers N=6(blue,diamonds) and N=12(green,circles). The low-
est excitation frequency for the monopole mode ∆m = 0 decreases with increas-
ing particle number and shifts to lower values of EB. This is consistent with
the approach to the many-body limit N → ∞ where the gap closes and the
normal-superfluid transition occurs at infinitesimal attractions for closed shell
configurations. Modes corresponding to single particle excitations and m = ±2
pair excitation modes are shown in the background. Figure adapted from [80].
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The excitation spectrum shows two modes featuring a non-monotonic behavior and modes
which monotonically increase in frequency with interactions. The non-monotonic modes
which consist mainly of pair excitations and are the precursors of the Higgs mode in the
many-body limit are now split into two. This can be understood from the fact that the slight
anisotropy of around 2% is sufficient to couple the ground state with no angular momentum
with an excited state with a finite angular momentum resulting in ∆m ̸= 0. This anisotropy
in the trapping potential has been taken into account in a numerical evaluation which
confirms this hypothesis[80]. The non-monotonic mode with a higher energy corresponds
to ∆m = ±2 since additional rotational energy needs to be supplied.

A comparison of the excitation frequencies as a function of interaction strength and par-
ticle number is summarized in Figure 3.8. Two key features concerning the lowest monopole
mode, ∆m = 0 which is associated with pair excitations, predicted by numerical studies
are verified[79]. Firstly, the lowest frequency of the pair excitation mode corresponding to
∆m = 0 decreases with increasing particle numbers. This is due to the fact that addition
of each shell should asymptotically recover the gap closing in the thermodynamic limit
N → ∞. Secondly, the critical binding energy EcB at which the minimum of the mode
occurs shifts to lower values. In the thermodynamic limit, the transition from a normal to a
superfluid occurs at infinitesimal attractions at T = 0 for closed shell configurations. There
is one other prediction from numerical calculations which is concerned with the stability of
this precursor of the Higgs mode and will be presented in the next section.

3.4.5 Coherent Driving

The discrete energy levels in our system introduce a single particle energy gap of h̄ωr.
This restricts the number of decay channels for the pair excitation mode and is expected
to make it long-lived[79]. This hypothesis is explored by driving a 3 + 3 system with an
interaction strength EB = 0.6h̄ωr at the frequency of the lowest pair excitation mode
(∆m = 0, monopole mode) for varying driving times. Subsequently the number of atoms
in the ground state is counted and the results are plotted in Figure 3.9. As the modulation
time for the drive is varied, the system coherently oscillates between a system with pair
excitations(N=4) and a system with no-pair excitations(N=6). During this time there are
hardly any single particle excitations(N=5). The probability to find the system in either
N=6 or N=4 remains constant indicating that pair excitation and de-excitation can be
treated as a two-level system. A damped Rabi oscillation for a two-level system is fit to the
probabilities resulting in an oscillation period of TRabi = (126.037± 1.627)ms and a decay
time of Tdecay = (231.810 ± 29.552)ms. With the observation of coherent oscillations, the
stability of the precursor of the many-body Higgs mode is confirmed.
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Figure 3.9: Coherently driving the monopole mode associated with pair excita-
tions. At an interaction strength of EB = 0.6h̄ωr for 3 + 3 atoms, the lowest
monopole mode is driven for different modulation times. The atoms in the
ground state at the end of the drive are counted and the probabilities for 6,4,5
atoms (P6,P4,P5) are plotted versus modulation time. The system coherently
oscillates between excitation(4 atoms) and de-excitation(6 atoms) of a pair.
During this period there is hardly any probability to excite a single particle (5
atoms). The coherent nature of this mode is also confirmed by from the plot
of P6 + P4. The probabilities P6 and P4 are fit with a damped Rabi oscillation
which gives an oscillation time of TRabi = (126.037±1.627)ms and a decay time
of Tdecay = (231.810± 29.552)ms. Figure adapted from [80]
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3. Spin-balanced few-fermion systems

3.5 Pauli Blocking

Fermions and bosons are distinguished from one another based on two features namely their
spin and exchange symmetry. The exchange symmetry for fermions requires that the many-
body wavefunction of a system of identical fermions under exchange be anti-symmetric. The
many-body ground state of a system of N-identical fermions is then described by the Slater
determinant as follows

Ψ(x1,x2, . . . ,xN) =

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ2(x1) . . . ψN (x1)
ψ1(x2) ψ2(x2) . . . ψN (x2)

...
...

...
...

ψ1(xN) ψ2(xN) . . . ψN (xN)

∣∣∣∣∣∣∣∣∣ (3.17)

where ψi are the single particle orbitals and xi are the co-ordinates of the particles. Anti-
symmetrization also requires that no two particles occupy the same orbital ultimately en-
suring that the particles avoid each other in position space[92]. While this property termed
Pauli blocking is responsible for far reaching consequences such as atomic structure, it also
has important consequences for the system studied previously. The formation of pairs at
the Fermi surface is due to this blocking effect which renders the core of a many-body
system frozen. We saw in Section 3.4 how Pauli blocking was responsible for excitations
to have non-trivial characteristics. A frozen core also means that low energy excitations
are mainly determined by particles at the Fermi surface which has been a paradigm to
solve problems in condensed matter physics[93]. So far the effect of Pauli blocking in cold
gases has been observed through the suppression of collisions[94], [95], Fermi pressure[96],
anti-bunching of fermions[97], noise correlations[98], suppression of density fluctuations[99],
[100] and quantum gas microscopy of a band insulator[101].

For a system of fermions the overall wavefunction comprises of spin and motional degrees
of freedom. The combined wavefunction should be anti-symmetric under exchange of these
particles - a symmetric spatial wavefunction can only be combined with an anti-symmetric
spin state and vice versa[102]. For a system of interacting fermions, like spin-1/2 electrons,
due to interactions either the symmetric or the anti-symmetric motional state has a lower
energy. This constrains the symmetry of the spin state to ensure anti-symmetrization of
the overall wavefunction. Thus there is a correlation between the particles due to this
"Exchange interaction". It is important to note that this exchange interaction is no more
than a certain wavefunction having lower energy due to interactions. This phenomena is
responsible for explaining the ground state of a hydrogen molecule as a spin singlet[103]
and the emergence of quantum magnetism[104]. In other words, the interactions between
particles is responsible for causing spin-correlations between particles.

In contrast for a system of identical non-interacting fermions even though the parti-
cles don’t interact, Pauli blocking ensures that the overall motional wavefunction is anti-
symmetric under particle exchange. Thus, even though there is absolutely no interactions
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Figure 3.10: Configuration of fermions in a 2D harmonic oscillator potential with
maximum likelihood. Using the many-body wavefunction from the Slater
determinant, a probability density for different configurations is obtained. Us-
ing a Metropolis Monte-Carlo sampling scheme, different configurations are
sampled until the most likely configuration is reached with 105 repetitions.
Once a configuration is obtained, the whole set of co-ordinates are centered
on the center of mass(COM) of the max likelihood positions. The blue dots
indicate particle positions which result with maximum probability and the red
circles indicate the COM position. (a-d)N=3, (e-h)N=6 max likelihood for ran-
domly chosen initial co-ordinates of the Markov Chain. Due to the azimuthal
rotational symmetry in the 2D system, the maximum likelihoods from differ-
ent starting co-ordinates chosen randomly differ only by a rotation angle. For
N=3 this results in a 3-fold rotation symmetry and for N=6, due to a single
particle at the COM position, a 5-fold rotation symmetry. This feature is used
to visualize correlations in the few-body system.
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3. Spin-balanced few-fermion systems

between the particles, the resulting state is highly entangled and correlated[105]. One way
to quantify this correlation would be in terms of correlation functions. However, for a sys-
tem of 6 particles (12 co-ordinates in 2D) the correlation function is 12 dimensional and
hard to visualize. There have instead been proposals which suggest that this higher-order
correlation function can be visualized by looking at the symmetries of the many-body wave-
function[21], [106]. The proposals are based on the idea that the many-body wavefunction
gives a probability distribution for N-particles of the system. In these studies, a 2D har-
monically trapped few-body system introduced in the previous sections was considered. In
contrast to a two-component interacting fermionic system, a spin polarized system was con-
sidered. Metropolis Monte-Carlo sampling methods[107] were then used to determine the
most probable configuration of this system of trapped fermions. The outcome for 2 filled
shells(N=3) and 3-filled shells(N=6) are shown in Figure 3.10. The maximum likelihood
positions are obtained from a Markov chain sampling scheme as follows.

x⃗old ← random sample (x1,x2, . . . ,xN)
for i = 1 to Nrep do

x⃗new ← x⃗old + ϵ⃗
Pold = |Ψ(x⃗old)|2
Pnew = |Ψ(x⃗new)|2
if Pnew > Pold then

x⃗old = x⃗new
end if

end for
The maximum likelihood positions reveal a kind of self-organization where the particles
avoid each other as expected from Pauli blocking. The positions also reveal a symmetry
present in the each likelihood outcome due to the azimuthal symmetry in the system. It is
this 3-fold for N=3(5-fold for N=6) symmetry which is then used to visualize correlations
in the system.

3.5.1 Visualizing Pauli blocking

With single particle imaging as described in Section 2.7, the in situ momentum of the in-
dividual particles can be obtained. In a harmonic trap both the position and momentum
operator enter into the Hamiltonian quadratically. Due to this equal footing of both op-
erators, the eigenfunctions are the same in both position and momentum representation.
The eigenstates are Hermite(Laguerre) polynomials with a Gaussian envelope when the
eigenstates are represented in Cartesian(cylindrical) co-ordinates. At the time of the exper-
iment, only in situ momentum was accessible and this isomorphism was used to visualize
Pauli blocking in momentum space. Each experimental snapshot of the system was used to
sample the many-body wavefunction. Using the symmetry from the maximum likelihood
positions, the images were analyzed in the following way[106]. From each snapshot of the
experiment, the COM of the particles was determined and then subtracted from the parti-
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Figure 3.11: Experimental observation and comparison to simulations for N=3,
N=6 Pauli Crystal. A heatmap of the particle positions after subtracting
the COM and performing rotations depending on the n-fold symmetry present
in the most probable configurations of the system. (a,b) Experiment and sim-
ulation for N=3. Experimental Pauli Crystal is obtained from a collection of
approximately 10000 snapshots. The simulations are obtained by sampling
the many-body wavefunction using a Monte-Carlo Metropolis[107] algorithm.
(c,d) Experiment and simulation for N=6. Experimental results are obtained
from approximately 20000 snapshots. All the transformed momenta are rep-
resented in harmonic oscillator momentum units

√
h̄mωr. The experimental

system has very low, however finite entropies. This leads to a slight decrease
in the contrast along the azimuthal angles. Figure adapted from [81].
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3. Spin-balanced few-fermion systems

cle positions. The existence of an n-fold symmetry is known from the maximum likelihood
positions. For N=3, a 3-fold symmetry with the particles at the vertices of an equilateral tri-
angle is present. Ordering the particles by their angles, the rotation angles for the particles
to be at (0◦, 120◦, 240◦) are determined. An average of these rotation angles is determined
and all the particle angles are rotated by this value. For N=6, a 5-fold symmetry is present
with one particle at the COM. The co-ordinates are sorted to get the 5 particles which
are farthest from the COM. Sorting these particles by their angles and using the 5-fold
symmetry, the rotation angles for the particles to be at angles (0◦, 72◦, 144◦, 216◦, 288◦) are
determined. The mean of these rotation angles was then used to rotate the co-ordinates
of all the particles. More details can be found in [56]. The momenta of the particles after
these transformations are denoted as (p̃x, p̃y).

The system is prepared with closed shells of N=3 and N=6 particles (actually 3 + 3 and
6 + 6 but with the scattering length and hence interactions set to 0) with lowest possible
entropy. A time-of-flight technique is then used to obtain the in situ momenta of all the
particles[77]. The obtained particle positions are then processed according to the scheme
summarized above. Approximately 10000(20000) snapshots of the many-body system for
N=3(N=6) particles are obtained. The results for N=3 and N=6 is shown in Figure 3.11.
The experiments are compared with simulations obtained by similar Monte-Carlo Metropo-
lis sampling scheme to sample the many-body wavefunction. The outcome of the sampling
is a list of particle positions which are drawn with a probability obtained from the Slater
determinant. These positions are then subject to the same processing as for the experimen-
tal data. The resulting probability distributions of these post-processed co-ordinates show
a striking regular geometric structure and have been termed Pauli Crystals[21], [106]. How-
ever, these are not crystals in the traditional sense where there is a spontaneous breaking
of translation symmetry due to interactions like in condensed matter[93] or Coulomb crys-
tals[108]. Firstly, there are no interactions between the atoms whatsoever. And secondly,
there is no breaking of any symmetry - translational or otherwise. The act of measurement
collapses the wavefunction and results in particles being found stochastically depending on
the probability density. It is a crystal in the sense of the positions being highly correlated,
not in the sense of spontaneous symmetry breaking.

3.5.2 "Melting" the Pauli Crystal

The wavefunction given by the Slater determinant is for a particle in the ground state at
zero temperature. When the system is heated, the many-body wavefunction can no longer
be described by this coherent combination of single particle orbitals. As the temperature is
increased, the statistics of the system transform from a Fermi-Dirac to a classical Boltzmann
distribution. As the classical regime is reached, the correlations between particles are washed
away and the Pauli crystal "melts". In order to probe this behavior the system is heated by
modulating the trap power at a frequency of 2h̄ωr for a period of 50ms. Trap imperfections
such as anharmonicity, anisotropy and potential drifts are responsible for dephasing on time
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Figure 3.12: "Melting" the Pauli Crystal. The system is heated by modulating the
trap. The total energy of the system is then quantified by measuring the
total kinetic energy of the particles. (a) The effect of this heating on the
correlations is quantified by extracting the contrast of azimuthal cuts of the
Pauli Crystal images at a momentum of p = 2pHO. The azimuthal cuts are
fitted with a sine function to obtain the contrast. Shown here is the Pauli
Crystal with no heating. (b) As more energy is put into the system, the
contrast reduces monotonically. The observed contrast is compared with a
Monte-Carlo simulation where heating is introduced by sampling the particle
co-ordinates from a thermal N-body density matrix[106]. Only excitations with
energies up to 6h̄ωr are included to reduce computational cost. Dashed lines
for both experiment and simulation indicate linear fits to data. The linear fits
give a slope for the contrast of (dC/dE)exp = (−0.075 ± 0.0013)/h̄ωr for the
experimental results and (dC/dE)sim = (−0.048± 0.0003)/h̄ωr for simulation.
Figure adapted from [81].
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3. Spin-balanced few-fermion systems

scales much faster than the modulation time. Thus the modulation does not coherently
drive the system but instead creates a thermal state. In order to quantify the amount of
correlations, the azimuthal periodicity of the Pauli crystal is used as shown in Figure 3.12(a).
For N=6, an azimuthal cut of the Pauli crystal at a momentum of p = 2pHO is performed
and fit with a sine function. The contrast is then used as an metric to quantify correlations.
The heating caused by trap modulation is quantified by measuring the mean energy of the
system obtained from twice the kinetic energy. With no modulation an energy of 13.1h̄ωr is
measured which is approximately 5% below the expected value of 14h̄ωr for N=6 particles
at T=0. This deviation can be explained due to the anharmonicity of the trapping potential
and the uncertainty in the trap frequency measurement.

The contrast as a function of the energy of the system is shown in Figure 3.12. As the en-
ergy is increased, the contrast of the Pauli crystal decreases monotonically as would be quali-
tatively expected. A simulation of heating was performed by sampling states from a thermal
N-body density matrix[106] to obtain the Pauli crystal at different temperatures. The simu-
lation includes only states with excitation energies up to 6h̄ωr to reduce computational cost.
The rate at which the contrast reduces is obtained from a linear fit to both experimental
(dC/dE)exp = (−0.075±0.0013)/h̄ωr and simulation (dC/dE)sim = (−0.048±0.0003)/h̄ωr
results. The slower rate of contrast reduction for the simulation could be as a result of in-
clusion of only states up to excitation energies of 6h̄ωr.

3.6 Cooper Pairing

The previous sections considered how pairing, which arises as a result of Pauli blocking,
affects the excitation spectrum of a few-body system in a non-trivial way. Using microscopy
of single particles in momentum space, Pauli blocking was visualized in such a trapped 2D
harmonic oscillator potential. In this section results are presented on the microscopy of
an interacting system where previously only the excitation spectrum was measured. An
interacting system in the many-body limit is characterized by the formation of Cooper
pairs at infinitesimally small attractive interactions. The formation of these pairs cannot be
explained from an extrapolation of two-body physics alone. This pairing has been attributed
to a many-body effect where due to the presence of a frozen Fermi sea, only particles at
the Fermi surface can undergo scattering and form pairs with opposite momentum[17],
[18]. These pairs are then bosonic in nature and can undergo condensation leading to
superfluidity. In our finite system, the confinement potential introduces an energy scale
in the system given by h̄ωr which introduces a gap in the single-particle spectrum. The
interaction energy in the system quantified by EB has to now compete with this trap energy
scale. As was seen in Section 3.4, such a minimal instance of a Fermi sea is already sufficient
to possess qualitative features of a many-body system. In this section we utilize correlation
measurements obtained from microscopy of individual atoms to study the formation of pairs
and their characteristics.
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3.6.1 Measuring in situ momenta in an interacting system

In Section 3.5, the in situ momentum of individual particles was measured in a non-
interacting system. An interacting system would continue to interact during expansion and
prevent the extraction of in situ momenta. On the contrary if interactions are switched-off
prior to expansion, the atoms would undergo ballistic expansion and this would enable the
extraction of in situ momenta. However, this would only be possible if the interactions
are switched-off on a timescale orders of magnitude faster than the motional time scales in
the system. This would prevent thermalization during switch-off, and the sudden quench
would retain the in situ momenta. The motional timescales in the system are determined
by the Fermi energy and for a 6+6 system under the experimental conditions this is around
300µs. The interactions can be turned off by changing the scattering length. The possibility
of using the magnetic field to turn-off the interactions would be untenable since changing it
would take approximately 200µs and would not be fast enough. The other option is to flip
the spin to one of the other hyperfine states which would render the system (nearly)non-
interacting. For a system in state |1⟩ , |3⟩ the only possibility would be to flip the state
of one of the atoms to the low-field seeking states(|4⟩ , |5⟩ , |6⟩). In section 2.5, two-photon
transitions between the various hyperfine states were presented. It was found that tran-
sitions between |3⟩ − |4⟩ have a large two-photon transition matrix element along with a
good quality factor β. It was further pointed out in section 2.6.6 that in the magnetic field
regime where experiments are performed, there is no Feshbach resonance between states
|1⟩ − |4⟩ and that the scattering length is negligible.

We flip atoms in state |3⟩ to |4⟩ using a coherent π-pulse with a two-photon stimulated
Raman transition. The duration of the π-pulse is approximately 300ns and is 3 orders of
magnitude faster than the motional time-scales in the system. Thus the interaction switch-
off can be considered instantaneous and a ballistic expansion of the resulting non-interacting
particles can provide access to the in situ momenta of each particle. Using the two-state
single particle imaging presented in section 2.7, the in situ momenta of all particles in the
system can be obtained.

3.6.2 Correlation measurements

To obtain the emergence of interaction induced correlation, a second order density-density
correlation function C(2) of particle momenta can be defined as

C(2)
c (p⃗↑, p⃗↓) = ⟨n(p⃗↑)n(p⃗↓)⟩ − ⟨n(p⃗↑)⟩⟨n(p⃗↓)⟩ (3.18)

where n(p⃗↑(↓)) is the number of spin-↑ (↓) particles with momentum p⃗↑ (p⃗↓). The average
is taken over multiple realizations of the experiment. Since the momenta are 2D quantities,
the correlation function C

(2)
c is four-dimensional making it hard to visualize. To reduce

the dimension, we integrate over a number of variables and redefine some co-ordinates.
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This results in a two-dimensional correlator C(2)
p↓

(p↑,∆ϕ). The momenta of p⃗↓ is integrated
around a shell between momentum magnitude p1 and p2 and the angles are integrated to
pick out only a certain relative angle ∆ϕ between the spins. The integrated values of p↓
have an average value of p↓. The momentum limits p1 and p2 are separated by pHO.

(3.19)C
(2)
p↓

(p↑,∆ϕ) =

∫ p2

p1

∫ 2π

0

∫ 2π

0
C(2)(p↑, ϕ

′
↑, p

′
↓, ϕ

′
↓) δ(∆ϕ− (ϕ

′
↑ − ϕ

′
↓)) p

′
↓ dp

′
↓ dϕ

′
↓ dϕ

′
↑

The new reduced correlator now gives an indication of the momentum magnitude and
relative angle where particles of spin-↑ would be found if the spin-↓ particles are fixed
around a mean momentum of p↓. A plot of this correlator C(2)

p↓
(p↑,∆ϕ) as a function of

interaction strength is shown in figure 3.13. For a non-interacting system, irrespective of
the momentum of the spin-↓ particle there is no structure to the density-density correlator.
However, as interactions are increased the following qualitative features emerge. A spin-↑

Figure 3.13 (following page): Momentum space correlations reminiscent of Cooper
pairing. For a system of 6 + 6 fermions in a closed shell
configuration, the second order density-density correlator
C

(2)
p↓

(p↑,∆ϕ) is plotted in (a-j). (a-e) C(2)
p↓

(p↑,∆ϕ) with p↓ at
the Fermi surface. The interaction strength quantified by the
two-body binding energy EB is increased from 0 to 15.90h̄ωr.
The dotted circle indicates the Fermi energy EF =

√
6h̄ωr for

6+6 non-interacting particles. The mean position of the spin-
↓ particle is indicated by a cross and the error bars around
it indicate the range of p↓ values for integration of the 4D
correlator in equation 3.19. While there are no enhanced cor-
relations at EB = 0 at any particular value of (p↑,∆ϕ), as
EB increases it is more probable to find spin-↑ particles with
opposite momentum at the other end of the Fermi surface.
(f-j) For a spin-↓ particle having a momentum p↓ within the
Fermi surface. For weak interactions, the enhancement in the
correlations within the Fermi surface is weak. However at the
largest interaction strength accessible EB = 15.90h̄ωr, there is
an increased probability to find spin-↑ particles also inside the
Fermi sea. This occurs since EB > EF and EB is the largest
energy scale in the system making the system molecular in
character. (k-o) Opposite momentum pair density C(2)(p) for
these different interaction strengths. Comparison to molec-
ular and BCS expectations for the respective EB is shown.
Adapted from [75]
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Figure 3.14: Total number of opposite momentum pairs. The total number of op-
posite momentum pairs is obtained by integrating C(2)(p) over all pairs with
opposite momentum. The total number of opposite momentum pairs increases
monotonically with interaction energy as expected from an estimate of the BCS
limit. In the many-body limit, Cooper pairs start forming with infinitesimally
weak attraction. On the contrary, with 6 + 6 particles the few-body system
is finite and this introduces and additional single particle gap h̄ωr in the sys-
tem. This gap prevents formation of pairs for arbitrarily weak attraction and
requires a finite critical binding energy EcB to form pairs in the system. A plot
of expectations from the BCS limit shifted by EcB agrees reasonably well with
the experimental findings. Figure adapted from [75].

particle is more likely to be found at a relative angle of π if the spin-↓ particle is fixed around
the Fermi surface. However if the spin-↓ particle is located within the Fermi surface this is
no longer the case. This is reminiscent of Cooper-paring at the Fermi surface where due to
Pauli blocking only particles at the Fermi surface can pair-up leading to correlations. On
the contrary the situation is remarkably different when the interaction energy is the largest
energy scale in the system. For EB = 15.9h̄ωr, EB exceeds even the Fermi energ EF . In
this case the system possess correlations not only at the Fermi surface but at nearly all
momenta. Such a correlation is indicative of molecular character in the system.

In addition, the number of correlated particles at opposite momenta can be calculated by
integrating the 1D correlator C(2)(p,−p) and the results are shown in Figure 3.14. With
increasing interaction strength, more pairs with opposite momenta are found. A few key
points of departure compared to the many-body system can be observed. In a many-body
system, Cooper pairs form already for infinitesimally weak attraction. On the contrary in
a trapped few-body system the trap energy scale h̄ωr is comparable to the Fermi energy.
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3.7. Conclusions

This single particle energy gap is an additional energy scale that the interactions have to
compete with. As a result, the number of correlated pairs hardly increases until a certain
critical EB is reached. Beyond this point the number of pairs increasing significantly with
interactions. The number of pairs compares well with a BCS prediction which is shifted by
a certain critical binding energy EcB.

3.7 Conclusions

Experiments concerning spin-balanced few-fermion systems in quasi-2D harmonic oscillator
potentials were summarized. A summary of single particle and two-body physics in such
potentials was presented. Theoretical predictions concerning such mesoscopic systems were
presented and key experimental observables summarized. Evidence for the emergence of
shell structure was presented and collective excitations in systems with closed shell config-
urations were studied. While these mesoscopic systems are far from the many-body limit,
nonetheless the excitation spectrum showed features reminiscent of a phase transition in
the many-body limit. The effect of additional shells on asymptotically reaching the many-
body limit was studied and coherence properties of the collective excitations demonstrated.
The microscopic origin for the qualitative many-body behaviour is Pauli blocking and the
formation of Cooper pairs at the Fermi surface. Pauli blocking was visualized using higher
order correlations encapsulated in the anti-symmetrized many-body wavefunction of a sin-
gle spin-component. The effect of temperature on these correlations termed Pauli crystals
were studied. Using the ability to simultaneously image two spin states, correlation mea-
surements of an interacting system was presented. Using these second order density-density
correlators of in situ momenta, evidence for the formation of Cooper pairs at the Fermi
surface were presented supplementing the understanding for the emergence of collective
behaviour in these mesoscopic systems.

The size of these systems is smaller than the effective imaging resolution. While this does
not prevent measurement of in situ momenta demonstrated previously, it prohibits a direct
measurement of in situ positions. In the next Chapter, this is circumvented by magnifying
the system prior to imaging using matterwave techniques. The resulting matterwave micro-
scope is characterized and its performance is demonstrated using the same spin-balanced
system consisting of 6 + 6 fermions. In Chapter 5, using this additional observable spin-
imbalanced systems are explored. The few-body limit of a model system which also possess
a transition in the many-body limit is studied.
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4 Matterwave Microscopy

The previous chapter presented experiments on few-fermion systems in 2D harmonic os-
cillator potentials. These systems have only a few shells occupied and are far from the
many-body limit. However, already in such systems evidence for the emergence of collec-
tive modes were presented. These spectroscopic measurements were connected to phase
transitions in the many-body limit. Imaging techniques presented in Chapter 2 were then
used to perform single particle imaging in a non-interacting system to obtain in situ mo-
menta. Anti-symmetrization of the total wavefunction leads to fermionic anti-bunching
resulting in spatial correlations among the particles. Evidence for the presence of these
spatial correlations dubbed Pauli crystals were presented. Microscopy was then performed
in momentum space on a balanced interacting system of 6+6 fermions. Similar to spec-
troscopic measurements where many-body collective properties emerge already in these
few-body systems, correlation functions in momentum space were used to demonstrate the
formation of Cooper pairs which is a many-body phenomena. While single particle spin re-
solved imaging provided access to correlation functions, these measurements were restricted
to in situ momenta. Direct access to in situ position measurements were inaccessible since
the effective imaging resolution was larger than the size of the system. In this chapter, we
circumvent this limitation by using matterwave techniques to magnify the system before
imaging. This gives access to in situ positions of the particles and hence complementary
correlations in position space.

4.1 Introduction

Recent advances in the microscopy of single ultracold atoms have enabled measurements
beyond macroscopic observables in interacting quantum many-body systems. Microscopic
detection schemes are varied and based on the following schemes - optical detection through
fluorescence, ion detection subsequent to ionization and physical detection with microchan-
nel plates(MCP). Current fluorescence approaches are based on quantum gas microscopes
for lattice systems[3] and free space microscopy for continuous systems[77], [109]. Light scat-
tering during fluorescence imaging leads to diffusion and heating of the atoms which limits
resolution. Quantum gas microscopes circumvent this problem by pinning down the atoms
and performing Raman sideband cooling during the imaging sequence. Free space imaging
in contrast collects very few photons making use of EMCCD cameras in photon counting
mode thereby minimizing diffusion during imaging. Schemes based on ion detection are
scanning techniques where an electron beam is scanned across the atomic sample leading
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4. Matterwave Microscopy

to impact ionization. The resulting ions can be collected by ion optics and resolutions are
determined by the size of the ion beams used for scanning across the sample[110]. However
since this is a scanning technique, better resolution comes at the cost of duration needed for
imaging. Physical detection is suitable for atomic species with a metastable state since this
internal energy of the atoms can be converted for electronic detection using a MCP[111].
The resolution is determined by the size to which the atomic cloud is expanded and the
size of the individual pixels of the MCP. However, detection fidelities are lower with this
approach.

The insights which microscopic detection of many-body states has enabled have been far
reaching. Quantum gas microscopes have been instrumental in microscopic observation of
many-body phenomena such as the superfluid-Mott insulator transition[112], [113], emer-
gence of anti-ferromagnetic ordering[114], [115] and observation of magnetic polarons[116]
to name a few. Free space microscopy of in situ momenta with spin resolution has enabled
demonstration of entanglement of two atoms in a double well potential[117] and extend-
ing this technique to the microscopy of mesoscopic 2D fermionic systems has led to the
observation of fermionic anti-bunching in a trap dubbed Pauli crystals[81], [118] and the
observation of Cooper pairs at finite interaction strengths[75]. However, direct free space
microscopy of in situ positions has not been possible since the size of the system is smaller
than the effective imaging resolution. Imaging in such a regime has been performed for
biological samples by expanding the sample in a polymer network prior to imaging[22].
Such an approach of expanding the system prior to imaging has also been demonstrated
recently for quantum gases in a lattice[23] using techniques from matterwave optics[119]–
[121] achieving sub-lattice resolutions. Here the application of such a matterwave expansion
technique to continuous few-body systems is demonstrated enabling microscopy of in situ
particle positions with single atom resolution. This is done in a regime where the size of the
system is smaller than the effective imaging resolution thereby prohibiting direct imaging.
In what follows, the combination of expansion of the system using matterwave techniques
followed by fluorescence imaging is referred to as matterwave microscopy.

4.2 Concept of Matterwave Microscopy

Fluorescence detection of atoms always detects atomic positions. In time-of-flight(TOF)
imaging used frequently in atomic gases, the measured atomic positions after TOF expansion
is connected to the in situ momentum of the particles in the trap. Such a TOF expansion
can be viewed as a special case of a matterwave transformation in a harmonic trap. The
phase space dynamics of a particle evolving in a harmonic oscillator trap with frequency ω
is, [

x(t)
p(t)

]
=

[
cosωt 1

mω sinωt
−mω sinωt cosωt

] [
x(0)
p(0)

]
(4.1)
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Figure 4.1: Concept of the matterwave microscope (a) Each atom in the trap has a
position xi and momentum pi either of which we would like to measure. With a
direct fluorescence measurement, in situ atom positions cannot be obtained since
the effective imaging resolution is larger than the system size. The spread of the
fluorescence photons on the image plane for atoms depicted as red and green are
shown with dots of respective colors. (b) In situ momentum measurement. The
system initially finds itself in a tweezer trap in which it is prepared. A ballistic
expansion in a weak trap after switching-off interactions(thunderbolt symbol)
and the tweezer is performed. Evolution for a quarter trap period (T2/4) in
this trap performs a Fourier transform of the many-particle wave function. The
trap frequency of the matterwave trap is chosen to ensure that measurement of
final atom positions is no longer limited by by the effective imaging resolution.
However, such a measurement provides the in situ momentum distribution of
the atoms which is the Fourier transform of the position distribution. (c) In
situ position measurement with matterwave magnification. After switching-off
interactions, when the system is expanded for a quarter trap period in a tight
trap(T1/4) followed by a weak trap(T2/4), the final particle positions are magni-
fied versions of the initial in situ particle positions. The magnification factor is
given by the ratio of the tight trap frequency(ω1) to the weak trap frequency(ω2).
The analogy to optics is depicted below for each of the matterwave transforma-
tions using lenses.
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4. Matterwave Microscopy

The position x(t) and momentum p(t) at any point of time t is a linear combination of
the initial position x(0) and momentum p(0). The phase-space dynamics has a periodic-
ity T = 2π/ω and depends only on the trap frequency ω of the harmonic trap in which
the particle evolves. For a particle subjected to an evolution for a quarter time period
T/4 in the harmonic trap, the final position(momentum) depends only on the initial mo-
mentum(position). Thus by taking an image of the particle positions after switching-off
interactions followed by a T/4 evolution in a harmonic trap, one obtains a final position
which is proportional to the initial in situ momentum. The scaling factor is inversely pro-
portional to ω which implies that by performing an expansion in a weak trap the particles
can be well separated as shown in Figure 4.1(b).

Post interaction switch-off, by performing an evolution in two traps for a quarter time
period in each (T1/4 + T2/4 where T1(2) = 2π/ω1(2) is the time period of the first(second)
trap), the final position of the particle at the end of the evolution is given by Equation 4.2.
It indicates that the final position is proportional to the initial in situ position with the
constant of proportionality M determined by a ratio of the trap frequencies. Thus by
choosing ω1 > ω2, a magnification M can be obtained. This is shown in Figure 4.1(c)
where the final particle positions can be well resolved and are proportional to the initial
positions.

x(T2/4 + T1/4) = −
(
ω1

ω2

)
︸ ︷︷ ︸
M

× x(0) (4.2)

The linear transformation in Equation 4.1 is also valid when position and momentum
are treated as quantum operators[121]. These linear transformations also require that the
particles do not interact during this ballistic expansion in the harmonic trap. Thus to
perform matterwave magnification the interactions in the system have to be switched off
on a time scale orders of magnitude faster than the motional time scales.

4.3 System length scales and requirements

The design requirements of the matterwave magnifier are determined by the length and
energy scales of the system one would like to study. It is also limited by the effective
imaging resolution for single particles. Our system consists of a mesoscopic two-component
Fermi gas of 6Li atoms in a quasi-2D Harmonic oscillator potential. The trap frequencies
are ωr = 2π × (1101 ± 2)Hz along the radial and ωz = 2π × (7432 ± 3)Hz along the axial
directions of the trap. This gives an aspect ratio of η ≈ 1 : 7 ensuring that the system
is quasi-2D for small particle numbers. Only spin-balanced systems will be considered in
this Chapter and details concerning the preparation of such a system were presented in
Chapter 3. In Chapter 5, we will go beyond and study spin-imbalanced systems from the
extreme limit of a single impurity immersed in a Fermi sea to a scenario of mismatched
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Figure 4.2: Effective imaging resolution for single atoms. (a)For microscopy of con-
tinuous few-body systems, the sample is illuminated with counter propagating
resonant light fields. An atom is detected by collecting nearly 10% of the ap-
proximately 200 scattered photons. The light scattering causes diffusion of the
atoms and is the dominant factor which determines the imaging resolution.
(b)Effective imaging resolution. The effective imaging resolution is obtained by
finding the distribution of atom fluorescence around its central position. We
obtain an effective resolution of 2σ = 7.524µm.
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4. Matterwave Microscopy

Fermi surfaces. The spatial extent of such a mesoscopic system is on the order of the
harmonic oscillator length of 1.23µm and scales only as the square root of the number
of occupied shells. The effective imaging resolution on the other hand is influenced by a
combination of optical system parameters and the spatial extent over which atoms diffuse
during fluorescence imaging[77]. Taking into account all these factors gives an effective
imaging resolution of approximately 7.5µm and is shown in Figure 4.2. Since the effective
imaging resolution is larger than the system size, a direct measurement of in situ positions
of the atoms is precluded. Hence measurements presented in Chapter 3 have been done in
momentum space with a time-of-flight(TOF) expansion. However, using matterwave optics
the initial many-body wavefunction can be magnified before the atoms are imaged enabling
in situ microscopy in position space.

The magnification of the matterwave microscope is one of the factors which determines
the resolution. A larger magnification separates the initial in situ positions by a larger final
distance enabling a better resolution. Typically the magnification that is chosen depends
on the system and its smallest length scales that one would like to probe. Magnetic traps
are good candidates for matterwave transformations since they can be made smooth over
large distances and the potential produced can be very harmonic as was demonstrated[23].
However, in many cases they might not be very suitable due to the range of trap frequencies
they can implement. In such cases, Gaussian beam optical dipole traps with the right
combination of trap depth and waist can be rather harmonic for a chosen system energy
scale. Phase-space evolution in a harmonic trap is analogous to transformation of optical
beams using thin or graded-index lenses[121]. For a given trap frequency, the depth of the
trap determines which initial momenta can be collected and is analogous to the numerical
aperture. Larger trap depths correspond to larger numerical apertures leading to better
resolution. The extent of the trap is analogous to the aperture of the lens. A larger
trap would produce a more harmonic potential at the center compared to a smaller trap.
This deviation from harmonicity also leads to aberrations similar to spherical aberrations in
lenses. Thus typically Gaussian trap depth(waist) at least an order of magnitude larger than
energy(length) scales in the system should be used to implement traps for the matterwave
magnifier.

4.4 Implementation

The trap parameters for the two matterwave lenses can be chosen as follows. The field of
view of the imaging system determines the desired magnification M as well as the waist of
the second matterwave lens w2. The energy scales of the system set the order of the trap
depths U2. The combination of trap depth and waist then completely determine the trap
frequency ω2 as follows[122]

Ũi =
1

4
ω̃2
i w̃

2
i (4.3)
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Figure 4.3: Potentials of the first matterwave lens and the microtrap in which
the system is prepared. The first matterwave lens for T1/4 expansion is
implemented using an optical Gaussian trap. The microtrap in which the system
is prepared has a trap depth U0 ≈ 9.1h̄ωr and waist w0 ≈ 7.45µm. On the
contrary the first matterwave lens is larger and deeper with a U1 ≈ 310h̄ωr
for magnification 40 and w1 ≈ 49.5µm. This ensures that the potential of the
first matterwave lens is nearly harmonic over the spatial extent of the system
wavefunction. The completely harmonic trap for comparison is shown for each
of these traps as dashed lines of the respective colors.
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4. Matterwave Microscopy

where indices i = 1, 2 are for the first and second matterwave lens respectively and {Ũi, w̃i,

ω̃i} is {Ui, wi, ωi} in units of {h̄ω,
√

h̄
mω , ω} with ω being the trap frequency of the microtrap

in which the system is prepared. Defining energies, lengths and frequencies in harmonic
oscillator units makes comparison to system scales easier. Since the trap frequency of the
second matterwave lens is determined, the trap frequency ω1 of the first matterwave lens
is then fixed. Using the system size (energy) as a guide, the waist of the first matterwave
lens w1 (depth U1) can then be appropriately chosen and using the relation between U1,
w1 and ω1, the depth of the first matterwave lens U1 (waist w1) is determined. The trap
parameters for the matterwave lenses can also be determined in the opposite order starting
with the first lens followed by the second.

Due to the limited range of trap frequencies achievable in the experiment, optical dipole
traps were used to implement matterwave lenses. The optical microtrap used for preparing
the system has a trap frequency of ωr ≈ 2π × 1100Hz, a waist of w ≈ 7.45µm and trap
depth U0 ≈ 9h̄ωr. Close to its center a Gaussian beam can be approximated with a
harmonic and a quartic term. The quartic term gets larger as the distance from the center
of the trap increases and the harmonic approximation fails. The waist (trap depth) is
only approximately 3 times the length(energy) scales of the system and this is a very bad
approximation to a harmonic potential. To circumvent this issue an additional beam with
a waist w1 = (49.45± 0.7)µm and trap depths U1 ranging from 190 to 310h̄ωr was used to
implement the first matterwave lens. The optical power in the beam is regulated since the
power affects the trap frequency and hence the T1/4 time in the first matterwave lens. The
range of trap depths accessible results in trap frequencies ranging from 763 to 977Hz. A
sketch of the optical potentials of the microtrap and the first matterwave lens for comparison
is shown in Figure 4.3. Section 4.5 details how the trap parameters were obtained accurately
from experimental measurements.

For the second expansion, a combination of a single layer of an optical lattice and a
magnetic trap is used. The optical lattice provides tight axial(weak radial) confinement
with radial trap frequencies ω⊥ ≈ 2π× 20Hz with a waist of w ≈ 600µm and trap depth of
U2 ≈ 1000h̄ωr. The tight axial confinement ensures that the atoms are restricted to a single
plane for imaging. The magnetic trapping potential has a trap frequency of ω ≈ 2π× 10Hz
and provides a confining(deconfining) harmonic potential for high(low) field seeking spin
states. The resulting combined trap frequency is ω2 ≈ 2π × 23Hz (ω2 ≈ 2π × 17Hz) for
high(low) field seeking spin states.

The size of the system we have is smaller than the effective optical resolution. In such
a situation even when the second matterwave lens is not harmonic, the initial momentum
p(T1/4) before the second expansion can be obtained by a lookup table. Such a look up
table takes into account the characteristics of the potential such as ω2, w2 and U2 and more
details can be found in [75]. The first matterwave lens on the other hand needs to be as
harmonic as possible and in such a situation momentum p(T1/4) and in situ position x(0)
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are related as follows,

x(0) ≈ − 1

mω1
p(T1/4) (4.4)

Thus through a measurement of the final atom positions x(T1/4 + T2/4) one can obtain
p(T1/4) and eventually the initial in situ positions x(0) of the particles.

4.5 Trap parameters

In Section 4.4, trap parameters for the matterwave lenses were specified. Accurate deter-
mination of trap parameters is essential to estimate effects of matterwave aberrations. In
this Section, a summary of how these parameters are extracted from experimental measure-
ments is presented. There are three quantities which characterize a Gaussian trap - waist
wi, trap frequency ωi and trap depth Ui. The subscript i = 1, 2 is used to index the two
matterwave lenses. wi can be calculated from Gaussian beam focusing using a lens, but
for an imperfect Gaussian beam this has free parameters determined by the beam quality
given by M2. One way to experimentally determine wi is to measure the beam profile at
the position of the atoms. However since this is technically not practical, a parameter free
scheme using actual measurements of trap frequency ωi was sought to determine both wi
and Ui without any free parameters.

From a classical analysis of optical dipole traps(ODT)[122] one can determine Ui as in
Equation 4.5.

Ui =
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
2P

πw2
i

(4.5)

where c is the speed of light in vacuum, ω0 is the angular frequency of the resonant transition,
Γ is the resonant transition linewidth, ω is the angular frequency of the light used to create
the dipole trap and P is the total beam power. The trap frequency ωi in the ODT is also
related to the trap depth Ui and waist wi as in Equation 4.6 where m is the particle mass.

wi =

√
4Ui
mω2

i

(4.6)

Thus by measuring P and ωi, both wi and Ui can be estimated without any free parameters.
The trap frequency is obtained by exciting collective modes in this trap with a few non-
interacting atoms. This is achieved through a quench of the trapping potential by switching
from the tweezer in which the system is prepared to the matterwave lens trap. Depending
on the position of this trap with respect to the position of the tweezer containing the atoms
different modes such as dipole, breathing, quadrupole and higher order modes can be ex-
cited. A Principal Component Analysis(PCA) of the images is then used to decompose the
observed excitations of the few-body cloud of atoms in terms of these collective modes[123].
The trap frequency obtained from the dipole mode, which has the same frequency as the
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Figure 4.4: Trap frequency measurement to determine trap parameters and T1/4
duration. (a)Trap frequencies are measured by quenching the trap and exciting
collective modes - monopole, dipole, quadrupole, etc. Depicted here is the dipole
mode which oscillates at the trap frequency. (b)The various modes excited are
obtained from a Principle Component Analysis(PCA). The principle component
for the dipole mode is shown here. (c)Principle component amplitude oscillates
as a function of time and is used to extract the frequency of the dipole mode for
the first matterwave lens. Since the frequency of oscillation of the dipole mode
is equal to the trap frequency, ω1 = 2π × (977.2972 ± 9.8458)Hz is obtained.
The error bars indicate standard error of the mean.
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1μm

M x 1μm

Figure 4.5: Magnification of the Matterwave Microscope. The position of the tweezer
in the radial plane is displaced by 1µm (relative to the matterwave lens shown in
grey) followed by Matterwave expansion with T1/4+TOF. By aggregating many
images, the single atom density in position space is obtained. By comparing the
center of the density distribution of the shifted and unshifted initial trap, the
magnification is obtained. Depending on the trap frequency of the first trap
used for expansion (ω1 ≈ 2π× 763 to 977Hz) magnifications of (30 to 42) are
obtained

trap, is shown in Figure 4.4. Anisotropy from such a scheme is hard to extract since the
dipole mode amplitude depends on the displacement between the trap and the tweezer con-
taining the atoms and can potentially couple only along one direction. Hence to determine
anisotropy, a scheme based on imaging a single Feshbach molecule is used in Section 4.6.3.

4.6 Characterizing the matterwave lens

The characteristic energy scales and length scales in the system that one would like to probe
determines the design parameters for the matterwave lenses. Based on these requirements,
a combination of matterwave lenses was chosen. The key parameters of the matterwave
lenses were determined through experimental measurements. Here we utilize these matter-
wave lenses to implement a matterwave microscope and use experimental measurements to
characterize it. The magnification obtained with the combination of matterwave lenses is
first characterized. Since Gaussian traps are used to implement harmonic potentials, aber-
rations due to anharmonicity arise. The effect of anharmonicity on matterwave transfor-
mations is estimated and experimentally measured. The system which we probe is confined
to 2D and hence anisotropy of the matterwave microscope needs to be characterized. A
characterization is performed by imaging a single s-wave Feshbach molecule. Finally the
effective resolution that one can expect with the matterwave microscope is presented.
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4.6.1 Magnification

Ideally the magnification can be obtained by imaging a tight tweezer array when the initial
spacing is known. Atoms in a tight tweezer have large momentum and when subjected to
matterwave transformations would probe the anharmonic parts of the potential. This leads
to matterwave aberrations and hence is not appropriate to characterize the magnification.
To circumvent this eventuality, a few atoms in a tweezer are loaded with trap frequencies
in the regime where measurements are desired. Using a spatial light modulator(SLM), the
tweezer location is translated by a known value with respect to the matterwave lens and the
system is imaged following matterwave transformations for T1/4+TOF. The displacement
of the tweezer center in the final image compared to the unshifted tweezer after matterwave
transformations gives the magnification. This is shown in Figure 4.5. To obtain different
magnifications M, the trap frequency of the first matterwave lens ω1 is tuned while keeping
the trap frequency of second matterwave lens ω2 fixed. Magnifications of (30 to 42) for
ω1 ≈ 2π × (763 to 977)Hz are obtained.

4.6.2 Anharmonicity

As mentioned in the Section 4.4, the first matterwave lens has a large waist w1 = (49.45±
0.7)µm and trap depth U1 = 190 to 310h̄ωr. On the contrary the microtrap in which
the system is prepared is small and has a waist w = (7.485 ± 0.017)µm and trap depth
U = (9.1032 ± 0.007)h̄ωr. A comparison of these traps was shown in Figure 4.3. The
central region of the first matterwave lens, where the system wavefunction is confined, is
very harmonic. The largest deviation from harmonicity is on the order of 3% over the largest
extent of the wavefunction. Due to the small deviation from harmonicity, the momentum
that the particles have after the first expansion is p(T1/4) ≈ −mω1x(0).

From the trap parameters of the first matterwave lens, the error due to anharmonicity
is estimated as follows. Initial phase space co-ordinates (xi, pi) are randomly chosen and
evolved in two matterwave lenses for T1/4+TOF. After the time evolution, using the trap
parameters for the second matterwave lens a lookup of the momentum p(T1/4) is performed.
The final positions x(T1/4 + TOF) which is obtained by time evolution of (xi, pi) through
the matterwave lenses is used to look up momentum p(T1/4). Assuming nearly harmonic
evolution in the first matterwave lens, the initial in situ position x(0) = (−1/mω1)p(T1/4)
is obtained. This value is compared to the actual initial position xi and the difference
δx = x(0)− xi gives an estimate of the error due to anharmonicity of the first matterwave
lens. The results are shown in Figure 4.6(a,b). To contrast how the anharmonicity affects the
measured in situ position, the errors are compared for a small microtrap with w1 ≈ 7.45µm,
U1 ≈ 9h̄ωr and a comparatively large trap with w1 ≈ 49.45µm, U1 ≈ 190h̄ωr as the first
matterwave lens. For the large trap the largest deviations are small compared to the natural
length scale given by the harmonic oscillator length.

In addition to estimating the anharmonicity and the extent to which it affects measured
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in situ positions, its effect on matterwave transformations needs to be experimentally de-
termined. To do this a T1+TOF expansion is performed using the matterwave lenses. A
time evolution for T1 in the first matterwave lens should have no effect and be equivalent
to directly measuring the in situ momentum distribution of the sample[23], [124]. This
scheme is used to compare the in situ momentum distributions of a small sample of atoms
for both the small microtrap and the large trap as the first matterwave lens and is shown in
Figure 4.6(c,d). For a small trap, significant deviations in the momentum distribution are

Figure 4.6 (following page): Anharmonicity and controlling matterwave aberra-
tions. (a,b) Estimate of matterwave aberrations by simulation.
Various initial phase space co-ordinates of a particle are evolved
for T1/4+TOF. To compare the effect of anharmonicity, the
evolution is performed in a first matterwave lens with param-
eters corresponding to the small microtrap(U1 ≈ 9h̄ωr, w1 ≈
7.45µm) or a large trap(U1 ≈ 190h̄ωr, w1 ≈ 49.5µm). A ran-
dom diffusion distance sampled from a normal distribution is
added to the final evolved position. From these final positions,
a lookup of the momentum p(T1/4) is performed from which
the in situ position is obtained as x(0) = (−1/mω1)p(T1/4).
The deviation in atom lookup positions δx = x(0) − xi com-
pared to the actual initial position xi is plotted as a heatmap
for the (a)the small microtrap and the (b)large trap used as the
first matterwave lens. The red contour lines correspond to the
classical phase space limits for the first 8 harmonic oscillator
shells which corresponds approximately to the quasi-2D limit.
The small microtrap shows significantly large deviations from
actual positions. (c-d) Experimentally measuring the effect of
matterwave aberrations. To ensure that errors due to matter-
wave aberrations are not significant, a T1+TOF expansion is
performed and compared with a 0+TOF expansion. A first T1
expansion should not alter the measured in situ momentum and
should be equivalent to no expansion in the first matterwave
lens. When a small microtrap is used as the first matterwave
lens, a histogram of measured particle momenta show signifi-
cant deviations for T1+TOF compared to 0+TOF for already
3+3 atoms with strong interactions. However, using a large
Gaussian trap for the first matterwave lens mitigates the is-
sue and no significant deviations are seen for 6+6 atoms with
strong interactions.
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4.6. Characterizing the matterwave lens

present when an evolution in the first trap for T1 is performed compared to the large trap
where the distributions are nearly identical. Hence from the above considerations, the trap
can be considered as harmonic and the aberrations arising from the matterwave expansion
are minimal. The total uncertainty arising from all sources including anharmonicity which
determines the resolution of the matterwave microscope is discussed below in Section 4.6.4

4.6.3 Anisotropy

The main source of anisotropy for the matterwave microscope comes from the first matter-
wave lens. The trap used for the second matterwave lens has been characterized previously
and has anisotropy of approximately 0.57%[125]. For the T/4 evolution in the first matter-
wave lens, it is of paramount importance that the trap anisotropy be kept as low as possible
otherwise the T/4 duration would be different along different directions. Implementation
of the first matterwave lens with a crossed beam trap instead of a single focused beam trap
can potentially cause a large anisotropy since the trap frequencies along two directions then
depend on the powers in the individual beams and the angle between them. To avoid this
eventuality, we had to use a single focused beam trap.

To quantify the anisotropy, the evolution time t1 in the first matterwave lens is scanned
around T1/4 and a single Feshbach molecule at EB = 8.2h̄ωr is imaged. The second order
correlation function C(2)(prelx , prely ) =

∫
d2p⃗

′
↑⟨n↑(p⃗

′
↑)n↓(p⃗

′
↑ + p⃗rel)⟩ is extracted where p⃗

′
↑ is

momentum of the spin ↑ and p⃗rel = (prelx , prely ) is the difference in momentum between the
spin ↑ and ↓ particle at t1. The slight difference in the focusing time along two orthogonal
directions then gives the anisotropy of around 3.92% as shown in Figure 4.7.

4.6.4 Resolution

An important metric for the matterwave microscope is the smallest features it can resolve.
There are two factors that influence the resolution - atom diffusion during fluorescence imag-
ing and aberrations during matterwave transformations. During the fluorescence imaging
process the atoms continuously scatter photons and are not confined in any potential. This
leads to a diffusion of the atoms which results in an uncertainty in the final measured
position of around 2σ ≈ 7.54µm and was shown in Figure 4.2. This uncertainty in the
final measured position affects the lookup of the initial in situ positions. Anharmonicity
in the trapping potential used for the first matterwave lens can lead to particle trajectory
deviations from the harmonic case leading to matterwave aberrations. An estimate of these
uncertainties for the trap parameters we have was shown in Figure 4.6(b).

To estimate the combined uncertainty which gives the resolution, two non-interacting
particles in a trap at varying trap frequencies(initial sizes) are prepared and imaged with
the matterwave microscope. Fitting a Gaussian density distribution to the system, the
width σ of the in situ distribution is obtained. The size of the in situ cloud as a function
of the initial size of the system is shown in Figure 4.8. As the trap frequency increases,
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Figure 4.7: Analysis of anisotropy of the matterwave microscope. Anisotropy of the
matterwave microscope is quantified by imaging a single Feshbach molecule at a
binding energy EB of 8.2h̄ωr after two matterwave transformations with times
t1 and TOF respectively. The time in the first trap t1 is scanned around T1/4
and anisotropy is inferred from the slightly different focusing duration along two
orthogonal axes. After the final positions of the atoms are imaged, the initial
momentum at the end of the first expansion p(t1) is extracted. The plots (a-
f) show histograms of the relative momentum C(2)(prelx , prely )with the two axes
denoting the x and y relative momentum. This gives an anisotropy of ≈ 3.92%.
(g,h) The root mean square(rms) widths of the relative momentum in the x
and y directions as a function of the first matterwave lens time t1. A large
anisotropy would manifest itself as significantly different times at which the rms
widths reach a minimum as a function of t1. The error bars indicate standard
error of the mean.
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Figure 4.8: Resolution of the matterwave microscope at a magnification of 30.
The in situ density of a single atom in a trap is imaged after the magnification
procedure for different initial sizes of the system (achieved by tuning system
trap frequency) and then the width of the distribution σ is extracted by fitting
a Gaussian function. The obtained σ is compared to the theoretical expectation
value of

√
h̄

2mω (dot-dashed line) and a simulation of particle trajectories (dashed
line, blue) in the sequence of two traps followed by diffusion during imaging. The
error bars indicate 95% confidence intervals for the Gaussian fit. The resolution
limit of 0.44µm is the smallest width of the Gaussian distribution which is
obtained as the initial size of the system is reduced. The Strehl ratio, which
gives a measure of aberrations, is plotted in red.
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the atoms get more tightly confined and the measured size shrinks accordingly until the
resolution limit is reached which is found to be at 0.44µm for a magnification of 30. For
the 2D systems that are imaged, the largest energy scale should be less than approximately
7KHz(corresponding to a length scale of 0.477µm) set by the axial trapping frequency.
This length scale can also be reconciled from the fact that for the 2D scattering process,
the effective range is given by the harmonic oscillator length of the strong trapping axis
in contrast to the interaction range r0 in 3D[126]. To ensure the 2D-ness of the system,
the largest absolute binding energies studied are 2.87KHz where the pair size is expected
to be lB ≈ 0.765µm. For these binding energies the microtrap frequency is reduced to
ωr = 2π×350Hz so that EB = 8.2h̄ωr is dominant energy scale in the system. This ensures
that for the systems experimentally explored, the resolution of the matterwave microscope
is not a limiting factor. To further quantify the extent of aberrations on the final image, a
Gaussian density profile is fit to the image and its amplitude is compared to an unaberrated
image. This gives the Strehl ratio which is a good indicator of the imaging performance of
the system.

The resolution should also be compared to the effective resolution of our imaging sys-
tem. While the smallest features that can be measured by our objective at imaging wave-
lengths(671nm) is given by its Point Spread Function PSF≈ 0.86µm, the smallest features
that can be resolved with the imaging system taking into account the final magnification
of the image and camera pixel size is 2.165µm. Thus even with an upper bound of 0.44µm
from the resolution of the matterwave microscope, we still gain by at least a factor of 4 when
imaging a single atom which is tightly pinned and does not diffuse during imaging. Under
standard imaging conditions where the atom is not pinned the extent to which the atoms
diffuse during fluorescence imaging sets the imaging resolution scale(which includes PSF +
magnification of imaging system) of 2σ ≈ 7.54µm and compared to this the resolution of
the matterwave microscope is 17 times smaller.

4.7 Imaging pairs in a spin-balanced few-fermion system

A spin-balanced few-fermion system in the BEC-BCS crossover is now imaged with the
matterwave microscope. The system consists of a two component Fermi gas of 6Li atoms
with tunable interactions in a 2D Harmonic oscillator potential. The system was presented
in Chapter 3. The atoms are laser cooled and trapped in the ground state of a 2D harmonic
oscillator trap with trapping frequencies ωr = 2π × (1101 ± 2)Hz in the radial (ωr =
2π×350Hz only for EB = 8.2h̄ωr) and ωz = 2π×(7342±3)Hz in the axial directions leading
to an aspect ratio of η ≈ 1 : 7. For small atom numbers the system is in the axial ground
state and has a visible shell structure for the radial levels[80]. The interaction strength
in the system is characterized by the two-body binding energy EB[79] and the properties
of the system are determined by the magnitude of EB relative to the single particle gap
given by h̄ωr and the Fermi Energy EF . Tuning interactions and measuring correlations
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Figure 4.9: Snapshots of 6 spin ↑(blue) and 6 spin ↓(red) particles in position
and momentum space. The binding energy characterizing the attraction
between the particles is EB = 8.2h̄ωr. The binding energy is the largest energy
scale in the system since it is larger than the Fermi energy EF = 3h̄ωr (a) In
situ Positions. In position space images the system shows a tendency to form
pairs whose size is smaller than the intraspin inter-particle spacing. In this
case the axes denote position co-ordinates in terms of the harmonic oscillator
units[lHO]. (b) In situ momenta. On the contrary in momentum space, the pairs
have opposite momenta and are large since position and momentum are Fourier
pairs. The axes in this case are x and y co-ordinates of momentum in harmonic
oscillator units [pHO]. The dotted lines in both cases denote

√
2EF with EF

in units of harmonic oscillator energy h̄ωr. This also indicates that the system
size in position space gets smaller compared to the non-interacting system due
to attractive interactions.
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in the system in momentum space have revealed Cooper paring at the Fermi surface[75]
for moderate interactions and were summarized in Section 3.6. Using the matterwave
microscope such a system is imaged in the molecular limit EB > EF of the BEC-BCS
crossover and compared with snapshots of the in situ momenta of the system.

At binding energies which are the largest energy scales in the system, a tendency to form
pairs whose size is small compared to the inter-particle spacing of each spin component is
expected[127]. As the largest binding energies of 8.2h̄ωr are accessed, the trap frequency is
reduced to ωr = 2π× 350 Hz to ensure that the system remains in the quasi-2D regime. In
absolute terms the binding energy is 2.87 KHz which is less than the axial confinement of
7.340 KHz. This also ensures that matterwave aberrations from anharmonicity are minimal
even at large binding energies. A comparison of snapshots of two realizations of the system
at the same EB = 8.2h̄ωr one in position space and the other in momentum space is shown
in Figure 4.9. In momentum space the particles with opposite spin tend to have opposite
momenta while in position space they tend to form a short distance pair. At a binding
energy of 8.2h̄ωr, the 2D scattering length a2D is approximately 0.76µm which sets the
length scale of the pairs.

To quantify pairs at close distances the second-order density-density Correlator C(2)
c (⃗r↑, r⃗↓)

is calculated as

C(2)
c (⃗r↑, r⃗↓) = ⟨n↑(⃗r↑) n↓(⃗r↓)⟩ − ⟨n↑(⃗r↑)⟩⟨n↓(⃗r↓)⟩ (4.7)

where n↑(↓)(⃗r↑(↓)) is the density of spin ↑ (↓) particles at r⃗↑(↓) and the averaging ⟨. . .⟩
is over many realizations of the experiment. Like in Section 3.6, this correlator is four
dimensional and integrating out the co-ordinates of the spin-↑ particle and introducing
relative co-ordinates between the spin-↑, ↓ particles yields a 2D correlator which can be
plotted

C(2)
c (xrel, yrel) =

∫ ∫
dx dy ⟨n↑(x, y) n↓(x+xrel, y+yrel)⟩−⟨n↑(x, y)⟩⟨n↓(x+xrel, y+yrel)⟩

(4.8)
where (x, y) is the co-ordinate of the spin-↑ particle, (xrel, yrel) is the relative co-ordinate
of the spin-↓ particle with respect to the spin-↑ particle. This correlator is plotted in
Figure 4.10(a-e) for different interaction strengths from EB = 0 to 8.2h̄ωr. The relative
radial angles of this correlator can be integrated to obtain a C(2)

c (rrel) as follows

C(2)
c (rrel) =

1

2π

∫
dϕrel C

(2)
c (xrel, yrel) (4.9)

Here r⃗rel = (xrel, yrel), rrel is the relative distance and ϕrel the relative angle of the spin-↓
particle with respect to the spin-↑ particle. This is also plotted in Figure 4.10(f-j). The
Correlators show that with increasing interaction strength, the signal from short distance
pairs increases monotonically. The number of short range pairs as a function of EB is
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Figure 4.11: Number of particles with short-range correlations for an interacting
system comprising of 6+6 fermions. Increasing the two-body binding
energy EB between the spin ↑ and ↓ particles leads to more particles Np hav-
ing short-range correlations. The number of such particles are calculated by
summing the second order correlator within a relative distance cutoff radius
of 0.5lHO as shown in the inset for EB = 8.2h̄ωr. The error bars indicate
standard error of the mean.
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4.8. Conclusion

obtained by integrating C(2)
c as,

N =

∫ dr

0

∫
dxrel dyrel C

(2)
c (xrel, yrel) (4.10)

The integration is performed over a short distance window given by the cutoff radius dr =
0.5
√
h̄/mωr. The plot in Figure 4.11 summarizes the number of short distance pairs as a

function of EB.
Correlations at short length scales in a many-body system determine a quantity called

Tan Contact[24]. This microscopic quantity has implications beyond what happens at short
length scales and determines thermodynamic properties of the many-body system. The
Contact determines the distribution of atoms at large momentum[128], the total energy[129]
and the pressure in a Fermi gas[130]. The Contact has so far only been determined by the
measurement of macroscopic observables[131]–[133]. Access to these correlations could in
the future be used to obtain this universal quantity from microscopic measurements.

4.8 Conclusion

In Chapter 3, experiments concerning the microscopy of interacting mesoscopic systems in
momentum space were presented. Such a measurement of single particle observables pro-
vided access to microscopic correlations which were used to infer the formation of Cooper
pairs. Direct measurement of in situ positions of the particles were intractable since the
spatial extent of the system was smaller than the effective imaging resolution. In this chap-
ter, ways to circumvent this problem and obtain access to in situ positions of the particles
were presented. The ability of harmonic traps to perform phase-space matterwave trans-
formations was pointed out. Evolution of particles in a combination of harmonic traps
was used to magnify the in situ position-space wavefunction of a many-body system. The
requirements for such a matterwave magnification scheme were pointed out and technical
challenges in the implementation were presented. An implementation using Gaussian optical
dipole traps to approximate harmonic confinement needed for matterwave transformations
was presented. The parameters of these matterwave lenses were precisely determined using
experimental measurements. The characteristics of the resulting matterwave microscope -
namely magnification, anharmonicity, anisotropy and resolution - were then presented . By
a suitable choice of the trap frequency for the first matterwave lens magnifications of 30-42
were achieved. Since Gaussian traps were used to implement harmonic confinements, an
estimate of the effect of anharmonicity was presented. Using experimental measurements
it was made sure that the anharmonicity was sufficiently low. The net anisotropy of the
matterwave microscope was experimentally quantified and ensured to be low. The effec-
tive resolution of the matterwave microscope was experimentally obtained and found to be
smaller than the interesting length scales of the interacting system. The matterwave micro-
scope was then used to study an interacting mesoscopic system consisting of 6+6 fermions

109
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presented in the previous chapter. Snapshots of the system for EB > EF indicated the for-
mation of closed distance pairs while the same system shows pairs with zero center-of-mass
momentum in momentum space measurements. The second order density-density correlator
was used to quantify the interaction dependence of correlations and the formation of short
distance pairs as the interaction strength was increased. The number of closed distance
pairs as a function of interaction strength was also quantified.

In the future each of the characteristics of the matterwave microscope can be improved.
The magnification can be increased by increasing the trap frequency of the first matterwave
lens. Since the trap frequency depends on the square root of power, it can be increased
by increasing the optical power. Another option would be to implement the first matter-
wave lens with a wavelength closer to the D1 or D2 lines. Since the trap depth is inversely
proportional to the detuning, this increases the trap frequency at the same optical power.
Since small detunings from the D1/D2 lines lead to photon scattering, the amount of scat-
tering during matterwave time might have to be considered. The anharmonicity can be
further improved by making traps deeper and larger resulting in even smaller anharmonic
corrections. Using adaptive optical components, closer approximations to harmonic traps
can be obtained. Such methods could be additionally used to correct for optical aberrations
which could improve the performance of the matterwave microscope. To reduce the drift
of the matterwave lenses with respect to the mesoscopic system, active stabilization of the
beam positions can be performed. The uncertainty in atom position due to diffusion during
imaging can be reduced by using a pinning lattice or a heavier atomic species resulting in
improved resolution.

Having demonstrated the performance of a matterwave microscope on a mesoscopic spin-
balanced system, spin-imbalanced systems are explored in the next chapter. The extreme
case of spin-imbalance featuring a single impurity immersed in a Fermi sea is particularly
interesting to study in situ position correlations. The ground state of such a system is
predicted to feature a Polaron-Molaron transition[48] in the many-body limit and the few-
body counterpart of such a system will be explored.
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5 Impurity Physics

In Chapter 4, a technique to access in situ particle positions was introduced. This technique
was demonstrated on a spin-balanced system consisting of up to 6+6 fermions. In this
chapter systems with unequal number of spin components are studied and microscopy of in
situ quantities is used to access correlations in the system. A brief motivation for exploring
such systems is first presented. Most of the interest surrounding such spin-imbalanced
systems concerns their ground state[54]. A preparation scheme to reach the motional ground
state of such a system is then presented followed by correlation measurements. Previously
correlation functions up to second order were obtained to extract information about pairing
in the system. Correlations in systems of extreme imbalance namely a single impurity
immersed in a minimal few-body Fermi sea are first studied. Going beyond second order
correlations, third order correlations are used to throw light on the few-body precursor of
the many-body polaron-molecule transition in a 2D Fermi gas. The number of fermions are
varied and its effect on the impurity studied. Repulsive mixtures of an impurity, which is
an excited metastable state, are then studied. Using these correlation functions the region
of stability before decay to lower lying ground state is explored. The interesting regime
with finite impurity concentration is then explored where unlike Cooper pairs, pairs with
finite center-of-mass(COM) momentum are speculated.

5.1 Introduction

In Chapter 3, experiments on a two-component few-fermion system in 2D were presented.
Such a mesoscopic system features characteristics traditionally associated with a many-body
system such as a phase transition and the formation of Cooper pairs. Direct evidence for
Pauli blocking, which is responsible for the formation of Cooper pairs at finite interaction
strength, was presented through the microscopy of a spin-polarized few-fermion system. Due
to Pauli blocking, particles in such a system self-organize in the form of a Pauli crystal[81].
Introducing two spin components with finite interactions then revealed the formation of
Cooper pairs in momentum space at the Fermi surface. Subsequently the extension of the
single atom spin-resolved imaging to in situ positions was presented in Chapter 4 which
made possible the complementary measurement of correlations in position space. At large
binding energies EB snapshots and correlations of such a system revealed the formation of
short-distance pairs whose size was small compared the inter-particle spacing of each spin
component. With such complementary microscopy in momentum and position space, the
BEC-BCS crossover in a few-body system was demonstrated. While so far only systems with
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5. Impurity Physics

equal number of spin components were studied, with the advent of ultracold gases there has
been a growing interest in the physics of spin-imbalanced fermionic systems. Most notable
directions of research have focused on the fate of pairing in systems with mismatched Fermi
surfaces and the paradigmatic model of a single impurity immersed in a Fermi sea.

While for a spin-balanced system at weak attraction Cooper pairs at zero COM momen-
tum are energetically favored at low temperatures, the fate of pairing in spin-imbalanced
systems with mismatched Fermi surfaces is strongly debated with various possibilities[54].
The problem was first addressed independently by Clogston[32] and Chandrasekar[31] who
predicted that Type-II superconductors subjected to a magnetic field would undergo tran-
sition from a BCS to a Normal phase. The applied magnetic field couples the spin with
the motion of the particles thereby creating a chemical potential mismatch(δµ) between
spin components which competes with the superfluid gap ∆. It was then predicted that
when δµ > ∆/

√
2 superfluidity would be destroyed. However, Fulde-Ferrell[34] and Larkin-

Ovchinnikov[35] (FFLO) predicted a phase where pairs would form at finite COM mo-
mentum due to the mismatch in Fermi surfaces. This was expected to lead to a spatial
modulation of the order parameter. While the FFLO phase is expected to occupy a smaller
region of the phase diagram in 3D[53], it is postulated to occupy a discernible portion of the
phase diagram in lower dimensions[134], [135] including the few-body limit[136], [137]. In
addition, there have also been proposals where a superfluid region is formed in the interior
of the majority Fermi surface around the minority Fermi surface leading to a breach in
the majority spin component[26], [33]. This phase is named after Sarma and also called
breached-pair or interior gap superfluidity descriptively.

The other instance of a spin-imbalanced system is one of extreme imbalance. It consists
of a single impurity interacting with a fermionic environment and is a paradigmatic model
in many-body physics. The notion of a polaron quasi-particle was introduced by Landau
and Pekar to describe the motion of an electron in a crystal lattice. The electron motion in
such a situation could be described as the motion of the bare electron with the surrounding
cloud of lattice polarization. The lattice polarization causes an attractive binding resulting
in deviation from the free particle dispersion relation of the electron. This free electron
dressed by the surrounding lattice polarization was described as a new quasi-particle, the
polaron, having an effective mass different from the electron[40]. Fröhlich introduced a
variational wavefunction of an electron interacting with a bath of lattice phonons to describe
such a system[41]. The advent of ultracold atomic Fermi gases with tunable interactions has
created a renewed interest in spin-imbalanced systems[25]–[30]. Some of these experiments
have also been responsible for renewing interest in the problem of a single impurity immersed
in a Fermi sea - The Fermi polaron problem. It was found that at unitarity the ground
state of an imbalanced two-component harmonically trapped Fermi gas phase separates into
three regions - a central superfluid, an intermediate Normal partially polarized fluid and
a fully polarized outer core[36]. Since the wide Normal region could not be explained by
BCS theory, Chevy introduced a variational wavefunction to describe the Normal partially
polarized fluid as a single impurity interacting with a Fermi sea - the Fermi polaron[39].
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Such a variational wavefunction could then predict the radius of the regions of these different
phases. Subsequently it was predicted that as the strength of the interactions is increased
the polaron undergoes a transition into a molecular state[42]. Subsequent experiments in 3D
with radio frequency(RF) ejection spectroscopy have found evidence for the Fermi polaron
and also a transition to a molecular state at larger coupling strengths[43]. The quasi-particle
mass of the Fermi polaron has also been measured at unitarity using collective excitations
and found to be in agreement with theoretical predictions[44]. These Fermi polarons have
also been observed in the repulsive regime where they are not the ground state[69], [138].
The effect of finite temperature and impurity concentration on the nature of the polaron-
molecule transition has also been studied experimentally using Raman spectroscopy[139].

The fate of the ground state of a 2D attractive Fermi gas has also been subject to its
fair share of debate. Theoretical studies have used a variational wavefunction approach
to describe a polaron and a molecule and have found no evidence for a transition[47].
However in a realistic system, one cannot ignore the effect of interactions of the molecule
with the Fermi Sea and particle-hole dressing of the molecule, the "molaron" should also
be considered. Including such a particle-hole dressing of the molecule has indeed provided
theoretical evidence for a polaron-molaron transition in a 2D[48] system as well as trapped
quasi-2D systems[49]. These studies also correctly recover the energy of an infinitely heavy
impurity, unlike [47]. Further evidence in favor of a polaron-molaron transition in 2D is
provided by Diagrammatic Monte Carlo studies [50], [51]. Experiment in a quasi-2D regime
using RF photoemission spectroscopy has provided evidence for the attractive and repulsive
polaron and found evidence in favor of a polaron-molecule transition[46].

While all these experiments involving an impurity interacting with a Fermi sea have been
been performed in the many-body limit accessing spectral functions, microscopic studies in
regimes with only few particles accessing correlation functions have only been performed in
lattice systems[52], [140], [141]. In this Chapter, the simplest instance of a single impurity
attractively interacting with a few-body Fermi sea in the ground state is studied. We
perform microscopy on this system with single particle and spin resolution enabling us to
access correlation functions beyond second-order which we use to interpret a transition into
a molecular state. Since the preparation of such a few-body 1+N system is non-trivial,
the preparation is presented first and then results of microscopic observables are presented
concluding with how this relates to the many-body limit. In addition we also present a
study of a single repulsive impurity interacting with the Fermi sea which is related to the
repulsive polaron in the many-body limit. A system with finite impurity concentration
should be smoothly related to a system with mismatched Fermi surfaces[134], [142] and we
try to explore this connection by presenting momentum correlations of the COM motion of
pairs to conclude this chapter.
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Figure 5.1: An illustration of particle-hole excitations of the Fermi sea due
to interaction with an impurity. The impurity can be a particle or a
molecule(composed of a fermion and an impurity). (a)Before the interaction
between a fermion (black) and an impurity (red) they have momenta q < kF
and Q respectively. The total momentum of this impurity and fermion before
the collision is Q + q. (b)After the collision, the fermion is excited out of the
Fermi sea and has a momentum k > kF leaving behind a hole (white). The
impurity gets a recoil and now has a momentum Q + q − k so that the total
momentum is conserved. This particle-hole excitation of the Fermi sea is a strik-
ing feature of a dressed impurity interacting with the bath. The net effect of
such an interaction is broadening of the momentum distribution of the fermions
compared to the non-interacting case. If the impurity interacts attractively (re-
pulsively) with the fermions, the position distribution of the fermions becomes
narrower (broader) due to the attraction (repulsion) provided by the impurity.
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5.2 Variational wavefunctions

As was pointed out in Section 5.1, a variational wavefunction can capture the essential
features of a single impurity immersed in a Fermi sea. Here we consider the case where the
impurity and fermion are different internal states of the same particle. The impurity and
fermion are denoted respectively by labels ↓ and ↑. The Hamiltonian for such a system with
no confinement in second quantization can be written as[39],

Ĥ =
∑
k,σ

ϵk,σc
†
k,σck,σ︸ ︷︷ ︸

Kinetic term

+
g

V

∑
k,k′,q

c†k,↑c
†
k′,↓ck′+q,↓ck−q,↑︸ ︷︷ ︸

Interaction term

(5.1)

The kinetic term includes the single particle energy ϵk,σ = h̄2k2

2m of spin state σ and creation
(annihilation) c†k,σ (ck,σ) operator which creates (annihilates) a particle with momentum
p = h̄k. The interaction term accounts for the scattering of a spin-↑ and ↓ particle and
conserves momentum before and after the interaction k+k′. g is the strength of interaction
which is related to the scattering length and V the volume of the system. Chevy constructed
a variational wavefunction to minimize the energy computed from this Hamiltonian as[143]

|P3(Q)⟩ = α(Q) c†Q,↓ |FS⟩︸ ︷︷ ︸
Free impurity
+ Fermi sea

+
∑
q

β
(Q)
k,q c

†
Q+q−k,↓ c

†
k,↑ cq,↑ |FS⟩︸ ︷︷ ︸

Impurity recoil
+ Particle-hole excitations of Fermi sea

(5.2)

The impurity is then considered as a free particle dressed with particle-hole excitations of
the Fermi sea and is called a polaron. |P3(Q)⟩ is the wavefunction of the polaron with
momentum Q and the subscript 3 indicates that the particle-hole excitation term has 3
operators. The impurity with momentum Q scatters off a fermion in the Fermi sea with
momentum q < kF (cq,↑) and changes its momentum to k > kF (c†k,↑). This leads to the
impurity acquiring a momentum q−k in order to conserve momentum during the scattering
event (c†Q+q−k,↓). The terms α(Q) and β(Q)

k,q are variational parameters which are obtained by
minimizing the energy. |FS⟩ represents the state of the Fermi sea at T = 0. The situation
is illustrated schematically in Figure 5.1.

As interactions in the system are increased a competing molecular phase emerges[43]
where the impurity binds to a single fermion forming a molecule. The molecule then can
also scatter off the Fermi sea and form a dressed particle, the molaron. In most cold
atom experiments, the Feshbach dimer has a finite scattering length which is a constant
times the atom-atom scattering length aad = 1.2a[144]. Hence is it not realistic[48] to
consider molecules which do not interact with the Fermi sea and such models[47] do not
realistically reproduce experimental observations in the many-body limit[43], [46]. A similar
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wavefunction for the molaron can be written

|M4(Q)⟩ =
∑
k

γ
(Q)
k c†Q−k,↓ c

†
k,↑ |FS⟩︸ ︷︷ ︸

Molecule
+ Fermi Sea

+
∑
k,k′,q

δ
(Q)
k,k′,q c

†
Q−k+q−k′,↓ c

†
k,↑ c

†
k′,↑ cq,↑ |FS⟩︸ ︷︷ ︸

Molecule recoil
+ Particle-hole excitation of Fermi sea

(5.3)

|M4(Q)⟩ is the molaron wavefunction with the dressed molecule having a momentum Q and
the subscript 4 indicates the number of creation/annihilation operators in the particle hole
excitation term. In this case a molecule with momentum Q scatters off a fermion in the
Fermi sea with momentum q < kF (cq,↑) and excites the fermion beyond the Fermi sea with
momentum k′ > kF (c†k′,↑). Conservation of momentum requires that the molecule then

acquires an additional momentum q − k′ (c†Q−k+q−k′,↓ c
†
k,↑). The terms γ(Q)

k and δ
(Q)
k,k′,q are

variational parameters which are obtained by minimizing the energy.
Having introduced the different variational wavefunctions that could describe the system

in different interaction regimes, qualitative features of these regimes can be summarized.
The net effect of particle-hole excitations whether in the polaron or molaron phase is to
promote fermions within the Fermi sea to a momentum larger than kF . This results in a
broadening of the momentum distribution of the fermions. Due to momentum conservation
it has a similar effect on the impurity as well. In the attractive ground state branch of
interest, where this polaron-molaron transition is expected, the net effect of the attraction
is to cause the position distribution of the fermions to shrink. The impurity acts as a glue
and brings the fermions closer which reflects on the position distributions. On the contrary
repulsive interactions lead to broadening of the position distribution of the fermions.

The distribution of position or momenta are densities and in our experiments we have
access to correlation functions of second order and beyond. In terms of these observables,
the net effect on the second-order density-density correlator C(2) would be to cause an accu-
mulation of fermions around the impurity in position space. However, such an enhancement
is not indicative if this is a result of all fermions moving closer to the impurity or if one of
them binds to the impurity forming a molecule like object. A third-order correlator C(3)

would be a sensitive observable to detect this qualitative change[145] since a situation with
two fermions being equally close to an impurity would be distinguishable from a situation
with one fermion being closer and the other being farther away. The former has all the qual-
itative features of a polaronic state where the impurity is dressed by the fermions and the
latter is the molaron state where the impurity forms a dimer with a fermion and is dressed
by the surrounding Fermi sea. As was seen in Chapter 3, interacting few-fermion systems
with just a few filled shells possess many of the qualitative features of a many-body system.
An example of a precursor of such a phase transition was presented both with spectroscopic
as well as microscopic measurements. In this chapter, we explore if this can also be extended
to a situation with unequal number of spin states and if microscopic measurements could
indicate a precursor of a polaron-molaron transition in a few-body system.
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5.3 Preparing a spin-imbalanced few-fermion system in the
ground state

Deterministic preparation of balanced few-fermion systems has been performed in quasi-
1D[19] and quasi-2D trapped systems[80]. Spin-imbalanced few-body systems on the repul-
sive branch(excited state) have been prepared in quasi-1D and RF spectroscopy has been
performed on them[20]. However, there have been no experiments so far where a few-body
system with spin-imbalance has been prepared in the ground state on the attractive branch
where a polaron-molaron transition is expected.

5.3.1 Preparing a spin-imbalanced system using differential magnetic
moments

Deterministic preparation of imbalanced few-body systems is similar to balanced systems.
Bound states with a higher energy are made to tunnel out of the potential by applying
a magnetic field gradient while at the same time lowering the optical tweezer depth. If
the states involved in preparation have the same magnetic moment and the same optical
polarizability, they are subject to the same potential and equal number of atoms in the two
spin states are prepared. Thus to prepare spin-imbalanced systems states possessing either
a differential magnetic moment or optical polarizability are needed. Using far detuned
optical dipole traps, it is not possible to obtain a differential polarizability. A differential
polarizability can be obtained by using blue-detuned near-resonant beam for one spin state
and red-detuned for the other. However using near-resonant beams leads to unwanted
photon scattering and heating. Thus we use states which have a differential magnetic
moment to perform spilling of the atoms. We prepare such states in a Fermi gas consisting of
6Li atoms in the ground electronic state 2S1/2 which has six hyperfine states labelled |1⟩−|6⟩
in the increasing order of energy. The energies of these states and their representation in
terms of uncoupled basis states was summarized in Section 2.2. The energy of each of
these states varies as a function of the magnetic field as shown in Fig 5.2(a). The resulting
variation of the magnetic moment as a function of magnetic field is shown in Fig 5.2(b).
At large magnetic fields where there exists a Feshbach resonance between the spin states
|1⟩ . . . |3⟩ the differential magnetic moment vanishes. However by performing the spilling at
low magnetic fields (28-50G) different combinations of the two spin states can be obtained
as shown in Fig 5.2(c).

5.3.2 RF transitions

Radio frequency magnetic dipole transitions between states |1⟩ . . . |6⟩ were introduced in
Section 2.3. The coupling between two spin states including their motional wavefunction
can be written as,

h̄Ω = −⟨i| #»µ · B⃗ |f⟩ ⟨ϕi|ϕj⟩ (5.4)
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Figure 5.2: Preparation of a spin-imbalanced system. (a)The energy (E in MHz) of
hyperfine states |1⟩-|6⟩ of the ground electronic state 2S1/2 of 6Li as a function
of the magnetic field B (in Gauss). When working with states |1⟩ − |3⟩, at low
fields there is a differential magnetic moment between states |1⟩ , |2⟩(shown in
inset) and states |2⟩ , |3⟩. (b)The magnetic moment of hyperfine states |1⟩ . . . |6⟩
as a function of magnetic field. At large magnetic fields a differential magnetic
moment between states |1⟩ . . . |3⟩ (|4⟩ . . . |6⟩) cannot be obtained. However, at
low magnetic fields for moderate gradients(along radial directions) of 1.4 G/cm
a differential shift of approximately 140 Hz over the extent of the wavefunction,
which is comparable to the motional energy scales during spilling, can be ob-
tained. (c)For a few-particle system at low entropy in a tweezer trap, an applied
magnetic field gradient would result in different energy shifts(−µ ·B) and hence
different potentials for states |1⟩ , |2⟩. This can be used to prepare an unequal
number of pseudo spin ↑ and ↓ particles in the ground state.
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Figure 5.3: Motional sidebands in a spin-polarized system. (a)For a single particle in
state |2⟩, a radio frequency(RF) field can drive transitions from state |2⟩ to |3⟩.
Even with sufficient RF resolution, the final motional state is the same as the
initial state and cannot be changed since ⟨ϕi|ϕj⟩ = δij . (b)This is also confirmed
by the RF spectrum which shows a single frequency at which the transition can
be driven. f − f0 is the RF drive frequency with respect to the bare transition
frequency f0. The error bars in (b) depict standard error of the mean.
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where Ω is the Rabi rate and |i⟩(|j⟩) is the initial(final) electronic state, |ϕi⟩(|ϕj⟩) is the
initial(final) motional state, #»µ is the magnetic moment of the electron and B is the amplitude
of magnetic field due to RF radiation at the position of the atoms. The inner product of
the initial and final states is like a Franck-Condon factor for these motional states. A
situation where the magnetic field amplitude does not vary over the extent of the motional
wavepacket is considered here. The RF photon frequency is approximately 80 MHz while
motional energy scales ωr/(2π) are 3 orders of magnitude lower, ∼ KHz. Driving the
transition at a Rabi rate Ω << ωr and with sufficient RF resolution can in principle result
in transitions between (discrete) motional states. However for a single atom in a trap this
is not possible since the motional overlap between the initial and final states is zero unless
the initial and final motional states are the same as shown in Fig. 5.3(a). This is also
reflected in the RF spectrum shown in Fig. 5.3(b) which shows a dip at the bare transition
frequency. Transitions between these motional states can be engineered if a finite motional
overlap can be introduced between the initial and final states. For a single particle in a
trap this has been performed using large magnetic field gradients which cause spin-motion
coupling in ion-traps[146], [147]. On the contrary, in the following subsection a scheme to
perform motional sideband transfers in an interaction system is presented.

5.3.3 RF motional sideband transfer

Having prepared a spin-imbalanced system, the magnetic field needs to be adiabatically
tuned to reach the required interaction strength. Doing so would prepare the system in
an excited state known as the repulsive branch. This can understood by looking at the
Energies of two particles interacting with contact interactions in a quasi-2D Harmonic trap
in their ground COM motional state[84](See Fig. 5.4a above for two atoms in states |1⟩ , |3⟩
and below in states |1⟩ , |2⟩). This system was also introduced in Section 3.2. The two
particle energies are now modified due to interactions and feature an attractive ground
state and multiple excited repulsive branches. After having performed spilling at low fields,
adiabatically changing the magnetic field moves the system on this upper energy state
initializing the system in the excited state.

As was seen in the previous subsection, an RF transition can change the motional state
provided sufficient motional overlap exists between the initial and final states. Here we
describe how this spin-motion coupling resulting in finite overlap between the initial and
final motional states can by achieved using interactions in the system. To illustrate this
we consider two-particles resonantly interacting in a harmonic trap where one spin state
is subjected to an RF transition as shown in Figure 5.4. The location of the Feshbach
resonance for states |1⟩ , |2⟩ and states |1⟩ , |3⟩ are separated by ∼ 143G [74] and this results
in different motional states at the same magnetic field depending on the mixture as shown
in Fig. 5.4(a). In such a situation two atoms in states |1⟩ , |2⟩ on the repulsive branch have
a finite motional overlap with the repulsive and ground-attractive branches of the |1⟩,|3⟩
mixture. Evidence of this overlap can be found by performing RF spectroscopy under similar

120



5.3. Preparing a spin-imbalanced few-fermion system in the ground state

500 600 700 800 900 1000
-4

-2

0

2

4

500 600 700 800 900 1000
-4

-2

0

2

4

1

2

3

1

2

3

i j

E 
[ħ

ω
]

B [G]

B [G]

E 
[ħ

ω
]1

2

3

a b

-6 -4 -2 0 2 4 6
f - f0 [KHz]

1

1.2

1.4

1.6

1.8

2

At
om

 N
um

be
r

Data
Fit ~2ħω ~2ħω ~2ħω

Figure 5.4: Motional sideband transfer in an interacting system. (a)For a two-
particle system(|1⟩ − |2⟩) interacting through contact interactions, the energy
spectrum(pictured for the 2D case, for |1⟩−|2⟩ below and |1⟩−|3⟩ above) depends
on the magnetic field which determines the strength of the interactions through
a Feshbach resonance. The spectrum features an attractive branch(lowest one
with a bound state), a repulsive branch(the next one) and other excited states.
In this scenario driving an RF transition from |2⟩ to |3⟩ results in final state
interactions which are different from the initial state. With sufficient resolution
of the RF drive and with a Rabi rate which is slow compared to motional
time scales, it is possible to drive transitions between motional states since〈
ϕi

∣∣∣ϕ′
j

〉
̸= 0. (b)A scan of the RF drive frequency shows peaks corresponding to

the transitions marked I, II, III. The spacing between the peaks is approximately
2h̄ω since the initial and final motional states should have the same parity. Error
bars indicate standard error of the mean
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conditions as above namely Ω << ωr and is shown in Fig. 5.4(b). Multiple RF transitions
labelled I, II and III appear which are separated by ∼ 2h̄ω as expected[84]. The transition
labelled I occurs at a lower frequency compared to the bare transition frequency f0 and
corresponds to a transition to the attractive ground state while the other transitions II and
III correspond to transitions to the repulsive manifold. Similar shifts in RF frequencies have
been explored in the many-body limit not only for balanced[14], [148] but also imbalanced
systems to identify the polaron[43], [69], [149].

5.3.4 Landau-Zener transfer to dark motional ground state

Once the motional sidebands are resolvable with RF transitions, a spin-imbalanced system
prepared in the repulsive manifold can be deterministically transferred to the attractive
ground state as follows (See Figure 5.5). We start with a mixture of atoms in states |1⟩ , |2⟩
and with the RF power set such that Ω << ωr we sweep the drive frequency from f0−∆ to
f0+∆ at a rate ∆̇ slow compared to Ω. This results in a Landau-Zener adiabatic passage to
a |1⟩ , |3⟩ mixture. Here f0 is the bare RF transition frequency for the |2⟩−|3⟩ transition. It
is of paramount importance to start from low frequencies and drive towards high frequencies
(∆ > 0) in order to transfer the system to the ground state with this Landau-Zener passage.
Starting with low frequencies ensures that the system first encounters the attractive ground
state of the |1⟩ , |3⟩ mixture and is transferred there. Continued RF frequency sweeps don’t
affect this state as all transitions back to the repulsive manifolds of |1⟩ , |2⟩ mixture happen
at lower frequencies. Transitions back to the attractive manifold of the |1⟩ , |2⟩ mixture
are also avoided, even though they happen at higher frequencies, by a judicious choice of
the magnetic field at which we drive the transition and the Landau-Zener detuning ∆.
Hence, atoms once transferred to the attractive ground state of |1⟩ , |3⟩ mixture are dark to
subsequent RF photons and an attractively interacting spin-imbalanced few-fermion system
in the ground state is prepared. With this scheme we can prepare different configurations
of 1+3, 1+6 and 3+6 atoms. These correspond to closed shell configurations in 2D for
each of the spin states. We ensure that the system thus prepared is indeed in the ground
state by spilling once more and obtain fidelities of ∼ 86% for a 1+3 system. We also verify
that frequency sweeps in the opposite direction (high to low) do not result in deterministic
preparation of the system in the ground state.

5.4 Experimental measurements

Using this ability to prepare spin-imbalanced systems in the motional ground state, we
explore the problem of a single impurity immersed in a minimal Fermi sea. We prepare
a system consisting of 1+N particles with N up to 7 and thereby also explore closed shell
configurations of 1+3 and 1+6 atoms. A similar system in the few-body limit consisting of
1+2 particles has been explored numerically at various mass ratios and interaction strengths
demonstrating a trimer-dimer transition in a regime far away from the polaron-molaron
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Figure 5.5: Preparation of a ground state system by a Landau-Zener sweep of RF
frequency. The frequency is swept from f0 − ∆ to f0 + ∆. (a) The system
is initially prepared in the repulsive excited state (ES) and the Landau-Zener
sweep transfers atoms in a |1⟩−|2⟩ mixture to a |1⟩−|3⟩ mixture in the motional
ground state (GS). (b) Once the system finds itself in the GS of the |1⟩ − |3⟩
mixture it is dark to subsequent RF radiation from the frequency sweep since
transitions to ES of the |1⟩ − |2⟩ mixture happen at lower frequencies while
transfer to GS happens at much larger frequency compared to f0 + ∆. Thus
a spin-imbalanced system can be deterministically prepared in the motional
ground state
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transition[145]. Here we perform microscopy of such a system in real and momentum space
and demonstrate how a combination of density measurements and higher-order correlations
can by used to infer a transition from a state where the impurity mainly scatters off the
majority atoms to a state where it seems to form a molaron-like state. The interaction
strength between the impurity and bath particles is quantified in terms of the two-body
binding energy (EB) as was also done in Chapter 3.

5.4.1 Particle-hole excitations

The effect of an impurity on the Fermi sea has been described by variational wavefunctions
both in the cases when the impurity is not bound to a fermion and when it is bound as
a molecule[48], [49] and was summarized in Section 5.2. In either case the impurity and
molecule scatter off the Fermi sea and can cause particle-hole excitations of the fermions.
This leads to a broadening of momenta of the bath particles while at the same time making
the cloud of fermions smaller in position space due to the attractive binding mediated by the
impurity. These fermion density measurements in momentum and position space are shown
in Fig 5.6 for a 1+3 system. The momenta of individual fermions are obtained using a time-
of-flight measurement technique[75]. Many repetitions of the experiment are performed to
construct the momentum densities and these are shown in Fig 5.6a. In momentum space
with increasing interactions, the effect of the impurity is to cause more fermions to appear
at larger momentum compared to the non-interacting state. This could be attributed to
scattering between the free particle or molecule with the fermions which causes excitations of
fermions beyond the Fermi surface in the many-body limit as was illustrated in Figure 5.1.
Using techniques from matterwave optics[23] we image the system in position space and
more details were presented in Chapter 4. Contrary to momentum space, in real space the
size of the fermion bath shrinks with increasing interaction signalling binding of the bath to
the impurity due to attractive interactions. However these complementary measurements in
real and momentum space are densities and do not give access to correlations in the system
which is necessary to infer the nature of the state as interactions are increased.

5.4.2 Second-order correlator

A second order correlation function was introduced in Section 3.6 to demonstrate the for-
mation of Cooper pairs in momentum space. A similar second order correlation function
was also defined in position space in Chapter 4. Here we use such a correlation function to
demonstrate correlations around an impurity in position space. The connected part of the
correlation function C(2)

c can be defined as,

C(2)
c (⃗ri, r⃗i + r⃗) = ⟨ni(⃗ri)n1(⃗ri + r⃗)⟩ − ⟨ni(⃗ri)⟩⟨n1(⃗ri + r⃗)⟩ (5.5)

where r⃗i (⃗ri + r⃗) is the location of the impurity(fermion) and ni(⃗ri) (n1(⃗ri + r⃗)) is the
density of the impurity(fermion) at r⃗i (⃗ri+ r⃗). C(2)

c (⃗ri, r⃗i+ r⃗) thus represents the connected
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Figure 5.6: Effect of an impurity on majority atoms in momentum and real space
for a system consisting of 1+3 atoms.(a) Density in momentum space
for different interaction strengths. The density of majority atoms at different
momenta are obtained by reconstructing densities from many realizations of an
experimental run for 1+3 atoms. The error bars indicate standard error of the
mean. In momentum space as interactions are increased more atoms can be
found at higher momentum reminiscent of particle-hole excitations of the Fermi
sea in a variational wavefunction. (b) Density in real space is obtained in a
similar way and indicates that with increasing interactions, the majority cloud
becomes smaller. This indicates some form of binding which is mediated by the
single impurity. The vertical dotted line in both cases denotes

√
2EF .
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5. Impurity Physics

part of the second order correlation function where the disconnected part of the correlation
function ⟨ni⟩⟨n1⟩ has been subtracted from the total correlator ⟨nin1⟩. C

(2)
c (⃗ri, r⃗i + r⃗) is

four dimensional and hard to visualize. Integrating out the location of the impurity gives
access to a distribution of fermion positions relative to the impurity while at the same time
reducing its dimension to 2.

C(2)
c (⃗r) = C(2)

c (x, y) =

∫
d2r⃗i C

(2)
c (⃗ri, r⃗i + r⃗) (5.6)

The interaction strength quantified by EB is tuned from EB = 0 to 15.9h̄ωr and the result
is plotted in Figure 5.7(a-f) for 1+6 particles and Figure 5.8(a-e) for 1+3 particles. Further
integrating out the relative angle ϕ gives access to a 1D correlation function of distribution
of relative positions of the fermions with respect to the impurity.

C(2)
c (r) =

1

2π

∫
dϕ C(2)(⃗r)

These are plotted in Figure 5.7(g-l) for a 1+6 system and in Figure 5.8(f-j) for a 1+3
system. Increasing the interaction strength results in a larger probability to find fermions
around the impurity and molecule like correlations appear at large binding energies where
EB >> EF . Such a scenario could be because all the fermions are brought closer to the
impurity or form a molecular like state where an impurity preferentially binds to a fermion.
Hence, a higher order correlator C(3)(r1, r2) involving 3 particles(impurity + 2 fermions) is
necessary to highlight the asymmetry in how the impurity binds to one of these 2 fermions.

5.4.3 Third-order correlator

While a second-order correlator was useful to infer how the positions of two particles (impu-
rity + fermion) were related to each other, a third-order correlator is necessary to explore

Figure 5.7 (following page): Second-order correlator of an impurity and a fermion
for a 1+6 system. The interaction energy EB is tuned from
0 to 15.9 in (a-f) and (g-l). (a-f) Two dimensional correlator
C

(2)
c (⃗r) where r⃗ = (x, y) is the relative location of the fermion

with respect to the impurity. (x, y) are in units of harmonic
oscillator length lHO and the interaction energy is in units of the
harmonic oscillator energy scale h̄ωr. (g-l) correlator C(2)

c (r)

obtained by integrating the relative angle dϕ of C(2)
c (⃗r). The

vertical error bars indicate standard error of the mean. The sec-
ond order correlator indicates that the fermions tend to cluster
around the impurity with increasing EB
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5. Impurity Physics

correlations among three particles (impurity + 2 fermions). With this we would obtain
access to how the location of an impurity relates to the location of two other fermions and
such higher order correlations have been used to demonstrate a transition from a trimer
to a dimer state in a few-body system[145] and to detect magnetic polarons in lattice sys-
tems[52]. Such a metric would be sensitive to a situation where the impurity binds to one
of the fermions indicative of a molecular state. A third order correlation function can be
defined as

C(3)(⃗ri; r⃗i + r⃗1, r⃗i + r⃗2) = ⟨ni(⃗ri) n1(⃗ri + r⃗1) n2(⃗ri + r⃗2)⟩ (5.7)

Here r⃗i (⃗ri+ r⃗1, r⃗i+ r⃗2) are the co-ordinates of the impurity (fermions) and ni(⃗ri) (n1(⃗ri+
r⃗1),n2(⃗ri+ r⃗2)) is the impurity (fermion) density at r⃗i (⃗ri+ r⃗1, r⃗i+ r⃗2). The C(3) correlator
thus gives us the density of finding the impurity at r⃗i and the fermions at a relative distance
of r⃗1 and r⃗2 with respect to the impurity. Integrating out the position of the impurity and
the relative angles ϕ1, ϕ2 gives us a correlator C(3)(r1, r2) that indicates the probability to
find two fermions at relative distances r1 and r2 from the impurity.

C(3)(r1, r2) =
1

(2π)2

∫
d2r⃗i dϕ1 dϕ2 C

(3)(⃗ri, r⃗i + r⃗1, r⃗i + r⃗2) (5.8)

These probabilities C(3)(r1, r2) as a function of interaction strength are shown in Fig 5.9(a-
f) for 1+6 and in Figure 5.10(a-e) for 1+3 particles. The interaction energy is tuned from
EB = 0 to 15.9h̄ωr reaching a regime where EB >> EF is the largest energy scale in the
system. At low binding energies, there is no tendency for one of the distances to be smaller
compared to the other while at larger EB the system tends to favor a configuration where
the distance of the impurity to one of the fermions is smaller than the other. This kind of

Figure 5.8 (following page): Second order correlation of an impurity and a fermion
for a 1+3 system. The interaction energy EB is tuned from
0 to 15.9 in (a-e) and (f-j). (a-e) 2D correlator C(2)

c (⃗r) where
r⃗ = (x, y) is the relative location of the fermion with respect to
the impurity. (x, y) are in units of harmonic oscillator length
lHO and the interaction energy is in units of the harmonic os-
cillator energy scale h̄ωr. (f-j) correlator C(2)

c (r) obtained by
integrating the relative angle dϕ of C(2)

c (⃗r). The vertical error
bars indicate the standard error of the mean. The second or-
der correlator indicates that the fermions tend to cluster around
the impurity with increasing EB. This however does not distin-
guish if one or more of the fermions are close to the impurity
and hence a higher-order correlator is needed to resolve this
question.
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5. Impurity Physics

asymmetry was previously also used to demonstrate the spatial characteristics of a dimer
state in a few-body system[145].

To further demonstrate the qualitative features of this probability distribution we define
an asymmetry parameter χ(r1, r2) and plot its occurrence for different interaction strengths.

χ(r1, r2) = 1− atan(r1/r2)

π/4
(5.9)

χ(r1, r2) quantifies the asymmetry involved when comparing the distances of two fermions to
the impurity. A value of ±1 indicates that the impurity is closer to one of the fermions than
the other while a value of 0 indicates nearly equal distances to the impurity. A histogram
of the occurrence of various values χ can be obtained by taking into account the probability
distribution for each combination of (r1, r2) given by C(3)(r1, r2) as follows

n(χ0) =

∫
dr1 dr2 C

(3)(r1, r2) δ(χ0 − χ(r1, r2)). (5.10)

The histogram n(χ0) for different interactions strengths is shown in Fig 5.9(g) for 1+6
particles and in Figure 5.10(f) for 1+3 particles. A histogram of values of χ shows an
enhanced occurrence at higher asymmetry values for systems in which EB is the dominant
energy scale compared to the Fermi Energy EF . The contrast in the histogram distribution
n(χ0) then gives a qualitative insight into how flat or skewed the distribution of asymmetry
parameters are. These are shown in Figure 5.9(h) for a 1+6 system and Figure 5.10(g)

Figure 5.9 (following page): Third-order correlator C(3)(r1, r2) for 1+6 particles. (a-
f)Plots of correlation function C(3)(r1, r2) for different interac-
tion strengths from EB = 0 to 15.9 in units of h̄ωr. r1 and
r2 are the distances of the fermions to the impurity atom in
units of harmonic oscillator length lHO. The distance labels r1
and r2 are just to distinguish the two distances and the plot is
completely symmetrical along the diagonal since the fermions
are indistinguishable. (g)Histogram of asymmetry parameter
χ = 1 − atan(r1/r2)

π/4 for different interaction strengths EB. An
asymmetry of ±1 indicates a state consisting of an impurity
and two fermions where the impurity is closer to one of the
fermions. (h)Contrast in histogram of χ as a function of EB.
An increasing contrast with EB is indicative of formation of a
state where the binding of the impurity is asymmetrical with
respect to the fermions. The error bars in (g,h) indicate stan-
dard error of the mean.
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Figure 5.10: Third-order correlator C(3)(r1, r2) for 1+3 particles. (a-e)Plots of corre-
lation function C(3)(r1, r2) for different interaction strengths from EB = 0 to
15.9 in units of h̄ωr. r1 and r2 are the distances of the fermions to the impurity
atom in units of harmonic oscillator length lHO. The distance labels r1 and r2
are just to distinguish the two distances and the plot is completely symmetri-
cal along the diagonal since the fermions are indistinguishable. (f)Histogram
of asymmetry parameter χ = 1 − atan(r1/r2)

π/4 for different interaction strengths
EB. (g)Contrast in histogram of χ as a function of EB. The error bars in (f,g)
indicate standard error of the mean.
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5.5. Repulsive interactions

for a 1+3 system as a function of interaction strength. At weak binding energies where
particle-hole excitations are still visible, the contrast is smaller since nearly all asymmetry
parameters are equally probable. There are as many situations where the impurity finds
itself closer to one of the fermions as it finds itself equally close to both fermions. However
for EB >> EF , it is much more probable to find a situation where the impurity is closer to
one of the fermions than it is to find the impurity equally close to both.

5.5 Repulsive interactions

So far only the ground state of an impurity immersed in a Fermi sea was considered. This
state is characterized by attractive interactions and features an attractive quasi-particle
called the attractive polaron at weak coupling in the many-body limit. However, there
also exists a metastable excited state with repulsive interactions. This repulsive state has
attracted a lot of interest due to its relevance to itinerant Ferromagnetism[150]. This state
features a quasi-particle, the repulsive polaron, at weak coupling in the many-body limit.
The stability of this state has been found to vary depending on the regime of scattering
interactions. The dependence of the scattering phase shift on the scattering length and
scattering energy was presented in Section 2.6. In the non-universal regime, the range of
interaction is comparable to the inter-particle spacing r0 ∼ 1/k. The effective range reff
which is proportional to r0 is then also comparable 1/k and the second term in the effective
range expansion Equation 2.35 has to be considered. In contrast, the universal regime is
characterized by r0 << 1/k due to which the scattering phase shift depends only on the
scattering length. In the non-universal regime, this repulsive polaron state is found to
be metastable and has been measured by RF injection spectroscopy[69]. In the universal
regime, which is the case for 6Li, the repulsive polaron state has been found to be unstable
and decays into the molecule-hole continuum[138].

To explore this repulsive excited state, we prepare such a system of 1+3 atoms at low field
and then adiabatically tune the magnetic field to obtain the required interaction strength

Figure 5.11 (following page): Second-order correlator in a 1+3 mixture with re-
pulsive interactions. (a-f)Two dimensional C(2)

c (⃗r) with
r⃗ = (x, y) in units of harmonic oscillator length lHO. (g-l)
One dimensional correlator C(2)

c (r). The interaction energy
quantified by the two-body repulsive energy ER is tuned from
0.2 to 1.6 in units of h̄ωr in (a-f) and (g-l). Despite increasing
repulsive interactions fermion(s) appear closer to the impurity
reflecting decay into a molecular state. The decay reduces be-
yond the resonance even with increasing repulsive interactions
as the overlap with the molecular state decreases.
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Figure 5.12: Third-order correlator for a 1+3 system with repulsive interactions.
(a-f) correlator C(3)(r1, r2) as the repulsive energy ER is increased from 0.2
to 1.6 in units of h̄ωr. The colormap is same as plots for the 1+3 attractive
case to enable comparison. (g) Distribution of the asymmetry parameter χ
shows some indication of increasing molecular correlations close to ER ≈ 1.
(h) This molecular correlation is characterized by the contrast in distribution
of χ. While the contrast is smaller initially for small repulsive interactions, as
the repulsive interactions are increased, the molecular correlations peak around
ER ≈ 1 before reducing with further increase in repulsive interactions. The
error bars in (g,h) indicate standard error of the mean.
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without performing additional motional ground state transfers. This moves the system
adiabatically on the excited branch before it becomes unstable towards decay into the
molecule-hole continuum. We find that the decay into lower molecule like state is enhanced
close to the Feshbach resonance position where the two-body repulsive energy ER ≈ 1h̄ωr.
This can be seen in the increase in second order correlations signalling more fermion(s)
around the impurity as shown in Figure 5.11 where both C

(2)
c (⃗r) and C

(2)
c (r) reflect this.

The third-order correlator C(3)(r1, r2) shown in Figure 5.12 also confirms this since the
asymmetry increases closer to ER ≈ 1. With these microscopic measurements of repulsive
few-body mixtures we recover observations in the many-body limit that the excited state
is metastable and decays to the molecule-hole continuum. This decay is found to be larger
close to the 3D resonance position due to the larger coupling of the repulsive excited state
with the molecule-hole continuum.

5.6 Tuning fermion number

So far only closed shell configurations of the Fermi sea were considered resulting in system
sizes consisting of either 1+3 or 1+6 atoms. To study the effect of fermion number, we
first prepare open shells with varying fermion number as illustrated in Figure 5.13. Starting
with an 2D isotropic harmonic trap at very low entropies, the trap is adiabatically deformed
into an anisotropic trap. The adiabatic transformation smoothly connects the two motional
states and does not create excitations. The degeneracies of the anisotropic trap are different
from the isotropic trap. Spilling is done in this anisotropic trap at a magnetic field where a
differential magnetic moment is present between the spin states as before. Spilling is done
to closed shell configurations in this anisotropic potential and then the trap is adiabatically
transformed back into an isotropic trap. This transformation does not create holes in the
system but connects to a state which is open shell in the isotropic trap. Thus, effectively
open shell configurations in the isotropic trap are created. By varying the aspect ratio of
the anisotropic trap, different numbers of fermions N can be created. After preparing the
1+N system, RF frequency sweeps are used to transfer the system to the motional ground
state as before.

To study the effect of fermion number on the correlations, we extract correlations in a
1+N system in a regime where EB = 8.2h̄ωr is the dominant energy scale compared to the
Fermi energy. Here the correlator C(3)(r1, r2) and distribution of asymmetry n(χ) shows
correlations consistent with appearance of a molecule like state where the impurity tends
to preferentially bind to one fermion and is shown in Figure 5.14(a-f) and (g) respectively.
The contrast in this asymmetry distribution is shown in Figure 5.14(h) and indicates a drop
in molecular pairing asymmetry with increasing fermion number. Increasing the particle
number increases the density and hence the local Fermi energy. The formation of the
molecular state is influenced by by competition of the interaction energy EB with the Fermi
energy EF . Since EB is kept constant while EF increases with fermion number, EB/EF
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Figure 5.13: Preparation of a single impurity with varying number of fermions
in open shell configurations. (a)We start with a few-fermion system in a
2D isotropic harmonic trap. (b)The trap is adiabatically deformed to create
an anisotropic trap with aspect ratio ωx : ωy. The motional states in the
isotropic and anisotropic trap are adiabatically connected and hence no holes
are created in the process. (c)Spilling is performed at a magnetic field where
a differntial magnetic moment exists between the spin states. This creates a
1+N system. (d)The anisotropic trap is adiabatically transformed back into
an isotropic trap. An RF motional ground state transfer as explained earlier is
performed to create a 1+N system in the motional ground state. By changing
the aspect ratio of the anisotropic trap, different number of fermions can be
obtained.
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decreases marginally which is reflected in the asymmetry and its contrast. Hence at the
same EB increasing the particle number makes it harder to form such a molecular state.

5.7 Finite impurity concentrations - Mismatched Fermi
surfaces

So far only the case of a single impurity with varying number of fermions was considered. At
finite impurity concentrations, the Fermi surfaces of the impurity and the majority atoms
are mismatched. The case when the Fermi surfaces are completely matched results in the
formation of Cooper pairs with zero COM momentum and was summarized in Chapter3.
As was mentioned in Section 5.1, the fate of Cooper pairs in the case of mismatched Fermi
surfaces has been a subject of ongoing debate with various phases predicted[54].

We utilize the possibility to prepare closed shells of 3+6 atoms in the ground state to
study momentum space correlations. In a balanced system at weak coupling Cooper pairs
with zero COM momentum are observed[75]. The effect of mismatched Fermi surfaces leads
to a competition between the Fermi energy mismatch and the interaction energy. The Fermi
energy mismatch has a pair breaking effect on the zero COM pairs while the interaction
energy counteracts this tendency. Fulde-Ferrell and Larkin-Ovchinnikov(FFLO) proposed
a phase where a state with Cooper pairs at finite COM momentum is the ground state
in the many-body limit[34], [35]. This phase in the many-body limit is associated with a
spatially modulated order parameter and has only recently been observed in a condensed
matter system[151].

Exploring the possibility to measure COM momentum distribution of pairs, we perform

Figure 5.14 (following page): Third-order correlator C(3)(r1, r2) for a single impurity
and variable number of fermions (a-f) at an interaction
strength EB = 8.2 in units of h̄ωr in a regime where EB >>
EF and the system has molecular characteristics. All the plots
are normalized to the number of 3-particle combinations that
one can obtain for evaluation of the C(3) for a 1+N system.
The insets are without this normalization and indicate that
a molecular state appears more asymmetrical just because of
larger number of 3-particle combinations with increasing N.
(g)The asymmetry distribution χ and (h)its contrast. The
error bars indicate standard error of the mean. The drop
in contrast with increasing fermion number is a reflection of
the fact that increasing fermion number increases density and
makes it harder to find a molecular state since the local Fermi
Energy against which EB competes increases.
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Figure 5.15: Second-order correlator C
(2)
c (pCOM) in a 3+6 system compared to a

balanced 6+6 system in momentum space. pCOM is the magnitude of
COM momentum of a pair (a) C(2)

c (pCOM) in a regime where EB > EF . The
square/blue(circle/red) data points correspond to 6+6(3+6) system and the
error bars represent standard error of the mean. The solid lines are guides to
the eye. Compared to a balanced system, the 3+6 system shows appearance
of peak at finite COM momentum. (b) C(2)

c (pCOM) for EB < EF . Energies EB
are in units of h̄ωr and pCOM is in units of harmonic oscillator momentum pHO.
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5.8. Conclusions

microscopy of a system with 3+6 atoms and extract a noise correlation function involving
all possible pairs and defined as follows.

C(2)
c (p⃗1, p⃗COM − p⃗1) = ⟨n1(p⃗1) n2(p⃗COM − p⃗1)⟩ − ⟨n1(p⃗1)⟩⟨n2(p⃗COM − p⃗1)⟩ (5.11)

This is a reformulation of the correlation function used in Equation 3.18 where the mo-
mentum of spin-↓ is expressed in terms of momentum of the spin-↑ particle and the COM
momentum of the pair. Here n1(p⃗1) (n2(p⃗COM − p⃗1)) is the density of spin-↑ (↓) at p⃗1

(p⃗COM − p⃗1), p⃗COM is the COM momentum of the spin-↑, ↓ pair. This can be further sim-
plified by integrating out the momentum of the spin-↑ particle and the azimuthal angle of
p⃗COM to obtain C(2)

c (pCOM) which depends only on the magnitude of the relative momentum
pCOM.

C(2)
c (pCOM) =

1

2πN1N2
×
∫
d2p⃗1 dϕCOM [⟨n1(p⃗1) n2(p⃗COM−p⃗1)⟩−⟨n1(p⃗1)⟩⟨n2(p⃗COM−p⃗1)⟩]

(5.12)

N1(N2) is the total number of spin-↑(↓) fermions and normalization with the number of
possible pairsN1N2 enables comparison to a spin-balanced system. This correlator is plotted
in Figure 5.15 for two regimes EB < EF and EB > EF for both the imbalanced 3+6 and
balanced 6+6 case. In the balanced case, irrespective of EB the distribution of pCOM is
peaked around zero momentum. In the imbalanced case, the mismatch in Fermi surfaces
makes pairing harder which reflects in the lower amplitude peak of the correlation function.
In the regime where EB < EF there isn’t a significant difference in the COM momentum at
which the correlator peaks. However, when EB > EF the correlation function has a peak
at a finite momentum. This observation is interesting in the light of proposals where the
FFLO phase appears as molarons with finite COM momentum[142], [143].

5.8 Conclusions

Spin-imbalanced systems are host to an array of interesting phenomena and predictions.
The case of mismatched Fermi surfaces is connected to two limits namely a spin-balanced
system and the extreme case of imbalance featuring a single impurity immersed in a Fermi
sea. The interesting regime in all of these systems concerns the ground state of an at-
tractively interacting system. The case of a spin-balanced few-body system was explored
in the previous chapters and in this chapter experiments in the single impurity limit were
presented.

The preparation of few-fermion systems with spin-imbalance in the motional ground state
presents challenges. RF transitions between hyperfine states with motional resolution were
presented. While for spin-polarized samples coupling between motional sidebands is non-
existent, interaction mediated coupling between them was used to prepare spin-imbalanced
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systems in the motional ground state. Using adiabatic RF sweeps a spin-imbalanced system
in the motional ground state was deterministically prepared.

The extreme case of spin-imbalance featuring a single impurity in a Fermi sea consisting
of a few closed shells was first presented. Complementary microscopic measurements of in
situ fermion bath densities in position and momentum space demonstrated the presence of
particle-hole excitations across interaction strengths. Access to second-order correlations of
in situ positions points to accumulation of bath fermions around the impurity. Third-order
correlations between the impurity and two fermions points to the formation of a molaron
state at large interaction strengths EB > EF . The asymmetric pairing associated with a
molaron state qualitatively distinguishes it from the polaron state. The effect of fermion
number on the molaron pairing asymmetry was then quantified. Excited repulsive states
of a single impurity were then explored. Correlations in such an excited system point to a
decay close to the Feshbach resonance position. Introducing finite impurity concentrations
connects the single impurity limit to the case of mismatched Fermi surfaces. In this limit
correlation functions in momentum space were accessed and compared to the case of a spin-
balanced system. In contrast to the spin-balanced system where a peak appears at zero
values of COM momentum, for EB > EF the spin-imbalanced system features a peak at
finite momentum.

In conclusion, we have studied microscopic correlations in a minimal instance of a single
impurity immersed in a few-body Fermi sea. Preparing the system in the ground state
we demonstrated how the interaction mediated by the impurity causes shifts in momenta
of the bath particles to higher values reminiscent of particle-hole excitations while at the
same time reducing the size of the fermion cloud in position space indicative of binding. We
further demonstrated how microscopic correlations involving the impurity and two fermions
indicate the formation of an asymmetric state reminiscent of a molecule at higher interaction
strengths. The transition to such a molaron state occurs at interaction strengths comparable
to theoretical predictions[49].

The polaron is a quasi-particle and its presence in a few-body system at weak coupling
would show up in the excitation spectrum of the system. In the foreseeable future this could
be implemented by looking at the RF spectrum with the motional resolution achieved for
preparing the system. Since this RF transfer also depends on motional overlap, it can be
used to obtain the quasi-particle residue. However such an ejection spectroscopy scheme
would only probe the ground state of the system. This could then be coupled with a
molecular injection spectroscopy[142] scheme to demonstrate the presence of an excited
molaron state in the system thereby providing more evidence for the polaron-molaron tran-
sition. Alternatively, the ground and excited many-body states of the few-body system can
be coupled with interaction modulation spectroscopy[80] to indicate a gap closing around
the polaron-molaron transition. The properties of the polaron quasi-particle could also be
probed by measuring its effective mass. This would require exciting only the impurity selec-
tively by making use of state dependent potentials in 6Li[152]. These experiments and the
possibility to prepare few-body imbalanced systems in the motional ground state coupled
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with microscopic observables could also be used to probe exotic forms of superfluidity[53].
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Even though few-body systems are far from the many-body limit, they already possess
collective properties reminiscent of their many-body counterparts. Starting with spin-
balanced few-body systems, preparation of low entropy samples of up to 6+6 fermions
in a quasi-2D harmonic oscillator potential were presented. In 2D symmetries lead to de-
generacies of motional orbitals leading to the formation of shell structure which was demon-
strated(Figure 3.4). The effect of interactions on the shell structure was explored(Figure
3.5). As the interaction strength was increased, the shell structure vanishes leading to sta-
ble even fermion numbers since in that way the system can increase the binding energy
per particle. Collective modes were excited in such a system by modulating interactions.
Since interactions change the amount of pairing in the system, they were used to couple
ground and excited motional states with different amount of pairing enabling the extrac-
tion of the excitation spectrum. The excitation spectrum showed a non-trivial asymp-
totic gap closing feature reminiscent of the normal-superfluid transition in the many-body
limit(Figure 3.7). The dependence of this mode on particle number(Figure 3.8) and coher-
ence properties were presented(Figure 3.9). Since these modes arise due to pair excitations,
they occur only at the Fermi surface due to a frozen inner core. Subsequently microscopic
observations demonstrating Pauli blocking through correlations called Pauli Crystals were
summarized(Figure 3.11). The ability to access microscopic correlation functions were then
used to demonstrate the formation of Cooper pairs at the Fermi surface as interactions
were tuned in the system(Figure 3.13). These observations provided evidence in favor of
emergent many-body properties already at these mesoscopic scales.

While previous microscopic measurements were performed to obtain in situ momenta of
the particles, the size of the system being smaller than the effective imaging resolution pro-
hibits a direct measurement of in situ positions. A technical scheme to magnify the many-
body wavefunction of the system using matterwave techniques was presented(Figure 4.1).
The scheme depended on evolving a non-interacting many-body state in two harmonic
traps with different trap frequencies. An implementation of nearly harmonic Gaussian
traps was presented to perform these matterwave transformations. The various parameters
of these traps which affect the performance of the matterwave microscope were provided.
Key performance attributes of this matterwave microscope - magnification, anharmonicity,
anisotropy and resolution - were experimentally determined. With the range of acces-
sible optical powers for the matterwave lenses, magnifications in the range 30 to 42 were
achieved. The effect of trap parameters on anharmonicity was estimated and experimentally
determined(Figure 4.6). The anisotropy of the matterwave microscope was experimentally
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obtained by measuring in situ correlations of a single Feshbach molecule(Figure 4.7). The
resolution was experimentally obtained by imaging systems of various sizes and the reso-
lution was found to be sufficient to explore quasi-2D mesoscopic systems(Figure 4.8). A
spin-balanced mesoscopic system consisting of 6+6 fermions was used to demonstrate the
performance of the matterwave microscope(Figure 4.9). At moderate interaction strengths,
Cooper pairs were found previously in momentum space. Increasing the interactions and
measuring in situ positions provided evidence for the formation of a molecular state thus
realizing the few-body analog of the BEC-BCS crossover. In situ position correlations were
quantified as a function of interaction strength(Figure 4.10) and were used to demonstrate
a monotonic increase in correlations at short distances(Figure 4.11).

Going beyond spin-balanced systems, we then explored few-body systems with spin-
imbalance. Since interesting phases involving imbalance in the many-body limit occur in
the motional ground state, the challenges involved in the preparation of such few-body sys-
tems were presented. Using interaction induced spin-motion coupling, the motional states
were coupled using RF transitions(Figure 5.4). Adiabatic RF sweeps were used to deter-
ministically prepare a spin-imbalanced system in the motional ground state(Figure 5.5).
The extreme case of imbalance featuring a single impurity immersed in a Fermi sea was ex-
perimentally realized. Microscopic density measurements of in situ position and momenta
revealed broadening of the fermion cloud in momentum space and narrowing in position
space as attractive interactions were increased(Figure 5.6). This is reminiscent of particle-
hole excitations of the Fermi sea caused by the immersed impurity in the many-body limit.
The resulting dressing of the impurity results in the formation of a polaron or molaron
quasi-particle in the many-body limit. While the polaron is a free impurity dressed by the
Fermi sea, the molaron is a molecule (comprised of the impurity and a fermion) which is
dressed by the surrounding Fermi sea. A polaron-molaron transition is expected to occur as
the interaction strength is tuned in the many-body limit. Accessing correlation functions of
second(Figures 5.7, 5.8) and third order(Figures 5.9, 5.10), evidence for the formation of a
molecule like state at large interaction strengths was provided. The third-order correlation
function between an impurity and two fermions indicates the formation of an asymmetric
paired state where the impurity is closer to one of the fermions(Figures 5.9, 5.10). The
effect of fermion density on this molecular state was studied by varying the number of
fermions(Figure 5.14). The metastability of the repulsive excited state mixture was also
explored with these microscopic correlations and it was found to have a larger decay closer
to the scattering resonance position(Figures 5.11, 5.12). Since the finite impurity concentra-
tion scenario leads to a system with mismatched Fermi surfaces, this was then studied. The
fate of pairing and the characteristics of the pairs were studied by comparing the distribu-
tion of COM momentum correlations with the spin-balanced case(Figure 5.15). In contrast
to the spin-balanced case, in a regime where the two-body interactions are larger than
the many-body energy scales given by the Fermi energy, the COM momentum correlation
appears to have a peak at finite momentum.

In the following paragraphs, a few possible future directions are alluded to starting with
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spin-balanced systems followed by their imbalanced counterparts. Symmetries play a very
important role in physics as they are associated with conservation laws. Systems with
scaling symmetry are ubiquitous near phase transitions and are responsible for universal
behaviours. The unitary Fermi gas is a non-relativistic system which exhibits conformal
symmetry. The symmetry is encapsulated by the Schrödinger group which consists of in-
variance under spatio-temporal translations, spatial rotations, Galilean boosts, scale and
conformal transformations[153]. These symmetries have far reaching consequences and im-
pose constrains on thermodynamic and transport properties[154]–[156]. A 2D-Fermi gas
with contact interactions possess scale invariance similar to a unitary Fermi gas so long
as interactions are not too strong[157], [158]. For such a harmonically trapped system,
non-relativistic conformal invariance is satisfied and as a result the excitation spectrum is
predicted to form a conformal tower of states[159]. The states are distinguished by the
amount of angular momentum(m) and energy they possess leading to a classification into
breathing and COM modes. The breathing modes(∆m = 0) can be excited by isotropic
modulation of the trap while COM modes(∆ ̸= 0) can be excited by anisotropic trap modu-
lation. The different angular momentum states ±m can be further possibly distinguished by
rotational modulation along clockwise or counter-clockwise directions. A few-fermion sys-
tem subject to rotation is already being investigated in the other experiment. In addition to
spectroscopic investigations of this system with a conformal tower of states, deterministic
preparation into these excited states opens us avenues for direct observation of the effect
of conformal symmetry. A remarkable prediction of conformal symmetry in such systems
is the factorization of the total wavefunction into a product of the COM and hyperradial
parts[159]. Using in situ position measurements developed in this thesis, the many-body
wavefunction of the system can be sampled and this consequence of conformal symmetry
can be directly tested.

Spin-imbalanced Fermi gases feature a rich phase diagram and only a small region was
explored in the previous chapter. Complementary spectroscopic measurements would be
invaluable in the single impurity limit to explore the emergence of quasi-particle proper-
ties in the few-body limit. Using interaction modulation or RF spectroscopy the energy
gap between the few-body ground and excited state can be measured. The presence of an
asymptotic gap closing would be further evidence for the polaron and molaron states with
a transition between them. State dependent optical potentials can be further used to selec-
tively modulate the impurity enabling access to quasi-particle properties like the effective
mass. While only a single instance of mismatched Fermi surfaces was explored, the effect
of mismatch on the qualitative and quantitative aspects of pairing would be an invaluable
direction of enquiry. The FFLO phase is expected to occupy a larger region of the phase
diagram in lower dimensions and is more pronounced in 1D[135]. In the few-body limit,
there have been a couple of theoretical predictions in this direction[136], [137]. Using the
ability to tailor optical potentials, 1D traps with with the elongated axis perpendicular to
the imaging direction can be created. This can then be used to measure correlations in
momentum space where clear predictions as a function of Fermi surface mismatch exist.
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